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C++ Files and Streams
 In C++ Files as a sequence of bytes.

 Each file ends with an end-of-file marker.

 When a file is opened, an object is created and a stream is associated 

with the object.

 To perform file processing in C++, the header files <iostream.h> and 

<fstream.h> must be included.

 <fstream.> includes <ifstream> and <ofstream> 
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Creating a sequential file
// Fig. 14.4: fig14_04.cpp  D&D p.708

// Create a sequential file

#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>  

int main()

{

// ofstream constructor opens file

ofstream outClientFile( "clients.dat", ios::out ); 

if ( !outClientFile ) {  // overloaded ! operator

cerr << "File could not be opened" << endl;

exit( 1 );    // prototype in stdlib.h

}
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Sequential file
cout << "Enter the account, name, and balance.\n"

<< "Enter end-of-file to end input.\n? ";

int account;

char name[ 30 ];

float balance;

while ( cin >> account >> name >> balance ) {

outClientFile << account << ' ' << name

<< ' ' << balance << '\n';

cout << "? ";

}

return 0;  // ofstream destructor closes file

}
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How to open a file in C++ ?

Ofstream outClientFile(“clients.dat”, ios:out)

OR

Ofstream outClientFile;

outClientFile.open(“clients.dat”, ios:out)
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File Open Modes
ios:: app - (append) write all output to the end of file

ios:: ate - data can be written anywhere in the file

ios:: binary - read/write data in binary format

ios:: in  - (input) open a file for input

ios::out - (output) open afile for output

ios: trunc -(truncate) discard the files’ contents if 

it exists

ios:nocreate - if the file does NOT exists, the open 

operation fails

ios:noreplace - if the file exists, the open operation fails
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How to close a file in C++?

The file is closed implicitly when a 

destructor for the corresponding object  is 

called

OR

by using member function close:

outClientFile.close();
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Reading and printing a sequential file

// Reading and printing a sequential file

#include <iostream.h>

#include <fstream.h>

#include <iomanip.h>

#include <stdlib.h>  

void outputLine( int, const char *, double );

int main()

{

// ifstream constructor opens the file

ifstream inClientFile( "clients.dat", ios::in );

if ( !inClientFile ) {

cerr << "File could not be opened\n";

exit( 1 );

}
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int account;

char name[ 30 ];

double balance;

cout << setiosflags( ios::left ) << setw( 10 ) << "Account" 

<< setw( 13 ) << "Name" << "Balance\n";

while ( inClientFile >> account >> name >> balance )

outputLine( account, name, balance );

return 0;  // ifstream destructor closes the file

}

void outputLine( int acct, const char *name, double bal )

{

cout << setiosflags( ios::left ) << setw( 10 ) << acct 

<< setw( 13 ) << name << setw( 7 ) << setprecision( 2 )

<< resetiosflags( ios::left )

<< setiosflags( ios::fixed | ios::showpoint )

<< bal << '\n';

}
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File position pointer

<istream> and <ostream> classes provide 

member functions for repositioning the file 

pointer (the byte number of the next byte in the 

file to be read or to be written.)

These member functions are:

seekg (seek get) for istream class

seekp (seek put) for ostream class
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Examples of moving a file pointer

inClientFile.seekg(0) - repositions the file get pointer to the 

beginning of the file

inClientFile.seekg(n, ios:beg) - repositions the file get pointer  

to the n-th byte of the file 

inClientFile.seekg(m, ios:end) -repositions the file get pointer to 

the m-th byte from the end of file

nClientFile.seekg(0, ios:end) - repositions the file get pointer to 

the end of the file

The same operations can be performed with <ostream> 

function member seekp. 
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Member functions tellg() and tellp()

Member functions tellg and tellp are provided to 

return the current locations of the get and put pointers, 

respectively.

long location = inClientFile.tellg();

To move the pointer relative to the current location 

use ios:cur

inClientFile.seekg(n, ios:cur) - moves the file get 

pointer n bytes forward.



13

Updating a sequential file

Data that is formatted and written to a 

sequential file cannot be modified easily

without the risk of destroying other data in 

the file.

