FIBER OPTIC COMMUNICATION

Submitted by J. Shamili Shivani M.E., AP/Department of electronics, St.Johns college.

INTRODUCTION

- A fiber optic cable is essentially a light pipe that is used to carry a light beam from one place to another
- Light is an electromagnetic signal like a radio wave
- It can be modulated by information signal and sent over the fiber optic cable

Why Fiber Optics?

- Advantages of Fiber Optic Communications:
 - Low loss
 - Large bandwidth
 - Immunity to electromagnetic interference
 - High propagation delay stability
 - No Radiation
 - Reliability
 - Economy
 - Parallel transmission
 - Flexibility & Ruggedness

Optical Waveguides

- Total Internal Reflection
- Operates in 800 to 1600 nm range
- Transmission windows with low attenuation

Basic Fiber Optic Link

- 4 Major components required:
 - Light source
 - Modulator
 - Optical fiber
 - Photodetector

Attenuation

- Power loss in a fiber cable is probably the most important characteristics of the cable.
- Power loss is often called as attenuation.
- Attenuation is a measure of decay of signal strength or loss of light power that occurs as light pulses propagate through the length of the fiber

Scattering losses

Scattering losses in glass arise due to following factors

Microscopic variations in the material density
Compositional fluctuations
Structural inhomogeneities and
Structural defects

Bending losses

- Optical fiber suffer radiation losses which causes light energy to be radiated from the fiber, whenever an optical fiber undergoes at bends or curves on their paths
- There are two types of bending losses
 Macroscopic bending losses and
 Microscopic bending losses

Dispersion

- The term dispersion refers to spreading of light pulse as it propagates through fiber
- It introduces Inter symbol interference (ISI)
- It limits the information carrying capacity of fiber

Fiber joints

- Optical fiber link is used for both jointing and termination of the transmission medium
- Generally number of intermediate fiber connections or joints is dependent upon the link length
- Interconnecting the fibers in a low loss manner is the basic requirement in any fiber optic system installation

Mechanical Misalignment

- A potentially greater source of loss at a fiber-fiber connection is caused by misalignment of the two jointed fibers
- The three types of misalignment which may occur when joining compatible optical fibers
 Longitudinal misalignment
 Lateral misalignment and
 Angular misalignment

Fiber splicing

- A fiber splice is a permanent or semi-permanent joint between two fibers
- The process of joining two fibers is called as splicing
- Splices may be divided into two broad categories depending upon the splicing techniques
 Fusion splicing (or) welding
 Mechanical splicing

Fiber connectors

- Connectors are mechanisms or techniques used to join an optical fiber to another fiber
- At connector joint, it should offer low coupling losses
- Connectors may be separated into two broad categories

Butt jointed connectors andExpanded beam connectors

THANK YOU