Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Computer Programming in C ++	
Course Code	GMPH41	
Class	II Year (2014-2015)	
Semester	Even	
Staff Name	Dr. A.Arul Gnanam	
	Dr.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➢ To Learn about C++ Programme
- Objective of the course is to provide knowledge about the basics of Computer programming in C++ and to solve problems by writing programs. The paper does not need any special prerequisite and the learners are expected to come out with the ability to apply the computer language C++ to solve problems
- > To discuss about operators.
- ➤ To learn about programme goading.

Syllabus

OBJECT ORIENTED PROGRAMMING WTH C++

UNIT-I: Evolution of C++ - applications of C++ - structure of C++ program. Tokens – keywords – identifiers and constants

- basic data types - user-defined data types - constant pointers and pointers to constants - symbolic constants - type compatibility - declaration of variables - dynamic initialization of variables - reference variables - operators in C++ - scope resolution

operator – memory management operators – manipulators – type cast operator – expressions and their types – special assignment expressions –

implicit conversions – operator precedence.

UNIT-II: Functions in C++ : The main function – function prototyping – call by reference – return by reference – inline functions – default arguments – const arguments – function overloading. Managing Console I/O Operations: C++ streams – C++ stream classes – unformatted console I/O operations – formatted console I/O operations – formatted console I/O operations – managing output with manipulators.

UNIT-III: Classes and Objects: Specifying a class – defining member functions – making an outside function inline – nesting of member functions – private member functions – arrays within a class – memory allocation for objects –arrays of objects – objects as function arguments – friend functions – returning objects – const member functions. Constructors and Destructors: Introduction – constructors – parameterized constructors – multiple constructors in a class – constructors with default arguments – copy constructor.

UNIT-IV: Operator Overloading: Introduction – defining operator overloading – overloading unary operators – overloading binary operators - overloading binary operators using friends – rules for overloading operators. Inheritance: Introduction – defining derived classes – single inheritance – making a private member inheritable – multilevel inheritance – multiple inheritance – hierarchical inheritance – hybrid inheritance

UNIT-V: Working with Files: Introduction – Classes for File Stream Operations -Opening and Closing a File – Detecting End-of-file – More about open(): File Modes – File Pointers and their Manipulations – Sequential Input and Output Operations – Updating a File: Random Access

Hour	Class Schedule
allotment	
	EVEN Semester 03.12.2014
1-L1	UNIT-I: Evolution of C++ - applications of C++
2-L2	Tokens – keywords – identifiers and constants
3- L3	basic data types – user-defined data types
4-L4	constant pointers and pointers to constants – symbolic constants

5-L5	constant pointers and pointers to constants – symbolic constants
6-L6	type compatibility – declaration of variables – dynamic initialization of variables
	– reference variables
7-L7	operators in C++ - scope resolution operator - memory management operators
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	manipulators - type cast operator - expressions and their types - special
	assignment expressions
10- L9	implicit conversions – operator precedence
11-L10	Functions in C++ : The main function – function prototyping – call by reference
12-L11	return by reference – inline functions – default arguments – const arguments –
13-L12	function overloading
13-L12	Managing Console I/O Operations: C++ streams – C++ stream classes – unformatted console I/O operations – formatted console I/O
14-L13	formatted console I/O operations – nonnatted console I/O formatted console I/O operations – managing output with manipulators.
14-L13 15-L14	Allotting portion for Internal Test-I
15 114	Internal Test I begins 19.01.2015
16-L15	Classes and Objects: Specifying a class – defining member functions – making
10 215	an outside function inline – nesting of member functions
17-IT-1	Internal Test-I
18-L16	private member functions – arrays within a class – memory allocation for object
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	arrays of objects – objects as function arguments – friend functions – returning
	objects – const member functions.
21- L19	Constructors and Destructors: Introduction - constructors - parameterized
	constructors – multiple constructors in a class
22- P2	College level meeting/Cell function
23-L20	Constructors and Destructors: Introduction - constructors - parameterized
	constructors – multiple constructors in a class
24-L21	Operator Overloading: Introduction
25-L22	defining operator overloading – overloading unary operators
26-L23	overloading binary operators - overloading binary operators using friends -
27-L24	overloading binary operators - overloading binary operators using friends -
28-L25	rules for overloading operators
29-L26	Inheritance: Introduction
30-L27	defining derived classes
31-L28 32-L29	single inheritance
32-L29 33-L30	making a private member inheritable multilevel inheritance
33-L30 34- P3	Department Seminar
34-F3 35-L31	Rivision
36-L32	Allotting portion for Internal Test-II
30-L32	Internal Test II begins 16.02.2015
37- L33	hierarchical inheritance
38- IT-II	Internal Test-II
39-L34	hybrid inheritance
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Working with Files: Introduction

42- L37	Classes for File Stream Operations
43- L38	Opening and Closing a File
44- P4	College level meeting/ function
45-L39	Detecting End-of-file
46-L40	More about open
47-L41	Revision
48-L42	Revision Class
49-L43	File Modes
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins 16.03.2015
51 L45	File Pointers and their Manipulations
52- L46	Revision
53-IT-III	Internal Test-III
54-L47	Sequential Input and Output Operations – Updating a File: Random Access
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 16.04.2015
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.4.2015

Learning Outcomes	COs of the course " <computer ++="" c="" in="" programming="">"</computer>	
C01	Get insight knowledge about the language.	
CO2	Get trained in writing small programs.	
CO3	Capable of executes any programs and identifying errors in them	
CO4	Design and implement C programs for any given problem	
CO5	Work with existing programs and modify it as per the	
	requirements.	
CO6	Identify the errors in a C program.	
CO7	Identify the output of a C program without actually executing it	
Experimental		
Learning		
EL1	Capable coding any problem.	
EL2	Capable of identifying errors in a coding	
EL3	Capable handling any project assigned by a company.	
Integrated Activity		
IA1	Individual and Team Work: Function effectively on teams to	
	accomplish a common goal	
IA2	Communication: Communicate effectively with a range of audiences and prepare technical documents and make effective oral presentations	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Statistical Mechanics
Course Code	GMPH6A
Class	III year (2014-2015)
Semester	Even
Staff Name	Mr. A. Arul Gnanam
Credits	5
L. Hours /P. Hours	5 / WK
Total 75 Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)	

Course Objectives

- understand the strength and limitations of the models used and be able to compare different microscopic models
- describe transport phenomena and show an understanding on how diffusion coefficients are computed
- > show an analytic ability to solve problems relevant to statistical mechanics

Syllabus

STATISTICAL MECHANICS

(Major Elective Paper)

Unit I

Statistical basis- probability- principle of equal a priori probability -microstate and macro state- thermodynamic probability -constrains on a system -static and dynamic systems -most probable state (equilibrium state) -concept of a cell in a compartment -ensemble and average properties

Unit II

Degrees of freedom -position space -momentum space- phase space- the mu- space and gamma space- applications -fundamental postulates of statistical mechanics –density of quantum

states of energy of a particle-statistical ensembles- comparison of ensembles- theories based on

statistical mechanics -entropy and probability- Boltzmann's canonical distribution law applications

of Boltzmann's canonical distribution law-

Unit III

The law of equipartion of energy- statistical interpretation of second law of thermodynamics- partition function and its relation with thermodynamic quantities -entropy of an ideal gas- Gibbs paradox

Unit IV

Three kinds of particles -M.B statistics applicable to ideal gas -Maxwell Boltzmann energy distribution law - applications of M.B distribution law -mean rms and most probable speeds-Maxwell's distribution law of velocities-experimental verification Maxwellian distribution of molecular speeds

Unit V

Need of quantum statistics -development of quantum statistics- Bose Einstein distribution law- photon gas- Plank's radiation law -Fermi Dirac distribution law-free electrons in metal:electron gas= Fermi level and Fermi energy –EF for electrons in a metal-comparison of the three statistics -difference between classical and quantum statistics Reference Book:

Heat thermodynamics and statistical physics: Brij Lal N.Subramanium P.S Hemne

S.Chand publications

Hour	Class Schedule
allotment	
	Even Semester Begin on 03.12.2014
1-L1	Statistical basis- probability
2-L2	principle of equal a priori probability
3- L3	microstate and macrostate
4-L4	thermodynamic probability
5-L5	constrains on a system
6-L6	static and dynamic systems
7-L7	mostprobable state (equilibrium state)
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	concept of a cell in a compartment
10- L9	ensemble and averageproperties
11-L10	Unit II Degrees of freedom
12-L11	position space -momentum space
13-L12	mu- space and gamma space
14-L13	applications -fundamental postulates of statistical mechanics
15-L14	density of quantum
16-L15	states of enrgy of a particle-statistical ensembles
17- L16	comparison of ensembles- theories based on
18- L17	statistical mechanics -entropy and probability
19- L18	Boltzmann's canonical distribution lawapplications
20- L19	Boltzmann's canonical distribution law
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins19.01.2015
22- L21	The law of equipartion of energy
23- IT-1	Internal Test-I
24- L22	statistical interpretation

0.5. T. 0.0		
25- L23	statistical interpretation of second law of thermodynamics	
26- L24	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
27- L25	partition function	
28- L26	its relation with thermodynamic quantities	
29- L27	entropy of an ideal gas	
30- P2	College level meeting/Cell function	
31-L28	- Gibbs paradox	
32-L29	Practical Explanation	
33-L30	Three kinds of particles	
34- L31	M.B statistics applicable to ideal gas	
35- L32	Problems Explanation	
36- L33	Practical Work	
37- L34	Maxwell Boltzmann Explanation	
38-L35	Maxwell's distribution law of velocities	
39- L36	experimental verification Maxwellian distribution of molecular speeds	
40- L37	Need of quantum statistics	
41- L38	development of quantum statistics	
42-P3	Department Seminar	
43- L39	Bose Einstein distribution law	
44- L40	photon gas	
45- L41	Fermi Dirac distribution law	
46- L42	Plank's radiation law	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins16.02.2015	
48- L44	Fermi Dirac distribution law	
49-IT-II	Internal Test-II	
50-L45	free electrons in metal	
51- L46	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	electron gas Fermi level	
53- L48	Fermi energy	
54- L49	EF for electrons in a metal	
55- L50	comparison of the three statistics	
56- L51	difference between classical and quantum statistics	
57-L52	Statistics and Explanation	
58- L53	Practical Work	
59-P4	College level meeting/ function	
60- L54	Problems Solution	
61-L55	Problems	
62- L56	Fermi Energy Calculation	
63- L57	Bose Einstein distribution law	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins16.03.2015	
65- L59	Bose Einstein Law Explanation	
66- L60	Theory Verification	
67-IT-III 68- L61	Internal Test-III Revision	

69- L62	Revision Test
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins16.04.2015
71-MT	Model Test
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 23.04.2015

Learning Outcomes	COs of the course " <statistical b="" mechanics<=""> >"</statistical>
Learning Outcomes	COS of the course <statistical mechanics=""></statistical>
CO1	Give an account of the theory of statistical mechanics and the
	approximations making a statistical description possible.
CO2	Apply the theory to understand gases and crystals and in addition
	be able to construct microscopic models and from these derive
	thermodynamic observables.
CO3	apply the theory to understand gases and crystals and in addition be
	able to construct microscopic models and from these derive
	thermodynamic observables
CO4	Explain statistical physics and thermodynamics as logical
	consequences of the postulates of statistical mechanics;
CO5	apply the principles of statistical mechanics to selected problems
CO6	apply techniques from statistical mechanics to a range of situations;
CO7	use the tools, methodologies, language and conventions of physics
	test and communicate ideas and explanations
CO8	use the tools, methodologies, language and conventions of physics
	to test and communicate ideas and explanation
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

Blended Learning

: using PPT, video, library resources, ICT techniques, Elearning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Atomic Physics
Course Code	GMPH51
Class	III year (2014-2015)
Semester	Odd
Staff Name	Mr.A.Arul Gnanam
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /	unit)

Course Objectives

- > To learn electron band theory of solids
- To understand types of spectroscopy
- ➢ How to use X-rays and Photoelectric effect.
- > To learn atomic structure, and Principle

Syllabus

ATOMIC PHYSICS

UNIT I

The electron , band theory of solids and positive rays : The free Electron Theory of metals -

Expression for electrical conductivity – expressions for thermal conductivity – Determination of the electronic charge : Millikan's oil drop method-electron microscope – band theory of solids – classification of solids on the basis of band theory – optical properties of solids - energy bands Brillouin zones-origin of forbidden bands

UNIT II

Properties of positive rays – positive ray analysis – Thomson's parabola method-Aston's mass spectrograph – Bainbridge's mass spectrograph – Dempster's mass spectrograph – mass defect and packing fraction- Dunnington's method of determining e/m

UNIT III

Structure of atom: The vector atom model – quantum numbers associated with the the vector atom model – coupling schemes – the Pauli exclusions exclusion principle – the periodic

classification of elements – magnetic dipole moment due to orbital motion of the electromagnetic dipole moment due to spin-the Stern and Gerlach experiment- quantum mechanical explanation of normal and anomoulous Zeeman effect. **UNIT IV**

X-rays: Production of X-rays – spacing between three dimensional lattice planes – the absorption of X-rays – X-ray absorption edges – Bragg's law – the Bragg's X-ray spectrometer – the power crystal method –(a) the Laue method - (b) rotating crystal method – X-ray spectra – characteristic of X-ray spectrum – Moseley's law – Compton scattering **UNIT V**

Photoelectric effect and planck's quantum theory: Experimental investigations on the photoelectric effect – failure of electromagnetic theory-Einstein's photoelectric equation – photoelectric cells – Planck's quantum theory-the distribution of energy in the spectrum of a black body-Wien's displacement law-Planck's hypothesis-derivation of Planck's law of radiation

Books for reference:

1. MODERN PHYSICS - By R.Murugeshan and Kiruthiga Sivaprasath (14th Revised multicolour edition), S.Chand & Company Ltd. Ram nagar, New Delhi-110055 2. MODERN PHYSICS - By B.S.Agarwal, Kedarnath Ramnath, Meerut, Delhi

3. ATOMIC AND NUCLEAR PHYSICS- N.Subrahmanyam Brijlal, S.Chand & Company Ltd. Ram nagar ,New Delhi-110055

4. MODERN PHYSICS – B.V.N. Rao, Wiley Eastern Ltd, New Delhi

5. An Introduction to MODERN PHYSICS- P.Mahendru, 16/7698 New market, New Rohtak road, Satyaprakashan ,New Delhi-11

6. Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2014
1-L1	The electron ,band theory of solids and positive rays
2-L2	The free Electron Theory of metals
3- L3	Expression for electrical conductivity – expressions for thermal conductivity
4-L4	expressions for thermal conductivity
5-L5	Determination of the electronic charge
6-L6	Millikan's oil drop method-electron microscope
7-L7	band theory of solids
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	classification of solids on the basis of band theory
10- L9	optical properties of solids
11-L10	energy bands Brillouin zones-origin of forbidden bands
12-L11	Properties of positive rays – positive ray analysis
13-L12	Thomson's parabola method
14-L13	Aston's mass spectrograph
15-L14	Allotting portion for Internal Test-I

	Internal Test I begins30.07.2014
16-L15	Bainbridge's mass spectrograph
17-IT-1	Internal Test-I
18-L16	Dempster's mass spectrograph
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	mass defect and packing fraction
21- L19	Dunnington's method of determining e/m
22- P2	College level meeting/Cell function
23-L20	Structure of atom : The vector atom model
24-L21	quantum numbers associated with the the vector atom model
25-L22	coupling schemes
26-L23	the Pauli exclusions exclusion principle
27-L24	Periodic classification of elements
28-L25	magnetic dipole moment due to orbital motion of the electronmagnetic dipole
	moment due to spin
29-L26	the Stern and Gerlach experiment
30-L27	quantum mechanical explanation of normal and anomoulous Zeeman effect.
31-L28	X-rays: Production of X-rays
32-L29	spacing between three dimensional lattice planes
33-L30	absorption of X-rays
34- P3	Department Seminar
35-L31	Problem Solving
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins 18.08.2014
37- L33	Revision
38- IT-II	Internal Test-II
39-L34	X-ray absorption edges
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Bragg's law
42- L37	the Bragg's X-ray spectrometer
43- L38	the power crystal method
44- P4	College level meeting/ function
45-L39	X-ray spectra characteristic of X-ray spectrum – Moseley's law – Compton
4.5.7.40	scattering
46-L40	Photoelectric effect and planck's quantum theory: Experimental investigations
	on the photoelectric effect
47-L41	failure of electromagnetic theory
47-L41 48-L42	photoelectric cells – Planck's quantum theory-the distribution of energy in the
48-L42	photoelectric cells – Planck's quantum theory-the distribution of energy in the spectrum of a black body
	 photoelectric cells – Planck's quantum theory-the distribution of energy in the spectrum of a black body Wien's displacement law-Planck's hypothesis-derivation of Planck's law of
48-L42 49-L43	 photoelectric cells – Planck's quantum theory-the distribution of energy in the spectrum of a black body Wien's displacement law-Planck's hypothesis-derivation of Planck's law of radiation
48-L42	 photoelectric cells – Planck's quantum theory-the distribution of energy in the spectrum of a black body Wien's displacement law-Planck's hypothesis-derivation of Planck's law of radiation Allotting portion for Internal Test-III
48-L42 49-L43 50-L44	photoelectric cells – Planck's quantum theory-the distribution of energy in the spectrum of a black bodyWien's displacement law-Planck's hypothesis-derivation of Planck's law of radiationAllotting portion for Internal Test-IIIInternal Test III begins 15.09.2014
48-L42 49-L43 50-L44 51 L45	photoelectric cells – Planck's quantum theory-the distribution of energy in the spectrum of a black body Wien's displacement law-Planck's hypothesis-derivation of Planck's law of radiation Allotting portion for Internal Test-III Internal Test III begins 15.09.2014 Class Test
48-L42 49-L43 50-L44	photoelectric cells – Planck's quantum theory-the distribution of energy in the spectrum of a black bodyWien's displacement law-Planck's hypothesis-derivation of Planck's law of radiationAllotting portion for Internal Test-IIIInternal Test III begins 15.09.2014

54-L47	Revision
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 24.10.2014
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 31.10.2014

Learning Outcomes	COs of the course " <atomic physics="">"</atomic>
CO1	The structure and dynamics of stores and simple malecules
	The structure and dynamics of atoms and simple molecules.
CO2	,
	fields. collision processes involving atoms, charged particles and
	molecules
CO3	The structure of the periodic system, many-electron and
	relativistic effects
CO4	
CO5	
	how the vehicles Move.
CO6	The information will teach the students about the rolling concept.
CO7	The course provide the students about the knowledge of M.I.
CO8	The course provide the students about the knowledge of hollow
	cylinder and solid cylinder
CO9	The course will give knowledge about the general parameter like
	velocity, acceleration
Experimental	
Learning	
EL1	Experimental nuclear physics is the practical investigation of the
	processes that occur at the heart of an atom.
EL2	This includes building a better fundamental understanding of
	fusion and fission, and harnessing them for sustained energy
	generation.
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Electricity and Magnetism
Course Code	GMPH31
Class	II year (2014-2015)
Semester	Odd
Staff Name	Mrs. R. Nithya Agnes
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

- ➢ To learn electricity and magnetism
- > To understand electric Current
- ➢ How to apply Transient Current
- ➢ To understand Alternating Current

Syllabus

ELECTRICITY AND MAGNETISM

Unit I

Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – electric potential – relation connecting electric potential and electric field – potential at a point due to a point charge – potential due to an electric dipole – capacity – capacitance of a spherical and cylindrical

Capacitor – energy of a charged capacitor – Loss of energy due to sharing of charges. Unit II

Chemical Effects of Electric Current: Faraday's Laws of Electrolysis – electrical Conductivity of an electrolyte – specific conductivity – Kohlrausch bridge – Thermoelectricity – $See beck\ effect-Peltier\ effect-Thomson\ effect-total\ e.m.f-thermodynamics\ of\ thermocouple$

- thermoelectric power diagram - its uses - applications.

Unit III

Transient Current: Growth and decay of current in a circuit containing resistance and inductance – Growth and decay of charge in a circuit containing resistance and capacitance – Determination of high resistance by leakage – Growth and decay of charge in a LCR circuit – condition for the discharge to be oscillatory – Frequency of Oscillation.

672

Unit IV

Alternating Current: j operator – properties – use of j operator in the study of A.C Circuit With R only – inductance only – capacitance only – LCR series and parallel circuits – power in an AC circuit – Wattless current – choke coil – construction and working of AC generator, 1 phase and 3 phase AC generator – distribution of 3 phase AC – star connection – delta Connection.

Unit V

Magnetic Properties of Materials: Magnetic induction – Magnetism – Relation between B, H and M – Magnetic susceptibility – Magnetic permeability – Relation between them – Electron theory of dia, para and ferromagnetism – Determination of susceptibility – Curie balance method – Moving coil Ballistic galvanometer – construction – theory – correction for damping in B.G – Measurement of Charge sensitiveness – absolute capacity of a condenser. Books for Study and reference:

1. Electricity and Magnetism - D.N. Vasudeva

2. Electricity and Magnetism - Brijlal and Subramanian

3. Electricity and Magnetism - R. Murugeshan

4. Electricity and Magnetism - K.K. Tewari

5.Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.6.2014
1-L1	Electrostatics: Coulomb's law – electric field – electric dipole – electric flux
2-L2	Coulomb's law – electric field – electric dipole – electric flux – electric potential
	relation connecting electric potential and electric field
3- L3	potential at a point due to a point
	charge – potential due to an electric dipole
4-L4	potential due to an electric dipole – capacity
5-L5	capacitance of a spherical and cylindrical
6-L6	capacitor - energy of a charged capacitor - Loss of energy due to sharing of
	charges
7-L7	Unit II Chemical Effects of Electric Current: Faraday's Laws of Electrolysis
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Electrical conductivity of an electrolyte
10- L9	specific conductivity – Kohlrausch bridge – Thermoelectricity –
11-L10	See beck effect – Peltier effect – Thomson effect
12-L11	thermoelectric power diagram – its uses – applications
13-L12	Unit III Transient Current: Growth and decay of current in a circuit

14-L13	Growth and decay of charge in a circuit containing resistance and capacitance
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins 30.07.2014
16-L15	Determination of high resistance by leakage
17-IT-1	Growth and decay of charge in a LCR circuit
1, 11 1	Internal Test-I
18-L16	condition for the discharge to be oscillatory – Frequency of Oscillation.
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Alternating Current: j operator – properties
21- L19	properties – use of j operator in the study of A.C Circuit
22- P2	College level meeting/Cell function
23-L20	inductance only – capacitance only – LCR series and parallel circuits – power in
	an AC circuit
24-L21	Wattless current – choke coil
25-L22	construction and working of AC generator, 1
26-L23	phase and 3 phase AC generator
27-L24	distribution of 3 phase AC
28-L25	star connection – delta connection.
29-L26	Magnetic Properties of Materials
30-L27	Magnetic induction – Magnetism
31-L28	Relation between B, H and M – Magnetic susceptibility
32-L29	Magnetic permeability
33-L30	Relation between them Electron theory of dia, para and ferromagnetism
34- P3	Department Seminar
35-L31	Determination of susceptibility
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins 18.08.2014
37- L33	Curie balance method
38- IT-II	Internal Test-II
39-L34	Moving coil Ballistic galvanometer
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Moving coil Ballistic galvanometer – construction
42- L37	theory – correction for
43- L38	correction for damping in B.G
44- P4	College level meeting/ function
45-L39	Measurement of Charge sensitiveness
46-L40	absolute capacity of a condenser
47-L41	Solving Problems
48-L42	Curie balance method explanation
49-L43	.Determination of susceptibility
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins 15.09.2014
51 L45	Practical explanation
52- L46	Measurement of Charge sensitiveness
53-IT-III	Internal Test-III
54-L47	Revision

55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 24.10.2014
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 31.10.2014

Learning Outcomes	COs of the course " <electricity and="" magnetism="">"</electricity>
CO1	The use of Coulomb's law and Gauss' law for the electrostatic force
CO2	The relationship between electrostatic field and electrostatic potential
CO3	The use of the Lorentz force law for the magnetic force
CO4	The use of Ampere's law to calculate magnetic fields
CO5	The use of Faraday's law in induction problems
CO6	The basic laws that underlie the properties of electric circuit elements
Experimental Learning	
EL1	The abstraction from forces to fields using the examples of the electric and magnetic fields, with some applications
EL2	The connection between conservative forces and potential energy
EL3	How charges move through electric circuits -
EL4	The close connection between electricity and magnetism, leading to
	the discovery of electromagnetic waves.
EL5	the integral form of Maxwell's Equations
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Electricity and Magnetism
Course Code	GMPH31
Class	II year (2014-2015)
Semester	Odd
Staff Name	Mrs. R. Nithya Agnes
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; $5 \times 10=50$; 10 Hrs /	unit)

Course Objectives

- > To learn electricity and magnetism
- > To understand electric Current
- ➢ How to apply Transient Current
- ➢ To understand Alternating Current

Syllabus

ELECTRICITY AND MAGNETISM

Unit I

Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – electric potential – relation connecting electric potential and electric field – potential at a point due to a point charge – potential due to an electric dipole – capacity – capacitance of a spherical and cylindrical

Capacitor – energy of a charged capacitor – Loss of energy due to sharing of charges. Unit II

Chemical Effects of Electric Current: Faraday's Laws of Electrolysis – electrical Conductivity of an electrolyte – specific conductivity – Kohlrausch bridge – Thermoelectricity – $See beck\ effect-Peltier\ effect-Thomson\ effect-total\ e.m.f-thermodynamics\ of\ thermocouple$

- thermoelectric power diagram - its uses - applications.

Unit III

Transient Current: Growth and decay of current in a circuit containing resistance and inductance – Growth and decay of charge in a circuit containing resistance and capacitance – Determination of high resistance by leakage – Growth and decay of charge in a LCR circuit – condition for the discharge to be oscillatory – Frequency of Oscillation.

672

Unit IV

Alternating Current: j operator – properties – use of j operator in the study of A.C Circuit With R only – inductance only – capacitance only – LCR series and parallel circuits – power in an AC circuit – Wattless current – choke coil – construction and working of AC generator, 1 phase and 3 phase AC generator – distribution of 3 phase AC – star connection – delta Connection.

Unit V

Magnetic Properties of Materials: Magnetic induction – Magnetism – Relation between B, H and M – Magnetic susceptibility – Magnetic permeability – Relation between them – Electron theory of dia, para and ferromagnetism – Determination of susceptibility – Curie balance method – Moving coil Ballistic galvanometer – construction – theory – correction for damping in B.G – Measurement of Charge sensitiveness – absolute capacity of a condenser. Books for Study and reference:

1. Electricity and Magnetism - D.N. Vasudeva

2. Electricity and Magnetism - Brijlal and Subramanian

3. Electricity and Magnetism - R. Murugeshan

4. Electricity and Magnetism - K.K. Tewari

5.Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.6.2014
1-L1	Electrostatics: Coulomb's law – electric field – electric dipole – electric flux
2-L2	Coulomb's law – electric field – electric dipole – electric flux – electric potential
	relation connecting electric potential and electric field
3- L3	potential at a point due to a point
	charge – potential due to an electric dipole
4-L4	potential due to an electric dipole – capacity
5-L5	capacitance of a spherical and cylindrical
6-L6	capacitor - energy of a charged capacitor - Loss of energy due to sharing of
	charges
7-L7	Unit II Chemical Effects of Electric Current: Faraday's Laws of Electrolysis
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Electrical conductivity of an electrolyte
10- L9	specific conductivity – Kohlrausch bridge – Thermoelectricity –
11-L10	See beck effect – Peltier effect – Thomson effect
12-L11	thermoelectric power diagram – its uses – applications
13-L12	Unit III Transient Current: Growth and decay of current in a circuit

14-L13	Growth and decay of charge in a circuit containing resistance and capacitance
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins 30.07.2014
16-L15	Determination of high resistance by leakage
17-IT-1	Growth and decay of charge in a LCR circuit
1, 11 1	Internal Test-I
18-L16	condition for the discharge to be oscillatory – Frequency of Oscillation.
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Alternating Current: j operator – properties
21- L19	properties – use of j operator in the study of A.C Circuit
22- P2	College level meeting/Cell function
23-L20	inductance only – capacitance only – LCR series and parallel circuits – power in
	an AC circuit
24-L21	Wattless current – choke coil
25-L22	construction and working of AC generator, 1
26-L23	phase and 3 phase AC generator
27-L24	distribution of 3 phase AC
28-L25	star connection – delta connection.
29-L26	Magnetic Properties of Materials
30-L27	Magnetic induction – Magnetism
31-L28	Relation between B, H and M – Magnetic susceptibility
32-L29	Magnetic permeability
33-L30	Relation between them Electron theory of dia, para and ferromagnetism
34- P3	Department Seminar
35-L31	Determination of susceptibility
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins 18.08.2014
37- L33	Curie balance method
38- IT-II	Internal Test-II
39-L34	Moving coil Ballistic galvanometer
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Moving coil Ballistic galvanometer – construction
42- L37	theory – correction for
43- L38	correction for damping in B.G
44- P4	College level meeting/ function
45-L39	Measurement of Charge sensitiveness
46-L40	absolute capacity of a condenser
47-L41	Solving Problems
48-L42	Curie balance method explanation
49-L43	.Determination of susceptibility
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins 15.09.2014
51 L45	Practical explanation
52- L46	Measurement of Charge sensitiveness
53-IT-III	Internal Test-III
54-L47	Revision

55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 24.10.2014
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 31.10.2014

Learning Outcomes	COs of the course " <electricity and="" magnetism="">"</electricity>
CO1	The use of Coulomb's law and Gauss' law for the electrostatic force
CO2	The relationship between electrostatic field and electrostatic potential
CO3	The use of the Lorentz force law for the magnetic force
CO4	The use of Ampere's law to calculate magnetic fields
CO5	The use of Faraday's law in induction problems
CO6	The basic laws that underlie the properties of electric circuit elements
Experimental Learning	
EL1	The abstraction from forces to fields using the examples of the electric and magnetic fields, with some applications
EL2	The connection between conservative forces and potential energy
EL3	6 6
EL4	The close connection between electricity and magnetism, leading to
	the discovery of electromagnetic waves.
EL5	the integral form of Maxwell's Equations
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Statistical Mechanics
Course Code	GMPH6A
Class	III year (2015-2016)
Semester	Even
Staff Name	Mr. A. Arul Gnanam
Credits	5
L. Hours /P. Hours	5 / WK
Total 75 Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)	

Course Objectives

- understand the strength and limitations of the models used and be able to compare different microscopic models
- describe transport phenomena and show an understanding on how diffusion coefficients are computed
- show an analytic ability to solve problems relevant to statistical mechanics

Syllabus

STATISTICAL MECHANICS

(Major Elective Paper)

Unit I

Statistical basis- probability- principle of equal a priori probability -microstate and macro state- thermodynamic probability -constrains on a system -static and dynamic systems -most probable state (equilibrium state) -concept of a cell in a compartment -ensemble and average properties

Unit II

Degrees of freedom -position space -momentum space- phase space- the mu- space and gamma space- applications -fundamental postulates of statistical mechanics –density of quantum

states of energy of a particle-statistical ensembles- comparison of ensembles- theories based on

statistical mechanics -entropy and probability- Boltzmann's canonical distribution law applications of Boltzmann's canonical distribution law-

Unit III

The law of equipartion of energy- statistical interpretation of second law of thermodynamics- partition function and its relation with thermodynamic quantities -entropy of an ideal gas- Gibbs paradox

Unit IV

Three kinds of particles -M.B statistics applicable to ideal gas -Maxwell Boltzmann energy distribution law - applications of M.B distribution law -mean rms and most probable speeds-Maxwell's distribution law of velocities-experimental verification Maxwellian distribution of molecular speeds

Unit V

Need of quantum statistics -development of quantum statistics- Bose Einstein distribution law- photon gas- Plank's radiation law -Fermi Dirac distribution law-free electrons in metal:electron gas= Fermi level and Fermi energy –EF for electrons in a metal-comparison of the three statistics -difference between classical and quantum statistics Reference Book:

Heat thermodynamics and statistical physics: Brij Lal N.Subramanium P.S Hemne S.Chand publications

Hour	Class Schedule
allotment	
	Even Semester Begin on 02.12.2015
1-L1	Statistical basis- probability
2-L2	principle of equal a priori probability
3- L3	microstate and macrostate
4-L4	thermodynamic probability
5-L5	constrains on a system
6-L6	static and dynamic systems
7-L7	mostprobable state (equilibrium state)
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	concept of a cell in a compartment
10- L9	ensemble and averageproperties
11-L10	Unit II Degrees of freedom
12-L11	position space -momentum space
13-L12	mu- space and gamma space
14-L13	applications -fundamental postulates of statistical mechanics
15-L14	density of quantum
16-L15	states of enrgy of a particle-statistical ensembles
17- L16	comparison of ensembles- theories based on
18- L17	statistical mechanics -entropy and probability
19- L18	Boltzmann's canonical distribution lawapplications
20- L19	Boltzmann's canonical distribution law
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins25.01.2015

66- L60	Theory Verification
67-IT-III	Internal Test-III
68- L61	Revision
69- L62	Revision Test
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins11.04.2016
71-MT	Model Test
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 22.04.2016

Learning Outcomes	COs of the course " <statistical b="" mechanics<=""> >"</statistical>
CO1	Give an account of the theory of statistical mechanics and the
	approximations making a statistical description possible.
CO2	
	be able to construct microscopic models and from these derive thermodynamic observables.
CO3	apply the theory to understand gases and crystals and in addition be
	able to construct microscopic models and from these derive
	thermodynamic observables
CO4	
	consequences of the postulates of statistical mechanics;
CO5	
CO6	
CO7	use the tools, methodologies, language and conventions of physics
	test and communicate ideas and explanations
CO8	use the tools, methodologies, language and conventions of physics
	to test and communicate ideas and explanation
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Atomic Physics	
Course Code	GMPH51	
Class	III year (2015-2016)	
Semester	Odd	
Staff Name	Mr.A.Arul Gnanam	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > To learn electron band theory of solids
- > To understand types of spectroscopy
- ▶ How to use X-rays and Photoelectric effect.
- > To learn atomic structure, and Principle

Syllabus

ATOMIC PHYSICS

UNIT I

The electron , band theory of solids and positive rays : The free Electron Theory of metals -

Expression for electrical conductivity – expressions for thermal conductivity – Determination of the electronic charge : Millikan's oil drop method-electron microscope – band theory of solids – classification of solids on the basis of band theory – optical properties of solids - energy bands Brillouin zones-origin of forbidden bands

UNIT II

Properties of positive rays – positive ray analysis – Thomson's parabola method-Aston's mass spectrograph – Bainbridge's mass spectrograph – Dempster's mass spectrograph – mass defect and packing fraction- Dunnington's method of determining e/m UNIT III Structure of atom: The vector atom model – quantum numbers associated with the the vector atom model – coupling schemes – the Pauli exclusions exclusion principle – the periodic

classification of elements – magnetic dipole moment due to orbital motion of the electromagnetic dipole moment due to spin-the Stern and Gerlach experiment- quantum mechanical explanation of normal and anomoulous Zeeman effect.

