
C++ Files and Streams

Presented By

K. APPASAMY,MCA;M.Phil

Assistant Professor,

Department of BCA & M.Sc[NT & IT],

ST. JOHN’S COLLEGE,

PALAYAMKOTTAI 1

2

C++ Files and Streams
 In C++ Files as a sequence of bytes.

 Each file ends with an end-of-file marker.

 When a file is opened, an object is created and a stream is associated

with the object.

 To perform file processing in C++, the header files <iostream.h> and

<fstream.h> must be included.

 <fstream.> includes <ifstream> and <ofstream>

3

Creating a sequential file
// Fig. 14.4: fig14_04.cpp D&D p.708

// Create a sequential file

#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>

int main()

{

// ofstream constructor opens file

ofstream outClientFile("clients.dat", ios::out);

if (!outClientFile) { // overloaded ! operator

cerr << "File could not be opened" << endl;

exit(1); // prototype in stdlib.h

}

4

Sequential file
cout << "Enter the account, name, and balance.\n"

<< "Enter end-of-file to end input.\n? ";

int account;

char name[30];

float balance;

while (cin >> account >> name >> balance) {

outClientFile << account << ' ' << name

<< ' ' << balance << '\n';

cout << "? ";

}

return 0; // ofstream destructor closes file

}

5

How to open a file in C++ ?

Ofstream outClientFile(“clients.dat”, ios:out)

OR

Ofstream outClientFile;

outClientFile.open(“clients.dat”, ios:out)

6

File Open Modes
ios:: app - (append) write all output to the end of file

ios:: ate - data can be written anywhere in the file

ios:: binary - read/write data in binary format

ios:: in - (input) open a file for input

ios::out - (output) open afile for output

ios: trunc -(truncate) discard the files’ contents if

it exists

ios:nocreate - if the file does NOT exists, the open

operation fails

ios:noreplace - if the file exists, the open operation fails

7

How to close a file in C++?

The file is closed implicitly when a

destructor for the corresponding object is

called

OR

by using member function close:

outClientFile.close();

8

Reading and printing a sequential file

// Reading and printing a sequential file

#include <iostream.h>

#include <fstream.h>

#include <iomanip.h>

#include <stdlib.h>

void outputLine(int, const char *, double);

int main()

{

// ifstream constructor opens the file

ifstream inClientFile("clients.dat", ios::in);

if (!inClientFile) {

cerr << "File could not be opened\n";

exit(1);

}

9

int account;

char name[30];

double balance;

cout << setiosflags(ios::left) << setw(10) << "Account"

<< setw(13) << "Name" << "Balance\n";

while (inClientFile >> account >> name >> balance)

outputLine(account, name, balance);

return 0; // ifstream destructor closes the file

}

void outputLine(int acct, const char *name, double bal)

{

cout << setiosflags(ios::left) << setw(10) << acct

<< setw(13) << name << setw(7) << setprecision(2)

<< resetiosflags(ios::left)

<< setiosflags(ios::fixed | ios::showpoint)

<< bal << '\n';

}

10

File position pointer

<istream> and <ostream> classes provide

member functions for repositioning the file

pointer (the byte number of the next byte in the

file to be read or to be written.)

These member functions are:

seekg (seek get) for istream class

seekp (seek put) for ostream class

11

Examples of moving a file pointer

inClientFile.seekg(0) - repositions the file get pointer to the

beginning of the file

inClientFile.seekg(n, ios:beg) - repositions the file get pointer

to the n-th byte of the file

inClientFile.seekg(m, ios:end) -repositions the file get pointer to

the m-th byte from the end of file

nClientFile.seekg(0, ios:end) - repositions the file get pointer to

the end of the file

The same operations can be performed with <ostream>

function member seekp.

12

Member functions tellg() and tellp()

Member functions tellg and tellp are provided to

return the current locations of the get and put pointers,

respectively.

long location = inClientFile.tellg();

To move the pointer relative to the current location

use ios:cur

inClientFile.seekg(n, ios:cur) - moves the file get

pointer n bytes forward.