If we want to modify a record of data, the 

new data may be longer than the old one 

and it could overwrite parts of the record 

following it. 
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Problems with sequential files
Sequential files are inappropriate for so-

called “instant access” applications in which 

a particular record of information must be 

located immediately.

These applications include banking systems, 

point-of-sale systems, airline reservation 

systems, (or any data-base system.)
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Random access files

Instant access is possible with random 

access files. 

Individual records of a random access file

can be accessed directly (and quickly) 

without searching many other records.
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Example of a Program that 

Creates a Random Access File
#ifndef CLNTDATA_H

#define CLNTDATA_H

struct clientData {

int accountNumber;

char lastName[ 15 ];

char firstName[ 10 ];

float balance;

};

#endif



17

Creating a random access file
// Creating a randomly accessed file sequentially

#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>

#include "clntdata.h"

int main()

{

ofstream outCredit( "credit1.dat", ios::out);

if ( !outCredit ) {

cerr << "File could not be opened." << endl;

exit( 1 );

}
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clientData blankClient = { 0, "", "", 0.0 };

for ( int i = 0; i < 100; i++ )

outCredit.write

(reinterpret_cast<const char *>( &blankClient ), 

sizeof( clientData ) );

return 0;

}
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<ostream> memebr function 

write

The <ostream> member function write

outputs a fixed number of bytes beginning

at a specific location in memory to the

specific stream. When the stream is

associated with a file, the data is written

beginning at the location in the file

specified by the “put” file pointer.
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The write function expects a first

argument of type const char *, hence

we used the reinterpret_cast <const

char *> to convert the address of the

blankClient to a const char *.

The second argument of write is an

integer of type size_t specifying the

number of bytes to written. Thus the

sizeof( clientData ).
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Writing data randomly to a 

random file
#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>

#include "clntdata.h"

int main()

{

ofstream outCredit( "credit.dat", ios::ate );

if ( !outCredit ) {

cerr << "File could not be opened." << endl;

exit( 1 );

}
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cout << "Enter account number "

<< "(1 to 100, 0 to end input)\n? ";

clientData client;

cin >> client.accountNumber;

while ( client.accountNumber > 0 && 

client.accountNumber <= 100 ) {

cout << "Enter lastname, firstname, balance\n? ";

cin >> client.lastName >> client.firstName 

>> client.balance;
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outCredit.seekp( ( client.accountNumber - 1 ) * 

sizeof( clientData ) );

outCredit.write( 

reinterpret_cast<const char *>( &client ), 

sizeof( clientData ) );

cout << "Enter account number\n? ";

cin >> client.accountNumber;

}

return 0;

}
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Reading data from a random file

#include <iostream.h>

#include <iomanip.h>

#include <fstream.h>

#include <stdlib.h>

#include "clntdata.h"

void outputLine( ostream&, const clientData & );

int main()

{

ifstream inCredit( "credit.dat", ios::in );

if ( !inCredit ) {

cerr << "File could not be opened." << endl;

exit( 1 );

}
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cout << setiosflags( ios::left ) << setw( 10 ) << "Account"

<< setw( 16 ) << "Last Name" << setw( 11 )

<< "First Name" << resetiosflags( ios::left )

<< setw( 10 ) << "Balance" << endl;

clientData client;

inCredit.read( reinterpret_cast<char *>( &client ), 

sizeof( clientData ) );
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while ( inCredit && !inCredit.eof() ) {

if ( client.accountNumber != 0 )

outputLine( cout, client );

inCredit.read( reinterpret_cast<char *>( &client ),

sizeof( clientData ) );

}

return 0;

}
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void outputLine( ostream &output, const clientData &c )

{

output << setiosflags( ios::left ) << setw( 10 ) 

<< c.accountNumber << setw( 16 ) << c.lastName 

<< setw( 11 ) << c.firstName << setw( 10 ) 

<< setprecision( 2 ) << resetiosflags( ios::left )

<< setiosflags( ios::fixed | ios::showpoint ) 

<< c.balance << '\n';

}
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The <istream> function read

inCredit.read (reinterpret_cast<char *>(&client),

sizeof(clientData));

The <istream> function inputs a specified (by 

sizeof(clientData)) number of bytes from the 

current position of the specified stream into an 

object.
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