UNIT IV

X-rays: Production of X-rays – spacing between three dimensional lattice planes – the absorption of X-rays – X-ray absorption edges – Bragg's law – the Bragg's X-ray spectrometer – the power crystal method –(a) the Laue method - (b) rotating crystal method – X-ray spectra – characteristic of X-ray spectrum – Moseley's law – Compton scattering **UNIT V**

Photoelectric effect and planck's quantum theory: Experimental investigations on the photoelectric effect – failure of electromagnetic theory-Einstein's photoelectric equation – photoelectric cells – Planck's quantum theory-the distribution of energy in the spectrum of a black body-Wien's displacement law-Planck's hypothesis-derivation of Planck's law of radiation

Books for reference:

1. MODERN PHYSICS - By R.Murugeshan and Kiruthiga Sivaprasath (14th Revised multicolour edition) , S.Chand & Company Ltd. Ram nagar , New Delhi-110055

2. MODERN PHYSICS - By B.S.Agarwal, Kedarnath Ramnath, Meerut, Delhi

3. ATOMIC AND NUCLEAR PHYSICS- N.Subrahmanyam Brijlal, S.Chand & Company Ltd. Ram nagar ,New Delhi-110055

4. MODERN PHYSICS – B.V.N. Rao, Wiley Eastern Ltd, New Delhi

5. An Introduction to MODERN PHYSICS- P.Mahendru,16/7698 New market,New Rohtak road, Satyaprakashan ,New Delhi-11

6. Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2015	
1-L1	The electron ,band theory of solids and positive rays	
2-L2	The free Electron Theory of metals	
3- L3	Expression for electrical conductivity – expressions for thermal conductivity	
4-L4	expressions for thermal conductivity	
5-L5	Determination of the electronic charge	
6-L6	Millikan's oil drop method-electron microscope	
7-L7	band theory of solids	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	classification of solids on the basis of band theory	
10- L9	optical properties of solids	
11-L10	energy bands Brillouin zones-origin of forbidden bands	
12-L11	Properties of positive rays – positive ray analysis	
13-L12	Thomson's parabola method	
14-L13	Aston's mass spectrograph	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	

16-L15	Bainbridge's mass spectrograph		
17-IT-1	Internal Test-I		
17-11-1 18-L16			
19-L17	Dempster's mass spectrograph		
19-L17	Test Paper distribution and result analysisEntering Internal Test-I Marks into University portal		
20-L18	mass defect and packing fraction		
21- L19 22- P2	Dunnington's method of determining e/m		
	College level meeting/Cell function		
23-L20 24-L21	Structure of atom : The vector atom model		
	quantum numbers associated with the the vector atom model		
25-L22	coupling schemes		
26-L23 27-L24	the Pauli exclusions exclusion principle Periodic classification of elements		
28-L25	magnetic dipole moment due to orbital motion of the electronmagnetic dipole		
20.1.26	moment due to spin		
29-L26 30-L27	the Stern and Gerlach experimentquantum mechanical explanation of normal and anomoulous Zeeman effect.		
30-L27 31-L28	X-rays: Production of X-rays		
31-L28 32-L29	spacing between three dimensional lattice planes		
32-L29 33-L30			
33-L30 34- P3	absorption of X-rays		
34-13 35-L31	Department Seminar Problem Solving		
36-L32	Allotting portion for Internal Test-II		
30-L32	Internal Test II begins 20.07.2015		
37- L33	Revision		
38- IT-II	Internal Test-II		
39-L34	X-ray absorption edges		
40-L35	Test Paper distribution and result analysis		
	Entering Internal Test-II Marks into University portal		
41-L36	Bragg's law		
42- L37	the Bragg's X-ray spectrometer		
43- L38	the power crystal method		
44- P4	College level meeting/ function		
45-L39	X-ray spectra characteristic of X-ray spectrum – Moseley's law – Compton		
	scattering		
46-L40	Photoelectric effect and planck's quantum theory: Experimental investigations		
	on the photoelectric effect		
47-L41	failure of electromagnetic theory		
48-L42	photoelectric cells – Planck's quantum theory-the distribution of energy in the		
	spectrum of a black body		
49-L43	Wien's displacement law-Planck's hypothesis-derivation of Planck's law of		
	radiation		
50-L44	Allotting portion for Internal Test-III		
	Internal Test III begins 31.08.2015		
51 L45	Class Test		
52- L46	Problem Solving		
53-IT-III	Internal Test-III		
54-L47	Revision		

55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins 05.10.2015	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 16.10.2015	

Learning Outcomes	COs of the course " <atomic physics="">"</atomic>	
CO1	The structure and dynamics of atoms and simple molecules.	
CO2	2 The interaction between atoms, molecules and electromagnetic	
	fields. collision processes involving atoms, charged particles and	
	molecules	
CO3	The structure of the periodic system, many-electron and	
	relativistic effects	
CO4	Get the knowledge about forces help the students in their daily life.	
CO5	5 The velocity and acceleration parameter give the knowledge about	
	how the vehicles Move.	
CO6	The information will teach the students about the rolling concept.	
CO7	The course provide the students about the knowledge of M.I.	
CO8	3 The course provide the students about the knowledge of hollow	
	cylinder and solid cylinder	
CO9	The course will give knowledge about the general parameter like	
	velocity, acceleration	
Experimental		
Learning		
EL1	Experimental nuclear physics is the practical investigation of the	
	processes that occur at the heart of an atom.	
EL2	2 This includes building a better fundamental understanding of	
	fusion and fission, and harnessing them for sustained energy	
	generation.	
Integrated Activity		
IA1		
IA2		

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,	
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.	
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.	
# Extension activity	: Motivate student to take classes for school students.	

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Electricity and Magnetism	
Course Code	GMPH31	
Class	II year (2015-2016)	
Semester	Odd	
Staff Name	Mrs. R. Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > To learn electricity and magnetism
- > To understand electric Current
- ➢ How to apply Transient Current
- To understand Alternating Current

Syllabus

ELECTRICITY AND MAGNETISM

Unit I

Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – electric potential – relation connecting electric potential and electric field – potential at a point due to a point charge – potential due to an electric dipole – capacity – capacitance of a spherical and cylindrical

Capacitor – energy of a charged capacitor – Loss of energy due to sharing of charges. Unit II

Chemical Effects of Electric Current: Faraday's Laws of Electrolysis – electrical Conductivity of an electrolyte – specific conductivity – Kohlrausch bridge – Thermoelectricity – $See beck\ effect-Peltier\ effect-Thomson\ effect-total\ e.m.f-thermodynamics\ of\ thermocouple$

- thermoelectric power diagram - its uses - applications.

Unit III

Transient Current: Growth and decay of current in a circuit containing resistance and inductance – Growth and decay of charge in a circuit containing resistance and capacitance – Determination of high resistance by leakage – Growth and decay of charge in a LCR circuit – condition for the discharge to be oscillatory – Frequency of Oscillation.

672

Unit IV

Alternating Current: j operator – properties – use of j operator in the study of A.C Circuit With R only – inductance only – capacitance only – LCR series and parallel circuits – power in an AC circuit – Wattless current – choke coil – construction and working of AC generator, 1 phase and 3 phase AC generator – distribution of 3 phase AC – star connection – delta Connection.

Unit V

Magnetic Properties of Materials: Magnetic induction – Magnetism – Relation between B, H and M – Magnetic susceptibility – Magnetic permeability – Relation between them – Electron theory of dia, para and ferromagnetism – Determination of susceptibility – Curie balance method – Moving coil Ballistic galvanometer – construction – theory – correction for damping in B.G – Measurement of Charge sensitiveness – absolute capacity of a condenser. Books for Study and reference:

1. Electricity and Magnetism - D.N. Vasudeva

2. Electricity and Magnetism - Brijlal and Subramanian

3. Electricity and Magnetism - R. Murugeshan

4. Electricity and Magnetism - K.K. Tewari

5.Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2015	
1-L1	Electrostatics: Coulomb's law – electric field – electric dipole – electric flux	
2-L2	Coulomb's law – electric field – electric dipole – electric flux – electric potential	
	relation connecting electric potential and electric field	
3- L3	potential at a point due to a point	
	charge – potential due to an electric dipole	
4-L4	potential due to an electric dipole – capacity	
5-L5	capacitance of a spherical and cylindrical	
6-L6	capacitor – energy of a charged capacitor – Loss of energy due to sharing of	
	charges	
7-L7	Unit II Chemical Effects of Electric Current: Faraday's Laws of Electrolysis	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Electrical conductivity of an electrolyte	
10- L9	specific conductivity – Kohlrausch bridge – Thermoelectricity –	
11-L10	See beck effect – Peltier effect – Thomson effect	
12-L11	thermoelectric power diagram – its uses – applications	
13-L12	Unit III Transient Current: Growth and decay of current in a circuit	

14-L13	Growth and decay of charge in a circuit containing resistance and capacitance	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins 20.07.2015	
16-L15	Determination of high resistance by leakage	
17-IT-1	Growth and decay of charge in a LCR circuit	
1, 11 1	Internal Test-I	
18-L16	condition for the discharge to be oscillatory – Frequency of Oscillation.	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Alternating Current: j operator – properties	
21- L19	properties – use of j operator in the study of A.C Circuit	
22- P2	College level meeting/Cell function	
23-L20	inductance only – capacitance only – LCR series and parallel circuits – power in	
	an AC circuit	
24-L21	Wattless current – choke coil	
25-L22	construction and working of AC generator, 1	
26-L23	phase and 3 phase AC generator	
27-L24	distribution of 3 phase AC	
28-L25	star connection – delta connection.	
29-L26	Magnetic Properties of Materials	
30-L27	Magnetic induction – Magnetism	
31-L28	Relation between B, H and M – Magnetic susceptibility	
32-L29	Magnetic permeability	
33-L30	Relation between them Electron theory of dia, para and ferromagnetism	
34- P3	Department Seminar	
35-L31	Determination of susceptibility	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins 31.08.2015	
37- L33	Curie balance method	
38- IT-II	Internal Test-II	
39-L34	Moving coil Ballistic galvanometer	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Moving coil Ballistic galvanometer – construction	
42- L37	theory – correction for	
43- L38	correction for damping in B.G	
44- P4	College level meeting/ function	
45-L39	Measurement of Charge sensitiveness	
46-L40	absolute capacity of a condenser	
47-L41	Solving Problems	
48-L42	Curie balance method explanation	
49-L43	.Determination of susceptibility	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins 05.09.2015	
51 L45	Practical explanation	
52- L46	Measurement of Charge sensitiveness	
53-IT-III	Internal Test-III	
54-L47	Revision	

55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins 24.10.2014	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 29.10.2015	

Learning Outcomes	COs of the course " <electricity and="" magnetism="">"</electricity>
CO1	The use of Coulomb's law and Gauss' law for the electrostatic force
CO2	The relationship between electrostatic field and electrostatic potential
CO3	The use of the Lorentz force law for the magnetic force
CO4	The use of Ampere's law to calculate magnetic fields
CO5	The use of Faraday's law in induction problems
CO6	The basic laws that underlie the properties of electric circuit
	elements
Experimental	
Learning	
EL1	The abstraction from forces to fields using the examples of the electric and magnetic fields, with some applications
EL2	The connection between conservative forces and potential energy
EL3	How charges move through electric circuits -
EL4	The close connection between electricity and magnetism, leading to
	the discovery of electromagnetic waves.
EL5	the integral form of Maxwell's Equations
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Electricity and Magnetism	
Course Code	GMPH31	
Class	II year (2015-2016)	
Semester	Odd	
Staff Name	Mrs. R. Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > To learn electricity and magnetism
- > To understand electric Current
- ➢ How to apply Transient Current
- To understand Alternating Current

Syllabus

ELECTRICITY AND MAGNETISM

Unit I

Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – electric potential – relation connecting electric potential and electric field – potential at a point due to a point charge – potential due to an electric dipole – capacity – capacitance of a spherical and cylindrical

Capacitor – energy of a charged capacitor – Loss of energy due to sharing of charges. Unit II

Chemical Effects of Electric Current: Faraday's Laws of Electrolysis – electrical Conductivity of an electrolyte – specific conductivity – Kohlrausch bridge – Thermoelectricity – $See beck\ effect-Peltier\ effect-Thomson\ effect-total\ e.m.f-thermodynamics\ of\ thermocouple$

- thermoelectric power diagram - its uses - applications.

Unit III

Transient Current: Growth and decay of current in a circuit containing resistance and inductance – Growth and decay of charge in a circuit containing resistance and capacitance – Determination of high resistance by leakage – Growth and decay of charge in a LCR circuit – condition for the discharge to be oscillatory – Frequency of Oscillation.

672

Unit IV

Alternating Current: j operator – properties – use of j operator in the study of A.C Circuit With R only – inductance only – capacitance only – LCR series and parallel circuits – power in an AC circuit – Wattless current – choke coil – construction and working of AC generator, 1 phase and 3 phase AC generator – distribution of 3 phase AC – star connection – delta Connection.

Unit V

Magnetic Properties of Materials: Magnetic induction – Magnetism – Relation between B, H and M – Magnetic susceptibility – Magnetic permeability – Relation between them – Electron theory of dia, para and ferromagnetism – Determination of susceptibility – Curie balance method – Moving coil Ballistic galvanometer – construction – theory – correction for damping in B.G – Measurement of Charge sensitiveness – absolute capacity of a condenser. Books for Study and reference:

1. Electricity and Magnetism - D.N. Vasudeva

2. Electricity and Magnetism - Brijlal and Subramanian

3. Electricity and Magnetism - R. Murugeshan

4. Electricity and Magnetism - K.K. Tewari

5.Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2015	
1-L1	Electrostatics: Coulomb's law – electric field – electric dipole – electric flux	
2-L2	Coulomb's law – electric field – electric dipole – electric flux – electric potential	
	relation connecting electric potential and electric field	
3- L3	potential at a point due to a point	
	charge – potential due to an electric dipole	
4-L4	potential due to an electric dipole – capacity	
5-L5	capacitance of a spherical and cylindrical	
6-L6	capacitor – energy of a charged capacitor – Loss of energy due to sharing of	
	charges	
7-L7	Unit II Chemical Effects of Electric Current: Faraday's Laws of Electrolysis	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Electrical conductivity of an electrolyte	
10- L9	specific conductivity – Kohlrausch bridge – Thermoelectricity –	
11-L10	See beck effect – Peltier effect – Thomson effect	
12-L11	thermoelectric power diagram – its uses – applications	
13-L12	Unit III Transient Current: Growth and decay of current in a circuit	

14-L13	Growth and decay of charge in a circuit containing resistance and capacitance	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins 20.07.2015	
16-L15	Determination of high resistance by leakage	
17-IT-1	Growth and decay of charge in a LCR circuit	
1, 11 1	Internal Test-I	
18-L16	condition for the discharge to be oscillatory – Frequency of Oscillation.	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Alternating Current: j operator – properties	
21- L19	properties – use of j operator in the study of A.C Circuit	
22- P2	College level meeting/Cell function	
23-L20	inductance only – capacitance only – LCR series and parallel circuits – power in	
	an AC circuit	
24-L21	Wattless current – choke coil	
25-L22	construction and working of AC generator, 1	
26-L23	phase and 3 phase AC generator	
27-L24	distribution of 3 phase AC	
28-L25	star connection – delta connection.	
29-L26	Magnetic Properties of Materials	
30-L27	Magnetic induction – Magnetism	
31-L28	Relation between B, H and M – Magnetic susceptibility	
32-L29	Magnetic permeability	
33-L30	Relation between them Electron theory of dia, para and ferromagnetism	
34- P3	Department Seminar	
35-L31	Determination of susceptibility	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins 31.08.2015	
37- L33	Curie balance method	
38- IT-II	Internal Test-II	
39-L34	Moving coil Ballistic galvanometer	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Moving coil Ballistic galvanometer – construction	
42- L37	theory – correction for	
43- L38	correction for damping in B.G	
44- P4	College level meeting/ function	
45-L39	Measurement of Charge sensitiveness	
46-L40	absolute capacity of a condenser	
47-L41	Solving Problems	
48-L42	Curie balance method explanation	
49-L43	.Determination of susceptibility	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins 05.09.2015	
51 L45	Practical explanation	
52- L46	Measurement of Charge sensitiveness	
53-IT-III	Internal Test-III	
54-L47	Revision	

55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins 24.10.2014	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 29.10.2015	

Learning Outcomes	COs of the course " <electricity and="" magnetism="">"</electricity>
CO1	The use of Coulomb's law and Gauss' law for the electrostatic force
CO2	The relationship between electrostatic field and electrostatic potential
CO3	The use of the Lorentz force law for the magnetic force
CO4	The use of Ampere's law to calculate magnetic fields
CO5	The use of Faraday's law in induction problems
CO6	The basic laws that underlie the properties of electric circuit elements
Experimental Learning	
EL1	The abstraction from forces to fields using the examples of the electric and magnetic fields, with some applications
EL2	The connection between conservative forces and potential energy
EL3	How charges move through electric circuits -
EL4	The close connection between electricity and magnetism, leading to
	the discovery of electromagnetic waves.
EL5	the integral form of Maxwell's Equations
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics		
Course Name	Computer Programming in C ++		
Course Code	GMPH41		
Class	II Year (2016-2017)		
Semester	Even		
Staff Name	Dr. A.Arul Gnanam		
	Dr.R.Nithya Agnes		
Credits	4		
L. Hours /P. Hours	4 / WK		
Total 60Hrs/Sem			
Internal Test-3 Hrs	Internal Test-3 Hrs		
Model Test-3 Hrs			
Dept. Meetings-2 Hrs			
College Meetings-2 Hrs			
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)			

Course Objectives

- ➢ To Learn about C++ Programme
- Objective of the course is to provide knowledge about the basics of Computer programming in C++ and to solve problems by writing programs. The paper does not need any special prerequisite and the learners are expected to come out with the ability to apply the computer language C++ to solve problems
- > To discuss about operators.
- ➢ To learn about programme goading.

Syllabus

OBJECT ORIENTED PROGRAMMING WTH C++

UNIT-I: Evolution of C++ - applications of C++ - structure of C++ program. Tokens – keywords – identifiers and constants

- basic data types - user-defined data types - constant pointers and pointers to constants - symbolic constants - type compatibility - declaration of variables - dynamic

initialization of variables – reference variables – operators in C++ - scope resolution operator – memory management operators – manipulators – type cast operator – expressions and their types – special assignment expressions –

implicit conversions – operator precedence.

UNIT-II: Functions in C++ : The main function – function prototyping – call by reference – return by reference – inline functions – default arguments – const arguments – function overloading. Managing Console I/O Operations: C++ streams – C++ stream classes – unformatted console I/O operations – formatted console I/O operations – formatted console I/O operations – managing output with manipulators.

UNIT-III: Classes and Objects: Specifying a class – defining member functions – making an outside function inline – nesting of member functions – private member functions – arrays within a class – memory allocation for objects – arrays of objects – objects as function arguments – friend functions – returning objects – const member functions. Constructors and Destructors: Introduction – constructors – parameterized constructors – multiple constructors in a class – constructors with default arguments – copy constructor.

UNIT-IV: Operator Overloading: Introduction – defining operator overloading – overloading unary operators – overloading binary operators - overloading binary operators using friends – rules for overloading operators. Inheritance: Introduction – defining derived classes – single inheritance – making a private member inheritable – multilevel inheritance – multiple inheritance – hierarchical inheritance – hybrid inheritance

UNIT-V: Working with Files: Introduction – Classes for File Stream Operations -Opening and Closing a File – Detecting End-of-file – More about open(): File Modes – File Pointers and their Manipulations – Sequential Input and Output Operations – Updating a File: Random Access

Hour	Class Schedule	
allotment		
	EVEN Semester 01.12.2016	
1-L1	UNIT-I: Evolution of C++ - applications of C++	
2-L2	Tokens – keywords – identifiers and constants	
3- L3	basic data types – user-defined data types	

4-L4	constant pointers and pointers to constants – symbolic constants	
5-L5	constant pointers and pointers to constants – symbolic constants	
6-L6	type compatibility – declaration of variables – dynamic initialization of variables	
	– reference variables	
7-L7	operators in C++ - scope resolution operator - memory management operators	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	manipulators - type cast operator - expressions and their types - special	
	assignment expressions	
10- L9	implicit conversions – operator precedence	
11-L10	Functions in C++ : The main function – function prototyping – call by reference	
12-L11	return by reference – inline functions – default arguments – const arguments –	
10.7.10	function overloading	
13-L12	Managing Console I/O Operations: C++ streams – C++ stream classes –	
14110	unformatted console I/O operations – formatted console I/O	
14-L13	formatted console I/O operations –managing output with manipulators.	
15-L14	Allotting portion for Internal Test-I	
16115	Internal Test I begins 24.01.2017	
16-L15	Classes and Objects: Specifying a class – defining member functions – making	
17 17 1	an outside function inline – nesting of member functions	
17-IT-1	Internal Test-I	
18-L16	private member functions – arrays within a class – memory allocation for object	
19-L17	Test Paper distribution and result analysis	
20-L18	Entering Internal Test-I Marks into University portal	
20-L18	arrays of objects – objects as function arguments – friend functions – returning objects – const member functions.	
21- L19	Constructors and Destructors: Introduction – constructors – parameterized	
21- 117	constructors – multiple constructors in a class	
22- P2	College level meeting/Cell function	
23-L20	Constructors and Destructors: Introduction – constructors – parameterized	
20 220	constructors – multiple constructors in a class	
24-L21	Operator Overloading: Introduction	
25-L22	defining operator overloading – overloading unary operators	
26-L23	overloading binary operators - overloading binary operators using friends –	
27-L24	overloading binary operators - overloading binary operators using friends –	
28-L25	rules for overloading operators	
29-L26	Inheritance: Introduction	
30-L27	defining derived classes	
31-L28	single inheritance	
32-L29	making a private member inheritable	
33-L30	multilevel inheritance	
34- P3	Department Seminar	
35-L31	Rivision	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins 24.02.2017	
37- L33	hierarchical inheritance	
38- IT-II	Internal Test-II	
39-L34	hybrid inheritance	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	

41-L36	Working with Files: Introduction
42- L37	Classes for File Stream Operations
43- L38	Opening and Closing a File
44- P4	College level meeting/ function
45-L39	Detecting End-of-file
46-L40	More about open
47-L41	Revision
48-L42	Revision Class
49-L43	File Modes
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins 28.03.2017
51 L45	File Pointers and their Manipulations
52- L46	Revision
53-IT-III	Internal Test-III
54-L47	Sequential Input and Output Operations – Updating a File: Random Access
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 05.04.2017
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 21.4.2017

Learning Outcomes	COs of the course " <computer ++="" c="" in="" programming="">"</computer>
CO1	Get insight knowledge about the language.
CO2	Get trained in writing small programs.
CO3	Capable of executes any programs and identifying errors in them
CO4	Design and implement C programs for any given problem
CO5	Work with existing programs and modify it as per the
	requirements.
CO6	Identify the errors in a C program.
CO7	Identify the output of a C program without actually executing it
Experimental	
Learning	
EL1	Capable coding any problem.
EL2	Capable of identifying errors in a coding
EL3	Capable handling any project assigned by a company.
Integrated Activity	
IA1	Individual and Team Work: Function effectively on teams to
	accomplish a common goal
IA2	Communication: Communicate effectively with a range of
	audiences and prepare technical documents and make effective oral

p	resentations
# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Communication Electronics	
Course Code	JMPH5C	
Class	III year (2016-2017)	
Semester	Odd	
Staff Name	Dr.A.Arul Gnanam	
	Mrs.D.Priscilla Koilpillai	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /	unit)	

Course Objectives

- > To understand operation of semiconductor devices
- > To understand DC analysis and AC models of semiconductor devices.
- > To apply concepts for the design of Regulators and Amplifiers 4.
- To verify the theoretical concepts through laboratory and simulation experiments.
- > To implement mini projects based on concept of electronics circuit concepts.

Syllabus

UNIT I: AMPLITUDE MODULATION AND TRANSMISSION Introduction – amplitude Modulation – AM envelop – AM frequency spectrum and bandwidth – Phasor representation of AM with carrier – coefficient of modulation or percentage modulation or modulation index – degrees of modulation – AM power distribution – AM Current relation and efficiency - modulation by complex information signal - doubleside band suppressed carrier AM - single side band suppressed carrier AM – Vestigal side band amplitude modulation – AM modulator circuits – emitter modulations or low power AM – collector modulator or medium and high power AM

modulator - AM transmitters – Broadcast AM transmitters – Low level of AM transmitter – High level AM transmitter. (15L)

UNIT II: AMPLITUDE MODULATION -RECEPTION Comparison of AM system – Quadrature amplitude modulation – principles of AM detection – AM receivers – receiver parameters – Tuned radio frequency (TRF) receiver or straight receiver – principles of superhetrodyne –double frequency conversion AM receiver. (11L)

UNIT III:ANGLE MODULATION – TRANSMISSION Introduction – Frequency modulation – Phase modulation – Phase deviation and modulation index – Multitone modulation – Transmission band width of FM – conversion of PM to FM or frequency modulator – conversion of FM to PM / phase modulators – commercial broadcast FM – phasor representation of an FM and PM – average power of an AM/FM wave – generation of FM – direct method of FM generation – reactance tube modulator – indirect method of FM wave generation – FM transmitters – indirect method – Comparison of AM and FM. (13L)

UNIT IV:FM RECEPTION FM detectors – Balanced slope detector – Foster seely discriminator – ratio detector – FM super heterodyne receiver – FM noise suppression – threshold extension by FMFB technique. (11L)

UNIT – V: DIGITAL MODULATION TECHNIQUES Introduction – BFSK – Binary phase shift keying – Quadrature PSK – Differential PSK – Performance comparison of digital modulation schemes - M ary FSK – correlative coding – Duobinary encoding. (10L)

Book For Study 1.Principles Of Communication Engineering-Dr. K.S. Srinivasan, Second Edition : 2010.

Book For Reference 1.Electronic communication systems – George Kennedy & Bernard Davis, Tata Mcgraw Hills, 4th edition, 2008 2.Electronic communication Systems – Blake, Joseph J. Adams ki, Sun Yifeng, Delamer publication, 2nd edition, 2012 (Rupa Publication, India). 3.Fundamentals of Electrical engineering – Wayone tomasi

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.06.2016
1-L1	UNIT I: AMPLITUDE MODULATION AND TRANSMISSION
2-L2	amplitude Modulation – AM envelop – AM frequency spectrum and bandwidth
3- L3	Phase representation of AM with carrier
4-L4	coefficient of modulation or percentage modulation or modulation index
5-L5	degrees of modulation – AM power distribution -
6-L6	AM Current relation and efficiency - modulation by complex information signal
7-L7	Double side band suppressed carrier AM

8- P1	single side band suppressed carrier AM
9- L8	Vestigal side band amplitude modulation
10- L9	AM modulator circuits – emitter modulations or low power AM
10- L) 11-L10	collector modulator or medium and high power AM modulator
11-L10 12-L11	AM transmitters – Broadcast AM transmitters
12-L11 13-L12	Low level of AM transmitter – High level AM transmitter
13-L12 14-L13	<u> </u>
14-L13 15-L14	Welcoming of First year and Inauguration of Physics Association Allotting portion for Internal Test-I
15-L14	01
16-L15	Internal Test I begins 25.07.2016 UNIT II: AMPLITUDE MODULATION -RECEPTION
17-IT-1 18-L16	Internal Test-I
	Comparison of AM system – Quadrature amplitude modulation
19-L17	Test Paper distribution and result analysis
20 I 10	Entering Internal Test-I Marks into University portal
20-L18	principles of AM detection – AM receivers – receiver parameters
21- L19	Tuned radio frequency (TRF) receiver or straight receiver
22- P2	College level meeting/Cell function
23-L20	principles of super hetrodyne
24-L21	double frequency conversion AM receiver
25-L22	UNIT III:ANGLE MODULATION – TRANSMISSION
26-L23	Frequency modulation – Phase modulation
27-L24	Phase deviation and modulation index
28-L25	Multitone modulation
29-L26	Transmission band width of FM
30-L27	conversion of PM to FM or frequency modulator
31-L28	conversion of FM to PM / phase modulators
32-L29	commercial broadcast FM
33-L30	average power of an AM/FM wave
34- P3	Department Seminar
35-L31	generation of FM – direct method of FM generation
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins 22.08.2016
37- L33	reactance tube modulator
38- IT-II	Internal Test-II
39-L34	indirect method of FM wave generation – FM transmitters
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Comparison of AM and FM.
42- L37	UNIT IV:FM RECEPTION FM
43- L38	detectors – Balanced slope detector
44- P4	College level meeting/ function
45-L39	Foster seely discriminator – ratio detector
46-L40	FM super heterodyne receiver – FM noise suppression
47-L41	threshold extension by FMFB technique
48-L42	UNIT – V: DIGITAL MODULATION TECHNIQUES
49-L43	BFSK – Binary phase shift keying
50-L44	Quadrature PSK – Differential PSK
	Internal Test III begins

51 L45	correlative coding – Duobinary encoding	
52- L46	Performance comparison of digital modulation schemes M ary FSK	
53-IT-III	Internal Test-III 03.10.2016	
54-L47	correlative coding – Duobinary encoding	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins 17.10.2016	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.11.2018	

Learning Outcomes	COs of the course " <communication electronics="">"</communication>
C01	Ability to apply knowledge of mathematics & science in solving
	electronics related problems
CO2	Ability to design and conduct electronics experiments, as well as
	to analyze and interpret data
CO3	Ability to design and manage electronic systems or processes that
	conforms to a given specification within ethical and economic
	constraints
CO4	frequency domain parameter for given system Students will be
	able to predict stability of
CO5	Ability to identify, for mulate, solve and analyze the problems in
	various disciplines of electronics.
CO6	Ability to function as a member of a multidisciplinary team with
	sense of ethics, integrity and social responsibility
C07	Recognize the need for, and be able to engage in lifelong learning.
CO8	Ability to communicate effectively in term of oral and written communication skills
CO9	Ability to use techniques, skills and modern
	technological/scientific/engineering software/tools for professional
	practices
Experimental	
Learning	
EL1	Given system using appropriate criteria.
EL2	To provide basic knowledge about the various sensors and data
	acquisition systems applied in Wireless sensor network
EL3	To provide fundamental concepts of control system

EL4	such as mathematical modelling, time response and frequency response. To develop concepts of stability and its assessment.3 criteria.
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Electricity and Magnetism
Course Code	GMPH31
Class	II year (2016-2017)
Semester	Odd
Staff Name	Mrs. R. Nithya Agnes
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /	unit)

Course Objectives

- > To learn electricity and magnetism
- > To understand electric Current
- ➢ How to apply Transient Current
- ➢ To understand Alternating Current

Syllabus

ELECTRICITY AND MAGNETISM

Unit I

Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – electric potential – relation connecting electric potential and electric field – potential at a point due to a point charge – potential due to an electric dipole – capacity – capacitance of a spherical and cylindrical

Capacitor – energy of a charged capacitor – Loss of energy due to sharing of charges. Unit II

Chemical Effects of Electric Current: Faraday's Laws of Electrolysis – electrical Conductivity of an electrolyte – specific conductivity – Kohlrausch bridge – Thermoelectricity – $See beck\ effect-Peltier\ effect-Thomson\ effect-total\ e.m.f-thermodynamics\ of\ thermocouple$

- thermoelectric power diagram - its uses - applications.

Unit III

Transient Current: Growth and decay of current in a circuit containing resistance and inductance – Growth and decay of charge in a circuit containing resistance and capacitance – Determination of high resistance by leakage – Growth and decay of charge in a LCR circuit – condition for the discharge to be oscillatory – Frequency of Oscillation.

672

Unit IV

Alternating Current: j operator – properties – use of j operator in the study of A.C Circuit With R only – inductance only – capacitance only – LCR series and parallel circuits – power in an AC circuit – Wattless current – choke coil – construction and working of AC generator, 1 phase and 3 phase AC generator – distribution of 3 phase AC – star connection – delta Connection.