13

Updating a sequential file

Data that is formatted and written to a

sequential file cannot be modified easily

without the risk of destroying other data in

the file.

If we want to modify a record of data, the

new data may be longer than the old one

and it could overwrite parts of the record

following it.

14

Problems with sequential files
Sequential files are inappropriate for so-

called “instant access” applications in which

a particular record of information must be

located immediately.

These applications include banking systems,

point-of-sale systems, airline reservation

systems, (or any data-base system.)

15

Random access files

Instant access is possible with random

access files.

Individual records of a random access file

can be accessed directly (and quickly)

without searching many other records.

16

Example of a Program that

Creates a Random Access File
#ifndef CLNTDATA_H

#define CLNTDATA_H

struct clientData {

int accountNumber;

char lastName[15];

char firstName[10];

float balance;

};

#endif

17

Creating a random access file
// Creating a randomly accessed file sequentially

#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>

#include "clntdata.h"

int main()

{

ofstream outCredit("credit1.dat", ios::out);

if (!outCredit) {

cerr << "File could not be opened." << endl;

exit(1);

}

18

clientData blankClient = { 0, "", "", 0.0 };

for (int i = 0; i < 100; i++)

outCredit.write

(reinterpret_cast<const char *>(&blankClient),

sizeof(clientData));

return 0;

}

19

<ostream> memebr function

write

The <ostream> member function write

outputs a fixed number of bytes beginning

at a specific location in memory to the

specific stream. When the stream is

associated with a file, the data is written

beginning at the location in the file

specified by the “put” file pointer.

20

The write function expects a first

argument of type const char *, hence

we used the reinterpret_cast <const

char *> to convert the address of the

blankClient to a const char *.

The second argument of write is an

integer of type size_t specifying the

number of bytes to written. Thus the

sizeof(clientData).

21

Writing data randomly to a

random file
#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>

#include "clntdata.h"

int main()

{

ofstream outCredit("credit.dat", ios::ate);

if (!outCredit) {

cerr << "File could not be opened." << endl;

exit(1);

}

22

cout << "Enter account number "

<< "(1 to 100, 0 to end input)\n? ";

clientData client;

cin >> client.accountNumber;

while (client.accountNumber > 0 &&

client.accountNumber <= 100) {

cout << "Enter lastname, firstname, balance\n? ";

cin >> client.lastName >> client.firstName

>> client.balance;

23

outCredit.seekp((client.accountNumber - 1) *

sizeof(clientData));

outCredit.write(

reinterpret_cast<const char *>(&client),

sizeof(clientData));

cout << "Enter account number\n? ";

cin >> client.accountNumber;

}

return 0;

}

24

Reading data from a random file

#include <iostream.h>

#include <iomanip.h>

#include <fstream.h>

#include <stdlib.h>

#include "clntdata.h"

void outputLine(ostream&, const clientData &);

int main()

{

ifstream inCredit("credit.dat", ios::in);

if (!inCredit) {

cerr << "File could not be opened." << endl;

exit(1);

}

25

cout << setiosflags(ios::left) << setw(10) << "Account"

<< setw(16) << "Last Name" << setw(11)

<< "First Name" << resetiosflags(ios::left)

<< setw(10) << "Balance" << endl;

clientData client;

inCredit.read(reinterpret_cast<char *>(&client),

sizeof(clientData));

26

while (inCredit && !inCredit.eof()) {

if (client.accountNumber != 0)

outputLine(cout, client);

inCredit.read(reinterpret_cast<char *>(&client),

sizeof(clientData));

}

return 0;

}

27

void outputLine(ostream &output, const clientData &c)

{

output << setiosflags(ios::left) << setw(10)

<< c.accountNumber << setw(16) << c.lastName

<< setw(11) << c.firstName << setw(10)

<< setprecision(2) << resetiosflags(ios::left)

<< setiosflags(ios::fixed | ios::showpoint)

<< c.balance << '\n';

}

28

The <istream> function read

inCredit.read (reinterpret_cast<char *>(&client),

sizeof(clientData));

The <istream> function inputs a specified (by

sizeof(clientData)) number of bytes from the

current position of the specified stream into an

object.

29

