Quantum mechanics

Time Independent Perturbation Theory

- The stationary perturbation theory, is concerned with finding the changes in the discrete energy levels and eigen function of a system, when a small disturbance is applied
- The Hamiltonian 'H' in the schrodinger wave equation can be written as the sum of two parts

Where H_o is the unperturbed Hamiltonian
 H' is the perturbation term

We expand the perturbed eigen function and eigen value as power series in H'

- The perturbed wave function and energy level and written.
- $\psi_n = \psi_n^{\circ} + \lambda \psi'_n + \lambda^2 \psi^2_n + \dots$
- $E_n = E_n^{\circ} + \lambda E'_n + \lambda^2 E_n^2 + \dots$
- The above equations are substituted into the wave equation to give
- $(H_0 + \lambda H') (\psi_n^{\circ} + \lambda \psi'_{n+} \lambda^2 \psi^2_n) = (E_n = E_n^{\circ} + \lambda E'_{n+} \lambda^2 E_n^{\circ} + \dots) (\psi_n^{\circ} + \lambda \psi + \dots)$

 Then, we can equate the coefficients of equal power of λ on both sides to obtain a series of equation

- H° $\psi_n^\circ = E_n^\circ \psi_n^\circ$
- H' ψ_n^{o} + H^o $\psi_n^{'}$ = E' ψ_n^{o} + E $_n^{o}\psi_n^{'}$

• H' $\psi_n' + H^{\circ} \psi_n^2 = E'' \psi_n^{\circ} + E'_n \psi_n + E_n^{\circ} \psi_n^2$

First-order correction to the energy

• First-order correction to the energy

Multiplying the first order equation from the left by $\langle \psi_n^{\circ} |$, we get

 $< \psi_n^{o} |H'| \psi_n^{o} > + < \psi_n^{o} |H'| \psi_n^{o} > = E_n^{o} < \psi_n^{o} / \psi_n^{o} > +

 E_n^{o} < \psi_n^{o} / \psi_n^{o} >

 E_n^{o} <
br/>
 E_n^{o}

 E_n^{o} <br/$

From the above equation we get,

 $\mathsf{E}_{\mathsf{n'}} = < \psi_{\mathsf{n}}^{\mathsf{o}} |\mathsf{H'}| \psi_{\mathsf{n}}^{\mathsf{o}} >$

 The first order correction to the energy is thus the average value of the perturbation over the corresponding unperturbed states of the system.

Second order correction to the energy.

The second order correction to the energy from equation is

 $H'\psi_{n}' + H^{o}\psi_{n}^{2} = E_{n}^{2}\psi_{n}^{o} + E_{n}'\psi_{n}' + E_{n}^{o}\psi_{n}^{2}$

multiplying the above equation from left by • $\langle \psi_n^{\circ} |$ weget,

 $<\psi_{m}^{\circ}|H'|\psi_{n}^{\prime}>=E_{n}^{2}<\psi_{n}^{\circ}|\psi_{n}^{\circ}>+E_{n}^{\prime}<\psi_{n}^{\circ}|\psi_{n}^{\prime}>$

 $E_n^{2} = \langle \psi_n^{o} | H' | \psi_n' \rangle$

• substituing the value of ψ_n , we get,

 $E_{n}^{2} = \langle \psi_{m}^{o} | H' | \psi_{n}^{o} \rangle \psi_{n}^{o} | H' | \psi_{m}^{o} \rangle$ $E_{n}^{o} - E_{m}^{o}$

$$E_{n}^{2} = |\langle \psi_{m}^{o}|H'|\psi_{n}^{o}\rangle|^{2}$$

 $E_{n}^{o} - E_{n}^{o}$

• The second order correction in energy to level n due to levels for which $E_n^{\circ} > E_n^{\circ}$ is postive whereas that due to levels for which $iwhich E_n^{\circ} < E_n^{\circ}$ is negative.