Unit V

Magnetic Properties of Materials: Magnetic induction – Magnetism – Relation between B, H and M – Magnetic susceptibility – Magnetic permeability – Relation between them – Electron theory of dia, para and ferromagnetism – Determination of susceptibility – Curie balance method – Moving coil Ballistic galvanometer – construction – theory – correction for damping in B.G – Measurement of Charge sensitiveness – absolute capacity of a condenser. Books for Study and reference:

1. Electricity and Magnetism - D.N. Vasudeva

2. Electricity and Magnetism - Brijlal and Subramanian

3. Electricity and Magnetism - R. Murugeshan

4. Electricity and Magnetism - K.K. Tewari

5.Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.06.2016
1-L1	Electrostatics: Coulomb's law – electric field – electric dipole – electric flux
2-L2	Coulomb's law – electric field – electric dipole – electric flux – electric potential
	relation connecting electric potential and electric field
3- L3	potential at a point due to a point
	charge – potential due to an electric dipole
4-L4	potential due to an electric dipole – capacity
5-L5	capacitance of a spherical and cylindrical
6-L6	capacitor – energy of a charged capacitor – Loss of energy due to sharing of
	charges
7-L7	Unit II Chemical Effects of Electric Current: Faraday's Laws of Electrolysis
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Electrical conductivity of an electrolyte
10- L9	specific conductivity – Kohlrausch bridge – Thermoelectricity –
11-L10	See beck effect – Peltier effect – Thomson effect
12-L11	thermoelectric power diagram – its uses – applications
13-L12	Unit III Transient Current: Growth and decay of current in a circuit

14-L13	Growth and decay of charge in a circuit containing resistance and capacitance
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins 25.07.2016
16-L15	Determination of high resistance by leakage
17-IT-1	Growth and decay of charge in a LCR circuit
1, 11 1	Internal Test-I
18-L16	condition for the discharge to be oscillatory – Frequency of Oscillation.
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Alternating Current: j operator – properties
21- L19	properties – use of j operator in the study of A.C Circuit
22- P2	College level meeting/Cell function
23-L20	inductance only – capacitance only – LCR series and parallel circuits – power in
	an AC circuit
24-L21	Wattless current – choke coil
25-L22	construction and working of AC generator, 1
26-L23	phase and 3 phase AC generator
27-L24	distribution of 3 phase AC
28-L25	star connection – delta connection.
29-L26	Magnetic Properties of Materials
30-L27	Magnetic induction – Magnetism
31-L28	Relation between B, H and M – Magnetic susceptibility
32-L29	Magnetic permeability
33-L30	Relation between them Electron theory of dia, para and ferromagnetism
34- P3	Department Seminar
35-L31	Determination of susceptibility
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins 31.08.2016
37- L33	Curie balance method
38- IT-II	Internal Test-II
39-L34	Moving coil Ballistic galvanometer
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Moving coil Ballistic galvanometer – construction
42- L37	theory – correction for
43- L38	correction for damping in B.G
44- P4	College level meeting/ function
45-L39	Measurement of Charge sensitiveness
46-L40	absolute capacity of a condenser
47-L41	Solving Problems
48-L42	Curie balance method explanation
49-L43	.Determination of susceptibility
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins 03.10.2016
51 L45	Practical explanation
52- L46	Measurement of Charge sensitiveness
53-IT-III	Internal Test-III
54-L47	Revision

55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 17.10.2016
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 30.11.2016

Learning Outcomes	COs of the course " <electricity and="" magnetism="">"</electricity>
CO1	The use of Coulomb's law and Gauss' law for the electrostatic force
CO2	The relationship between electrostatic field and electrostatic potential
CO3	The use of the Lorentz force law for the magnetic force
CO4	The use of Ampere's law to calculate magnetic fields
CO5	The use of Faraday's law in induction problems
CO6	The basic laws that underlie the properties of electric circuit elements
Experimental Learning	
EL1	The abstraction from forces to fields using the examples of the electric and magnetic fields, with some applications
EL2	The connection between conservative forces and potential energy
EL3	6 6
EL4	The close connection between electricity and magnetism, leading to
	the discovery of electromagnetic waves.
EL5	the integral form of Maxwell's Equations
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN 2017-2018

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Electromagnetism
Course Code	SMPH41
Class	II year (2017-2018)
Semester	Even
Staff Name	Dr.A.Arul Gnanam
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

- ➢ To learn electricity and magnetism
- > To understand electric Current
- How to apply Transient Current
- To understand Alternating Current

Syllabus

UNIT-1: ELECTROMAGNETIC INDUCTION

Faraday's laws of electromagnetic induction-self induction –self inductance of a long solenoid –toroidal solenoid-determination of L by Anderson's and Rayleigh's methods-Owen's bridge-mutual induction-experimental determination

of mutual inductance between a pair of coils using BG-co efficient of couplingenergy

stored in a coil-eddy currents-uses (13L)

UNIT-1I: MAGNETIC EFFECT OF ELECTRIC CURRENT

Magnetic flux and magnetic induction-relation between them- Biot Savart law- magnetic induction at a point on the axis of a circular coil carrying currentamperes circuital law-magnetic field inside a long solenoid -toroid- Lorent'z force on a moving charge- direction of force-torque on a current loop in a uniform magnetic field -Moving coil Ballistic galvanometer-theory -experiment to find charge sensitivity and absolute capacity of a capacitor-De sauty bridge. (14L) UNIT-11I: MAGNETIC FIELDS AND MAXWELL'S EQUATION The three magnetic vectors M, B, and H –relation between thempermeability and susceptibility- relation between them -B-H curve -Hysteresis-

Energy loss-Displacement current-Maxwell's equations-Boundary conditions-Poynting vector-Electromagnetic waves in free space-Hertz experiment for production and detection of EM waves. (12L)

UNIT-1V: ELECROMAGNETIC WAVES

Wave equations for Electric field and Magnetic field-monochromatic plane waves-EM waves in a matter-Reflection and Transmission at normal incidence and

oblique incidence-Polarization by reflection. (10L)

UNIT-V: APPLICATIONS OF ELECTROMAGNETISM

Earth inductor-uses of Earth inductor-measurement of horizontal component of the Earth's magnetic field-measurement of vertical component of Earth's Magnetic field-calibration of BG-measurement of intense magnetic field using search coil and BG-induction coil and uses. (11L)

Books for study

1.Electricity and Magnetism -R. Murugesan (S.Chand &Co.)

Hour allotment	Class Schedule
anotiment	Even Semester Begin on07.12.2017
1-L1	UNIT-1: ELECTROMAGNETIC INDUCTION
	Faraday's laws of electromagnetic induction
2-L2	self induction- self inductance of a toroidal solenoid
3- L3	self inductance of a long solenoid
4-L4	determination of L by Anderson's and Rayleigh's methods
5-L5	Owen's bridge
6-L6	mutual induction- experimental determination of mutual inductance
	between a pair of coils using BG
7-L7	co efficient of coupling energy stored in a coil
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	eddy currents-uses
10- L9	Magnetic flux and magnetic induction
11-L10	relation between them- Biot Savart law
12-L11	magnetic induction at a point on the axis of a circular coil carrying
	current

13-L12	A
	Amperes circuital law
14-L13	magnetic field inside a long solenoid -toroid
15-L14	Allotting portion for Internal Test-I
16715	Internal Test I begins 22.01.2018
16-L15	Lorentz force on a moving charge- direction of force
17-IT-1	Internal Test-I
18-L16	Moving coil Ballistic galvanometer-theory
19-L17	Test Paper distribution and result analysis
20 1 10	Entering Internal Test-I Marks into University portal
20-L18	De sauté bridge
21- L19	torque on a current loop in a uniform magnetic field
22- P2	College level meeting/Cell function
23-L20	MAGNETIC FIELDS AND MAXWELL'S EQUATION
24-L21	relation between them permeability and susceptibility
25-L22	Hertz experiment for production and detection of EM waves.
26-L23	Wave equations for Electric field and Magnetic field
27-L24	EM waves in a matter
28-L25	Reflection and Transmission at normal incidence and oblique
	incidence
29-L26	The three magnetic vectors M, B, and H
30-L27	relation between them
31-L28	Hysteresis-Energy loss
32-L29	Maxwell's equations-Boundary conditions-Poynting vector
33-L30	Electromagnetic waves in free space
34- P3	Department Seminar
35-L31	monochromatic plane waves
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins 26.02.2018
37- L33	B-H curve
38- IT-II	Internal Test-II
39-L34	Polarization by reflection
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Displacement current
42- L37	experiment to find charge sensitivity and absolute capacity of a
	capacitor
43- L38	experiment to find charge sensitivity and absolute capacity of a
	capacitor
44- P4	College level meeting/ function
45-L39	Class test
46-L40	measurement of horizontal component of Earth's Magnetic field
47-L41	calibration of BG
48-L42	induction coil and uses
49-L43	UNIT-V: APPLICATIONS OF ELECTROMAGNETISM
	1

50-L44	Allotting portion for Internal Test-III
	Internal Test III begins01.04.2018
51 L45	Earth inductor-uses of Earth inductor
52- L46	measurement of vertical component of Earth's Magnetic field
53-IT-III	Internal Test-III
54-L47	measurement of intense magnetic field using search coil and BG
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 12.04.2018
56- MT	component of the Earth's magnetic field
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on23.04.2018

Learning Outcomes	COs of the course " <electromagnetism>"</electromagnetism>
CO1	The use of Coulomb's law and Gauss' law for the electrostatic force
CO2	The relationship between electrostatic field and electrostatic
	potential
CO3	The use of the Lorentz force law for the magnetic force
CO4	The use of Ampere's law to calculate magnetic fields
CO5	The use of Faraday's law in induction problems
CO6	The basic laws that underlie the properties of electric circuit
	elements
CO7	The integral form of Maxwell's Equations
Experimental	
Learning	
EL1	The abstraction from forces to fields using the examples of the
	electric and magnetic fields, with some applications
EL2	The connection between conservative forces and potential energy
EL3	How charges move through electric circuits -
EL4	The close connection between electricity and magnetism, leading to
	the discovery of electromagnetic waves.
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN(2017-2018)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Nuclear Physics	
Course Code	SMPH63	
Class	III Year (2017-2018)	
Semester	Even	
Staff Name	Dr.A.Arul Gnanam	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- Can use the units and dimensions
- > Can tell a chronology of some of the major events in nuclear physics.
- Can identify some introductory terminology

SYLLABUS

NUCLEAR PHYSICS

UNIT – I Atomic Nucleus : General properties of nucleus - Binding energy - Mass defect - Proton - proton hypothesis - proton neutron hypothesis - Nuclear forces -Characteristics of nuclear forces - Liquid drop model - Weizsacker semi-empirical mass formula - Shell model - Magic Numbers

UNIT – II Natural radioactivity - alpha, beta and gamma rays - properties - Radioactive series - Laws of radioactive disintegration - Radio - Carbon dating - Alpha decay - Beta decay - Neutrino and its properties - Gamma decay - Internal Conversion - Nuclear energy levels - Nuclear isomerism

UNIT – III Particle accelerators: Cyclotron - Betatron – Synchrotron - Types of Nuclear reaction - Q value of Nuclear Reactions - The balance of mass and energy in Nuclear reactions - Nuclear transmutations.

UNIT – IV Energy from the Nucleus: Nuclear fission - Types of fission - P-E Curve for fission - Bohr Wheeler's Theory of Nuclear fission - Nuclear fusion and Thermonuclear reactions - Controlled thermonuclear reactions - Nuclear chain reaction - critical size of a reactor - radiation hazards

UNIT – V Detection and measurements of Nuclear radiations Elementary particles : G-M Counter - Scintillation Counter - Cloud Chamber Bubble Chamber - Cerenkov Counters - Classification of elementary particles - Particle interaction - Conservation Laws - Leptons - Hardons - The Quark model

Books for Reference: 1. Nuclear Physics by Irving Kaplan

- 2. Nuclear Physics by D.C Tayal
- 3. Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule
allotment	
	Even Semester Begin on 07-12-2017
1-L1	UNIT – I Atomic Nucleus
2-L2	General properties of nucleus - Binding energy -mass defect
3- L3	Proton - proton hypothesis
4-L4	proton neutron hypothesis - Nuclear forces
5-L5	Characteristics of nuclear forces
6-L6	Liquid drop model
7-L7	Weizsacker semi-empirical mass formula -
8- P1	Shell model - Magic Numbers
9- L8	UNIT – II Natural radioactivity
10- L9	alpha, beta and gamma rays properties
11-L10	Radioactive series
12-L11	Laws of radioactive disintegration
13-L12	Radio - Carbon dating

14-L13	Alpha decay - Beta decay - Neutrino and its properties - Gamma decay
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins 22.01.2018
16-L15	Internal Conversion - Nuclear energy levels - Nuclear isomerism
17-IT-1	Internal Test-I
18-L16	UNIT – III Particle accelerators
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Cyclotron - Betatron
21- L19	Synchrotron - Types of Nuclear reaction -
22- P2	College level meeting/Cell function
23-L20	Q value of Nuclear Reactions -
24-L21	The balance of mass and energy in Nuclear reactions -
25-L22	Nuclear transmutations
26-L23	UNIT – IV Energy from the Nucleus
27-L24	Nuclear fission - Types of fission
28-L25	P-E Curve for fission -
29-L26	Bohr Wheeler's Theory of Nuclear fission
30-L27	Nuclear fusion and Thermonuclear reactions
31-L28	Controlled thermonuclear reactions
32-L29	Nuclear chain reaction
33-L30	critical size of a reactor
34- P3	Department Seminar
35-L31	Revision
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins 26.02.2018
37- L33	Class test
38- IT-II	Internal Test-II
39-L34	UNIT – V Detection and measurements of Nuclear radiations Elementary
	particles
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	G-M Counter
42-L37	Scintillation Counter
43-L38	Cloud Chamber Bubble Chamber -
44- P4	College level meeting/ function
45-L39	Cerenkov Counters
46-L40	Classification of elementary particles
47-L41	Particle interaction Conservation Laws
48-L42	Conservation Laws
49-L43 50-L44	Leptons - Hardons Allotting portion for Internal Test III
JU-L44	Allotting portion for Internal Test-III Internal Test III begins 01.04.2018
51145	The Quark model
51 L45 52- L46	Revision
53-IT-III	Internal Test-III
54-L47	Problems
J4-L4/	

55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 12.04.2018
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working on 23-04-2018

Learning Outcomes	COs of the course " <nuclear physics="">"</nuclear>	
CO1	analyse production and decay reactions for fundamental particles, applying conservation principles to determine the type of reaction taking place and the possible outcomes	
CO2	describe the role of colour in the strong force, and appreciate why going from strong interactions between quarks to nuclear structure is a currently unsolved problem	
CO3	describe the role of spin-orbit coupling in the shell structure of atomic nuclei, and predict the properties of nuclear ground and excited states based on the shell model	
CO4	apply quark mixing models to analyse weak interaction physics such as beta and keno decay	
CO5	read, understand and explain scholarly journal articles in nuclear and particle physics	
CO6	make relevant measurements of energy and decay spectra using basic experimental facilities and apply Poisson statistics to evaluate the uncertainties in the data.	
Experimental		
Learning		
EL1 EL2		
EL2 EL3		
EL4		
Integrated Activity		
IA1		
IA2		

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2017-2018)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Computer Programming in C ++	
Course Code	GMPH41	
Class	II Year (2017-2018)	
Semester	Odd	
Staff Name	Dr. A.Arul Gnanam	
	Dr.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➢ To Learn about C++ Programme
- Objective of the course is to provide knowledge about the basics of Computer programming in C++ and to solve problems by writing programs. The paper does not need any special prerequisite and the learners are expected to come out with the ability to apply the computer language C++ to solve problems
- > To discuss about operators.
- ➤ To learn about programme goading.

Syllabus

OBJECT ORIENTED PROGRAMMING WTH C++

UNIT-I: Evolution of C++ - applications of C++ - structure of C++ program. Tokens – keywords – identifiers and constants

- basic data types - user-defined data types - constant pointers and pointers to constants - symbolic constants - type compatibility - declaration of variables - dynamic initialization of variables - reference variables - operators in C++ - scope resolution

operator – memory management operators – manipulators – type cast operator – expressions and their types – special assignment expressions –

implicit conversions – operator precedence.

UNIT-II: Functions in C++ : The main function – function prototyping – call by reference – return by reference – inline functions – default arguments – const arguments – function overloading. Managing Console I/O Operations: C++ streams – C++ stream classes – unformatted console I/O operations – formatted console I/O operations – formatted console I/O operations – managing output with manipulators.

UNIT-III: Classes and Objects: Specifying a class – defining member functions – making an outside function inline – nesting of member functions – private member functions – arrays within a class – memory allocation for objects – arrays of objects – objects as function arguments – friend functions – returning objects – const member functions. Constructors and Destructors: Introduction – constructors – parameterized constructors – multiple constructors in a class – constructors with default arguments – copy constructor.

UNIT-IV: Operator Overloading: Introduction – defining operator overloading – overloading unary operators – overloading binary operators - overloading binary operators using friends – rules for overloading operators. Inheritance: Introduction – defining derived classes – single inheritance – making a private member inheritable – multilevel inheritance – multiple inheritance – hierarchical inheritance – hybrid inheritance

UNIT-V: Working with Files: Introduction – Classes for File Stream Operations -Opening and Closing a File – Detecting End-of-file – More about open(): File Modes – File Pointers and their Manipulations – Sequential Input and Output Operations – Updating a File: Random Access

Hour allotment	Class Schedule	
	ODD Semester 16.06.2017	
1-L1	UNIT-I: Evolution of C++ - applications of C++	
2-L2	Tokens – keywords – identifiers and constants	
3- L3	basic data types – user-defined data types	
4-L4	constant pointers and pointers to constants – symbolic constants	

5-L5	constant pointers and pointers to constants – symbolic constants	
6-L6	type compatibility – declaration of variables – dynamic initialization of variables	
	– reference variables	
7-L7	operators in C++ - scope resolution operator – memory management operators	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	manipulators – type cast operator – expressions and their types – special	
-	assignment expressions	
10- L9	implicit conversions – operator precedence	
11-L10	Functions in C++ : The main function – function prototyping – call by reference	
12-L11	return by reference – inline functions – default arguments – const arguments –	
	function overloading	
13-L12	Managing Console I/O Operations: C++ streams – C++ stream classes –	
14110	unformatted console I/O operations – formatted console I/O	
14-L13	formatted console I/O operations –managing output with manipulators.	
15-L14	Allotting portion for Internal Test-I	
16 1 15	Internal Test I begins 31.07.2017	
16-L15	Classes and Objects: Specifying a class – defining member functions – making	
	an outside function inline – nesting of member functions	
17-IT-1	Internal Test-I	
18-L16	private member functions – arrays within a class – memory allocation for object	
19-L17	Test Paper distribution and result analysis	
20 1 19	Entering Internal Test-I Marks into University portal	
20-L18	arrays of objects – objects as function arguments – friend functions – returning	
21- L19	objects – const member functions.	
21- L19	Constructors and Destructors: Introduction – constructors – parameterized constructors – multiple constructors in a class	
22- P2	constructors – multiple constructors in a class	
22-12 23-L20	College level meeting/Cell function Constructors and Destructors: Introduction – constructors – parameterized	
25 120	constructors – multiple constructors in a class	
24-L21	Operator Overloading: Introduction	
25-L22	defining operator overloading – overloading unary operators	
26-L23	overloading binary operators - overloading binary operators using friends –	
27-L24	overloading binary operators - overloading binary operators using friends –	
28-L25	rules for overloading operators	
29-L26	Inheritance: Introduction	
30-L27	defining derived classes	
31-L28	single inheritance	
32-L29	making a private member inheritable	
33-L30	multilevel inheritance	
34- P3	Department Seminar	
35-L31	Rivision	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins 30.08.2017	
37- L33	hierarchical inheritance	
38- IT-II	Internal Test-II	
39-L34	hybrid inheritance	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Working with Files: Introduction	

42- L37	Classes for File Stream Operations	
43- L38	Opening and Closing a File	
44- P4	College level meeting/ function	
45-L39	Detecting End-of-file	
46-L40	More about open	
47-L41	Revision	
48-L42	Revision Class	
49-L43	File Modes	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins 03.10.2017	
51 L45	File Pointers and their Manipulations	
52- L46	Revision	
53-IT-III	Internal Test-III	
54-L47	Sequential Input and Output Operations – Updating a File: Random Access	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins 19.10.2017	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 06.11.2017	

Learning Outcomes	rning Outcomes COs of the course " <computer ++="" c="" in="" programming="">"</computer>		
C01	Get insight knowledge about the language.		
CO2	Get trained in writing small programs.		
CO3	Capable of executes any programs and identifying errors in them		
CO4	Design and implement C programs for any given problem		
CO5	Work with existing programs and modify it as per the		
	requirements.		
CO6	5 Identify the errors in a C program.		
CO7	7 Identify the output of a C program without actually executing it		
Experimental			
Learning			
EL1	Capable coding any problem.		
EL2	EL2 Capable of identifying errors in a coding		
EL3	EL3 Capable handling any project assigned by a company.		
Integrated Activity			
IA1	Individual and Team Work: Function effectively on teams to		
	accomplish a common goal		
IA2	Communication: Communicate effectively with a range of audiences and prepare technical documents and make effective oral presentations		

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
	learning resources, coogle classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2017 - 2018)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Electricity	
Course Code	SMPH31	
Class	II year (2017-2018)	
Semester	Odd	
Staff Name	Dr. A. Arul Gnanam	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- Objective of the paper is to provide a basic knowledge about electricity and various methods of analyzing electric circuits with d.c. and a.c. sources.
- This paper does not require any special prerequisite except the basic ideas on electricity at the school level and learners are expected to gain knowledge to design and characterize electric circuits.

Syllabus

ELECTRICITY

Preamble:

UNIT-1: ELETRIC FIELD AND POTENTIAL

Introduction-electric charge- coulomb's law-electric field-lines of forceelectric flux-Gauss's law-applications-coulomb's law from Gauss's law- electric field at a point due to point charge-line charge- spherically symmetric charge distribution-sheet of charge. -electric potential- relation connecting electric field and potential- equipotential lines and surfaces -potential at a point due to point charge-collection of charges-dipole and charged spherical shell-electric potential energy (12L)

UNIT-II: THERMO ELECTRICITY

See beck effect- laws of thermo e.m.f-- measurement of thermo e.m.f using potentiometer-Peltier effect-demonstration—Thomson effect- demonstration - thermodynamics of thermo couple –thermo electric power diagram –uses applications-

thermopile-Boy's radio micrometre –thermo-milli ammeter (11L)

UNIT-III: CHEMICAL EFFECT OF ELECTRIC CURRENT

Introduction -Faradays laws of electrolysis- electrical conductivity of an electrolyte-specific conductivity- Kohlrausch's bridge method of determining the specific conductivity of an electrolyte -Arrhenius theory of electrolytic dissociation- —mobility of ions- Secondary cells- Gibbs –Helmholtz equation for a reversible cell . (10L)

UNIT-IV: STEADY CURRENT AND TRANSIENT CURRENT

Current and current density-ohm's law in vector form-conversion of Galvanometer into voltmeter and ammeter-kirch off's law-application to wheat stone's network Growth and decay of current in a circuit containing L and R with d.c. voltages - growth and decay of charge in a capacitance, resistance circuit determination of high resistance by leakage–growth and decay of charge in LCR circuit-conditions for the discharge to be oscillatory –frequency of oscillation.

(15L)

UNIT-V: ALTERNATING CURRENT

Alternating Current- j operator method -use of j operator in the study of

AC circuits-Resistance in an AC circuit-Inductance in an AC circuit- Capacitance in an AC circuit-AC through an inductance and resistance in series- capacitance and resistance in series – LCR series resonance circuit -sharpness of resonance parallel resonance circuit -power in an AC circuit-power factor. (12L)

Books for study

1. Electricity and Magnetism -R. Murugesan (S.Chand &Co.)

Books for Reference

1. Electricity and Magnetism -D.N.Vasudeva (Twelfth revised edition)

2. Electricity and Magnetism - K.K.Tiwari (S.Chand &Co.)

3. Electricity and Magnetism -E.M.Pourcel,Berkley Physics Cource, Vol.2 (Mc Grraw-Hill)

4. Electricity and Magnetism - Tayal (Himalalaya Publishing Co.)

5. Fundamentals of Physics, 6th Edition, by D Halliday, R Resnick and J Walker. Wiley NY 2001

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 16.06.2017	
1-L1	Introduction-electric charge	
2-L2	coulomb's law-electric field	
3- L3	lines of force electric flux	
4-L4	Gauss's law-applications	
5-L5	coulomb's law from Gauss's law	
6-L6	electric field at a point due to point charge	
7-L7	line charge- spherically symmetric charge	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	distribution-sheet of charge	
10- L9	electric potential	
11-L10	relation connecting electric field and potential	
12-L11	equipotential lines and surfaces	
13-L12	potential at a point due to point charge	

14-L13	dipole and charged spherical shell	
15-L14	Allotting portion for Internal Test-I	
15 11	Internal Test I begins 31.07.2017	
16-L15	electric potential Energy	
17-IT-1	Internal Test-I	
18-L16	UNIT-II: THERMO ELECTRICITY	
10 110	See beck effect	
19-L17	Test Paper distribution and result analysis	
17 117	Entering Internal Test-I Marks into University portal	
20-L18	laws of thermo e.m.f	
21- L19	measurement of thermo e.m.f using potentiometer	
21 E17 22- P2	College level meeting/Cell function	
23-L20	Peltier effect-demonstration	
23 L20 24-L21	Thomson effect	
25-L22	demonstration -thermodynamics of thermo couple	
26-L23	thermo electric power diagram	
20 L23 27-L24	Uses applications	
27 L21 28-L25	CHEMICAL EFFECT OF ELECTRIC CURRENT	
20-123	Introduction	
29-L26	Faradays laws of electrolysis	
30-L27	electrical conductivity of an electrolyte	
31-L28	specific conductivity	
32-L29	Kohlrausch's bridge method	
33-L30	specific conductivity of an electrolyte	
33-L30 34- P3	Department Seminar	
35-L31	Arrhenius theory of electrolytic dissociation	
36-L32	Allotting portion for Internal Test-II	
30 1132	Internal Test II begins 30.08 .2017	
37- L33	mobility of ions	
38- IT-II	Internal Test-II	
39-L34	Secondary cells- Gibbs	
40-L35	Test Paper distribution and result analysis	
10 1200	Entering Internal Test-II Marks into University portal	
41-L36	Helmholtz equation	
42- L37	Current and current density	
43- L38	ohm's law in vector form	
44- P4	College level meeting/ function	
45-L39	conversion of galvanometer into voltmeter and ammeter-Kirchhoff's law	
46-L40	application to wheat stone's network	
47-L41	Growth and decay of current in a circuit containing L and R with d.c.voltages	
48-L42	growth and decay of charge in a capacitance ,resistance circuit determination	
49-L43	growth and decay of charge in LCR circuit-conditions for the discharge to be	
.,	oscillatory	
50-L44	Allotting portion for Internal Test-III	
20 1011	Internal Test III begins 03.10.2017	
51 L45	Alternating Current- j operator method –use of j operator in the study of AC	
	circuits	
52- L46	Capacitance and resistance in series	

53-IT-III	Internal Test-III	
54-L47	LCR series resonance circuit	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins 19.10.2017	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 06.11.2017	

Learning Outcomes	COs of the course " <electricity>"</electricity>
CO1	A basic introduction to Smart Grid.
CO2	An understanding of the relevance of it in global perspective
CO3	Technology needed.
CO4	Reforms and restructuring in Indian power sector.
CO5	Knowledge about intelligent and Strategic issues related to growth
	& development of Indian Power Business
CO6	Understand issues, opportunities & challenges in Smart grid
CO7	Develop skills required for smart grid planning & formulation of
	regulations.
CO8	Understand Power distribution sector framework in India and its
	comparison globally.
CO9	Learn processes for execution and control of regulation in power
	distribution business in India.
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN 2018-2019

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Electromagnetism	
Course Code	SMPH41	
Class	II year (2018-2019)	
Semester	Even	
Staff Name	Dr.A.Arul Gnanam	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > To learn electricity and magnetism
- > To understand electric Current
- How to apply Transient Current
- To understand Alternating Current

Syllabus

UNIT-1: ELECTROMAGNETIC INDUCTION

Faraday's laws of electromagnetic induction-self induction –self inductance of a long solenoid –toroidal solenoid-determination of L by Anderson's and Rayleigh's methods-Owen's bridge-mutual induction-experimental determination

of mutual inductance between a pair of coils using BG-co efficient of couplingenergy

stored in a coil-eddy currents-uses (13L)

UNIT-1I: MAGNETIC EFFECT OF ELECTRIC CURRENT

Magnetic flux and magnetic induction-relation between them- Biot Savart law- magnetic induction at a point on the axis of a circular coil carrying currentamperes circuital law-magnetic field inside a long solenoid -toroid- Lorent'z force on a moving charge- direction of force-torque on a current loop in a uniform magnetic field -Moving coil Ballistic galvanometer-theory -experiment to find charge sensitivity and absolute capacity of a capacitor-De sauty bridge. (14L) UNIT-11I: MAGNETIC FIELDS AND MAXWELL'S EQUATION The three magnetic vectors M, B, and H –relation between thempermeability and susceptibility- relation between them -B-H curve -Hysteresis-

Energy loss-Displacement current-Maxwell's equations-Boundary conditions-Poynting vector-Electromagnetic waves in free space-Hertz experiment for production and detection of EM waves. (12L)

UNIT-1V: ELECROMAGNETIC WAVES

Wave equations for Electric field and Magnetic field-monochromatic plane waves-EM waves in a matter-Reflection and Transmission at normal incidence and

oblique incidence-Polarization by reflection. (10L)

UNIT-V: APPLICATIONS OF ELECTROMAGNETISM

Earth inductor-uses of Earth inductor-measurement of horizontal component of the Earth's magnetic field-measurement of vertical component of Earth's Magnetic field-calibration of BG-measurement of intense magnetic field using search coil and BG-induction coil and uses. (11L)

Books for study

1.Electricity and Magnetism -R. Murugesan (S.Chand &Co.)

Hour	Class Schedule
allotment	
	Even Semester Begin on 03.12.2018
1-L1	UNIT-1: ELECTROMAGNETIC INDUCTION
	Faraday's laws of electromagnetic induction
2-L2	self induction- self inductance of a toroidal solenoid
3- L3	self inductance of a long solenoid
4-L4	determination of L by Anderson's and Rayleigh's methods
5-L5	Owen's bridge
6-L6	mutual induction- experimental determination of mutual inductance
	between a pair of coils using BG
7-L7	co efficient of coupling energy stored in a coil
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	eddy currents-uses
10- L9	Magnetic flux and magnetic induction
11-L10	relation between them- Biot Savart law
12-L11	magnetic induction at a point on the axis of a circular coil carrying
	current

13-L12	Amparas airquital law
13-L12 14-L13	Amperes circuital law
	magnetic field inside a long solenoid -toroid
15-L14	Allotting portion for Internal Test-I
16-L15	Internal Test I begins 18.01.2019
-	Lorentz force on a moving charge- direction of force Internal Test-I
17-IT-1 18-L16	
	Moving coil Ballistic galvanometer-theory
19-L17	Test Paper distribution and result analysisEntering Internal Test-I Marks into University portal
20-L18	De sauté bridge
20 L10 21- L19	torque on a current loop in a uniform magnetic field
21- E17 22- P2	College level meeting/Cell function
22-F2 23-L20	MAGNETIC FIELDS AND MAXWELL'S EQUATION
23 L20 24-L21	
24-L21 25-L22	relation between them permeability and susceptibility
25-L22 26-L23	Hertz experiment for production and detection of EM waves.
	Wave equations for Electric field and Magnetic field
27-L24	EM waves in a matter
28-L25	Reflection and Transmission at normal incidence and oblique
	incidence
29-L26	The three magnetic vectors M, B, and H
30-L27	relation between them
31-L28	Hysteresis-Energy loss
32-L29	Maxwell's equations-Boundary conditions-Poynting vector
33-L30	Electromagnetic waves in free space
34- P3	Department Seminar
35-L31	monochromatic plane waves
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins 25.02.2019
37- L33	B-H curve
38- IT-II	Internal Test-II
39-L34	Polarization by reflection
40-L35	Test Paper distribution and result analysis
41-L36	Entering Internal Test-II Marks into University portal
	Displacement current
42- L37	experiment to find charge sensitivity and absolute capacity of a
10.7.00	capacitor
43- L38	experiment to find charge sensitivity and absolute capacity of a
	capacitor
44- P4	College level meeting/ function
45-L39	Class test
46-L40	measurement of horizontal component of Earth's Magnetic field
47-L41	calibration of BG
48-L42	induction coil and uses
49-L43	UNIT-V: APPLICATIONS OF ELECTROMAGNETISM

50-L44	Allotting portion for Internal Test-III
	Internal Test III begins22.03.2019
51 L45	Earth inductor-uses of Earth inductor
52- L46	measurement of vertical component of Earth's Magnetic field
53-IT-III	Internal Test-III
54-L47	measurement of intense magnetic field using search coil and BG
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 08.04.2019
56- MT	component of the Earth's magnetic field
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on23.04.2019

Learning Outcomes	COs of the course " <electromagnetism>"</electromagnetism>
CO1	The use of Coulomb's law and Gauss' law for the electrostatic force
CO2	The relationship between electrostatic field and electrostatic
	potential
CO3	The use of the Lorentz force law for the magnetic force
CO4	The use of Ampere's law to calculate magnetic fields
CO5	The use of Faraday's law in induction problems
CO6	The basic laws that underlie the properties of electric circuit
	elements
CO7	The integral form of Maxwell's Equations
Experimental	
Learning	
EL1	The abstraction from forces to fields using the examples of the
	electric and magnetic fields, with some applications
EL2	The connection between conservative forces and potential energy
EL3	How charges move through electric circuits -
EL4	The close connection between electricity and magnetism, leading to
	the discovery of electromagnetic waves.
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN(2018-2019)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics		
Course Name	Nuclear Physics		
Course Code	SMPH63		
Class	III Year (2018-2019)		
Semester	Even		
Staff Name	Dr.A.Arul Gnanam		
Credits	4		
L. Hours /P. Hours	4 / WK		
Total 60Hrs/Sem	Total 60Hrs/Sem		
Internal Test-3 Hrs			
Model Test-3 Hrs			
Dept. Meetings-2 Hrs			
College Meetings-2 Hrs			
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)			

Course Objectives

- Can use the units and dimensions
- > Can tell a chronology of some of the major events in nuclear physics.
- Can identify some introductory terminology

SYLLABUS

NUCLEAR PHYSICS

UNIT – I Atomic Nucleus : General properties of nucleus - Binding energy - Mass defect - Proton - proton hypothesis - proton neutron hypothesis - Nuclear forces -Characteristics of nuclear forces - Liquid drop model - Weizsacker semi-empirical mass formula - Shell model - Magic Numbers

UNIT – II Natural radioactivity - alpha, beta and gamma rays - properties - Radioactive series - Laws of radioactive disintegration - Radio - Carbon dating - Alpha decay - Beta decay - Neutrino and its properties - Gamma decay - Internal Conversion - Nuclear energy levels - Nuclear isomerism

UNIT – III Particle accelerators: Cyclotron - Betatron – Synchrotron - Types of Nuclear reaction - Q value of Nuclear Reactions - The balance of mass and energy in Nuclear reactions - Nuclear transmutations.

