


 The stationary perturbation theory , is 
concerned with finding the changes in the 
discrete energy levels  and eigen function 
of a system, when a small disturbance is 
applied

 The Hamiltonian ‘H’ in the schrodinger
wave equation can be written as the sum 
of two  parts

 H= Ho+H’
 Where     Ho is the unperturbed Hamiltonian
 H’ is the perturbation term



 We expand the perturbed eigen
function and eigen value as power series in 
H’

 The perturbed wave  function and energy 
level and written. 
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 The above equations are substituted  into 
the wave equation to give
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 Then, we can equate the coefficients of 

equal power of  on both sides to obtain 

a series of equation
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 First-order correction to the energy 

Multiplying the first  order equation from the left by 
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o| , we get
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From the above equation we get,
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 The first order correction to the energy is thus the average  

value of the perturbation over the corresponding 
unperturbed states of the system.



 The second order correction to the energy from 

equation is
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multiplying the above equation from left by 

 < n
o| weget,



< m
o|H’| n

’>=En
2< n

o | n
o >+En

’ < n
o | n

’>

En
2 = < n

o|H’| n
’>



 substituing the value of n
’ ,we get,
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 The second order correction in energy to 
level n due to levels for which En

o>En
o is 

postive whereas that due to levels for which 
iwhich En

o<En
o is negative.