UNIT – IV Energy from the Nucleus: Nuclear fission - Types of fission - P-E Curve for fission - Bohr Wheeler's Theory of Nuclear fission - Nuclear fusion and Thermonuclear reactions - Controlled thermonuclear reactions - Nuclear chain reaction - critical size of a reactor - radiation hazards

UNIT – V Detection and measurements of Nuclear radiations Elementary particles : G-M Counter - Scintillation Counter - Cloud Chamber Bubble Chamber - Cerenkov Counters - Classification of elementary particles - Particle interaction - Conservation Laws - Leptons - Hardons - The Quark model

Books for Reference: 1. Nuclear Physics by Irving Kaplan

- 2. Nuclear Physics by D.C Tayal
- 3. Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule
allotment	
	Even Semester Begin on 03-12-2018
1-L1	UNIT – I Atomic Nucleus
2-L2	General properties of nucleus - Binding energy -mass defect
3- L3	Proton - proton hypothesis
4-L4	proton neutron hypothesis - Nuclear forces
5-L5	Characteristics of nuclear forces
6-L6	Liquid drop model
7-L7	Weizsacker semi-empirical mass formula -
8- P1	Shell model - Magic Numbers
9- L8	UNIT – II Natural radioactivity
10- L9	alpha, beta and gamma rays properties
11-L10	Radioactive series
12-L11	Laws of radioactive disintegration
13-L12	Radio - Carbon dating

14-L13	Alpha decay - Beta decay - Neutrino and its properties - Gamma decay
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins 18.01.2019
16-L15	Internal Conversion - Nuclear energy levels - Nuclear isomerism
17-IT-1	Internal Test-I
18-L16	UNIT – III Particle accelerators
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Cyclotron - Betatron
21- L19	Synchrotron - Types of Nuclear reaction -
22- P2	College level meeting/Cell function
23-L20	Q value of Nuclear Reactions -
24-L21	The balance of mass and energy in Nuclear reactions -
25-L22	Nuclear transmutations
26-L23	UNIT – IV Energy from the Nucleus
27-L24	Nuclear fission - Types of fission
28-L25	P-E Curve for fission -
29-L26	Bohr Wheeler's Theory of Nuclear fission
30-L27	Nuclear fusion and Thermonuclear reactions
31-L28	Controlled thermonuclear reactions
32-L29	Nuclear chain reaction
33-L30	critical size of a reactor
34- P3	Department Seminar
35-L31	Revision
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins 25.02.2019
37- L33	Class test
38- IT-II	Internal Test-II
39-L34	UNIT – V Detection and measurements of Nuclear radiations Elementary particles
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	G-M Counter
42- L37	Scintillation Counter
43- L38	Cloud Chamber Bubble Chamber -
44- P4	College level meeting/ function
45-L39	Cerenkov Counters
46-L40	Classification of elementary particles
47-L41	Particle interaction
48-L42	Conservation Laws
49-L43	Leptons - Hardons
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins 22.03.2019
51 L45	The Quark model
52- L46	Revision
53-IT-III	Internal Test-III
54-L47	Problems

55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 08.04.2019
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working on23.04.2019

Learning Outcomes	COs of the course " <nuclear physics="">"</nuclear>
CO1	analyse production and decay reactions for fundamental particles, applying conservation principles to determine the type of reaction taking place and the possible outcomes
CO2	describe the role of colour in the strong force, and appreciate why going from strong interactions between quarks to nuclear structure is a currently unsolved problem
CO3	describe the role of spin-orbit coupling in the shell structure of atomic nuclei, and predict the properties of nuclear ground and excited states based on the shell model
CO4	apply quark mixing models to analyse weak interaction physics such as beta and keno decay
CO5	read, understand and explain scholarly journal articles in nuclear and particle physics
CO6	make relevant measurements of energy and decay spectra using basic experimental facilities and apply Poisson statistics to evaluate the uncertainties in the data.
Experimental Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1 IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Allied Physics I
Course Code	GAPH11
Class	I year (2014-2017)
Semester	Odd
Staff Name	M r. A. Arul Asir Abraham
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

AAAA

Syllabus

ALLIED PHYSICS – I

Unit I : Elasticity and bending moment

Hooke's law – Elastic moduli – Relation between elastic constants – Work done in stretching a wire – Expression for bending moment - uniform bending- Experiment to determine Young's modulus using pin and microscope-Twisting couple of a wire – Expression for couple per unit twist – Work done in twisting – Experimental determination of rigidity modulus of a wire using Torsion pendulum with theory

Unit II: Surface tension and Viscosity

Surface tension – Definition – Examples – Molecular interpretation – Expression for excess of pressure inside a synclastic and anticlastic surface-Application to spherical and cylindrical drops and bubbles

Viscosity: Coefficient of viscosity – Rate of flow of liquid in a capillary tube (Poisueuille's formula) – Analogy between liquid flow and current flow – Stokes' formula for highly viscous liquids (Dimension method) – Experimental determination of viscosity of highly viscous liquid (stokes' method)

Unit III: Sound

Simple harmonic motion – Free, damped ,forced vibrations and resonance – Composition of two SHMs along a straight line and in perpendicular direction – Melde's string experiment – Determination of frequency of tuning fork transverse mode)

Unit IV : Thermal physics : Mean free path- Expression for mean free path (Zero order approximation) – Transport phenomena – Expression for viscosity and thermal conductivity – Conduction in solids – coefficient of thermal conductivity – Lee's disc method to determine thermal conductivity of a bad conductor – Wiedmann – Franz's law – Convection : Newton's

Page 8 of 17

law of cooling – Experimental verification – Radiation : Black body radiation – Distribution of energy in black body spectrum – Important features.

Unit V: Optics

Interference: Condition for interference-Air wedge-determination of thickness of a thin wire by air wedge

Diffraction: Fresnel & Fraunhofer diffraction-Plane diffraction grating- theory and experiment to determine wavelength (normal incidence)

Polarization: Double refraction- half wave and quarter wave plate – Production and detection of plane, elliptically and circularly polarized light.

Books for study

- 1. Optics Brijlal & Subramanian
- 2. Properties of matter R.Murugesan
- 3. Heat & Thermodynamics D.S.Mathur

Reference Books

1.Heat and thermodynamics - Brijlal & Subramanian, S Chand & Co., New Delhi

2.Fundamentals of Optics by Jenkins A Francis and White E Harvey, McGRaw Hill Inc., New Delhi, 1976.

3. Elements of Properties of Matter by Mathur D S, Shyamlal Charitable Trust, New Delhi,

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2014
1-L1	Unit I : Elasticity and bending moment
2-L2	Hooke's law – Elastic moduli
3- L3	Relation between elastic constants
4-L4	Work done in stretching a wire
5-L5	Expression for bending moment - uniform bending
6-L6	Experiment to determine Young's modulus using pin and microscope-
	Twisting couple of a wire
7-L7	Expression for couple per unit twist – Work done in twisting
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Experimental determination of rigidity modulus of a wire using Torsion
	pendulum with theory
10- L9	Unit II: Surface tension and Viscosity
11-L10	Surface tension – Definition – Examples
12-L11	Molecular interpretation
13-L12	Application to spherical and cylindrical drops and bubbles
14-L13	Viscosity: Coefficient of viscosity – Rate of flow of liquid in a capillary tube
	(Poisueuille's formula)
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Analogy between liquid flow and current flow
17-IT-1	Internal Test-I
18-L16	Stokes' formula for highly viscous liquids (Dimension method) –
	Experimental determination of viscosity of highly viscous liquid (stokes'
	method)
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Unit III: Sound
21- L19	Simple harmonic motion – Free, damped ,forced vibrations and resonance
22- P2	College level meeting/Cell function
23-L20	Composition of two SHMs along a straight line and in perpendicular
	direction
24-L21	Melde's string experiment
25-L22	Determination of frequency of tuning fork
	Unit IV : Thermal physics

26-L23	Mean free path- Expression for mean free path
20-L23 27-L24	Transport phenomena – Expression for viscosity and thermal conductivity
27-L24 28-L25	Conduction in solids – coefficient of thermal conductivity
28-L25 29-L26	Lee's disc method to determine thermal conductivity of a bad conductor
29-L20 30-L27	Wiedmann – Franz's law – Convection : Newton's
30-L27 31-L28	
31-L28 32-L29	Unit V: Optics
32-L29 33-L30	Interference: Condition for interference
	Air wedge
34- P3	Department Seminar
35-L31	determination of thickness of a thin wire by air wedge
36-L32	Allotting portion for Internal Test-II
27 1 22	Internal Test II begins
37- L33	Diffraction: Fresnel diffraction
38- IT-II	Internal Test-II
39-L34	Fraunhofer diffraction
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Plane diffraction grating
42- L37	theory and experiment to determine wavelength (normal incidence)
43- L38	Polarization: Double refraction
44- P4	College level meeting/ function
45-L39	half wave and quarter wave plate
46-L40	Production and detection of plane, elliptically and circularly polarized light.
47-L41	Expression for excess of pressure inside a synclastic and anticlastic surface
48-L42	Expression for viscosity and thermal conductivity
49-L43	uniform bending
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Expression for bending moment
52- L46	Problem solving
53-IT-III	Internal Test-III
54-L47	Problem solving
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 31.10.2014

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	

CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Allied Physics I
Course Code	GAPH11
Class	I year (2015-2018)
Semester	Odd
Staff Name	M r. A. Arul Asir Abraham
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

AAAA

Syllabus

ALLIED PHYSICS – I

Unit I : Elasticity and bending moment

Hooke's law – Elastic moduli – Relation between elastic constants – Work done in stretching a wire – Expression for bending moment - uniform bending- Experiment to determine Young's modulus using pin and microscope-Twisting couple of a wire – Expression for couple per unit twist – Work done in twisting – Experimental determination of rigidity modulus of a wire using Torsion pendulum with theory

Unit II: Surface tension and Viscosity

Surface tension – Definition – Examples – Molecular interpretation – Expression for excess of pressure inside a synclastic and anticlastic surface-Application to spherical and cylindrical drops and bubbles

Viscosity: Coefficient of viscosity – Rate of flow of liquid in a capillary tube (Poisueuille's formula) – Analogy between liquid flow and current flow – Stokes' formula for highly viscous liquids (Dimension method) – Experimental determination of viscosity of highly viscous liquid (stokes' method)

Unit III: Sound

Simple harmonic motion – Free, damped ,forced vibrations and resonance – Composition of two SHMs along a straight line and in perpendicular direction – Melde's string experiment – Determination of frequency of tuning fork transverse mode)

Unit IV : Thermal physics : Mean free path- Expression for mean free path (Zero order approximation) – Transport phenomena – Expression for viscosity and thermal conductivity – Conduction in solids – coefficient of thermal conductivity – Lee's disc method to determine thermal conductivity of a bad conductor – Wiedmann – Franz's law – Convection : Newton's

Page 8 of 17

law of cooling – Experimental verification – Radiation : Black body radiation – Distribution of energy in black body spectrum – Important features.

Unit V: Optics

Interference: Condition for interference-Air wedge-determination of thickness of a thin wire by air wedge

Diffraction: Fresnel & Fraunhofer diffraction-Plane diffraction grating- theory and experiment to determine wavelength (normal incidence)

Polarization: Double refraction- half wave and quarter wave plate – Production and detection of plane, elliptically and circularly polarized light.

Books for study

- 1. Optics Brijlal & Subramanian
- 2. Properties of matter R.Murugesan
- 3. Heat & Thermodynamics D.S.Mathur

Reference Books

1.Heat and thermodynamics - Brijlal & Subramanian, S Chand & Co., New Delhi

2.Fundamentals of Optics by Jenkins A Francis and White E Harvey, McGRaw Hill Inc., New Delhi, 1976.

3. Elements of Properties of Matter by Mathur D S, Shyamlal Charitable Trust, New Delhi,

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2015
1-L1	Unit I : Elasticity and bending moment
2-L2	Hooke's law – Elastic moduli
3- L3	Relation between elastic constants
4-L4	Work done in stretching a wire
5-L5	Expression for bending moment - uniform bending
6-L6	Experiment to determine Young's modulus using pin and microscope-
	Twisting couple of a wire
7-L7	Expression for couple per unit twist – Work done in twisting
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Experimental determination of rigidity modulus of a wire using Torsion
	pendulum with theory
10- L9	Unit II: Surface tension and Viscosity
11-L10	Surface tension – Definition – Examples
12-L11	Molecular interpretation
13-L12	Application to spherical and cylindrical drops and bubbles
14-L13	Viscosity: Coefficient of viscosity – Rate of flow of liquid in a capillary tube
	(Poisueuille's formula)
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Analogy between liquid flow and current flow
17-IT-1	Internal Test-I
18-L16	Stokes' formula for highly viscous liquids (Dimension method) -
	Experimental determination of viscosity of highly viscous liquid (stokes'
	method)
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Unit III: Sound
21- L19	Simple harmonic motion – Free, damped ,forced vibrations and resonance
22- P2	College level meeting/Cell function
23-L20	Composition of two SHMs along a straight line and in perpendicular
	direction
24-L21	Melde's string experiment
25-L22	Determination of frequency of tuning fork
	Unit IV : Thermal physics

26 1 22	Maan fuse noth Francesian for mean free noth
26-L23	Mean free path- Expression for mean free path
27-L24	Transport phenomena – Expression for viscosity and thermal conductivity
28-L25	Conduction in solids – coefficient of thermal conductivity
29-L26	Lee's disc method to determine thermal conductivity of a bad conductor
30-L27	Wiedmann – Franz's law – Convection : Newton's
31-L28	Unit V: Optics
32-L29	Interference: Condition for interference
33-L30	Air wedge
34- P3	Department Seminar
35-L31	determination of thickness of a thin wire by air wedge
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Diffraction: Fresnel diffraction
38- IT-II	Internal Test-II
39-L34	Fraunhofer diffraction
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Plane diffraction grating
42- L37	theory and experiment to determine wavelength (normal incidence)
43- L38	Polarization: Double refraction
44- P4	College level meeting/ function
45-L39	half wave and quarter wave plate
46-L40	Production and detection of plane, elliptically and circularly polarized light.
47-L41	Expression for excess of pressure inside a synclastic and anticlastic surface
48-L42	Expression for viscosity and thermal conductivity
49-L43	uniform bending
50-L44	Allotting portion for Internal Test-III
-	Internal Test III begins
51 L45	Expression for bending moment
52- L46	Problem solving
53-IT-III	Internal Test-III
54-L47	Problem solving
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 29.10.2015
<u> </u>	Lust trothing uij on aztrolavie

Learning Outcomes	COs of the course " <course name="">"</course>
C01	

CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Allied Physics I
Course Code	JAPH11
Class	I year (2016-2019)
Semester	Odd
Staff Name	M r. A. Arul Asir Abraham
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

Syllabus

ALLIED PHYSICS – I

Unit I : Elasticity and bending moment

Hooke's law – Elastic moduli – Relation between elastic constants – Work done in stretching a wire – Expression for bending moment - uniform bending- Experiment to determine Young's modulus using pin and microscope-Twisting couple of a wire – Expression for couple per unit twist – Work done in twisting – Experimental determination of rigidity modulus of a wire using Torsion pendulum with theory

Unit II: Surface tension and Viscosity

Surface tension – Definition – Examples – Molecular interpretation – Expression for excess of pressure inside a synclastic and anticlastic surface-Application to spherical and cylindrical drops and bubbles

Viscosity: Coefficient of viscosity – Rate of flow of liquid in a capillary tube (Poisueuille's formula) – Analogy between liquid flow and current flow – Stokes' formula for highly viscous liquids (Dimension method) – Experimental determination of viscosity of highly viscous liquid (stokes' method)

Unit III: Sound

Simple harmonic motion – Free, damped ,forced vibrations and resonance – Composition of two SHMs along a straight line and in perpendicular direction – Melde's string experiment – Determination of frequency of tuning fork transverse mode)

Unit IV : Thermal physics : Mean free path- Expression for mean free path (Zero order approximation) – Transport phenomena – Expression for viscosity and thermal conductivity – Conduction in solids – coefficient of thermal conductivity – Lee's disc method to determine thermal conductivity of a bad conductor – Wiedmann – Franz's law – Convection : Newton's

Page 8 of 17

law of cooling – Experimental verification – Radiation : Black body radiation – Distribution of energy in black body spectrum – Important features.

Unit V: Optics

Interference: Condition for interference-Air wedge-determination of thickness of a thin wire by air wedge

Diffraction: Fresnel & Fraunhofer diffraction-Plane diffraction grating- theory and experiment to determine wavelength (normal incidence)

Polarization: Double refraction- half wave and quarter wave plate – Production and detection of plane, elliptically and circularly polarized light.

Books for study

- 1. Optics Brijlal & Subramanian
- 2. Properties of matter R.Murugesan
- 3. Heat & Thermodynamics D.S.Mathur

Reference Books

1.Heat and thermodynamics - Brijlal & Subramanian, S Chand & Co., New Delhi

2.Fundamentals of Optics by Jenkins A Francis and White E Harvey, McGRaw Hill Inc., New Delhi, 1976.

3. Elements of Properties of Matter by Mathur D S, Shyamlal Charitable Trust, New Delhi,

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 16.06.2016	
1-L1	Unit I : Elasticity and bending moment	
2-L2	Hooke's law – Elastic moduli	
3- L3	Relation between elastic constants	
4-L4	Work done in stretching a wire	
5-L5	Expression for bending moment - uniform bending	
6-L6	Experiment to determine Young's modulus using pin and microscope-	
	Twisting couple of a wire	
7-L7	Expression for couple per unit twist – Work done in twisting	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Experimental determination of rigidity modulus of a wire using Torsion	
	pendulum with theory	
10- L9	Unit II: Surface tension and Viscosity	
11-L10	Surface tension – Definition – Examples	
12-L11	Molecular interpretation	
13-L12	Application to spherical and cylindrical drops and bubbles	
14-L13	Viscosity: Coefficient of viscosity – Rate of flow of liquid in a capillary tube	
	(Poisueuille's formula)	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	Analogy between liquid flow and current flow	
17-IT-1	Internal Test-I	
18-L16	Stokes' formula for highly viscous liquids (Dimension method) –	
	Experimental determination of viscosity of highly viscous liquid (stokes'	
	method)	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Unit III: Sound	
21- L19	Simple harmonic motion – Free, damped ,forced vibrations and resonance	
22- P2	College level meeting/Cell function	
23-L20	Composition of two SHMs along a straight line and in perpendicular	
	direction	
24-L21	Melde's string experiment	
25-L22	Determination of frequency of tuning fork	
	Unit IV : Thermal physics	

26 1 22	Moon free noth Emprogram for moon free noth
26-L23	Mean free path- Expression for mean free path
27-L24	Transport phenomena – Expression for viscosity and thermal conductivity
28-L25	Conduction in solids – coefficient of thermal conductivity
29-L26	Lee's disc method to determine thermal conductivity of a bad conductor
30-L27	Wiedmann – Franz's law – Convection : Newton's
31-L28	Unit V: Optics
32-L29	Interference: Condition for interference
33-L30	Air wedge
34- P3	Department Seminar
35-L31	determination of thickness of a thin wire by air wedge
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Diffraction: Fresnel diffraction
38- IT-II	Internal Test-II
39-L34	Fraunhofer diffraction
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Plane diffraction grating
42- L37	theory and experiment to determine wavelength (normal incidence)
43- L38	Polarization: Double refraction
44- P4	College level meeting/ function
45-L39	half wave and quarter wave plate
46-L40	Production and detection of plane, elliptically and circularly polarized light.
47-L41	Expression for excess of pressure inside a synclastic and anticlastic surface
48-L42	Expression for viscosity and thermal conductivity
49-L43	uniform bending
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Expression for bending moment
52- L46	Problem solving
53-IT-III	Internal Test-III
54-L47	Problem solving
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
57 MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
00 1.50	Last Working day on 30.11.2016
	Last working day on 50.11.2010

Learning Outcomes	COs of the course " <course name="">"</course>
C01	

CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
: use library books, E- books, motivate student to prepare for higher study.
: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Allied Physics I
Course Code	SAPH11
Class	I year (2017-2020)
Semester	Odd
Staff Name	MISS.DPRISCILLA KOVILPILLAI&
	MISS.P.JUSTINA ANGELIN
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

AAAA

Syllabus ALLIED PHYSICS – PAPER I

UNIT I ELASTICITY AND BENDING MOMENT: Hooke's law - Elastic modulli - Work done in

stretching and work done in twisting a wire - Twisting couple on a wire - Determination of rigidity

modulus of a wire using torsion pendulum - Expression for bending moment - Uniform bending -

Experiment to determine young's modulus using pin and microscope method.

UNIT II FLUIDS: Surface Tension: Synclastic and anticlastic surface - Excess of pressure - Viscosity:

Poiseuille's formula for rate of flow of liquid in a capillary tube by dimensional analysis - Analogy

between current flow and liquid flow - streamlined motion – Stoke's formula UNIT III THERMAL PHYSICS: Conduction in solids: Thermal conductivity - Lee's disc method - Wiedmann-Franz law - Convection: Newton's law of cooling – Radiation: Distribution of energy in

the spectrum of a black body - results – Planck's law of radiation (no derivation) and its deduction

to wiens and Raleigh Jeans law

UNIT IV SOUND: Simple harmonic motion: free, damped, forced vibrations and resonance -Intensity and loudness of sound - Decibels – Melde's string experiment – Determination of frequency of tuning fork - Acoustics of buildings: Reverberation time - Sabine's formula and derrivation

UNIT V ELECTRICITY: Current and Current density – Ohm's law - Resistors - I-V characteristics -

colour coding- conversion of galvanometer into an ammeter and voltmeter – Kirchhoff's laws –

Balance condition of Whetstone's bridge - Potentiometer – Measurement of potential difference

and current

Books for study

- 1. Properties of Matter: R. Murugeshan, S Chand & Co. Pvt. Ltd., New Delhi
- 2. Heat and thermodynamics: D S Mathur, S Chand & Co., New Delhi
- 3. Text book of Sound by M N Srinivasan Himalaya Publications, 1991
- 4. Electricity & Magnetism by K K Tewari, S Chand & Co., 3rd Edition, 2001

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 16.06.2017	
1-L1	UNIT I ELASTICITY AND BENDING MOMENT	
2-L2	Hooke's law - Elastic modulli	
3- L3	Work done in	
	stretching and work done in twisting a wire	
4-L4	Twisting couple on a wire	
5-L5	Determination of rigidity	
	modulus of a wire using torsion pendulum	
6-L6	Expression for bending moment- Uniform bending	
7-L7	Experiment to determine young's modulus using pin and microscope method	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	UNIT II FLUIDS	
10- L9	Surface Tension	
11-L10	Synclastic and anticlastic surface	
12-L11	Excess of pressure	
13-L12	Viscosity	
14-L13	Poiseuille's formula for rate of flow of liquid in a capillary tube by dimensional	
	analysis	
15-L14	- Allotting portion for Internal Test-I	
	Internal Test I begins	

16-L15	Analogy
	between current flow and liquid flow
17-IT-1	Internal Test-I
18-L16	streamlined motion
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Stoke's formula
21- L19	UNIT III THERMAL PHYSICS
22- P2	College level meeting/Cell function
23-L20	Conduction in solids
24-L21	Thermal conductivity
25-L22	Lee's disc method
26-L23	Wiedmann-Franz law -
27-L24	Convection: : Newton's law of cooling
28-L25	Radiation: Distribution of energy in
	the spectrum of a black body- results
29-L26	- Planck's law of radiation (no derivation) and its deduction
	to wiens
30-L27	Raleigh Jeans law
31-L28	UNIT IV SOUND
32-L29	Simple harmonic motion: free, damped, forced vibrations and resonance
33-L30	Intensity and loudness of sound
34- P3	Department Seminar
35-L31	Decibels
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Melde's string experiment
38- IT-II	Internal Test-II
39-L34	Determination of
	frequency of tuning fork
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Acoustics of buildings: Reverberation time
42- L37	Sabine's formula and
	derrivation
43- L38	
	UNIT V ELECTRICITY
44- P4 45-L39	College level meeting/ function
43-L39 46-L40	Current and Current density
-	Ohm's law - Resistors - I-V characteristics
47-L41	colour coding- conversion of galvanometer into an ammeter and voltmeter Kirchhoff's laws
48-L42	
49-L43	Balance condition of Whetstone's bridge
50-L44	- Allotting portion for Internal Test-III
51 T 15	Internal Test III begins
51 L45	Balance condition of Whetstone's bridge Potentiometer
52- L46	Internal Test-III
53-IT-III	

54-L47	Measurement of potential difference
	and current
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 06.11.2017

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
<u>CO1</u>	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Allied PhysicsII	
Course Code	SAPH12	
Class	I year (2017-2019)	
Semester	EVEN	
Staff Name	MISS.PRISCILLA	
	KOVILPILLAI&MISS.JUSTINA	
	ANGELIN	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

AAAA

Syllabus

ALLIED PHYSICS – PAPER II

UNIT I OPTICS: Interference: Air wedge - determination of diameter of a thin wire by air wedge –

Diffraction: Fresnel diffraction & Fraunhofer diffraction - plane diffraction grating - theory and

experiment to determine wavelength (normal incidence) -

Polarization: Double refraction - half

wave and quarter wave plate, plane, elliptically and circularly polarized light – production

(theory)

UNIT II MAGNETISM AND ELECTROMAGNETISM: Magnetism: Susceptibility - permeability -

intensity of magnetization - properties of dia, para and ferro magnetic materials -

461

Electromagnetism: Faraday's laws of electromagnetic induction, Lenz's law – self-inductance -

self-inductance of a toroid – mutual inductance – coefficient of couplingdetermination of

mutual inductance using a ballastic galvanometer

UNIT III ELECTRONICS: Diodes, transistors and ICs: - Zener diode – characteristics - transistor

configuration CE mode - IC – Pin diagram of 741 – Digital electronics: binary numbers –

conversion of decimal number to binary number - binary number to decimal number – binary

addition, subtraction and basic logic gates (OR, AND, NOT. NOR & NAND) – EXOR gate – De

Morgan's theorem.

UNIT IV NUCLEAR PHYSICS AND RADIATION PHYSICS: Nuclear Physics: Nuclear constituents, size,

mass, spin and charge - binding energy - binding energy curve - nuclear fission - chain reaction –

nuclear reactor - Radiation Physics: radioactive disintegration – half-life period - radiation hazards

UNIT V RELATIVITY AND QUANTUM MECHANICS: Relativity: Frames of references - postulates of

special theory of relativity - Lorentz transformation equations - Wave mechanics: matter waves -

de Broglie wavelength - properties of wave functions - Quantum mechanics: postulates of

quantum mechanics -Schrödinger equation - time dependent form Books for study

1. Optics: Brij Lal & Subramaniam, S Chand & Co., New Delhi

2 Electricity and magnetism: R Murugeshan , 8th Edn, 2006, S Chand & Co., New Delhi

3. Principles of Electronics: V K Mehta, 5th edition 2001, S Chand & Co., New Delhi,

4. Atomic and Nuclear Physics: Brij Lal & Subramaniam, S Chand & Co., 2000

5. Quantum Mechanics : V. Devanathan, Narosa, Chennai, 2005.

6. Modern Physics: R Murugeshan, Kiruthiga, Sivaprasath S Chand & Co. 2007

7. Physics of Radiation Therapy : FM Khan - Williamd and Wilkins, Third edition , 2003

Books for Reference

1. Fundamentals of Physics, 6th Edition by D Halliday, R Resnick and J Walker, Wiley NY

2001.

2. Physics, 4th Edition vols. I, II & II Extended by D Halliday, R Resnick and K S Krane,

Wiley NY 1994.

3. Nuclear Medicine Physics: Chandra , Lippincot Williams and Wilkins, 1998

Hour	Class Schedule
allotment	
	EVEN SEMESTER BEGINS(07.12.2017)
1-L1	Interference: Air wedge
2-L2	determination of diameter of a thin wire by air wedge –
3- L3	Diffraction: Fresnel diffraction & Fraunhofer diffraction -
4-L4	plane diffraction grating - theory
5-L5	experiment to determine wavelength (normal incidence) -
6-L6	half wave and quarter wave plate, plane, elliptically and circularly polarized light – production
7-L7	UNIT II MAGNETISM AND ELECTROMAGNETISM
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	Magnetism: Susceptibility - permeability -
10- L9	intensity of magnetization
11-L10	properties of dia, para and ferro magnetic materials
12-L11	Electromagnetism: Faraday's laws of electromagnetic induction,
13-L12	Lenz's law – self-inductance
14-L13	self-inductance of a toroid – mutual inductance
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	coefficient of coupling
17-IT-1	Internal Test-I
18-L16	determination of mutual inductance using a ballastic galvanometer
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	UNIT III ELECTRONICS
21- L19	Diodes, transistors and ICs: - Zener diode – characteristics - transistor
22- P2	College level meeting/Cell function
23-L20	configuration CE mode - IC – Pin diagram of 741
24-L21	Digital electronics: binary numbers
25-L22	conversion of decimal number to binary number - binary number to decimal number
26-L23	binary addition, subtraction and basic logic gates (OR, AND, NOT. NOR & NAND)
27-L24	EXOR gate – De Morgan's theorem.

28-L25	UNIT IV NUCLEAR PHYSICS AND RADIATION PHYSICS
29-L26	Nuclear Physics: Nuclear constituents, size,
	mass, spin and charge
30-L27	binding energy - binding energy curve
31-L28	nuclear fission - chain reaction –
32-L29	- Radiation Physics: radioactive disintegration – half-life period - radiation
	hazards
33-L30	UNIT V RELATIVITY AND QUANTUM MECHANICS
34- P3	Department Seminar
35-L31	
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Relativity: Frames of references - postulates of
	special theory of relativity
38- IT-II	Internal Test-II
39-L34	Lorentz transformation equations
40-L35	Test Paper distribution and result analysis
_	Entering Internal Test-II Marks into University portal
41-L36	de Broglie wavelength
42- L37	properties of wave functions
43- L38	Quantum mechanics: postulates of
	quantum mechanics
44- P4	College level meeting/ function
45-L39	Wave mechanics: matter waves
46-L40	Schrödinger equation
47-L41	
	quantum mechanics
48-L42	Schrödinger equation -
49-L43	
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	time dependent form
52- L46	PROBLEM SOLVING
53-IT-III	Internal Test-III
54-L47	PROBLEM SOLVING
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on (23.04.2018)

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Allied Physics I	
Course Code	SAPH11	
Class	I year (2018-2021)	
Semester	Odd	
Staff Name	MISS.DPRISCILLA KOVILPILLAI&	
	MISS.P.JUSTINA ANGELIN	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /	unit)	

Course Objectives

Syllabus ALLIED PHYSICS – PAPER I

UNIT I ELASTICITY AND BENDING MOMENT: Hooke's law - Elastic modulli - Work done in

stretching and work done in twisting a wire - Twisting couple on a wire - Determination of rigidity

modulus of a wire using torsion pendulum - Expression for bending moment - Uniform bending -

Experiment to determine young's modulus using pin and microscope method. UNIT II FLUIDS: Surface Tension: Synclastic and anticlastic surface - Excess of pressure -Viscosity:

Poiseuille's formula for rate of flow of liquid in a capillary tube by dimensional analysis - Analogy

between current flow and liquid flow - streamlined motion - Stoke's formula

UNIT III THERMAL PHYSICS: Conduction in solids: Thermal conductivity - Lee's disc method -Wiedmann-Franz law - Convection: Newton's law of cooling – Radiation: Distribution of energy in the spectrum of a black body - results - Planck's law of radiation (no derivation) and its deduction to wiens and Raleigh Jeans law UNIT IV SOUND: Simple harmonic motion: free, damped, forced vibrations and resonance -Intensity and loudness of sound - Decibels - Melde's string experiment -Determination of frequency of tuning fork - Acoustics of buildings: Reverberation time - Sabine's formula and derrivation UNIT V ELECTRICITY: Current and Current density - Ohm's law - Resistors - I-V characteristics colour coding- conversion of galvanometer into an ammeter and voltmeter -Kirchhoff's laws -Balance condition of Whetstone's bridge - Potentiometer - Measurement of potential difference and current Books for study 1. Properties of Matter: R. Murugeshan, S Chand & Co. Pvt. Ltd., New Delhi 2. Heat and thermodynamics: D S Mathur, S Chand & Co., New Delhi 3. Text book of Sound by M N Srinivasan - Himalaya Publications, 1991

4. Electricity & Magnetism by K K Tewari, S Chand & Co., 3rd Edition, 2001

Class Schedule
Odd Semester Begin on 18.06.2018
UNIT I ELASTICITY AND BENDING MOMENT
Hooke's law - Elastic modulli
Work done in
stretching and work done in twisting a wire
Twisting couple on a wire
Determination of rigidity
modulus of a wire using torsion pendulum
Expression for bending moment- Uniform bending
Experiment to determine young's modulus using pin and microscope
method
Welcoming of First year and Inauguration of MathematicsAssociation
UNIT II FLUIDS
Surface Tension
Synclastic and anticlastic surface

~--

a 1

. .

Course Calendar

1

12-L11	Excess of pressure	
13-L12	Viscosity	
14-L13	Poiseuille's formula for rate of flow of liquid in a capillary tube by	
	dimensional analysis	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	Analogy	
	between current flow and liquid flow	
17-IT-1	Internal Test-I	
18-L16	streamlined motion	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Stoke's formula	
21- L19	UNIT III THERMAL PHYSICS	
22- P2	College level meeting/Cell function	
23-L20	Conduction in solids	
24-L21	Thermal conductivity	
25-L22	Lee's disc method	
26-L23	Wiedmann-Franz law -	
27-L24	Convection: : Newton's law of cooling	
28-L25	Radiation: Distribution of energy in	
	the spectrum of a black body- results	
29-L26	– Planck's law of radiation (no derivation) and its deduction	
	to wiens	
30-L27	Raleigh Jeans law	
31-L28	UNIT IV SOUND	
32-L29	Simple harmonic motion: free, damped, forced vibrations and resonance	
33-L30	Intensity and loudness of sound	
34- P3	Department Seminar	
35-L31	Decibels	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Melde's string experiment	
38- IT-II	Internal Test-II	
39-L34	Determination of	
	frequency of tuning fork	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Acoustics of buildings: Reverberation time	
42- L37	Sabine's formula and	
	derrivation	
43- L38	UNIT V ELECTRICITY	
44- P4	College level meeting/ function	
45-L39	Current and Current density	
46-L40	Ohm's law - Resistors - I-V characteristics	
47-L41	colour coding- conversion of galvanometer into an ammeter and	
	voltmeter	
48-L42	Kirchhoff's laws	

49-L43	Balance condition of Whetstone's bridge
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Balance condition of Whetstone's bridge
52- L46	Potentiometer
53-IT-III	Internal Test-III
54-L47	Measurement of potential difference
	and current
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.11.2018

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

Blended Learning

: using PPT, video, library resources, ICT techniques, Elearning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Allied PhysicsII	
Course Code	SAPH12	
Class	I year (2018-2020)	
Semester	EVEN	
Staff Name	MISS.PRISCILLA	
	KOVILPILLAI&MISS.JUSTINA	
	ANGELIN	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

AAAA

Syllabus

ALLIED PHYSICS – PAPER II

UNIT I OPTICS: Interference: Air wedge - determination of diameter of a thin wire by air wedge –

Diffraction: Fresnel diffraction & Fraunhofer diffraction - plane diffraction grating - theory and

experiment to determine wavelength (normal incidence) -

Polarization: Double refraction - half

wave and quarter wave plate, plane, elliptically and circularly polarized light – production

(theory)

UNIT II MAGNETISM AND ELECTROMAGNETISM: Magnetism: Susceptibility - permeability -

intensity of magnetization - properties of dia, para and ferro magnetic materials -

461

Electromagnetism: Faraday's laws of electromagnetic induction, Lenz's law – self-inductance -

self-inductance of a toroid – mutual inductance – coefficient of couplingdetermination of

mutual inductance using a ballastic galvanometer

UNIT III ELECTRONICS: Diodes, transistors and ICs: - Zener diode – characteristics - transistor

configuration CE mode - IC – Pin diagram of 741 – Digital electronics: binary numbers –

conversion of decimal number to binary number - binary number to decimal number – binary

addition, subtraction and basic logic gates (OR, AND, NOT. NOR & NAND) – EXOR gate – De

Morgan's theorem.

UNIT IV NUCLEAR PHYSICS AND RADIATION PHYSICS: Nuclear Physics: Nuclear constituents, size,

mass, spin and charge - binding energy - binding energy curve - nuclear fission - chain reaction –

nuclear reactor - Radiation Physics: radioactive disintegration – half-life period - radiation hazards

UNIT V RELATIVITY AND QUANTUM MECHANICS: Relativity: Frames of references - postulates of

special theory of relativity - Lorentz transformation equations - Wave mechanics: matter waves -

de Broglie wavelength - properties of wave functions - Quantum mechanics: postulates of

quantum mechanics -Schrödinger equation - time dependent form Books for study

1. Optics: Brij Lal & Subramaniam, S Chand & Co., New Delhi

2 Electricity and magnetism: R Murugeshan , 8th Edn, 2006, S Chand & Co., New Delhi

3. Principles of Electronics: V K Mehta, 5th edition 2001, S Chand & Co., New Delhi,

4. Atomic and Nuclear Physics: Brij Lal & Subramaniam, S Chand & Co., 2000

5. Quantum Mechanics : V. Devanathan, Narosa, Chennai, 2005.

6. Modern Physics: R Murugeshan, Kiruthiga, Sivaprasath S Chand & Co. 2007

7. Physics of Radiation Therapy : FM Khan - Williamd and Wilkins, Third edition , 2003

Books for Reference

1. Fundamentals of Physics, 6th Edition by D Halliday, R Resnick and J Walker, Wiley NY

2001.

2. Physics, 4th Edition vols. I, II & II Extended by D Halliday, R Resnick and K S Krane,

Wiley NY 1994.

3. Nuclear Medicine Physics: Chandra , Lippincot Williams and Wilkins, 1998

Hour	Class Schedule
allotment	
1 T 1	EVEN SEMESTER BEGINS(03.12.2018)
1-L1	Interference: Air wedge
2-L2	determination of diameter of a thin wire by air wedge –
3- L3	Diffraction: Fresnel diffraction & Fraunhofer diffraction -
4-L4	plane diffraction grating - theory
5-L5	experiment to determine wavelength (normal incidence) -
6-L6	half wave and quarter wave plate, plane, elliptically and circularly polarized light – production
7-L7	UNIT II MAGNETISM AND ELECTROMAGNETISM
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	Magnetism: Susceptibility - permeability -
10- L9	intensity of magnetization
11-L10	properties of dia, para and ferro magnetic materials
12-L11	Electromagnetism: Faraday's laws of electromagnetic induction,
13-L12	Lenz's law – self-inductance
14-L13	self-inductance of a toroid – mutual inductance
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	coefficient of coupling
17-IT-1	Internal Test-I
18-L16	determination of mutual inductance using a ballastic galvanometer
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	UNIT III ELECTRONICS
21- L19	Diodes, transistors and ICs: - Zener diode – characteristics - transistor
22- P2	College level meeting/Cell function
23-L20	configuration CE mode - IC – Pin diagram of 741
24-L21	Digital electronics: binary numbers
25-L22	conversion of decimal number to binary number - binary number to decimal number
26-L23	binary addition, subtraction and basic logic gates (OR, AND, NOT. NOR & NAND)
27-L24	EXOR gate – De Morgan's theorem.

28-L25	UNIT IV NUCLEAR PHYSICS AND RADIATION PHYSICS
29-L26	Nuclear Physics: Nuclear constituents, size,
	mass, spin and charge
30-L27	binding energy - binding energy curve
31-L28	nuclear fission - chain reaction –
32-L29	- Radiation Physics: radioactive disintegration – half-life period - radiation
	hazards
33-L30	UNIT V RELATIVITY AND QUANTUM MECHANICS
34- P3	Department Seminar
35-L31	
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Relativity: Frames of references - postulates of
	special theory of relativity
38- IT-II	Internal Test-II
39-L34	Lorentz transformation equations
40-L35	Test Paper distribution and result analysis
-	Entering Internal Test-II Marks into University portal
41-L36	de Broglie wavelength
42- L37	properties of wave functions
43- L38	Quantum mechanics: postulates of
	quantum mechanics
44- P4	College level meeting/ function
45-L39	Wave mechanics: matter waves
46-L40	Schrödinger equation
47-L41	
	quantum mechanics
48-L42	Schrödinger equation -
49-L43	
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	time dependent form
52- L46	PROBLEM SOLVING
53-IT-III	Internal Test-III
54-L47	PROBLEM SOLVING
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on (23.04.2019)

Learning Outcomes	COs of the course " <course name="">"</course>
C01	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Allied Physics I	
Course Code	SAPH11	
Class	I year (2019-2022)	
Semester	Odd	
Staff Name	MISS.DPRISCILLA KOVILPILLAI&	
	MISS.P.JUSTINA ANGELIN	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus ALLIED PHYSICS – PAPER I

UNIT I ELASTICITY AND BENDING MOMENT: Hooke's law - Elastic modulli - Work done in

stretching and work done in twisting a wire - Twisting couple on a wire - Determination of rigidity

modulus of a wire using torsion pendulum - Expression for bending moment - Uniform bending -

Experiment to determine young's modulus using pin and microscope method. UNIT II FLUIDS: Surface Tension: Synclastic and anticlastic surface - Excess of pressure -Viscosity:

Poiseuille's formula for rate of flow of liquid in a capillary tube by dimensional analysis - Analogy

between current flow and liquid flow - streamlined motion - Stoke's formula

UNIT III THERMAL PHYSICS: Conduction in solids: Thermal conductivity - Lee's disc method -Wiedmann-Franz law - Convection: Newton's law of cooling – Radiation: Distribution of energy in the spectrum of a black body - results - Planck's law of radiation (no derivation) and its deduction to wiens and Raleigh Jeans law UNIT IV SOUND: Simple harmonic motion: free, damped, forced vibrations and resonance -Intensity and loudness of sound - Decibels - Melde's string experiment -Determination of frequency of tuning fork - Acoustics of buildings: Reverberation time - Sabine's formula and derrivation UNIT V ELECTRICITY: Current and Current density - Ohm's law - Resistors - I-V characteristics colour coding- conversion of galvanometer into an ammeter and voltmeter -Kirchhoff's laws -Balance condition of Whetstone's bridge - Potentiometer - Measurement of potential difference and current Books for study 1. Properties of Matter: R. Murugeshan, S Chand & Co. Pvt. Ltd., New Delhi 2. Heat and thermodynamics: D S Mathur, S Chand & Co., New Delhi

- 3. Text book of Sound by M N Srinivasan Himalaya Publications, 1991
- 4. Electricity & Magnetism by K K Tewari, S Chand & Co., 3rd Edition, 2001

Hour	Class Schedule
allotment	
	Odd Semester Begin on 17.06.2019
1-L1	UNIT I ELASTICITY AND BENDING MOMENT
2-L2	Hooke's law - Elastic modulli
3- L3	Work done in
	stretching and work done in twisting a wire
4-L4	Twisting couple on a wire
5-L5	Determination of rigidity
	modulus of a wire using torsion pendulum
6-L6	Expression for bending moment- Uniform bending
7-L7	Experiment to determine young's modulus using pin and microscope
	method
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	UNIT II FLUIDS
10- L9	Surface Tension
11-L10	Synclastic and anticlastic surface

Class Sabadula

Course Calendar

Hour

12-L11	Excess of pressure
13-L12	Viscosity
14-L13	Poiseuille's formula for rate of flow of liquid in a capillary tube by
	dimensional analysis
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Analogy
	between current flow and liquid flow
17-IT-1	Internal Test-I
18-L16	streamlined motion
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Stoke's formula
21- L19	UNIT III THERMAL PHYSICS
22- P2	College level meeting/Cell function
23-L20	Conduction in solids
24-L21	Thermal conductivity
25-L22	Lee's disc method
26-L23	Wiedmann-Franz law -
27-L24	Convection: : Newton's law of cooling
28-L25	Radiation: Distribution of energy in
	the spectrum of a black body- results
29-L26	– Planck's law of radiation (no derivation) and its deduction
	to wiens
30-L27	Raleigh Jeans law
31-L28	UNIT IV SOUND
32-L29	Simple harmonic motion: free, damped, forced vibrations and resonance
33-L30	Intensity and loudness of sound
34- P3	Department Seminar
35-L31	Decibels
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37-L33	Melde's string experiment
38- IT-II	Internal Test-II
39-L34	Determination of
40 1 25	frequency of tuning fork
40-L35	Test Paper distribution and result analysis
41 1 26	Entering Internal Test-II Marks into University portal
41-L36	Acoustics of buildings: Reverberation time Sabine's formula and
42- L37	derrivation
43- L38	
44- P4	College level meeting/ function
45-L39	Current and Current density
46-L40	Ohm's law - Resistors - I-V characteristics
47-L41	colour coding- conversion of galvanometer into an ammeter and
	voltmeter
48-L42	Kirchhoff's laws

49-L43	Balance condition of Whetstone's bridge
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Balance condition of Whetstone's bridge
52- L46	Potentiometer
53-IT-III	Internal Test-III
54-L47	Measurement of potential difference
	and current
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 30.10.2019

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

Blended Learning

: using PPT, video, library resources, ICT techniques, Elearning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Allied PhysicsII	
Course Code	SAPH12	
Class	I year (2019-2022)	
Semester	EVEN	
Staff Name	MISS.PRISCILLA	
	KOVILPILLAI&MISS.JUSTINA	
	ANGELIN	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

AAAA

Syllabus

ALLIED PHYSICS – PAPER II

UNIT I OPTICS: Interference: Air wedge - determination of diameter of a thin wire by air wedge –

Diffraction: Fresnel diffraction & Fraunhofer diffraction - plane diffraction grating - theory and

experiment to determine wavelength (normal incidence) -

Polarization: Double refraction - half

wave and quarter wave plate, plane, elliptically and circularly polarized light – production

(theory)

UNIT II MAGNETISM AND ELECTROMAGNETISM: Magnetism: Susceptibility - permeability -

intensity of magnetization - properties of dia, para and ferro magnetic materials -

461

Electromagnetism: Faraday's laws of electromagnetic induction, Lenz's law – self-inductance -

self-inductance of a toroid – mutual inductance – coefficient of couplingdetermination of

mutual inductance using a ballastic galvanometer

UNIT III ELECTRONICS: Diodes, transistors and ICs: - Zener diode – characteristics - transistor

configuration CE mode - IC – Pin diagram of 741 – Digital electronics: binary numbers –

conversion of decimal number to binary number - binary number to decimal number – binary

addition, subtraction and basic logic gates (OR, AND, NOT. NOR & NAND) – EXOR gate – De

Morgan's theorem.

UNIT IV NUCLEAR PHYSICS AND RADIATION PHYSICS: Nuclear Physics: Nuclear constituents, size,

mass, spin and charge - binding energy - binding energy curve - nuclear fission - chain reaction –

nuclear reactor - Radiation Physics: radioactive disintegration – half-life period - radiation hazards

UNIT V RELATIVITY AND QUANTUM MECHANICS: Relativity: Frames of references - postulates of

special theory of relativity - Lorentz transformation equations - Wave mechanics: matter waves -

de Broglie wavelength - properties of wave functions - Quantum mechanics: postulates of

quantum mechanics -Schrödinger equation - time dependent form Books for study

1. Optics: Brij Lal & Subramaniam, S Chand & Co., New Delhi

2 Electricity and magnetism: R Murugeshan , 8th Edn, 2006, S Chand & Co., New Delhi

3. Principles of Electronics: V K Mehta, 5th edition 2001, S Chand & Co., New Delhi,

4. Atomic and Nuclear Physics: Brij Lal & Subramaniam, S Chand & Co., 2000

5. Quantum Mechanics : V. Devanathan, Narosa, Chennai, 2005.

6. Modern Physics: R Murugeshan, Kiruthiga, Sivaprasath S Chand & Co. 2007

7. Physics of Radiation Therapy : FM Khan - Williamd and Wilkins, Third edition , 2003

Books for Reference

1. Fundamentals of Physics, 6th Edition by D Halliday, R Resnick and J Walker, Wiley NY

2001.

2. Physics, 4th Edition vols. I, II & II Extended by D Halliday, R Resnick and K S Krane,

Wiley NY 1994.

3. Nuclear Medicine Physics: Chandra , Lippincot Williams and Wilkins, 1998

Hour	Class Schedule
allotment	
1 1 1	EVEN SEMESTER BEGINS(02.12.2019)
1-L1	Interference: Air wedge
2-L2	determination of diameter of a thin wire by air wedge –
3- L3	Diffraction: Fresnel diffraction & Fraunhofer diffraction -
4-L4	plane diffraction grating - theory
5-L5	experiment to determine wavelength (normal incidence) -
6-L6	half wave and quarter wave plate, plane, elliptically and circularly polarized light – production
7-L7	UNIT II MAGNETISM AND ELECTROMAGNETISM
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	Magnetism: Susceptibility - permeability -
10- L9	intensity of magnetization
11-L10	properties of dia, para and ferro magnetic materials
12-L11	Electromagnetism: Faraday's laws of electromagnetic induction,
13-L12	Lenz's law – self-inductance
14-L13	self-inductance of a toroid – mutual inductance
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	coefficient of coupling
17-IT-1	Internal Test-I
18-L16	determination of mutual inductance using a ballastic galvanometer
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	
21- L19	Diodes, transistors and ICs: - Zener diode – characteristics - transistor
22- P2	College level meeting/Cell function
23-L20	configuration CE mode - IC – Pin diagram of 741
24-L21	Digital electronics: binary numbers
25-L22	conversion of decimal number to binary number - binary number to decimal number
26-L23	binary addition, subtraction and basic logic gates (OR, AND, NOT. NOR & NAND)
27-L24	EXOR gate – De Morgan's theorem.

28-L25	UNIT IV NUCLEAR PHYSICS AND RADIATION PHYSICS
29-L26	Nuclear Physics: Nuclear constituents, size,
	mass, spin and charge
30-L27	binding energy - binding energy curve
31-L28	nuclear fission - chain reaction –
32-L29	- Radiation Physics: radioactive disintegration – half-life period - radiation
	hazards
33-L30	UNIT V RELATIVITY AND QUANTUM MECHANICS
34- P3	Department Seminar
35-L31	
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Relativity: Frames of references - postulates of
	special theory of relativity
38- IT-II	Internal Test-II
39-L34	Lorentz transformation equations
	·
40-L35	Test Paper distribution and result analysis
_	Entering Internal Test-II Marks into University portal
41-L36	de Broglie wavelength
42- L37	properties of wave functions
43- L38	Quantum mechanics: postulates of
	quantum mechanics
44- P4	College level meeting/ function
45-L39	Wave mechanics: matter waves
46-L40	Schrödinger equation
47-L41	
	quantum mechanics
48-L42	Schrödinger equation -
49-L43	
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	time dependent form
52- L46	PROBLEM SOLVING
53-IT-III	Internal Test-III
54-L47	PROBLEM SOLVING
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
-	Last Working day on (27.04.2020)

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Atomic and Nuclear Physics	
Course Code	JMPH62	
Class	III year (2018-2019)	
Semester	Even	
Staff Name	Dr.A.Arul Gnanam	
	Mrs.R.Nithya Agnes	
Credits	6	
L. Hours /P. Hours	6 / WK	
Total 90 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 80 Hrs (5 units; 5×16=80; 16Hrs /unit)		

Course Objectives

Syllabus

ATOMIC AND NUCLEAR PHYSICS

Unit I :Atomic Structure :Introduction –Vector atom model –Quantum numbers associated with vector atom model– coupling schemes –L-S- and J-J couplings- Pauli''s exclusion principle-application to periodic table-magnetic dipole moment due to orbital motion of the electron-magnetic dipole moment due to spin-Stern and Gerlach experiment –optical spectra-spectral notation-selection rules-fine structure of sodium D line-Zeeman effect-experimental arrangement for the normal Zeeman effect-Quantum mechanical explanation of the normal Zeeman effect – stark effect

Unit II Introduction to the Nucleus General properties of the nucleus- nuclear binding energy – BE/A curve and its significance-mass defect and packing fraction—proton electron hypothesis-proton neutron hypothesis -Nuclear forces –charecteristics –Meson theory of nuclear forces – Models of Nuclear structure – Liquid drop model –Binding Energy formula – Shell Model –nuclar reactions-Q-value of nuclar reactions .

Unit III Radio activity Natural radio activity –alpha,beta and gamma rays-properties-Soddy Fajan's displacement law-natural radio active series-law of radio active disintegration-half life period –mean life period –Radio carbon dating-law of successive disintegration– range of α particle – Geiger Nuttal law- theory of α decay-. β decay- β - ray spectra –neutrino theory of β decay-neutrino and its properties-electron capture. Υ decay-nuclear isomers- Mossabauer effect and its applications-radio isotopes and their uses.

Unit IV :Nuclear reactors,Particle accelerators and detectors Nuclear fission –energy released in fission-. Nuclear reactor-uses of reactor- Nuclear fusion –Thermo nuclear reactions-controlled thermo nuclear reaction-Principle and action of atom bomb and hydrogen bomb-fusion reactor –Detectors-G.M.Counter-scintillation counter-bubble chamber-wilson cloud chamber-Accelerators-cyclotron-synchrocyclotron-betatron-synchrotrons

Unit V :Cosmic rays and elementary particles Cosmic rays-introduction-discoverylattitude, altitude and azimuth effects-Longitudinal effect-north –south effect-seasonal and diurnal changes-primary and secondary cosmic rays-nature of Cosmic rays- Cosmic ray showers-van allen belt- origin of Cosmic radiation. Elementary particles-introduction-particles and antiparticles-antimatter-the fundamental interaction-elementary particle quantum numbersconservation laws and symmetry-the quark mode

1 Book for study

1. Modern Physics- R.Murugesan, S. chand & Co

Hour	Class Schedule
allotment	
	Even Semester Begin on 03.12.2018
1-L1	Unit I :Atomic Structure :Introduction
2-L2	Quantum numbers associated with vector atom model
3- L3	coupling schemes –L-S- and J-J couplings
4-L4	magnetic dipole moment due to orbital motion of the electron
5-L5	spectral notation-selection rules
6-L6	Stern and Gerlach experiment
7-L7	Zeeman effect
8-L8	Quantum mechanical explanation of the normal Zeeman effect
9-L9	Anomalous Zeeman effect
10-P1	Welcoming of First year and Inauguration of MathematicsAssociation
11-L10	stark effect
12-L11	magnetic dipole moment due to spin
13-L12	Pauli"s exclusion principle
14-L13	application to periodic table

59-IT-II	Internal Test-II
58-L54	Interaction class
57-L53	Class test
	Internal Test II begins
56-L52	Allotting portion for Internal Test-II
55- L51	Natural radio activity
54- L50	electron capture
53- L49	neutrino and its properties
52- L48	neutrino theory of β decay
51- P3	Department Seminar
50- L47	β decay- β- ray spectra
49- L46	theory of α decay
48- L45	Geiger Nuttal law
47- L44	range of α particle
46- L43	law of successive disintegration
45- L42	Radio carbon dating
44- L41	mean life period
43- L40	half life period
42- L39	law of radio active disintegration
41- L38	natural radio active series
40- L37	Soddy Fajan's displacement law
39- L36	alpha,beta and gamma rays -properties
38- L35	alpha,beta and gamma rays
37- L34	Unit III Radio activity
36- L33	Liquid drop model
35- L32	Shell Model
34-P2	College level meeting/Cell function
33- L31	nuclar reactions-Q-value of nuclar reactions .
32- L30	Meson theory of nuclear forces
31- L29	Nuclear forces –charecteristics
-	Entering Internal Test-I Marks into University portal
30-L28	Test Paper distribution and result analysis
29-L27	Binding Energy formula
28-L26	Models of Nuclear structure
27-L25	proton electron hypothesis
26-IT-1	Internal Test-I
24-L23 25-L24	proton neutron hypothesis
24-L23	General properties of the nucleus
23-L22	Internal Test I begins
22-L21 23-L22	Allotting portion for Internal Test-I
21-L20 22-L21	packing fraction
20-L19 21-L20	BE/A curve and its significance mass defect
20-L19	
18-L17 19-L18	optical spectra Unit II Introduction to the Nucleus
17-L16	Vector atom model
16-L15	experimental arrangement for the normal Zeeman effect
15-L14	fine structure of sodium D line
1 <i>5</i> T 1 4	fine structure of earlines D line

60- L55	Internal test preparation	
61- L56	-Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
62- L57	wilson cloud chamber	
63- L58	fusion reactor	
64- L59	uses of reactor- Nuclear fusion	
65- L60	energy released in fission	
66- L61	Y decay-nuclear isomers	
67- L62	radio isotopes and their uses	
68- L63	Mossabauer effect and its applications.	
69- L64	Unit IV :Nuclear reactors,Particle accelerators and detectors Nuclear fission	
70- L65	Nuclear reactor	
71- L66	Thermo nuclear reactions	
72- L67	controlled thermo nuclear reaction	
73- L68	Principle and action of atom bomb and hydrogen bomb	
74-P4	College level meeting/ function	
75- L69	Detectors-G.M.Counter-scintillation counter-bubble chamber	
76- L70	Accelerators-cyclotron-synchrocyclotron-betatron-synchrotrons	
77- L71	Unit V :Cosmic rays and elementary particles Cosmic rays-introduction-discovery-	
	lattitude,altitude and azimuth effects	
78- L72	Longitudinal effect-north –south effect	
79- L73	Allotting portion for Internal Test-III	
	Internal Test III begins	
80- L74	seasonal and diurnal changes	
81- L75	primary and secondary cosmic rays-nature of Cosmic rays- Cosmic ray showers-van	
	allen belt- origin of Cosmic radiation	
82-IT-III	Internal Test-III	
83- L76	Elementary particles-introduction-particles and antiparticles-antimatter-the	
04.1.77	fundamental interaction	
84- L77	Test Paper distribution and result analysis	
85- L78	elementary particle quantum numbers-conservation laws and symmetry-the quark mode	
	Entering Internal Test-III Marks into University portal Model Test begins	
86- L79	Model Test	
80- L79 87-MT	Model Test	
87-MT 88-MT	Model Test	
89-MT	Model test paper distribution and previous year university question paper	
07 111	discussion	
90-L-80	Feedback of the Course, analysis and report preparation	
20200	Last Working day on 23.04.2019	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	

CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics		
Course Name	Atomic Physics		
Course Code	GMPH51		
Class	III year (2014-2015)		
Semester	Odd		
Staff Name	Mr.A.Arul Gnanam		
Credits	4		
L. Hours /P. Hours	4 / WK		
Total 60Hrs/Sem			
Internal Test-3 Hrs			
Model Test-3 Hrs			
Dept. Meetings-2 Hrs			
College Meetings-2 Hrs			
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)			

Course Objectives

 \triangleright

Syllabus

ATOMIC PHYSICS

UNIT I

The electron , band theory of solids and positive rays : The free Electron Theory of metals -

Expression for electrical conductivity – expressions for thermal conductivity – Determination of the electronic charge : Millikan's oil drop method-electron microscope – band theory of solids – classification of solids on the basis of band theory – optical properties of solids - energy bands Brillouin zones-origin of forbidden bands

UNIT II

Properties of positive rays – positive ray analysis – Thomson's parabola method-Aston's mass spectrograph – Bainbridge's mass spectrograph – Dempster's mass spectrograph – mass defect and packing fraction- Dunnington's method of determining e/m UNIT III Structure of atom : The vector atom model – quantum numbers associated with the the vector atom model – coupling schemes – the Pauli exclusions exclusion principle – the periodic

classification of elements – magnetic dipole moment due to orbital motion of the electronmagnetic dipole moment due to spin-the Stern and Gerlach experiment- quantum mechanical explanation of normal and anomoulous Zeeman effect.

UNIT IV

X-rays: Production of X-rays – spacing between three dimensional lattice planes – the absorption of X-rays – X-ray absorption edges – Bragg's law – the Bragg's X-ray spectrometer – the power crystal method –(a) the Laue method - (b) rotating crystal method – X-ray spectra – characteristic of X-ray spectrum – Moseley's law – Compton scattering **UNIT V**

Photoelectric effect and planck's quantum theory: Experimental investigations on the photoelectric effect – failure of electromagnetic theory-Einstein's photoelectric equation – photoelectric cells – Planck's quantum theory-the distribution of energy in the spectrum of a black body-Wien's displacement law-Planck's hypothesis-derivation of Planck's law of radiation

Books for reference:

1. MODERN PHYSICS - By R.Murugeshan and Kiruthiga Sivaprasath (14th Revised multicolour edition) ,S.Chand & Company Ltd. Ram nagar ,New Delhi-110055

2. MODERN PHYSICS - By B.S.Agarwal, Kedarnath Ramnath, Meerut, Delhi

3. ATOMIC AND NUCLEAR PHYSICS- N.Subrahmanyam Brijlal, S.Chand & Company Ltd. Ram nagar ,New Delhi-110055

4. MODERN PHYSICS – B.V.N. Rao, Wiley Eastern Ltd, New Delhi

5. An Introduction to MODERN PHYSICS- P.Mahendru,16/7698 New market,New Rohtak road, Satyaprakashan ,New Delhi-11

6. Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2014
1-L1	The electron ,band theory of solids and positive rays
2-L2	The free Electron Theory of metals
3- L3	Expression for electrical conductivity – expressions for thermal conductivity
4-L4	expressions for thermal conductivity
5-L5	Determination of the electronic charge
6-L6	Millikan's oil drop method-electron microscope
7-L7	band theory of solids
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	classification of solids on the basis of band theory
10- L9	optical properties of solids
11-L10	energy bands Brillouin zones-origin of forbidden bands
12-L11	Properties of positive rays – positive ray analysis
13-L12	Thomson's parabola method
14-L13	Aston's mass spectrograph
15-L14	Allotting portion for Internal Test-I

	Internal Test I begins	
16-L15	Bainbridge's mass spectrograph	
17-IT-1	Internal Test-I	
18-L16	Dempster's mass spectrograph	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	mass defect and packing fraction	
21- L19	Dunnington's method of determining e/m	
22- P2	College level meeting/Cell function	
23-L20	Structure of atom : The vector atom model	
24-L21	quantum numbers associated with the the vector atom model	
25-L22	coupling schemes	
26-L23	the Pauli exclusions exclusion principle	
27-L24	Periodic classification of elements	
28-L25	magnetic dipole moment due to orbital motion of the electronmagnetic dipole	
	moment due to spin	
29-L26	the Stern and Gerlach experiment	
30-L27	quantum mechanical explanation of normal and anomoulous Zeeman effect.	
31-L28	X-rays: Production of X-rays	
32-L29	spacing between three dimensional lattice planes	
33-L30	absorption of X-rays	
34- P3	Department Seminar	
35-L31	Problem Solving	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37-L33	Revision	
38- IT-II	Internal Test-II	
39-L34	X-ray absorption edges	
40-L35	Test Paper distribution and result analysis	
41.1.2.6	Entering Internal Test-II Marks into University portal	
41-L36	Bragg's law	
42-L37	the Bragg's X-ray spectrometer	
43- L38	the power crystal method	
44- P4	College level meeting/ function	
45-L39	X-ray spectra characteristic of X-ray spectrum – Moseley's law – Compton	
16 I 40	scattering	
46-L40	Photoelectric effect and planck's quantum theory: Experimental	
	investigations on the	
47 T 41	photoelectric effect	
47-L41	failure of electromagnetic theory	
48-L42	photoelectric cells – Planck's quantum theory-the distribution of energy in the	
49-L43	spectrum of a black body Wien's displacement law-Planck's hypothesis-derivation of Planck's law of	
49-L43	radiation	
50-L44	- Allotting portion for Internal Test-III	
JU-L44		
51 L45	Internal Test III begins Class Test	
51 L45	Problem Solving	
<i>J2</i> - L+0		

53-IT-III	Internal Test-III
54-L47	Revision
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 31.10.2014

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Atomic Physics	
Course Code	GMPH51	
Class	III year (2015-2016)	
Semester	Odd	
Staff Name	Mr.A.Arul Gnanam	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

 \geqslant

Syllabus

UNIT I

ATOMIC PHYSICS

The electron , band theory of solids and positive rays : The free Electron Theory of metals -

Expression for electrical conductivity – expressions for thermal conductivity – Determination of the electronic charge : Millikan's oil drop method-electron microscope – band theory of solids – classification of solids on the basis of band theory – optical properties of solids - energy bands Brillouin zones-origin of forbidden bands **UNIT II**

Properties of positive rays – positive ray analysis – Thomson's parabola method-Aston's mass spectrograph – Bainbridge's mass spectrograph – Dempster's mass spectrograph – mass defect and packing fraction- Dunnington's method of determining e/m UNIT III

Structure of atom : The vector atom model – quantum numbers associated with the the vector atom model – coupling schemes – the Pauli exclusions exclusion principle – the periodic

classification of elements – magnetic dipole moment due to orbital motion of the electronmagnetic dipole moment due to spin-the Stern and Gerlach experiment- quantum mechanical explanation of normal and anomoulous Zeeman effect.

UNIT IV

X-rays: Production of X-rays – spacing between three dimensional lattice planes – the absorption of X-rays – X-ray absorption edges – Bragg's law – the Bragg's X-ray spectrometer – the power crystal method –(a) the Laue method - (b) rotating crystal method – X-ray spectra – characteristic of X-ray spectrum – Moseley's law – Compton scattering **UNIT V**

Photoelectric effect and planck's quantum theory: Experimental investigations on the photoelectric effect – failure of electromagnetic theory-Einstein's photoelectric equation – photoelectric cells – Planck's quantum theory-the distribution of energy in the spectrum of a black body-Wien's displacement law-Planck's hypothesis-derivation of Planck's law of radiation

Books for reference:

1. MODERN PHYSICS - By R.Murugeshan and Kiruthiga Sivaprasath (14th Revised multicolour edition) ,S.Chand & Company Ltd. Ram nagar ,New Delhi-110055

2. MODERN PHYSICS - By B.S.Agarwal, Kedarnath Ramnath, Meerut, Delhi

3. ATOMIC AND NUCLEAR PHYSICS- N.Subrahmanyam Brijlal, S.Chand & Company Ltd. Ram nagar ,New Delhi-110055

4. MODERN PHYSICS – B.V.N. Rao, Wiley Eastern Ltd, New Delhi

5. An Introduction to MODERN PHYSICS- P.Mahendru,16/7698 New market,New Rohtak road, Satyaprakashan ,New Delhi-11

6. Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2015	
1-L1	The electron , band theory of solids and positive rays	
2-L2	The free Electron Theory of metals	
3- L3	Expression for electrical conductivity – expressions for thermal conductivity	
4-L4	expressions for thermal conductivity	
5-L5	Determination of the electronic charge	
6-L6	Millikan's oil drop method-electron microscope	
7-L7	band theory of solids	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	classification of solids on the basis of band theory	
10- L9	optical properties of solids	
11-L10	energy bands Brillouin zones-origin of forbidden bands	

12-L11	Properties of positive rays – positive ray analysis
13-L12	Thomson's parabola method
14-L13	Aston's mass spectrograph
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Bainbridge's mass spectrograph
17-IT-1	Internal Test-I
18-L16	Dempster's mass spectrograph
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	mass defect and packing fraction
21- L19	Dunnington's method of determining e/m
22- P2	College level meeting/Cell function
23-L20	Structure of atom : The vector atom model
24-L21	quantum numbers associated with the the vector atom model
25-L22	coupling schemes
26-L23	the Pauli exclusions exclusion principle
27-L24	Periodic classification of elements
28-L25	magnetic dipole moment due to orbital motion of the electronmagnetic dipole
	moment due to spin
29-L26	the Stern and Gerlach experiment
30-L27	quantum mechanical explanation of normal and anomoulous Zeeman effect.
31-L28	X-rays: Production of X-rays
32-L29	spacing between three dimensional lattice planes
33-L30	absorption of X-rays
34- P3	Department Seminar
35-L31	Problem Solving
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Revision
38- IT-II	Internal Test-II
39-L34	X-ray absorption edges
40-L35	-Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Bragg's law
42- L37	the Bragg's X-ray spectrometer
43- L38	the power crystal method
44- P4	College level meeting/ function
45-L39	X-ray spectra characteristic of X-ray spectrum – Moseley's law – Compton
	scattering
46-L40	Photoelectric effect and planck's quantum theory: Experimental
	investigations on the
	photoelectric effect
47-L41	failure of electromagnetic theory
48-L42	photoelectric cells – Planck's quantum theory-the distribution of energy in the
	spectrum of a black body
49-L43	Wien's displacement law-Planck's hypothesis-derivation of Planck's law of
	radiation

50-L44	- Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Class Test	
52- L46	Problem Solving	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 29.10.2015	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.

# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Atomic Physics	
Course Code	GMPH51	
Class	III year (2016-2017)	
Semester	Odd	
Staff Name	Mr.A.Arul Gnanam	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

 \triangleright

Syllabus

ATOMIC PHYSICS

UNIT I

The electron , band theory of solids and positive rays : The free Electron Theory of metals -

Expression for electrical conductivity – expressions for thermal conductivity – Determination of the electronic charge : Millikan's oil drop method-electron microscope – band theory of solids – classification of solids on the basis of band theory – optical properties of solids - energy bands Brillouin zones-origin of forbidden bands

UNIT II

Properties of positive rays – positive ray analysis – Thomson's parabola method-Aston's mass spectrograph – Bainbridge's mass spectrograph – Dempster's mass spectrograph – mass defect and packing fraction- Dunnington's method of determining e/m UNIT III Structure of atom : The vector atom model – quantum numbers associated with the the vector atom model – coupling schemes – the Pauli exclusions exclusion principle – the periodic

classification of elements – magnetic dipole moment due to orbital motion of the electronmagnetic dipole moment due to spin-the Stern and Gerlach experiment- quantum mechanical explanation of normal and anomoulous Zeeman effect.

UNIT IV

X-rays: Production of X-rays – spacing between three dimensional lattice planes – the absorption of X-rays – X-ray absorption edges – Bragg's law – the Bragg's X-ray spectrometer – the power crystal method –(a) the Laue method - (b) rotating crystal method – X-ray spectra – characteristic of X-ray spectrum – Moseley's law – Compton scattering **UNIT V**

Photoelectric effect and planck's quantum theory: Experimental investigations on the photoelectric effect – failure of electromagnetic theory-Einstein's photoelectric equation – photoelectric cells – Planck's quantum theory-the distribution of energy in the spectrum of a black body-Wien's displacement law-Planck's hypothesis-derivation of Planck's law of radiation

Books for reference:

1. MODERN PHYSICS - By R.Murugeshan and Kiruthiga Sivaprasath (14th Revised multicolour edition) ,S.Chand & Company Ltd. Ram nagar ,New Delhi-110055

2. MODERN PHYSICS - By B.S.Agarwal, Kedarnath Ramnath, Meerut, Delhi

3. ATOMIC AND NUCLEAR PHYSICS- N.Subrahmanyam Brijlal, S.Chand & Company Ltd. Ram nagar ,New Delhi-110055

4. MODERN PHYSICS – B.V.N. Rao, Wiley Eastern Ltd, New Delhi

5. An Introduction to MODERN PHYSICS- P.Mahendru,16/7698 New market,New Rohtak road, Satyaprakashan ,New Delhi-11

6. Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.06.2016
1-L1	The electron , band theory of solids and positive rays
2-L2	The free Electron Theory of metals
3- L3	Expression for electrical conductivity – expressions for thermal conductivity
4-L4	expressions for thermal conductivity
5-L5	Determination of the electronic charge
6-L6	Millikan's oil drop method-electron microscope
7-L7	band theory of solids
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	classification of solids on the basis of band theory
10- L9	optical properties of solids
11-L10	energy bands Brillouin zones-origin of forbidden bands
12-L11	Properties of positive rays – positive ray analysis
13-L12	Thomson's parabola method
14-L13	Aston's mass spectrograph
15-L14	Allotting portion for Internal Test-I

	Internal Test I begins	
16-L15	Bainbridge's mass spectrograph	
17-IT-1	Internal Test-I	
18-L16	Dempster's mass spectrograph	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	mass defect and packing fraction	
21- L19	Dunnington's method of determining e/m	
22- P2	College level meeting/Cell function	
23-L20	Structure of atom : The vector atom model	
24-L21	quantum numbers associated with the the vector atom model	
25-L22	coupling schemes	
26-L23	the Pauli exclusions exclusion principle	
27-L24	Periodic classification of elements	
28-L25	magnetic dipole moment due to orbital motion of the electronmagnetic dipole	
	moment due to spin	
29-L26	the Stern and Gerlach experiment	
30-L27	quantum mechanical explanation of normal and anomoulous Zeeman effect.	
31-L28	X-rays: Production of X-rays	
32-L29	spacing between three dimensional lattice planes	
33-L30	absorption of X-rays	
34- P3	Department Seminar	
35-L31	Problem Solving	
36-L32	Allotting portion for Internal Test-II	
27.1.22	Internal Test II begins	
37-L33	Revision	
38- IT-II	Internal Test-II	
39-L34	X-ray absorption edges	
40-L35	-Test Paper distribution and result analysis	
41-L36	Entering Internal Test-II Marks into University portal	
	Bragg's law	
42-L37	the Bragg's X-ray spectrometer	
43- L38 44- P4	the power crystal method	
44- F4 45-L39	College level meeting/ functionX-ray spectra characteristic of X-ray spectrum – Moseley's law – Compton	
4J-L39	scattering	
46-L40	Photoelectric effect and planck's quantum theory: Experimental	
40-L40	investigations on the	
	photoelectric effect	
47-L41	failure of electromagnetic theory	
48-L42	photoelectric cells – Planck's quantum theory-the distribution of energy in the	
10 112	spectrum of a black body	
49-L43	Wien's displacement law-Planck's hypothesis-derivation of Planck's law of	
	radiation	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Class Test	
52- L46	Problem Solving	

53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 30.11.2016	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Atomic Physics	
Course Code	GMPH51	
Class	III year (2017-2018)	
Semester	Odd	
Staff Name	Mr.A.Arul Gnanam	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

 \triangleright

Syllabus

ATOMIC PHYSICS

UNIT I

The electron , band theory of solids and positive rays : The free Electron Theory of metals –

Expression for electrical conductivity – expressions for thermal conductivity – Determination of the electronic charge : Millikan's oil drop method-electron microscope – band theory of solids – classification of solids on the basis of band theory – optical properties of solids - energy bands Brillouin zones-origin of forbidden bands

UNIT II

Properties of positive rays – positive ray analysis – Thomson's parabola method-Aston's mass spectrograph – Bainbridge's mass spectrograph – Dempster's mass spectrograph – mass defect and packing fraction- Dunnington's method of determining e/m UNIT III

Structure of atom : The vector atom model – quantum numbers associated with the the vector atom model – coupling schemes – the Pauli exclusions exclusion principle – the periodic

classification of elements – magnetic dipole moment due to orbital motion of the electronmagnetic dipole moment due to spin-the Stern and Gerlach experiment- quantum mechanical explanation of normal and anomoulous Zeeman effect.

UNIT IV

X-rays: Production of X-rays – spacing between three dimensional lattice planes – the absorption of X-rays – X-ray absorption edges – Bragg's law – the Bragg's X-ray spectrometer – the power crystal method –(a) the Laue method - (b) rotating crystal method – X-ray spectra - characteristic of X-ray spectrum - Moseley's law - Compton scattering UNIT V

Photoelectric effect and planck's quantum theory: Experimental investigations on the photoelectric effect - failure of electromagnetic theory-Einstein's photoelectric equation photoelectric cells – Planck's quantum theory-the distribution of energy in the spectrum of a black body-Wien's displacement law-Planck's hypothesis-derivation of Planck's law of radiation

Books for reference:

1. MODERN PHYSICS - By R.Murugeshan and Kiruthiga Sivaprasath (14th Revised multicolour edition) ,S.Chand & Company Ltd. Ram nagar ,New Delhi-110055 2. MODERN PHYSICS - By B.S.Agarwal, Kedarnath Ramnath, Meerut, Delhi

3. ATOMIC AND NUCLEAR PHYSICS- N.Subrahmanyam Brijlal, S.Chand & Company Ltd. Ram nagar ,New Delhi-110055

4. MODERN PHYSICS – B.V.N. Rao, Wiley Eastern Ltd, New Delhi

5. An Introduction to MODERN PHYSICS- P.Mahendru, 16/7698 New market, New Rohtak road, Satyaprakashan, New Delhi-11

6. Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 16.06.2017	
1-L1	The electron ,band theory of solids and positive rays	
2-L2	The free Electron Theory of metals	
3- L3	Expression for electrical conductivity – expressions for thermal conductivity	
4-L4	expressions for thermal conductivity	
5-L5	Determination of the electronic charge	
6-L6	Millikan's oil drop method-electron microscope	
7-L7	band theory of solids	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	classification of solids on the basis of band theory	
10- L9	optical properties of solids	
11-L10	energy bands Brillouin zones-origin of forbidden bands	
12-L11	Properties of positive rays – positive ray analysis	
13-L12	Thomson's parabola method	
14-L13	Aston's mass spectrograph	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	Bainbridge's mass spectrograph	
17-IT-1	Internal Test-I	

18-L16	Dempster's mass spectrograph		
19-L17	Test Paper distribution and result analysis		
	Entering Internal Test-I Marks into University portal		
20-L18	mass defect and packing fraction		
21- L19	Dunnington's method of determining e/m		
22- P2	College level meeting/Cell function		
23-L20	Structure of atom : The vector atom model		
24-L21	quantum numbers associated with the the vector atom model		
25-L22	coupling schemes		
26-L23	the Pauli exclusions exclusion principle		
27-L24	Periodic classification of elements		
28-L25	magnetic dipole moment due to orbital motion of the electronmagnetic dipole		
	moment due to spin		
29-L26	the Stern and Gerlach experiment		
30-L27	quantum mechanical explanation of normal and anomoulous Zeeman effect.		
31-L28	X-rays: Production of X-rays		
32-L29	spacing between three dimensional lattice planes		
33-L30	absorption of X-rays		
34- P3	Department Seminar		
35-L31	Problem Solving		
36-L32	Allotting portion for Internal Test-II		
	Internal Test II begins		
37- L33	Revision		
38- IT-II	Internal Test-II		
39-L34	X-ray absorption edges		
40-L35	Test Paper distribution and result analysis		
	Entering Internal Test-II Marks into University portal		
41-L36	Bragg's law		
42- L37	the Bragg's X-ray spectrometer		
43- L38	the power crystal method		
44- P4	College level meeting/ function		
45-L39	X-ray spectra characteristic of X-ray spectrum – Moseley's law – Compton		
46 I 40	scattering		
46-L40	Photoelectric effect and planck's quantum theory: Experimental		
	investigations on the		
47 T 41	photoelectric effect		
47-L41	failure of electromagnetic theory		
48-L42	photoelectric cells – Planck's quantum theory-the distribution of energy in the		
49-L43	spectrum of a black body Wien's displacement law Planck's hypothesis derivation of Planck's law of		
49-L43	Wien's displacement law-Planck's hypothesis-derivation of Planck's law of radiation		
50-L44	Allotting portion for Internal Test-III		
50 E H	Internal Test III begins		
51 L45	Class Test		
51 L 15	Problem Solving		
53-IT-III	Internal Test-III		
54-L47	Revision		
55-L48	- Test Paper distribution and result analysis		

	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 06.11.2017	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Atomic Physics	
Course Code	SMPH53	
Class	III year (2019-2020)	
Semester	Odd	
Staff Name	Dr.S.John Kennedy Vedhanatan	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

Unit I: BAND THEORY OF SOLIDS

The free electron theory of metals – expressions for electrical conductivity – thermal conductivity – Wiedman-Franz's law-Hall effect

magnetoresistancedetermination of electronic charge – Millikan' s oil drop method – electronmicroscope – Band theory of solids – classification of solids on the basis of bandtheory. (10L)

Unit II: **POSITIVE RAYS**:

Discovery-properties- analysis – Thomson's parabola method – Aston's mass spectrograph – Bainbridge's mass spectrograph – Dempster's mass spectrograph –Dunnington's method of determining e/m. (11L) Unit III : ATOMIC STRUCTURE-1

Early atomic spectra-Thomson model-Alpha particle scattering-Rutherford 's

nuclear model-drawbacks-Bohr atom model –Bohr's interpretation of the Hydrogen spectrum-correction for nuclear motion-evidences in favour of Bohr's theory-Ritz combination principle-correspondence principle-Sommerfield's relativistic atom model-drawbacks- the vector atom model – Quantum numbers associated with the vector atom model — the Pauli's exclusion principle – periodicclassification of elements (14L)

Unit IV: ATOMIC STRUCTURE-II

Coupling schemes-L-S Coupling-j-j Coupling-Hund rules- magnetic dipole moment due to orbital motion of the electron-due to spin of the electron -Stern and Gerlach experiment-spin-orbit coupling-optical spectra-spectral termsspectral notation-selection rules-intensity rules-interval rule-fine structure of sodium D line-hyperfine structure-Normal Zeeman effect-theory and experiment- quantum mechanical explanation -Larmor's theorem- Anomalous Zeeman effect-Paschen –Bach effect-Stark effect. (13L)

Unit V: **X-Rays**:

Production of X-rays – properties-absorption of X-rays – X-ray absorption edges- Bragg's law – Bragg's X-ray spectrometer –the powder crystal method – Laue's method – Rotating crystal method –X-ray spectra- continuous spectracharacteristicspectra-Moseley's law -importance–width of spectral lines-Doppler broadening-collision broadening-X-ray Detectors-scintillation detectorsemiconductor detectors (12L)

Hour allotment	Class Schedule	
unotinent	Odd Semester Begin on 17.06.2019	
1-L1	Unit I: BAND THEORY OF SOLIDS-Introduction	
2-L2	The free electron theory of metals	
3- L3	expressions for electrical conductivity	
4-L4	thermal conductivity	
5-L5	Wiedman-Franz's law	
6-L6	Hall effect magnetoresistance	
7-L7	determination of electronic charge	
8- P1	Welcoming of First year and Inauguration of Mathematics Association	
9- L8	Millikan' s oil drop method	
10- L9	electronmicroscope	
11-L10	classification of solids on the basis of band theory	
12-L11	Band theory of solids	
13-L12	Discovery-properties- analysis	
14-L13	Dunnington's method of determining e/m	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	

16-L15	Dempster's mass spectrograph	
17-IT-1	Internal Test-I	
18-L16	Thomson's parabola method	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Bainbridge's mass spectrograph	
21- L19	Aston's mass spectrograph	
22- P2	College level meeting/Cell function	
23-L20	Normal Zeeman effect-theory and experiment	
24-L21	quantum mechanical explanation -Larmor's theorem	
25-L22	Anomalous Zeeman effect-Paschen –Bach effect-Stark effect	
26-L23	Early atomic spectra-Thomson model-Alpha particle scattering	
27-L24	Rutherford 's nuclear model-drawbacks	
28-L25	correction for nuclear motion-evidences in favour of Bohr's theory	
29-L26	Bohr atom model –Bohr's interpretation of the Hydrogen spectrum-	
30-L27	Ritz combination principle-correspondence principle	
31-L28	Sommerfield's relativistic atom model-drawbacks- the vector atom	
	model	
32-L29	Quantum numbers associated with the vector atom model — the	
	Pauli's exclusion principle – periodic classification of elements	
33-L30	Coupling schemes-L-S Coupling-j-j Coupling	
34- P3	Department Seminar	
35-L31	Hund rules- magnetic dipole moment due to orbital motion of the	
	electron-due to spin of the electron	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Stern and Gerlach experiment-spin-orbit coupling	
38- IT-II	Internal Test-II	
39-L34	optical spectra-spectral terms-spectral notation-selection rules	
40 1 25	intensity rules-interval rule	
40-L35	Test Paper distribution and result analysis Entering Internal Test-II Marks into University portal	
41-L36	fine structure of sodium D line-hyperfine structure	
42- L37	Production of X-rays – properties-absorption of X-rays – X-ray	
12 137		
43- L38	absorption edges	
44- P4	Bragg's law College level meeting/ function	
44-14 45-L39	the powder crystal method–	
46-L40	Rotating crystal method	
47-L41	Laue's method	
48-L42	Bragg's X-ray spectrometer	
49-L43	X-ray spectra -continuous spectra characteristic spectra-	
50-L44	Allotting portion for Internal Test-III	
JU-L44		

	Internal Test III begins	
51 L45	Moseley's law -importance-width of spectral lines	
52- L46	Doppler broadening-collision broadening	
53-IT-III	Internal Test-III	
54-L47	X-ray detectors-scintillation detector semiconductor detectors	
55-L48	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 30.10.2019	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
C01	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.

	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Basic Electronics	
Course Code	GMPH52	
Class	III year (2014 – 2015)	
Semester	Odd	
Staff Name	Dr.M.Daniel Sweetlin	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

BASIC ELECTRONICS

Unit I

Linear Circuits and Semiconductors: Voltage source – Constant Voltage source – Constant current source – Conversion of voltage source into current source – Maximum power transfer theorem- Thevenin's theorem – Norton's theorem - Semiconductor – bonds in semiconductors –

Commonly used semiconductors – effect of temperature in semiconductors – intrinsic and extrinsic semiconductors – P and N type semiconductors. 679

Unit II Diodes and Transistors: PN junction diode – diode characteristics – Zenar diode – Zener as

voltage regulator - transistor - transistor action - three modes of connection - common emitter

characteristics – transistor biasing methods – stability factor –CE amplifier.

Unit III

 $Oscillators \ and \ Modulation: \ Feedback-principles-gain-advantage-sinusoidal \ oscillators$

tank circuit – Colpitt's Oscillator – Hartley Oscillator – Wien's Oscillator – modulation – AM –

 $modulation\ index-analysis-modulator-FM-Demodulation$

Unit IV

FET and Electronic Instruments: FET – working – importance – Difference between FET and transistor – FET as amplifier – output characteristic – important terms – expression for drain current – advantages – FET parameters – UJT – equivalent circuit – Characteristic – advantages

– applications – Multimeter – applications – merits and demerits – CRO and its applications.

Unit V

Operational amplifier: Op amp – Schematic symbol – output voltage – AC analysis – band width

slew rate – frequency response – op amp with negative feedback – applications – inverting amplifier – input and output – impedence of inverting amplifier – Non inverting amplifier – voltage foller – summing amplifier – adder – subtracter – integrator – diffrentiator – comparator

Book for Study: Principles of Electronics - .K.Mehta and Rohit Mehta, S.Chand and Company ltd. New edition Electronic principles – Malvino Ed 6

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2014	
1-L1	Voltage source – Constant Voltage source	
2-L2	Constant current source – Conversion of voltage source into current source	
3- L3	Maximum power transfer theorem – Thevenin's theorem	
4-L4	Problems solved	
5-L5	Norton's theorem - Semiconductor	
6-L6	Problems solved	
7-L7	bonds in semiconductors – Commonly used semiconductors	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	effect of temperature in semiconductors	
10- L9	intrinsic and extrinsic semiconductors	
11-L10	P and N type semiconductors	
12-L11	PN junction diode – diode characteristics	

13-L12	Zenar diode – Zener as voltage regulator	
14-L13	transistor – transistor action	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	three modes of connection – common emitter	
17-IT-1	Internal Test-I	
18-L16	characteristics – transistor biasing methods	
19-L17	-Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	stability factor –CE amplifier	
21- L19	Feedback – principles	
22- P2	College level meeting/Cell function	
23-L20	gain – advantage –sinusoidal oscillators	
24-L21	tank circuit – Colpitt's Oscillator	
25-L22	Hartley Oscillator	
26-L23	Wien's Oscillator	
27-L24	modulation – AM – modulation index	
28-L25	analysis – modulator – FM – Demodulation	
29-L26	FET – working – importance	
30-L27	Difference between FET and transistor – FET as amplifier	
31-L28	FET as amplifier – output characteristic – important terms	
32-L29	expression for draincurrent – advantages	
33-L30	FET parameters – UJT	
34- P3	Department Seminar	
35-L31	equivalent circuit – Characteristic – advantages – applications	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Multimeter – applications – merits and demerits	
38- IT-II	Internal Test-II	
39-L34	CRO and its applications	
40-L35	Test Paper distribution and result analysis	
41.1.2.6	Entering Internal Test-II Marks into University portal	
41-L36	Op amp – Schematic symbol	
42- L37	output voltage – AC analysis	
43- L38	band width – slew rate	
44- P4	College level meeting/ function	
45-L39	frequency response – op amp with negative feedback	
46-L40	applications – inverting amplifier	
47-L41	input and output – impedence of inverting amplifier	
48-L42	Non inverting amplifier	
49-L43		
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	voltage foller – summing amplifier	
52- L46	adder – subtracter	
53-IT-III	Internal Test-III	

54-L47	integrator – diffrentiator – comparator	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 31.10.2014	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Basic Electronics	
Course Code	GMPH52	
Class	III year (2015 – 2016)	
Semester	Odd	
Staff Name	Dr.M.Daniel Sweetlin	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

BASIC ELECTRONICS

Unit I

Linear Circuits and Semiconductors: Voltage source – Constant Voltage source – Constant current source – Conversion of voltage source into current source – Maximum power transfer theorem- Thevenin's theorem – Norton's theorem - Semiconductor – bonds in semiconductors –

Commonly used semiconductors – effect of temperature in semiconductors – intrinsic and extrinsic semiconductors – P and N type semiconductors. 679

Unit II Diodes and Transistors: PN junction diode – diode characteristics – Zenar diode – Zener as

voltage regulator - transistor - transistor action - three modes of connection - common emitter

characteristics – transistor biasing methods – stability factor –CE amplifier.

Unit III

 $Oscillators \ and \ Modulation: \ Feedback-principles-gain-advantage-sinusoidal \ oscillators$

tank circuit – Colpitt's Oscillator – Hartley Oscillator – Wien's Oscillator – modulation – AM –

 $modulation\ index-analysis-modulator-FM-Demodulation$

Unit IV

FET and Electronic Instruments: FET – working – importance – Difference between FET and transistor – FET as amplifier – output characteristic – important terms – expression for drain current – advantages – FET parameters – UJT – equivalent circuit – Characteristic – advantages

– applications – Multimeter – applications – merits and demerits – CRO and its applications.

Unit V

Operational amplifier: Op amp – Schematic symbol – output voltage – AC analysis – band width

slew rate – frequency response – op amp with negative feedback – applications – inverting amplifier – input and output – impedence of inverting amplifier – Non inverting amplifier – voltage foller – summing amplifier – adder – subtracter – integrator – diffrentiator – comparator

Book for Study: Principles of Electronics - .K.Mehta and Rohit Mehta, S.Chand and Company ltd. New edition Electronic principles – Malvino Ed 6

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2015
1-L1	Voltage source – Constant Voltage source
2-L2	Constant current source – Conversion of voltage source into current source
3- L3	Maximum power transfer theorem – Thevenin's theorem
4-L4	Problems solved
5-L5	Norton's theorem - Semiconductor
6-L6	Problems solved
7-L7	bonds in semiconductors – Commonly used semiconductors
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	effect of temperature in semiconductors
10- L9	intrinsic and extrinsic semiconductors
11-L10	P and N type semiconductors
12-L11	PN junction diode – diode characteristics

13-L12	Zenar diode – Zener as voltage regulator
14-L13	transistor – transistor action
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	three modes of connection – common emitter
17-IT-1	Internal Test-I
18-L16	characteristics – transistor biasing methods
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	stability factor –CE amplifier
21- L19	Feedback – principles
22- P2	College level meeting/Cell function
23-L20	gain – advantage –sinusoidal oscillators
24-L21	tank circuit – Colpitt's Oscillator
25-L22	Hartley Oscillator
26-L23	Wien's Oscillator
27-L24	modulation – AM – modulation index
28-L25	analysis – modulator – FM – Demodulation
29-L26	FET – working – importance
30-L27	Difference between FET and transistor – FET as amplifier
31-L28	FET as amplifier – output characteristic – important terms
32-L29	expression for draincurrent – advantages
33-L30	FET parameters – UJT
34- P3	Department Seminar
35-L31	equivalent circuit – Characteristic – advantages – applications
36-L32	- Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Multimeter – applications – merits and demerits
38- IT-II	Internal Test-II
39-L34	CRO and its applications
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Op amp – Schematic symbol
42- L37	output voltage – AC analysis
43- L38	band width – slew rate
44- P4	College level meeting/ function
45-L39	frequency response – op amp with negative feedback
46-L40	applications – inverting amplifier
47-L41	input and output – impedence of inverting amplifier
48-L42	Non inverting amplifier
49-L43	
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	voltage foller – summing amplifier
52- L46	adder – subtracter
53-IT-III	Internal Test-III

54-L47	integrator – diffrentiator – comparator
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 29.10.2015

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Basic Electronics	
Course Code	GMPH52	
Class	III year (2016 – 2017)	
Semester	Odd	
Staff Name	Dr.M.Daniel Sweetlin	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

BASIC ELECTRONICS

Unit I

Linear Circuits and Semiconductors: Voltage source – Constant Voltage source – Constant current source – Conversion of voltage source into current source – Maximum power transfer theorem- Thevenin's theorem – Norton's theorem - Semiconductor – bonds in semiconductors –

Commonly used semiconductors – effect of temperature in semiconductors – intrinsic and extrinsic semiconductors – P and N type semiconductors. 679

Unit II Diodes and Transistors: PN junction diode – diode characteristics – Zenar diode – Zener as

voltage regulator - transistor - transistor action - three modes of connection - common emitter

characteristics – transistor biasing methods – stability factor –CE amplifier.

Unit III

 $Oscillators \ and \ Modulation: \ Feedback-principles-gain-advantage-sinusoidal \ oscillators$

tank circuit – Colpitt's Oscillator – Hartley Oscillator – Wien's Oscillator – modulation – AM –

 $modulation\ index-analysis-modulator-FM-Demodulation$

Unit IV

FET and Electronic Instruments: FET – working – importance – Difference between FET and transistor – FET as amplifier – output characteristic – important terms – expression for drain current – advantages – FET parameters – UJT – equivalent circuit – Characteristic – advantages

– applications – Multimeter – applications – merits and demerits – CRO and its applications.

Unit V

Operational amplifier: Op amp – Schematic symbol – output voltage – AC analysis – band width

slew rate – frequency response – op amp with negative feedback – applications – inverting amplifier – input and output – impedence of inverting amplifier – Non inverting amplifier – voltage foller – summing amplifier – adder – subtracter – integrator – diffrentiator – comparator

Book for Study: Principles of Electronics - .K.Mehta and Rohit Mehta, S.Chand and Company ltd. New edition Electronic principles – Malvino Ed 6

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.06.2016
1-L1	Voltage source – Constant Voltage source
2-L2	Constant current source – Conversion of voltage source into current source
3- L3	Maximum power transfer theorem – Thevenin's theorem
4-L4	Problems solved
5-L5	Norton's theorem - Semiconductor
6-L6	Problems solved
7-L7	bonds in semiconductors – Commonly used semiconductors
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	effect of temperature in semiconductors
10- L9	intrinsic and extrinsic semiconductors
11-L10	P and N type semiconductors
12-L11	PN junction diode – diode characteristics

13-L12	Zenar diode – Zener as voltage regulator
14-L13	transistor – transistor action
15-L14	- Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	three modes of connection – common emitter
17-IT-1	Internal Test-I
18-L16	characteristics – transistor biasing methods
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	stability factor –CE amplifier
21- L19	Feedback – principles
22- P2	College level meeting/Cell function
23-L20	gain – advantage –sinusoidal oscillators
24-L21	tank circuit – Colpitt's Oscillator
25-L22	Hartley Oscillator
26-L23	Wien's Oscillator
27-L24	modulation – AM – modulation index
28-L25	analysis – modulator – FM – Demodulation
29-L26	FET – working – importance
30-L27	Difference between FET and transistor – FET as amplifier
31-L28	FET as amplifier – output characteristic – important terms
32-L29	expression for draincurrent – advantages
33-L30	FET parameters – UJT
34- P3	Department Seminar
35-L31	equivalent circuit – Characteristic – advantages – applications
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37-L33	Multimeter – applications – merits and demerits
38- IT-II	Internal Test-II
39-L34	CRO and its applications
40-L35	Test Paper distribution and result analysis
41.1.2.6	Entering Internal Test-II Marks into University portal
41-L36	Op amp – Schematic symbol
42- L37	output voltage – AC analysis
43- L38	band width – slew rate
44- P4	College level meeting/ function
45-L39	frequency response – op amp with negative feedback
46-L40	applications – inverting amplifier
47-L41	input and output – impedence of inverting amplifier
48-L42	Non inverting amplifier
49-L43	
50-L44	- Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	voltage foller – summing amplifier
52- L46	adder – subtracter
53-IT-III	Internal Test-III

54-L47	integrator – diffrentiator – comparator
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 30.11.2016

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Basic Electronics
Course Code	GMPH51
Class	III year (2017 – 2018)
Semester	Odd
Staff Name	Dr.M.Daniel Sweetlin
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

Syllabus

BASIC ELECTRONICS

Unit I

Linear Circuits and Semiconductors: Voltage source – Constant Voltage source – Constant current source – Conversion of voltage source into current source – Maximum power transfer theorem- Thevenin's theorem – Norton's theorem - Semiconductor – bonds in semiconductors –

Commonly used semiconductors – effect of temperature in semiconductors – intrinsic and extrinsic semiconductors – P and N type semiconductors. 679

Unit II Diodes and Transistors: PN junction diode – diode characteristics – Zenar diode – Zener as

voltage regulator - transistor - transistor action - three modes of connection - common emitter

characteristics – transistor biasing methods – stability factor –CE amplifier.

Unit III

 $Oscillators \ and \ Modulation: \ Feedback-principles-gain-advantage-sinusoidal \ oscillators$

tank circuit – Colpitt's Oscillator – Hartley Oscillator – Wien's Oscillator – modulation – AM –

 $modulation\ index-analysis-modulator-FM-Demodulation$

Unit IV

FET and Electronic Instruments: FET – working – importance – Difference between FET and transistor – FET as amplifier – output characteristic – important terms – expression for drain current – advantages – FET parameters – UJT – equivalent circuit – Characteristic – advantages

– applications – Multimeter – applications – merits and demerits – CRO and its applications.

Unit V

Operational amplifier: Op amp – Schematic symbol – output voltage – AC analysis – band width

slew rate – frequency response – op amp with negative feedback – applications – inverting amplifier – input and output – impedence of inverting amplifier – Non inverting amplifier – voltage foller – summing amplifier – adder – subtracter – integrator – diffrentiator – comparator

Book for Study: Principles of Electronics - .K.Mehta and Rohit Mehta, S.Chand and Company ltd. New edition Electronic principles – Malvino Ed 6

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.06.2017
1-L1	Voltage source – Constant Voltage source
2-L2	Constant current source – Conversion of voltage source into current source
3- L3	Maximum power transfer theorem – Thevenin's theorem
4-L4	Problems solved
5-L5	Norton's theorem - Semiconductor
6-L6	Problems solved
7-L7	bonds in semiconductors – Commonly used semiconductors
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	effect of temperature in semiconductors
10- L9	intrinsic and extrinsic semiconductors
11-L10	P and N type semiconductors
12-L11	PN junction diode – diode characteristics

13-L12	Zenar diode – Zener as voltage regulator
14-L13	transistor – transistor action
15-L14	- Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	three modes of connection – common emitter
17-IT-1	Internal Test-I
18-L16	characteristics – transistor biasing methods
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	stability factor –CE amplifier
21- L19	Feedback – principles
22- P2	College level meeting/Cell function
23-L20	gain – advantage –sinusoidal oscillators
24-L21	tank circuit – Colpitt's Oscillator
25-L22	Hartley Oscillator
26-L23	Wien's Oscillator
27-L24	modulation – AM – modulation index
28-L25	analysis – modulator – FM – Demodulation
29-L26	FET – working – importance
30-L27	Difference between FET and transistor – FET as amplifier
31-L28	FET as amplifier – output characteristic – important terms
32-L29	expression for draincurrent – advantages
33-L30	FET parameters – UJT
34- P3	Department Seminar
35-L31	equivalent circuit – Characteristic – advantages – applications
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Multimeter – applications – merits and demerits
38- IT-II	Internal Test-II
39-L34	CRO and its applications
40-L35	Test Paper distribution and result analysis
41.1.2.6	Entering Internal Test-II Marks into University portal
41-L36	Op amp – Schematic symbol
42- L37	output voltage – AC analysis
43- L38	band width – slew rate
44- P4	College level meeting/ function
45-L39	frequency response – op amp with negative feedback
46-L40	applications – inverting amplifier
47-L41	input and output – impedence of inverting amplifier
48-L42	Non inverting amplifier
49-L43	
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	voltage foller – summing amplifier
52- L46	adder – subtracter
53-IT-III	Internal Test-III

	
54-L47	integrator – diffrentiator – comparator
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 06.11.2017

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Basic Electronics
Course Code	JMPH51
Class	III year (2018 – 2019)
Semester	Odd
Staff Name	Dr.M.Daniel Sweetlin
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

Syllabus

BASIC ELECTRONICS

Unit I

Linear Circuits and Semiconductors: Voltage source – Constant Voltage source – Constant current source – Conversion of voltage source into current source – Maximum power transfer theorem- Thevenin's theorem – Norton's theorem - Semiconductor – bonds in semiconductors –

Commonly used semiconductors – effect of temperature in semiconductors – intrinsic and extrinsic semiconductors – P and N type semiconductors. 679

Unit II Diodes and Transistors: PN junction diode – diode characteristics – Zenar diode – Zener as

voltage regulator - transistor - transistor action - three modes of connection - common emitter

characteristics – transistor biasing methods – stability factor –CE amplifier.

Unit III

 $Oscillators \ and \ Modulation: \ Feedback-principles-gain-advantage-sinusoidal \ oscillators$

tank circuit – Colpitt's Oscillator – Hartley Oscillator – Wien's Oscillator – modulation – AM –

 $modulation\ index-analysis-modulator-FM-Demodulation$

Unit IV

FET and Electronic Instruments: FET – working – importance – Difference between FET and transistor – FET as amplifier – output characteristic – important terms – expression for drain current – advantages – FET parameters – UJT – equivalent circuit – Characteristic – advantages

– applications – Multimeter – applications – merits and demerits – CRO and its applications.

Unit V

Operational amplifier: Op amp – Schematic symbol – output voltage – AC analysis – band width

slew rate – frequency response – op amp with negative feedback – applications – inverting amplifier – input and output – impedence of inverting amplifier – Non inverting amplifier – voltage foller – summing amplifier – adder – subtracter – integrator – diffrentiator – comparator

Book for Study: Principles of Electronics - .K.Mehta and Rohit Mehta, S.Chand and Company ltd. New edition Electronic principles – Malvino Ed 6

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2018
1-L1	Voltage source – Constant Voltage source
2-L2	Constant current source – Conversion of voltage source into current source
3- L3	Maximum power transfer theorem – Thevenin's theorem
4-L4	Problems solved
5-L5	Norton's theorem - Semiconductor
6-L6	Problems solved
7-L7	bonds in semiconductors – Commonly used semiconductors
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	effect of temperature in semiconductors
10- L9	intrinsic and extrinsic semiconductors
11-L10	P and N type semiconductors
12-L11	PN junction diode – diode characteristics

13-L12	Zenar diode – Zener as voltage regulator
14-L13	transistor – transistor action
15-L14	- Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	three modes of connection – common emitter
17-IT-1	Internal Test-I
18-L16	characteristics – transistor biasing methods
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	stability factor –CE amplifier
21- L19	Feedback – principles
22- P2	College level meeting/Cell function
23-L20	gain – advantage –sinusoidal oscillators
24-L21	tank circuit – Colpitt's Oscillator
25-L22	Hartley Oscillator
26-L23	Wien's Oscillator
27-L24	modulation – AM – modulation index
28-L25	analysis – modulator – FM – Demodulation
29-L26	FET – working – importance
30-L27	Difference between FET and transistor – FET as amplifier
31-L28	FET as amplifier – output characteristic – important terms
32-L29	expression for draincurrent – advantages
33-L30	FET parameters – UJT
34- P3	Department Seminar
35-L31	equivalent circuit – Characteristic – advantages – applications
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Multimeter – applications – merits and demerits
38- IT-II	Internal Test-II
39-L34	CRO and its applications
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Op amp – Schematic symbol
42- L37	output voltage – AC analysis
43- L38	band width – slew rate
44- P4	College level meeting/ function
45-L39	frequency response – op amp with negative feedback
46-L40	applications – inverting amplifier
47-L41	input and output – impedence of inverting amplifier
48-L42	Non inverting amplifier
49-L43	
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	voltage foller – summing amplifier
52- L46	adder – subtracter
53-IT-III	Internal Test-III

54-L47	integrator – diffrentiator – comparator
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.11.2018

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Basic Electronics
Course Code	SMPH51
Class	III year (2019 – 2020)
Semester	Odd
Staff Name	Dr.M.Daniel Sweetlin
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

Syllabus

BASIC ELECTRONICS

Unit I

Linear Circuits and Semiconductors: Voltage source – Constant Voltage source – Constant current source – Conversion of voltage source into current source – Maximum power transfer theorem- Thevenin's theorem – Norton's theorem - Semiconductor – bonds in semiconductors –

Commonly used semiconductors – effect of temperature in semiconductors – intrinsic and extrinsic semiconductors – P and N type semiconductors. 679

Unit II Diodes and Transistors: PN junction diode – diode characteristics – Zenar diode – Zener as

voltage regulator - transistor - transistor action - three modes of connection - common emitter

characteristics – transistor biasing methods – stability factor –CE amplifier.

Unit III

 $Oscillators \ and \ Modulation: \ Feedback-principles-gain-advantage-sinusoidal \ oscillators$

tank circuit – Colpitt's Oscillator – Hartley Oscillator – Wien's Oscillator – modulation – AM –

 $modulation\ index-analysis-modulator-FM-Demodulation$

Unit IV

FET and Electronic Instruments: FET – working – importance – Difference between FET and transistor – FET as amplifier – output characteristic – important terms – expression for drain current – advantages – FET parameters – UJT – equivalent circuit – Characteristic – advantages

– applications – Multimeter – applications – merits and demerits – CRO and its applications.

Unit V

Operational amplifier: Op amp – Schematic symbol – output voltage – AC analysis – band width

slew rate – frequency response – op amp with negative feedback – applications – inverting amplifier – input and output – impedence of inverting amplifier – Non inverting amplifier – voltage foller – summing amplifier – adder – subtracter – integrator – diffrentiator – comparator

Book for Study: Principles of Electronics - .K.Mehta and Rohit Mehta, S.Chand and Company ltd. New edition Electronic principles – Malvino Ed 6

Hour	Class Schedule
allotment	
	Odd Semester Begin on 17.06.2019
1-L1	Voltage source – Constant Voltage source
2-L2	Constant current source – Conversion of voltage source into current source
3- L3	Maximum power transfer theorem – Thevenin's theorem
4-L4	Problems solved
5-L5	Norton's theorem - Semiconductor
6-L6	Problems solved
7-L7	bonds in semiconductors – Commonly used semiconductors
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	effect of temperature in semiconductors
10- L9	intrinsic and extrinsic semiconductors
11-L10	P and N type semiconductors
12-L11	PN junction diode – diode characteristics

13-L12	Zenar diode – Zener as voltage regulator
14-L13	transistor – transistor action
15-L14	- Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	three modes of connection – common emitter
17-IT-1	Internal Test-I
18-L16	characteristics – transistor biasing methods
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	stability factor –CE amplifier
21- L19	Feedback – principles
22- P2	College level meeting/Cell function
23-L20	gain – advantage –sinusoidal oscillators
24-L21	tank circuit – Colpitt's Oscillator
25-L22	Hartley Oscillator
26-L23	Wien's Oscillator
27-L24	modulation – AM – modulation index
28-L25	analysis – modulator – FM – Demodulation
29-L26	FET – working – importance
30-L27	Difference between FET and transistor – FET as amplifier
31-L28	FET as amplifier – output characteristic – important terms
32-L29	expression for draincurrent – advantages
33-L30	FET parameters – UJT
34- P3	Department Seminar
35-L31	equivalent circuit – Characteristic – advantages – applications
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Multimeter – applications – merits and demerits
38- IT-II	Internal Test-II
39-L34	CRO and its applications
40-L35	Test Paper distribution and result analysis
41.1.2.6	Entering Internal Test-II Marks into University portal
41-L36	Op amp – Schematic symbol
42- L37	output voltage – AC analysis
43- L38	band width – slew rate
44- P4	College level meeting/ function
45-L39	frequency response – op amp with negative feedback
46-L40	applications – inverting amplifier
47-L41	input and output – impedence of inverting amplifier
48-L42	Non inverting amplifier
49-L43	
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	voltage foller – summing amplifier
52- L46	adder – subtracter
53-IT-III	Internal Test-III

54-L47	integrator – diffrentiator – comparator
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 30.10.2019

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	BASIC PHYSICS
Course Code	GMPH 4A
Class	2 Year (2014-2015)
Semester	EVEN
Staff Name	Miss.D.Nithya Agnes,
	Miss.D.Priskilla Koilpillai
Credits	2
L. Hours /P. Hours	2 / WK
Total 30Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 20 Hrs (5 units; 5×4=20; 4Hrs /un	it)

Course Objectives

Syllabus

Unit-I

Temperature, Quantity of heat, Conversion of heat to work, heat engine 2 stroke, refrigerator

Unit-II

Rainbows, colors of thin films, convex, concave lens, focal length, telescope and microscope

Unit-III

Magnet pole strength, dipole moment, dia para ferro ferri magnetic substances, compass

dipole moment, dia para ferro ferri magnetic substances, compass

Unit-IV

Matter, states of matter, crystalline, amorphous materials, good and bad conductors, superconductors

Unit-V

LASER –He Neon LASER , application in communications

Hour	Class Schedule
allotment	
	Even Semester Begins With 03.12.2014
1-L1	Unit-I
2-L2	Temperature, Quantity of heat, Conversion of heat to work, heat engine 2 stroke, refrigerator
3- P1	Unit-II
4-L3	Rainbows, colors of thin films, convex, concave lens, focal length
5-L4	Allotting portion for Internal Test-I
	Internal Test I begins
6-IT-I	Internal Test-I
7-L5	Test Paper distribution and result analysis

	Entering Internal Test-I Marks into University portal
8-L6	
	telescope and microscope
9-L7	Unit-III
	Magnet pole strength dipole moment, dia para ferro ferri magnetic
	substances, compass
10-P2	College level meeting/Cell function
11-L8	Unit-IV
12-L9	Matter, states of matter, crystalline, amorphous materials, good and bad
	conductors, superconductors
13-P3	Department Seminar
14-L10	Problem solving
15-L11	Unit-V
16-L12	Allotting portion for Internal Test-II
	Internal Test II begins
17-IT-1	Internal Test-II
18-L13	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
19-L14	Problem solving
20- P2	College level meeting/ function
21-L15	LASER –He Neon LASER
22-L16	application in communications
23- L17	Allotting portion for Internal Test-III
	Internal Test III begins
24- IT-III	Internal Test-III
25-L18	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
26-MT	Model Test
27-MT	Model Test
28-MT	Model Test
29-L19	Model test paper distribution and previous year university question paper
	discussion
30-L20	Feedback of the Course, analysis and report preparation
	Last Working day on 23.04.2015

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	

CO4	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	BASIC PHYSICS
Course Code	GMPH 4A
Class	2 Year (2015-2016)
Semester	EVEN
Staff Name	Miss.D.Nithya Agnes,
	Miss.D.Priskilla Koilpillai
Credits	2
L. Hours /P. Hours	2 / WK
Total 30Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 20 Hrs (5 units; 5×4=20; 4Hrs /un	it)

Course Objectives

Syllabus

Unit-I

Temperature, Quantity of heat, Conversion of heat to work, heat engine 2 stroke, refrigerator

Unit-II

Rainbows, colors of thin films, convex, concave lens, focal length, telescope and microscope

Unit-III

Magnet pole strength, dipole moment, dia para ferro ferri magnetic substances, compass

dipole moment, dia para ferro ferri magnetic substances, compass

Unit-IV

Matter, states of matter, crystalline, amorphous materials, good and bad conductors, superconductors

Unit-V

LASER –He Neon LASER , application in communications

Hour	Class Schedule
allotment	
	Even Semester Begins With 02.12.2015
1-L1	Unit-I
2-L2	Temperature, Quantity of heat, Conversion of heat to work, heat engine 2 stroke, refrigerator
3- P1	Unit-II
4-L3	Rainbows, colors of thin films, convex, concave lens, focal length
5-L4	Allotting portion for Internal Test-I
	Internal Test I begins
6-IT-I	Internal Test-I
7-L5	Test Paper distribution and result analysis

	Entering Internal Test-I Marks into University portal
8-L6	
	telescope and microscope
9-L7	Unit-III
	Magnet pole strength dipole moment, dia para ferro ferri magnetic
	substances, compass
10-P2	College level meeting/Cell function
11-L8	Unit-IV
12-L9	Matter, states of matter, crystalline, amorphous materials, good and bad
	conductors, superconductors
13-P3	Department Seminar
14-L10	Problem solving
15-L11	Unit-V
16-L12	Allotting portion for Internal Test-II
	Internal Test II begins
17-IT-1	Internal Test-II
18-L13	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
19-L14	Problem solving
20- P2	College level meeting/ function
21-L15	LASER –He Neon LASER
22-L16	application in communications
23- L17	Allotting portion for Internal Test-III
	Internal Test III begins
24- IT-III	Internal Test-III
25-L18	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
26-MT	Model Test
27-MT	Model Test
28-MT	Model Test
29-L19	Model test paper distribution and previous year university question paper
	discussion
30-L20	Feedback of the Course, analysis and report preparation
	Last Working day on 22.04.2016

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	

CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	BASIC PHYSICS
Course Code	GMPH 4A
Class	2 Year (2016-2017)
Semester	EVEN
Staff Name	Miss.D.Nithya Agnes,
	Miss.D.Priskilla Koilpillai
Credits	2
L. Hours /P. Hours	2 / WK
Total 30Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 20 Hrs (5 units; 5×4=20; 4Hrs /un	it)

Course Objectives

Syllabus

Unit-I

Temperature, Quantity of heat, Conversion of heat to work, heat engine 2 stroke, refrigerator

Unit-II

Rainbows, colors of thin films, convex, concave lens, focal length, telescope and microscope

Unit-III

Magnet pole strength, dipole moment, dia para ferro ferri magnetic substances, compass

dipole moment, dia para ferro ferri magnetic substances, compass

Unit-IV

Matter, states of matter, crystalline, amorphous materials, good and bad conductors, superconductors

Unit-V

LASER –He Neon LASER , application in communications

Hour	Class Schedule
allotment	
	Even Semester Begins With 01.12.2016
1-L1	Unit-I
2-L2	Temperature, Quantity of heat, Conversion of heat to work, heat engine 2 stroke, refrigerator
3- P1	Unit-II
4-L3	Rainbows, colors of thin films, convex, concave lens, focal length
5-L4	Allotting portion for Internal Test-I
	Internal Test I begins
6-IT-I	Internal Test-I
7-L5	Test Paper distribution and result analysis

	Entering Internal Test-I Marks into University portal
8-L6	
	telescope and microscope
9-L7	Unit-III
	Magnet pole strength dipole moment, dia para ferro ferri magnetic
	substances, compass
10-P2	College level meeting/Cell function
11-L8	Unit-IV
12-L9	Matter, states of matter, crystalline, amorphous materials, good and bad
	conductors, superconductors
13-P3	Department Seminar
14-L10	Problem solving
15-L11	Unit-V
16-L12	Allotting portion for Internal Test-II
	Internal Test II begins
17-IT-1	Internal Test-II
18-L13	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
19-L14	Problem solving
20- P2	College level meeting/ function
21-L15	LASER –He Neon LASER
22-L16	application in communications
23- L17	Allotting portion for Internal Test-III
	Internal Test III begins
24- IT-III	Internal Test-III
25-L18	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
26-MT	Model Test
27-MT	Model Test
28-MT	Model Test
29-L19	Model test paper distribution and previous year university question paper
	discussion
30-L20	Feedback of the Course, analysis and report preparation
	Last Working day on 21.04.2017

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	

CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	BASIC PHYSICS
Course Code	JMPH 4A
Class	2 Year (2017-2018)
Semester	EVEN
Staff Name	Miss.D.Priskilla Koilpillai
Credits	2
L. Hours /P. Hours	2 / WK
Total 30Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 20 Hrs (5 units; 5×4=20; 4Hrs /units	it)

Course Objectives

AAA

Syllabus

Unit-I

Temperature, Quantity of heat, Conversion of heat to work, heat engine 2 stroke, refrigerator

Unit-II

Rainbows, colors of thin films, convex, concave lens, focal length, telescope and microscope

Unit-III

Magnet pole strength, dipole moment, dia para ferro ferri magnetic substances, compass

dipole moment, dia para ferro ferri magnetic substances, compass

Unit-IV

Matter, states of matter, crystalline, amorphous materials, good and bad conductors, superconductors

Unit-V

LASER –He Neon LASER , application in communications

Hour	Class Schedule
allotment	
	Even Semester Begins With 07.12.2017
1-L1	Unit-I
2-L2	Temperature, Quantity of heat, Conversion of heat to work, heat engine 2 stroke, refrigerator
3- P1	Unit-II
4-L3	Rainbows, colors of thin films, convex, concave lens, focal length
5-L4	Allotting portion for Internal Test-I
	Internal Test I begins
6-IT-I	Internal Test-I
7-L5	Test Paper distribution and result analysis

	Entering Internal Test-I Marks into University portal
8-L6	
	telescope and microscope
9-L7	Unit-III
	Magnet pole strength dipole moment, dia para ferro ferri magnetic
	substances, compass
10-P2	College level meeting/Cell function
11-L8	Unit-IV
12-L9	Matter, states of matter, crystalline, amorphous materials, good and bad
	conductors, superconductors
13-P3	Department Seminar
14-L10	Problem solving
15-L11	Unit-V
16-L12	Allotting portion for Internal Test-II
	Internal Test II begins
17-IT-1	Internal Test-II
18-L13	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
19-L14	Problem solving
20- P2	College level meeting/ function
21-L15	LASER –He Neon LASER
22-L16	application in communications
23- L17	Allotting portion for Internal Test-III
	Internal Test III begins
24- IT-III	Internal Test-III
25-L18	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
26-MT	Model Test
27-MT	Model Test
28-MT	Model Test
29-L19	Model test paper distribution and previous year university question paper
	discussion
30-L20	Feedback of the Course, analysis and report preparation
	Last Working day on 23.04.2018

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	

004	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	BASIC PHYSICS
Course Code	SMPH 4A
Class	2 Year (2018-2019)
Semester	EVEN
Staff Name	Miss.D.Priscilla Koilpillai
Credits	2
L. Hours /P. Hours	2 / WK
Total 30Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 20 Hrs (5 units; 5×4=20; 4Hrs /unit)	

Course Objectives

AAA

Syllabus

Unit-I

Temperature, Quantity of heat, Conversion of heat to work, heat engine 2 stroke, refrigerator

Unit-II

Rainbows, colors of thin films, convex, concave lens, focal length, telescope and microscope

Unit-III

Magnet pole strength, dipole moment, dia para ferro ferri magnetic substances, compass

dipole moment, dia para ferro ferri magnetic substances, compass

Unit-IV

Matter, states of matter, crystalline, amorphous materials, good and bad conductors, superconductors

Unit-V

LASER –He Neon LASER , application in communications

Hour	Class Schedule
allotment	
	Even Semester Begins With 03.12.2018
1-L1	Unit-I
2-L2	Temperature, Quantity of heat, Conversion of heat to work, heat engine 2 stroke, refrigerator
3- P1	Unit-II
4-L3	Rainbows, colors of thin films, convex, concave lens, focal length
5-L4	Allotting portion for Internal Test-I
	Internal Test I begins
6-IT-I	Internal Test-I
7-L5	Test Paper distribution and result analysis

	Entering Internal Test-I Marks into University portal
8-L6	
	telescope and microscope
9-L7	Unit-III
	Magnet pole strength dipole moment, dia para ferro ferri magnetic
	substances, compass
10-P2	College level meeting/Cell function
1012 11-L8	Unit-IV
11 20	
12-L9	Matter, states of matter, crystalline, amorphous materials, good and bad
	conductors, superconductors
13-P3	Department Seminar
14-L10	Problem solving
15-L11	Unit-V
16-L12	Allotting portion for Internal Test-II
	Internal Test II begins
17-IT-1	Internal Test-II
18-L13	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
19-L14	Problem solving
20- P2	College level meeting/ function
21-L15	LASER –He Neon LASER
22-L16	application in communications
23- L17	Allotting portion for Internal Test-III
	Internal Test III begins
24- IT-III	Internal Test-III
25-L18	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
26-MT	Model Test
27-MT	Model Test
28-MT	Model Test
29-L19	Model test paper distribution and previous year university question paper
	discussion
30-L20	Feedback of the Course, analysis and report preparation
	Last Working day on 23.04.2019

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	

CO4	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	BASIC PHYSICS
Course Code	SMPH 4A
Class	2 Year (2019-2020)
Semester	EVEN
Staff Name	Miss.D.Priscilla Koilpillai
Credits	2
L. Hours /P. Hours	2 / WK
Total 30Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 20 Hrs (5 units; 5×4=20; 4Hrs /unit)	

Course Objectives

AAA

Syllabus

Unit-I

Temperature, Quantity of heat, Conversion of heat to work, heat engine 2 stroke, refrigerator

Unit-II

Rainbows, colors of thin films, convex, concave lens, focal length, telescope and microscope

Unit-III

Magnet pole strength, dipole moment, dia para ferro ferri magnetic substances, compass

dipole moment, dia para ferro ferri magnetic substances, compass

Unit-IV

Matter, states of matter, crystalline, amorphous materials, good and bad conductors, superconductors

Unit-V

LASER –He Neon LASER , application in communications

Hour	Class Schedule
allotment	
	Even Semester Begins With 02.12.2019
1-L1	Unit-I
2-L2	Temperature, Quantity of heat, Conversion of heat to work, heat engine 2 stroke, refrigerator
3- P1	Unit-II
4-L3	Rainbows, colors of thin films, convex, concave lens, focal length
5-L4	Allotting portion for Internal Test-I
	Internal Test I begins
6-IT-I	Internal Test-I
7-L5	Test Paper distribution and result analysis

	Entering Internal Test-I Marks into University portal
8-L6	
	telescope and microscope
9-L7	Unit-III
	Magnet pole strength dipole moment, dia para ferro ferri magnetic
	substances, compass
10-P2	College level meeting/Cell function
1012 11-L8	Unit-IV
12-L9	Matter, states of matter, crystalline, amorphous materials, good and bad
	conductors, superconductors
13-P3	Department Seminar
14-L10	Problem solving
15-L11	Unit-V
16-L12	Allotting portion for Internal Test-II
-	Internal Test II begins
17-IT-1	Internal Test-II
18-L13	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
19-L14	Problem solving
20- P2	College level meeting/ function
21-L15	LASER –He Neon LASER
22-L16	application in communications
23- L17	Allotting portion for Internal Test-III
	Internal Test III begins
24- IT-III	Internal Test-III
25-L18	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
26-MT	Model Test
27-MT	Model Test
28-MT	Model Test
29-L19	Model test paper distribution and previous year university question paper
20.1.20	discussion
30-L20	Feedback of the Course, analysis and report preparation
	Last Working day on 27.04.2020

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	

CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Computer Programming in C ++	
Course Code	GMPH41	
Class	II Year (2014-2015)	
Semester	Even	
Staff Name	Dr. A.Arul Gnanam	
	Dr.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- To Learn about C++ Programme
- Objective of the course is to provide knowledge about the basics of Computer programming in C++ and to solve problems by writing programs.
- The paper does not need any special prerequisite and the learners are expected to come out with the ability to apply the computer language C++ to solve problems
- ➤ To discuss about operators.
- > To learn about programme goading.

Syllabus

OBJECT ORIENTED PROGRAMMING WTH C++

UNIT-I: Evolution of C++ - applications of C++ - structure of C++ program. Tokens – keywords – identifiers and constants

- basic data types – user-defined data types – constant pointers and pointers to constants – symbolic constants –type compatibility – declaration of variables – dynamic initialization of variables – reference variables – operators in C++ - scope resolution operator – memory management operators – manipulators – type cast operator – expressions and their types – special assignment expressions –

Implicit conversions – operator precedence.

UNIT-II: Functions in C++: The main function – function prototyping – call by reference – return by reference – inline functions – default arguments – const arguments – function overloading. Managing Console I/O Operations: C++ streams – C++ stream classes – unformatted console I/O operations – formatted console I/O operations – formatted console I/O operations – managing output with manipulators.

UNIT-III: Classes and Objects: Specifying a class – defining member functions – making an outside function inline – nesting of member functions – private member functions – arrays within a class – memory allocation for objects – arrays of objects – objects as function arguments – friend functions – returning objects – const member functions. Constructors and Destructors: Introduction – constructors – parameterized constructors – multiple constructors in a class – constructors with default arguments – copy constructor.

UNIT-IV: Operator Overloading: Introduction – defining operator overloading – overloading unary operators – overloading binary operators - overloading binary operators using friends – rules for overloading operators. Inheritance: Introduction – defining derived classes – single inheritance – making a private member inheritable – multilevel inheritance – multiple inheritance – hierarchical inheritance – hybrid inheritance

UNIT-V: Working with Files: Introduction – Classes for File Stream Operations -Opening and Closing a File – Detecting End-of-file – More about open(): File Modes – File Pointers and their Manipulations – Sequential Input and Output Operations – Updating a File: Random Access

Hour	Class Schedule
allotment	
	EVEN Semester 03.12.2014
1-L1	UNIT-I: Evolution of C++ - applications of C++

2-L2	Tokens – keywords – identifiers and constants
3- L3	basic data types – user-defined data types
4-L4	constant pointers and pointers to constants – symbolic constants
5-L5	constant pointers and pointers to constants – symbolic constants
6-L6	type compatibility – declaration of variables – dynamic initialization of variables
	– reference variables
7-L7	operators in C++ - scope resolution operator – memory management operators
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	manipulators – type cast operator – expressions and their types – special assignment expressions
10- L9	implicit conversions – operator precedence
11-L10	Functions in C++ : The main function – function prototyping – call by reference
12-L11	return by reference – inline functions – default arguments – const arguments –
12 211	function overloading
13-L12	Managing Console I/O Operations: C++ streams - C++ stream classes -
	unformatted console I/O operations – formatted console I/O
14-L13	formatted console I/O operations -managing output with manipulators.
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins 25.01.2015
16-L15	Classes and Objects: Specifying a class – defining member functions – making
	an outside function inline – nesting of member functions
17-IT-1	Internal Test-I
18-L16	private member functions – arrays within a class – memory allocation for object
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	arrays of objects – objects as function arguments – friend functions – returning
21 J 10	objects – const member functions.
21- L19	Constructors and Destructors: Introduction – constructors – parameterized
22- P2	constructors – multiple constructors in a class
22- F2 23-L20	College level meeting/Cell function Constructors and Destructors: Introduction – constructors – parameterized
23-L20	constructors and Destructors. Introduction – constructors – parameterized constructors – multiple constructors in a class
24-L21	Operator Overloading: Introduction
25-L22	defining operator overloading – overloading unary operators
26-L23	overloading binary operators - overloading binary operators using friends –
27-L24	overloading binary operators - overloading binary operators using friends –
28-L25	rules for overloading operators
29-L26	Inheritance: Introduction
30-L27	defining derived classes
31-L28	single inheritance
32-L29	making a private member inheritable
33-L30	multilevel inheritance
34- P3	Department Seminar
35-L31	Rivision
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins 16.02.2015
37- L33	hierarchical inheritance
38- IT-II	Internal Test-II
39-L34	hybrid inheritance

40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Working with Files: Introduction
42- L37	Classes for File Stream Operations
43- L38	Opening and Closing a File
44- P4	College level meeting/ function
45-L39	Detecting End-of-file
46-L40	More about open
47-L41	Revision
48-L42	Revision Class
49-L43	File Modes
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins 16.03.2015
51 L45	File Pointers and their Manipulations
52- L46	Revision
53-IT-III	Internal Test-III
54-L47	Sequential Input and Output Operations – Updating a File: Random Access
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 16.04.2015
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.4.2015

Learning Outcomes	COs of the course " <computer ++="" c="" in="" programming="">"</computer>
CO1	Get insight knowledge about the language.
CO2	Get trained in writing small programs.
CO3	Capable of executes any programs and identifying errors in them
CO4	Design and implement C programs for any given problem
CO5	Work with existing programs and modify it as per the
	requirements.
CO6	Identify the errors in a C program.
CO7	Identify the output of a C program without actually executing it
Experimental	
Learning	
EL1	Capable coding any problem.
EL2	Capable of identifying errors in a coding
EL3	Capable handling any project assigned by a company.
Integrated Activity	
IA1	Individual and Team Work: Function effectively on teams to
	accomplish a common goal

IA2	Communication: Communicate effectively with a range of audiences and prepare technical documents and make effective oral presentations
# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Computer Programming in C ++	
Course Code	GMPH41	
Class	II Year (2014-2015)	
Semester	Even	
Staff Name	Dr. A.Arul Gnanam	
	Dr.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➢ To Learn about C++ Programme
- Objective of the course is to provide knowledge about the basics of Computer programming in C++ and to solve problems by writing programs. The paper does not need any special prerequisite and the learners are expected to come out with the ability to apply the computer language C++ to solve problems
- > To discuss about operators.
- ➤ To learn about programme goading.

Syllabus

OBJECT ORIENTED PROGRAMMING WTH C++

UNIT-I: Evolution of C++ - applications of C++ - structure of C++ program. Tokens – keywords – identifiers and constants

- basic data types - user-defined data types - constant pointers and pointers to constants - symbolic constants - type compatibility - declaration of variables - dynamic initialization of variables - reference variables - operators in C++ - scope resolution

operator – memory management operators – manipulators – type cast operator – expressions and their types – special assignment expressions –

implicit conversions – operator precedence.

UNIT-II: Functions in C++ : The main function – function prototyping – call by reference – return by reference – inline functions – default arguments – const arguments – function overloading. Managing Console I/O Operations: C++ streams – C++ stream classes – unformatted console I/O operations – formatted console I/O operations – formatted console I/O operations – managing output with manipulators.

UNIT-III: Classes and Objects: Specifying a class – defining member functions – making an outside function inline – nesting of member functions – private member functions – arrays within a class – memory allocation for objects – arrays of objects – objects as function arguments – friend functions – returning objects – const member functions. Constructors and Destructors: Introduction – constructors – parameterized constructors – multiple constructors in a class – constructors with default arguments – copy constructor.

UNIT-IV: Operator Overloading: Introduction – defining operator overloading – overloading unary operators – overloading binary operators - overloading binary operators using friends – rules for overloading operators. Inheritance: Introduction – defining derived classes – single inheritance – making a private member inheritable – multilevel inheritance – multiple inheritance – hierarchical inheritance – hybrid inheritance

UNIT-V: Working with Files: Introduction – Classes for File Stream Operations -Opening and Closing a File – Detecting End-of-file – More about open(): File Modes – File Pointers and their Manipulations – Sequential Input and Output Operations – Updating a File: Random Access

Hour	Class Schedule	
allotment		
	EVEN Semester 03.12.2014	
1-L1	UNIT-I: Evolution of C++ - applications of C++	
2-L2	Tokens – keywords – identifiers and constants	
3- L3	basic data types – user-defined data types	
4-L4	constant pointers and pointers to constants – symbolic constants	

5-L5	constant pointers and pointers to constants – symbolic constants
6-L6	type compatibility – declaration of variables – dynamic initialization of variables
	– reference variables
7-L7	operators in C++ - scope resolution operator - memory management operators
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	manipulators - type cast operator - expressions and their types - special
	assignment expressions
10- L9	implicit conversions – operator precedence
11-L10	Functions in C++ : The main function – function prototyping – call by reference
12-L11	return by reference – inline functions – default arguments – const arguments –
10 1 10	function overloading
13-L12	Managing Console I/O Operations: C++ streams – C++ stream classes –
14112	unformatted console I/O operations – formatted console I/O
14-L13	formatted console I/O operations –managing output with manipulators.
15-L14	Allotting portion for Internal Test-I
16-L15	Internal Test I begins 19.01.2015
10-L15	Classes and Objects: Specifying a class – defining member functions – making
17-IT-1	an outside function inline – nesting of member functions Internal Test-I
17-11-1 18-L16	private member functions – arrays within a class – memory allocation for object
19-L17	Test Paper distribution and result analysis
17-L17	Entering Internal Test-I Marks into University portal
20-L18	arrays of objects – objects as function arguments – friend functions – returning
20 210	objects – const member functions.
21- L19	Constructors and Destructors: Introduction – constructors – parameterized
	constructors – multiple constructors in a class
22- P2	College level meeting/Cell function
23-L20	Constructors and Destructors: Introduction – constructors – parameterized
	constructors – multiple constructors in a class
24-L21	Operator Overloading: Introduction
25-L22	defining operator overloading – overloading unary operators
26-L23	overloading binary operators - overloading binary operators using friends -
27-L24	overloading binary operators - overloading binary operators using friends -
28-L25	rules for overloading operators
29-L26	Inheritance: Introduction
30-L27	defining derived classes
31-L28	single inheritance
32-L29	making a private member inheritable
33-L30	multilevel inheritance
34- P3	Department Seminar
35-L31	Rivision
36-L32	Allotting portion for Internal Test-II
27 1 22	Internal Test II begins 16.02.2015
37-L33	hierarchical inheritance
38- IT-II 39-L34	Internal Test-II
	hybrid inheritance Test Paper distribution and result analysis
40-L35	Test Paper distribution and result analysis
41-L36	Entering Internal Test-II Marks into University portal Working with Filest Introduction
+1-L30	Working with Files: Introduction

42- L37	Classes for File Stream Operations
43- L38	Opening and Closing a File
44- P4	College level meeting/ function
45-L39	Detecting End-of-file
46-L40	More about open
47-L41	Revision
48-L42	Revision Class
49-L43	File Modes
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins 16.03.2015
51 L45	File Pointers and their Manipulations
52- L46	Revision
53-IT-III	Internal Test-III
54-L47	Sequential Input and Output Operations – Updating a File: Random Access
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 16.04.2015
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.4.2015

Learning Outcomes	COs of the course " <computer ++="" c="" in="" programming="">"</computer>	
C01	Get insight knowledge about the language.	
CO2	Get trained in writing small programs.	
CO3	Capable of executes any programs and identifying errors in them	
CO4	Design and implement C programs for any given problem	
CO5	Work with existing programs and modify it as per the	
	requirements.	
CO6	Identify the errors in a C program.	
CO7	Identify the output of a C program without actually executing it	
Experimental		
Learning		
EL1	Capable coding any problem.	
EL2	Capable of identifying errors in a coding	
EL3	Capable handling any project assigned by a company.	
Integrated Activity		
IA1	Individual and Team Work: Function effectively on teams to	
	accomplish a common goal	
IA2	Communication: Communicate effectively with a range of audiences and prepare technical documents and make effective oral presentations	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Computer Programming in C ++	
Course Code	GMPH41	
Class	II Year (2015-2016)	
Semester	Even	
Staff Name	Dr.A.Arul Gnanam	
	Dr.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

OBJECT ORIENTED PROGRAMMING WTH C++

UNIT-I: Evolution of C++ - applications of C++ - structure of C++ program. Tokens – keywords – identifiers and constants

- basic data types – user-defined data types – constant pointers and pointers to constants – symbolic constants –type compatibility – declaration of variables – dynamic initialization of variables – reference variables – operators in C++ - scope resolution operator – memory management operators – manipulators – type cast operator – expressions and their types – special assignment expressions –

implicit conversions – operator precedence.

UNIT-II: Functions in C++ : The main function – function prototyping – call by reference – return by reference – inline functions – default arguments – const arguments – function overloading. Managing Console I/O Operations: C++ streams – C++ stream classes – unformatted console I/O operations – formatted console I/O operations – formatted console I/O operations – managing output with manipulators.

UNIT-III: Classes and Objects: Specifying a class – defining member functions – making an outside function inline – nesting of member functions – private member functions – arrays within a class – memory allocation for objects –arrays of objects – objects as function arguments – friend functions – returning objects – const member functions. Constructors and Destructors: Introduction – constructors – parameterized constructors – multiple constructors in a class – constructors with default arguments – copy constructor.

UNIT-IV: Operator Overloading: Introduction – defining operator overloading – overloading unary operators – overloading binary operators - overloading binary operators using friends – rules for overloading operators. Inheritance: Introduction – defining derived classes – single inheritance – making a private member inheritable – multilevel inheritance – multiple inheritance – hierarchical inheritance – hybrid inheritance

UNIT-V: Working with Files: Introduction – Classes for File Stream Operations -Opening and Closing a File – Detecting End-of-file – More about open(): File Modes – File Pointers and their Manipulations – Sequential Input and Output Operations – Updating a File: Random Access

Hour	Class Schedule
allotment	
	EVEN Semester 02.12.2015
1-L1	UNIT-I: Evolution of C++ - applications of C++
2-L2	Tokens – keywords – identifiers and constants
3- L3 –	basic data types – user-defined data types
4-L4	constant pointers and pointers to constants – symbolic constants
5-L5	constant pointers and pointers to constants – symbolic constants
6-L6	type compatibility - declaration of variables - dynamic initialization of
	variables – reference variables
7-L7	- operators in C++ - scope resolution operator - memory management
	operators

8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	manipulators – type cast operator – expressions and their types – special
	assignment expressions
10- L9	. implicit conversions – operator precedence
11-L10	Functions in C++ : The main function – function prototyping – call by
	reference
12-L11	return by reference – inline functions – default arguments – const
	arguments – function overloading
13-L12	. Managing Console I/O Operations: C++ streams – C++ stream classes –
	unformatted console I/O operations – formatted console I/O
14-L13	formatted console I/O operations –managing output with manipulators.
17711	
15-L14	- Allotting portion for Internal Test-I
16115	Internal Test I begins
16-L15	Classes and Objects: Specifying a class – defining member functions –
	making an outside function inline – nesting of member functions
17-IT-1	Internal Test-I
18-L16	private member functions – arrays within a class – memory allocation for
19-L17	objectTest Paper distribution and result analysis
19-L17	
20-L18	Entering Internal Test-I Marks into University portal arrays of objects – objects as function arguments – friend functions –
20-L18	returning objects – const member functions.
21- L19	Constructors and Destructors: Introduction – constructors – parameterized
21- 117	constructors – multiple constructors in a class
22- P2	College level meeting/Cell function
23-L20	Constructors and Destructors: Introduction – constructors – parameterized
	constructors – multiple constructors in a class
24-L21	Operator Overloading: Introduction
25-L22	– defining operator overloading – overloading unary operators
26-L23	overloading binary operators - overloading binary operators using friends –
27-L24	overloading binary operators - overloading binary operators using friends –
28-L25	rules for overloading operators
29-L26	Inheritance: Introduction
30-L27	defining derived classes
31-L28	single inheritance
32-L29	making a private member inheritable
33-L30	multilevel inheritance
34- P3	Department Seminar
35-L31	Rivision
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	hierarchical inheritance
38- IT-II	Internal Test-II
39-L34	hybrid inheritance
10 7 0 5	
40-L35	-Test Paper distribution and result analysis
11 - 0 -	Entering Internal Test-II Marks into University portal
41-L36	Working with Files: Introduction

42- L37	Classes for File Stream Operations
43- L38	Opening and Closing a File
44- P4	College level meeting/ function
45-L39	Detecting End-of-file
46-L40	– More about open
47-L41	Rivision
48-L42	Rivision Class
49-L43	File Modes
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	File Pointers and their Manipulations
52- L46	Rivision
53-IT-III	Internal Test-III
54-L47	- Sequential Input and Output Operations - Updating a File: Random
	Access
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 22.4.2016

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	

IA2	
# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Computer Programming in C ++	
Course Code	GMPH41	
Class	II Year (2015-2016)	
Semester	Even	
Staff Name	Dr. A.Arul Gnanam	
	Dr.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➢ To Learn about C++ Programme
- Objective of the course is to provide knowledge about the basics of Computer programming in C++ and to solve problems by writing programs. The paper does not need any special prerequisite and the learners are expected to come out with the ability to apply the computer language C++ to solve problems
- > To discuss about operators.
- ➤ To learn about programme goading.

Syllabus

OBJECT ORIENTED PROGRAMMING WTH C++

UNIT-I: Evolution of C++ - applications of C++ - structure of C++ program. Tokens – keywords – identifiers and constants

- basic data types - user-defined data types - constant pointers and pointers to constants - symbolic constants - type compatibility - declaration of variables - dynamic initialization of variables - reference variables - operators in C++ - scope resolution

operator – memory management operators – manipulators – type cast operator – expressions and their types – special assignment expressions –

implicit conversions – operator precedence.

UNIT-II: Functions in C++ : The main function – function prototyping – call by reference – return by reference – inline functions – default arguments – const arguments – function overloading. Managing Console I/O Operations: C++ streams – C++ stream classes – unformatted console I/O operations – formatted console I/O operations – formatted console I/O operations – managing output with manipulators.

UNIT-III: Classes and Objects: Specifying a class – defining member functions – making an outside function inline – nesting of member functions – private member functions – arrays within a class – memory allocation for objects –arrays of objects – objects as function arguments – friend functions – returning objects – const member functions. Constructors and Destructors: Introduction – constructors – parameterized constructors – multiple constructors in a class – constructors with default arguments – copy constructor.

UNIT-IV: Operator Overloading: Introduction – defining operator overloading – overloading unary operators – overloading binary operators - overloading binary operators using friends – rules for overloading operators. Inheritance: Introduction – defining derived classes – single inheritance – making a private member inheritable – multilevel inheritance – multiple inheritance – hierarchical inheritance – hybrid inheritance

UNIT-V: Working with Files: Introduction – Classes for File Stream Operations -Opening and Closing a File – Detecting End-of-file – More about open(): File Modes – File Pointers and their Manipulations – Sequential Input and Output Operations – Updating a File: Random Access

Hour	Class Schedule
allotment	
	EVEN Semester 02.12.2015
1-L1	UNIT-I: Evolution of C++ - applications of C++
2-L2	Tokens – keywords – identifiers and constants
3- L3	basic data types – user-defined data types
4-L4	constant pointers and pointers to constants – symbolic constants

5-L5	constant pointers and pointers to constants – symbolic constants
6-L6	type compatibility – declaration of variables – dynamic initialization of variables
	– reference variables
7-L7	operators in C++ - scope resolution operator – memory management operators
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	manipulators – type cast operator – expressions and their types – special
10 10	assignment expressions
10- L9	implicit conversions – operator precedence
11-L10	Functions in C++ : The main function – function prototyping – call by reference
12-L11	return by reference – inline functions – default arguments – const arguments – function overloading
13-L12	Managing Console I/O Operations: C++ streams – C++ stream classes –
15 112	unformatted console I/O operations – formatted console I/O
14-L13	formatted console I/O operations – managing output with manipulators.
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins 25.01.2015
16-L15	Classes and Objects: Specifying a class – defining member functions – making
	an outside function inline – nesting of member functions
17-IT-1	Internal Test-I
18-L16	private member functions – arrays within a class – memory allocation for object
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	arrays of objects – objects as function arguments – friend functions – returning
	objects – const member functions.
21- L19	Constructors and Destructors: Introduction – constructors – parameterized
	constructors – multiple constructors in a class
22- P2	College level meeting/Cell function
23-L20	Constructors and Destructors: Introduction – constructors – parameterized
	constructors – multiple constructors in a class
24-L21	Operator Overloading: Introduction
25-L22	defining operator overloading – overloading unary operators
26-L23	overloading binary operators - overloading binary operators using friends -
27-L24	overloading binary operators - overloading binary operators using friends –
28-L25	rules for overloading operators
29-L26	Inheritance: Introduction
30-L27	defining derived classes
31-L28 32-L29	single inheritance making a private member inheritable
32-L29 33-L30	making a private member interitable
33-L30 34- P3	Department Seminar
34-13 35-L31	Rivision
36-L32	Allotting portion for Internal Test-II
50 L52	Internal Test II begins 22.02.2016
37- L33	hierarchical inheritance
38- IT-II	Internal Test-II
39-L34	hybrid inheritance
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Working with Files: Introduction

42- L37	Classes for File Stream Operations
43- L38	Opening and Closing a File
44- P4	College level meeting/ function
45-L39	Detecting End-of-file
46-L40	More about open
47-L41	Revision
48-L42	Revision Class
49-L43	File Modes
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins 28.03.2016
51 L45	File Pointers and their Manipulations
52- L46	Revision
53-IT-III	Internal Test-III
54-L47	Sequential Input and Output Operations – Updating a File: Random Access
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 11.04.2016
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 22.4.2016

Learning Outcomes	COs of the course " <computer ++="" c="" in="" programming="">"</computer>	
C01	Get insight knowledge about the language.	
CO2	Get trained in writing small programs.	
CO3	Capable of executes any programs and identifying errors in them	
CO4	Design and implement C programs for any given problem	
CO5	Work with existing programs and modify it as per the	
	requirements.	
CO6	Identify the errors in a C program.	
CO7	Identify the output of a C program without actually executing it	
Experimental		
Learning		
EL1	Capable coding any problem.	
EL2	Capable of identifying errors in a coding	
EL3	Capable handling any project assigned by a company.	
Integrated Activity		
IA1	Individual and Team Work: Function effectively on teams to	
	accomplish a common goal	
IA2	Communication: Communicate effectively with a range of audiences and prepare technical documents and make effective oral presentations	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Computer Programming in C ++	
Course Code	GMPH41	
Class	II Year (2016-2017)	
Semester	Even	
Staff Name	Dr.A.Arul Gnanam	
	Dr.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

OBJECT ORIENTED PROGRAMMING WTH C++

UNIT-I: Evolution of C++ - applications of C++ - structure of C++ program. Tokens – keywords – identifiers and constants

- basic data types – user-defined data types – constant pointers and pointers to constants – symbolic constants –type compatibility – declaration of variables – dynamic initialization of variables – reference variables – operators in C++ - scope resolution operator – memory management operators – manipulators – type cast operator – expressions and their types – special assignment expressions –

implicit conversions – operator precedence.

UNIT-II: Functions in C++ : The main function – function prototyping – call by reference – return by reference – inline functions – default arguments – const arguments – function overloading. Managing Console I/O Operations: C++ streams – C++ stream classes – unformatted console I/O operations – formatted console I/O operations – formatted console I/O operations – managing output with manipulators.

UNIT-III: Classes and Objects: Specifying a class – defining member functions – making an outside function inline – nesting of member functions – private member functions – arrays within a class – memory allocation for objects – arrays of objects – objects as function arguments – friend functions – returning objects – const member functions. Constructors and Destructors: Introduction – constructors – parameterized constructors – multiple constructors in a class – constructors with default arguments – copy constructor.

UNIT-IV: Operator Overloading: Introduction – defining operator overloading – overloading unary operators – overloading binary operators - overloading binary operators using friends – rules for overloading operators. Inheritance: Introduction – defining derived classes – single inheritance – making a private member inheritable – multilevel inheritance – multiple inheritance – hierarchical inheritance – hybrid inheritance

UNIT-V: Working with Files: Introduction – Classes for File Stream Operations -Opening and Closing a File – Detecting End-of-file – More about open(): File Modes – File Pointers and their Manipulations – Sequential Input and Output Operations – Updating a File: Random Access

Hour	Class Schedule
allotment	
	EVEN Semester 01.12.2016
1-L1	UNIT-I: Evolution of C++ - applications of C++
2-L2	Tokens – keywords – identifiers and constants
3- L3 –	basic data types – user-defined data types
4-L4	constant pointers and pointers to constants – symbolic constants
5-L5	constant pointers and pointers to constants – symbolic constants
6-L6	type compatibility – declaration of variables – dynamic initialization of
	variables – reference variables
7-L7	- operators in C++ - scope resolution operator - memory management
	operators

8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	manipulators – type cast operator – expressions and their types – special
	assignment expressions
10- L9	. implicit conversions – operator precedence
11-L10	Functions in C++ : The main function – function prototyping – call by
	reference
12-L11	return by reference – inline functions – default arguments – const
	arguments – function overloading
13-L12	. Managing Console I/O Operations: C++ streams – C++ stream classes –
	unformatted console I/O operations – formatted console I/O
14-L13	formatted console I/O operations –managing output with manipulators.
17711	
15-L14	- Allotting portion for Internal Test-I
16715	Internal Test I begins
16-L15	Classes and Objects: Specifying a class – defining member functions –
	making an outside function inline – nesting of member functions
17-IT-1	Internal Test-I
18-L16	private member functions – arrays within a class – memory allocation for
19-L17	objectTest Paper distribution and result analysis
19-L17	Entering Internal Test-I Marks into University portal
20-L18	arrays of objects – objects as function arguments – friend functions –
20-L18	returning objects – const member functions.
21- L19	Constructors and Destructors: Introduction – constructors – parameterized
21- 117	constructors – multiple constructors in a class
22- P2	College level meeting/Cell function
23-L20	Constructors and Destructors: Introduction – constructors – parameterized
	constructors – multiple constructors in a class
24-L21	Operator Overloading: Introduction
25-L22	– defining operator overloading – overloading unary operators
26-L23	overloading binary operators - overloading binary operators using friends –
27-L24	overloading binary operators - overloading binary operators using friends –
28-L25	rules for overloading operators
29-L26	Inheritance: Introduction
30-L27	defining derived classes
31-L28	single inheritance
32-L29	making a private member inheritable
33-L30	multilevel inheritance
34- P3	Department Seminar
35-L31	Rivision
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	hierarchical inheritance
38- IT-II	Internal Test-II
39-L34	hybrid inheritance
10 7 0 5	
40-L35	Test Paper distribution and result analysis
11 - 0 -	Entering Internal Test-II Marks into University portal
41-L36	Working with Files: Introduction

42- L37	Classes for File Stream Operations
43- L38	Opening and Closing a File
44- P4	College level meeting/ function
45-L39	Detecting End-of-file
46-L40	– More about open
47-L41	Rivision
48-L42	Rivision Class
49-L43	File Modes
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	File Pointers and their Manipulations
52- L46	Rivision
53-IT-III	Internal Test-III
54-L47	- Sequential Input and Output Operations - Updating a File: Random
	Access
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 21.4.2017

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	

IA2	
# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Computer Programming in C ++
Course Code	GMPH41
Class	II Year (2016-2017)
Semester	Even
Staff Name	Dr. A.Arul Gnanam
	Dr.R.Nithya Agnes
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

- ➢ To Learn about C++ Programme
- Objective of the course is to provide knowledge about the basics of Computer programming in C++ and to solve problems by writing programs. The paper does not need any special prerequisite and the learners are expected to come out with the ability to apply the computer language C++ to solve problems
- > To discuss about operators.
- ➤ To learn about programme goading.

Syllabus

OBJECT ORIENTED PROGRAMMING WTH C++

UNIT-I: Evolution of C++ - applications of C++ - structure of C++ program. Tokens – keywords – identifiers and constants

- basic data types - user-defined data types - constant pointers and pointers to constants - symbolic constants - type compatibility - declaration of variables - dynamic initialization of variables - reference variables - operators in C++ - scope resolution

operator – memory management operators – manipulators – type cast operator – expressions and their types – special assignment expressions –

implicit conversions – operator precedence.

UNIT-II: Functions in C++ : The main function – function prototyping – call by reference – return by reference – inline functions – default arguments – const arguments – function overloading. Managing Console I/O Operations: C++ streams – C++ stream classes – unformatted console I/O operations – formatted console I/O operations – formatted console I/O operations – managing output with manipulators.

UNIT-III: Classes and Objects: Specifying a class – defining member functions – making an outside function inline – nesting of member functions – private member functions – arrays within a class – memory allocation for objects –arrays of objects – objects as function arguments – friend functions – returning objects – const member functions. Constructors and Destructors: Introduction – constructors – parameterized constructors – multiple constructors in a class – constructors with default arguments – copy constructor.

UNIT-IV: Operator Overloading: Introduction – defining operator overloading – overloading unary operators – overloading binary operators - overloading binary operators using friends – rules for overloading operators. Inheritance: Introduction – defining derived classes – single inheritance – making a private member inheritable – multilevel inheritance – multiple inheritance – hierarchical inheritance – hybrid inheritance

UNIT-V: Working with Files: Introduction – Classes for File Stream Operations -Opening and Closing a File – Detecting End-of-file – More about open(): File Modes – File Pointers and their Manipulations – Sequential Input and Output Operations – Updating a File: Random Access

Hour	Class Schedule	
allotment		
	EVEN Semester 01.12.2016	
1-L1	UNIT-I: Evolution of C++ - applications of C++	
2-L2	Tokens – keywords – identifiers and constants	
3- L3	basic data types – user-defined data types	
4-L4	constant pointers and pointers to constants – symbolic constants	

5-L5	constant pointers and pointers to constants – symbolic constants
6-L6	type compatibility – declaration of variables – dynamic initialization of variables
	– reference variables
7-L7	operators in C++ - scope resolution operator – memory management operators
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	manipulators – type cast operator – expressions and their types – special
	assignment expressions
10- L9	implicit conversions – operator precedence
11-L10	Functions in C++ : The main function – function prototyping – call by reference
12-L11	return by reference – inline functions – default arguments – const arguments –
12 1 12	function overloading
13-L12	Managing Console I/O Operations: C++ streams – C++ stream classes –
14-L13	unformatted console I/O operations – formatted console I/O
14-L15 15-L14	formatted console I/O operations –managing output with manipulators. Allotting portion for Internal Test-I
1J-L14	Internal Test I begins 24.01.2017
16-L15	Classes and Objects: Specifying a class – defining member functions – making
10-L15	an outside function inline – nesting of member functions
17-IT-1	Internal Test-I
18-L16	private member functions – arrays within a class – memory allocation for object
10 L10 19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	arrays of objects – objects as function arguments – friend functions – returning
20 210	objects – const member functions.
21- L19	Constructors and Destructors: Introduction – constructors – parameterized
	constructors – multiple constructors in a class
22- P2	College level meeting/Cell function
23-L20	Constructors and Destructors: Introduction – constructors – parameterized
	constructors – multiple constructors in a class
24-L21	Operator Overloading: Introduction
25-L22	
26-L23	
	<u> </u>
	ě
30-L32	
37 1 33	
	•
41-L36	
25-L22	Operator Overloading: Introduction defining operator overloading – overloading unary operators overloading binary operators - overloading binary operators using friends – overloading binary operators - overloading binary operators using friends – rules for overloading operators Inheritance: Introduction defining derived classes single inheritance making a private member inheritable multilevel inheritance Department Seminar Rivision Allotting portion for Internal Test-II Internal Test II begins 24.02.2017 hierarchical inheritance Internal Test-II hybrid inheritance Test Paper distribution and result analysis Entering Internal Test-II Marks into University portal Working with Files: Introduction

42- L37	Classes for File Stream Operations
43- L38	Opening and Closing a File
44- P4	College level meeting/ function
45-L39	Detecting End-of-file
46-L40	More about open
47-L41	Revision
48-L42	Revision Class
49-L43	File Modes
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins 28.03.2017
51 L45	File Pointers and their Manipulations
52- L46	Revision
53-IT-III	Internal Test-III
54-L47	Sequential Input and Output Operations – Updating a File: Random Access
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 05.04.2017
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 21.4.2017

Learning Outcomes	COs of the course " <computer ++="" c="" in="" programming="">"</computer>	
C01	Get insight knowledge about the language.	
CO2	Get trained in writing small programs.	
CO3	Capable of executes any programs and identifying errors in them	
CO4	Design and implement C programs for any given problem	
CO5	Work with existing programs and modify it as per the	
	requirements.	
CO6	Identify the errors in a C program.	
CO7	Identify the output of a C program without actually executing it	
Experimental		
Learning		
EL1	Capable coding any problem.	
EL2	Capable of identifying errors in a coding	
EL3	Capable handling any project assigned by a company.	
Integrated Activity		
IA1	Individual and Team Work: Function effectively on teams to	
	accomplish a common goal	
IA2	Communication: Communicate effectively with a range of audiences and prepare technical documents and make effective oral presentations	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Computer Programing in c++
Course Code	JMPH41
Class	II BSc Physics(2017-2018)
Semester	Even
Staff Name	Dr.A.Arul Gnanam
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

 \triangleright

Syllabus

COMPUTER PROGRAMMING IN C++

UNIT-I: WHAT IS C++

Introduction - tokens - keywords - identifiers and constants - declaration of variables - basic data types - user defined data types-derived data types - symbolic

constants - operators in C_{++} -expressions and their type-hierarchy of arithmetic operators- scope resolution operator – declaring, initializing and modifying variables-special assignment operators - all control structures-structure of a simple

C ++ program (11L)

UNIT-II: ARRAYS AND FUNCTIONS IN C++Introduction - one dimensional and two dimensional arrays-initialization of arrays-array of

stringsFunctions-introduction-function with no argument and no return valuesfunction

with no argument but return value - function with argument and no return values- function with argument and return values- call by reference-return by reference- function prototyping - inline functions - local, -global and static variables- -function overloading - virtual functions-main function-math library functions. (13L)

UNIT-III: CLASSES AND OBJECTS

Introduction - specifying a class - defining member functions- C_{++} program with class - nesting of member functions - private member functions - objects as function arguments - arrays within a class-array of objects-static class membersfriend

functions-constructors - parameterized constructors-multiple constructors - constructors with default arguments - copy constructor. (15L)

UNIT-IV: OPERATOR OVERLOADING, INHERITANCE AND POINTERS

Introduction -defining operator overloading - overloading unary operators - binary operators.

Inheritance - single inheritance - multiple inheritance - multilevel inheritance - hybrid inheritance - hierarchial inheritance-virtual base class-abstract class Pointers- definition-declaration- arithmetic operations. (12L)

UNIT-V: MANAGING CONSOLE I/O OPERATIONS

Introduction - C++ stream - C++ stream classes - unformatted I/O Operations - formatted console I/O operations - working with files - classes for file steam operations - opening and closing a file - file pointers and their manipulations. (9L)

Books for study

1. Object oriented Programming with C++ - E.Balagurusamy, Tata Mc Graw-Hill publishing company Ltd. New Delhi

Books for reference

1. Programming with C_{++} - D.Ravichandran, Tata Mc Graw-Hill publishing company Ltd. New Delhi .

2. Object oriented Programming in $C_{++-}4$ th Edn.Robert Lafore-Macmilan publishing company Ltd.

3. Fundamentals of Programming with $C_{\rm ++}\mbox{-Richardl}\mbox{-Halterman}$

Course C	Calendar
----------	----------

Hour	Class Schedule
allotment	
	Even Semester Begin on 07.12.2017
1-L1	Introduction - tokens - keywords
2-L2	identifiers and constants - declaration of variables
3- L3	basic data types - user defined data types

4-L4	derived data types – symbolic constants	
5-L5	operators in C++ - expressions and their type-hierarchy of arithmetic	
	operators	
6-L6	scope resolution operator – declaring, initializing and modifying	
	variables	
7-L7	special assignment operators	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	all control structures	
10- L9	structure of a simple	
11-L10	Introduction - one dimensional	
12-L11	two dimensional arrays	
13-L12	initialization of	
	arrays-array of strings	
14-L13	Functions-introduction-function with no argument and no return	
	valuesfunction	
	with no argument but return value	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	Revision	
17-IT-1	Internal Test-I	
18-L16	function with argument and no return	
10 1 17	values	
19-L17	Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal	
20-L18	function with argument and return values	
20 210 21- L19	call by reference	
21 E1) 22- P2	College level meeting/Cell function	
23-L20	return by reference	
24-L21	function prototyping - inline functions	
25-L22	local, -global and static variables	
26-L23	function overloading	
27-L24	virtual functions-main function-math library functions. (13L)	
28-L25		
20 123	Introduction - specifying a class	
29-L26	Introduction - specifying a class defining member functions-C++ program with class	
	defining member functions-C++ program with class	
29-L26	defining member functions-C++ program with classnesting of member functions - private member functions	
29-L26 30-L27	defining member functions-C++ program with class	
29-L26 30-L27 31-L28	defining member functions-C++ program with classnesting of member functions - private member functionsobjects as function arguments - arrays within a class-array of objects- static class membersfriend	
29-L26 30-L27 31-L28 32-L29	defining member functions-C++ program with classnesting of member functions - private member functionsobjects as function arguments - arrays within a class-array of objects- static class membersfriendfunctions-constructors	
29-L26 30-L27 31-L28	defining member functions-C++ program with classnesting of member functions - private member functionsobjects as function arguments - arrays within a class-array of objects- static class membersfriend	

35-L31	multiple constructors - constructors with default arguments - copy	
00 201	constructor. (15L)	
36-L32		
30-L32	Internal Test II begins	
37- L33	Revision	
38- IT-II	Internal Test-II	
39-L34	Introduction -defining operator overloading	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	overloading unary operators	
42- L37	binary operators	
43- L38	Inheritance - single inheritance	
44- P4	College level meeting/ function	
45-L39	multiple inheritance - multilevel inheritance	
46-L40	hybrid inheritance - hierarchial inheritance	
47-L41	virtual base class-abstract class Pointers- definition-declaration-	
	arithmetic operations. (12L)	
48-L42	Introduction - C++ stream	
49-L43	C++ stream classes - unformatted I/O Operations	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	formatted console I/O operations - working with files - classes for	
	file steam operations	
52- L46	opening and closing a file - file pointers and their manipulations.	
	(9L)	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.04.2018	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	

CO4	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2017-2018)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Computer Programming in C ++	
Course Code	GMPH41	
Class	II Year (2017-2018)	
Semester	Even	
Staff Name	Dr. A.Arul Gnanam	
	Dr.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➢ To Learn about C++ Programme
- Objective of the course is to provide knowledge about the basics of Computer programming in C++ and to solve problems by writing programs. The paper does not need any special prerequisite and the learners are expected to come out with the ability to apply the computer language C++ to solve problems
- > To discuss about operators.
- ➤ To learn about programme goading.

Syllabus

OBJECT ORIENTED PROGRAMMING WTH C++

UNIT-I: Evolution of C++ - applications of C++ - structure of C++ program. Tokens – keywords – identifiers and constants

- basic data types - user-defined data types - constant pointers and pointers to constants - symbolic constants - type compatibility - declaration of variables - dynamic initialization of variables - reference variables - operators in C++ - scope resolution

operator – memory management operators – manipulators – type cast operator – expressions and their types – special assignment expressions –

implicit conversions – operator precedence.

UNIT-II: Functions in C++ : The main function – function prototyping – call by reference – return by reference – inline functions – default arguments – const arguments – function overloading. Managing Console I/O Operations: C++ streams – C++ stream classes – unformatted console I/O operations – formatted console I/O operations – formatted console I/O operations – managing output with manipulators.

UNIT-III: Classes and Objects: Specifying a class – defining member functions – making an outside function inline – nesting of member functions – private member functions – arrays within a class – memory allocation for objects –arrays of objects – objects as function arguments – friend functions – returning objects – const member functions. Constructors and Destructors: Introduction – constructors – parameterized constructors – multiple constructors in a class – constructors with default arguments – copy constructor.

UNIT-IV: Operator Overloading: Introduction – defining operator overloading – overloading unary operators – overloading binary operators - overloading binary operators using friends – rules for overloading operators. Inheritance: Introduction – defining derived classes – single inheritance – making a private member inheritable – multilevel inheritance – multiple inheritance – hierarchical inheritance – hybrid inheritance

UNIT-V: Working with Files: Introduction – Classes for File Stream Operations -Opening and Closing a File – Detecting End-of-file – More about open(): File Modes – File Pointers and their Manipulations – Sequential Input and Output Operations – Updating a File: Random Access

Hour	Class Schedule	
allotment		
	EVEN Semester 07.12.2017	
1-L1	UNIT-I: Evolution of C++ - applications of C++	
2-L2	Tokens – keywords – identifiers and constants	
3- L3	basic data types – user-defined data types	
4-L4	constant pointers and pointers to constants – symbolic constants	

5-L5	constant pointers and pointers to constants – symbolic constants	
6-L6	type compatibility – declaration of variables – dynamic initialization of variables	
	– reference variables	
7-L7	operators in C++ - scope resolution operator – memory management operators	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	manipulators – type cast operator – expressions and their types – special	
-	assignment expressions	
10- L9	implicit conversions – operator precedence	
11-L10	Functions in C++ : The main function – function prototyping – call by reference	
12-L11	return by reference – inline functions – default arguments – const arguments –	
10 1 10	function overloading	
13-L12	Managing Console I/O Operations: C++ streams – C++ stream classes –	
14112	unformatted console I/O operations – formatted console I/O	
14-L13	formatted console I/O operations –managing output with manipulators.	
15-L14	Allotting portion for Internal Test-I	
16-L15	Internal Test I begins 22.01.2018Classes and Objects: Specifying a class – defining member functions – making	
10-L15	an outside function inline – nesting of member functions	
17-IT-1	Internal Test-I	
17-11-1 18-L16	private member functions – arrays within a class – memory allocation for object	
19-L17	Test Paper distribution and result analysis	
17-117		
20-L18	Entering Internal Test-I Marks into University portalarrays of objects – objects as function arguments – friend functions – returning	
20 110	objects – const member functions.	
21- L19	Constructors and Destructors: Introduction – constructors – parameterized	
	constructors – multiple constructors in a class	
22- P2	College level meeting/Cell function	
23-L20	Constructors and Destructors: Introduction – constructors – parameterized	
	constructors – multiple constructors in a class	
24-L21	Operator Overloading: Introduction	
25-L22	defining operator overloading – overloading unary operators	
26-L23	overloading binary operators - overloading binary operators using friends -	
27-L24	overloading binary operators - overloading binary operators using friends -	
28-L25	rules for overloading operators	
29-L26	Inheritance: Introduction	
30-L27	defining derived classes	
31-L28	single inheritance	
32-L29	making a private member inheritable	
33-L30	multilevel inheritance	
34- P3	Department Seminar	
35-L31	Rivision	
36-L32	Allotting portion for Internal Test-II	
27 1 22	Internal Test II begins 26.02.2018	
37-L33	hierarchical inheritance	
38- IT-II 39-L34	Internal Test-II bybrid inhoritance	
39-L34 40-L35	hybrid inheritance Test Paper distribution and result analysis	
40-L33	Test Paper distribution and result analysis	
41-L36	Entering Internal Test-II Marks into University portal Working with Files: Introduction	
+1-L30		

42- L37	Classes for File Stream Operations	
43- L38	Opening and Closing a File	
44- P4	College level meeting/ function	
45-L39	Detecting End-of-file	
46-L40	More about open	
47-L41	Revision	
48-L42	Revision Class	
49-L43	File Modes	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins 01.04.2018	
51 L45	File Pointers and their Manipulations	
52- L46	Revision	
53-IT-III	Internal Test-III	
54-L47	Sequential Input and Output Operations – Updating a File: Random Access	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins 12.04.2018	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.04.2018	

Learning Outcomes	COs of the course " <computer ++="" c="" in="" programming="">"</computer>		
C01	Get insight knowledge about the language.		
CO2	Get trained in writing small programs.		
CO3	Capable of executes any programs and identifying errors in them		
CO4	Design and implement C programs for any given problem		
CO5	Work with existing programs and modify it as per the		
	requirements.		
CO6	Identify the errors in a C program.		
CO7	Identify the output of a C program without actually executing it		
Experimental			
Learning			
EL1	Capable coding any problem.		
EL2	2 Capable of identifying errors in a coding		
EL3	Capable handling any project assigned by a company.		
Integrated Activity			
IA1	Individual and Team Work: Function effectively on teams to		
	accomplish a common goal		
IA2	Communication: Communicate effectively with a range of audiences and prepare technical documents and make effective oral presentations		

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Computer Programing in c++	
Course Code	SMPH53	
Class	III BSc Physics(2019-2020)	
Semester	Odd	
Staff Name	Dr.A.Arul Gnanam	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

 \geqslant

Syllabus

COMPUTER PROGRAMMING IN C++

UNIT-I: WHAT IS C++

Introduction - tokens - keywords - identifiers and constants - declaration of variables - basic data types - user defined data types-derived data types - symbolic

constants - operators in C_{++} -expressions and their type-hierarchy of arithmetic operators- scope resolution operator – declaring, initializing and modifying variables-special assignment operators - all control structures-structure of a simple

C ++ program (11L)

UNIT-II: ARRAYS AND FUNCTIONS IN C++Introduction - one dimensional and two dimensional arrays-initialization of arrays-array of

stringsFunctions-introduction-function with no argument and no return valuesfunction

with no argument but return value - function with argument and no return values- function with argument and return values- call by reference-return by reference- function prototyping - inline functions - local, -global and static variables- -function overloading - virtual functions-main function-math library functions. (13L)

UNIT-III: CLASSES AND OBJECTS

Introduction - specifying a class - defining member functions- C_{++} program with class - nesting of member functions - private member functions - objects as function arguments - arrays within a class-array of objects-static class membersfriend

functions-constructors - parameterized constructors-multiple constructors - constructors with default arguments - copy constructor. (15L)

UNIT-IV: OPERATOR OVERLOADING, INHERITANCE AND POINTERS

Introduction -defining operator overloading - overloading unary operators - binary operators.

Inheritance - single inheritance - multiple inheritance - multilevel inheritance - hybrid inheritance - hierarchial inheritance-virtual base class-abstract class Pointers- definition-declaration- arithmetic operations. (12L)

UNIT-V: MANAGING CONSOLE I/O OPERATIONS

Introduction - C++ stream - C++ stream classes - unformatted I/O Operations - formatted console I/O operations - working with files - classes for file steam operations - opening and closing a file - file pointers and their manipulations. (9L)

Books for study

1. Object oriented Programming with C++ - E.Balagurusamy, Tata Mc Graw-Hill publishing company Ltd. New Delhi

Books for reference

1. Programming with C_{++} - D.Ravichandran, Tata Mc Graw-Hill publishing company Ltd. New Delhi .

2. Object oriented Programming in $C_{++-}4$ th Edn.Robert Lafore-Macmilan publishing company Ltd.

3. Fundamentals of Programming with $C_{\rm ++}\mbox{-Richardl}\mbox{-Halterman}$

Course Calendar

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 17.06.2019	
1-L1	Introduction - tokens - keywords	
2-L2	identifiers and constants - declaration of variables	
3- L3	basic data types - user defined data types	

4-L4	derived data types – symbolic constants	
5-L5	operators in C++ -expressions and their type-hierarchy of arithmetic	
	operators	
6-L6	scope resolution operator – declaring, initializing and modifying	
	variables	
7-L7	special assignment operators	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	all control structures	
10- L9	structure of a simple	
11-L10	Introduction - one dimensional	
12-L11	two dimensional arrays	
13-L12	initialization of	
	arrays-array of strings	
14-L13	Functions-introduction-function with no argument and no return	
	valuesfunction	
	with no argument but return value	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	Revision	
17-IT-1	Internal Test-I	
18-L16	function with argument and no return	
10 1 15	values	
19-L17	Test Paper distribution and result analysis	
20-L18	Entering Internal Test-I Marks into University portal	
20-L18 21- L19	function with argument and return values	
21- L19 22- P2	call by reference	
22- F2 23-L20	College level meeting/Cell function return by reference	
23 L20 24-L21	function prototyping - inline functions	
25-L22		
25-L22 26-L23	local, -global and static variables	
20-L23 27-L24	function overloading	
27-1224	virtual functions-main function-math library functions. (13L)	
28-L25	Introduction - specifying a class	
29-L26	defining member functions-C++ program with class	
30-L27	nesting of member functions - private member functions	
31-L28	objects as function arguments - arrays within a class-array of objects-	
	static class membersfriend	
32-L29	functions-constructors	
33-L30		
	parameterized constructors	
34- P3	parameterized constructors Department Seminar	

35-L31	multiple constructors - constructors with default arguments - copy	
00 201	constructor. (15L)	
36-L32	Allotting portion for Internal Test-II	
30-L32	Internal Test II begins	
37- L33	Revision	
37-1255 38- IT-II	Internal Test-II	
39-L34	Introduction -defining operator overloading	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	overloading unary operators	
42- L37	binary operators	
43- L38	Inheritance - single inheritance	
44- P4	College level meeting/ function	
45-L39	multiple inheritance - multilevel inheritance	
46-L40	hybrid inheritance - hierarchial inheritance	
47-L41	virtual base class-abstract class Pointers- definition-declaration-	
	arithmetic operations. (12L)	
48-L42	Introduction - C++ stream	
49-L43	C++ stream classes - unformatted I/O Operations	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	formatted console I/O operations - working with files - classes for	
	file steam operations	
52- L46	opening and closing a file - file pointers and their manipulations.	
	(9L)	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 30.10.2019	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	

CO4	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Computer Programming in C ++	
Course Code	GMPH41	
Class	II Year (2018-2019)	
Semester	Even	
Staff Name	Dr. A.Arul Gnanam	
	Dr.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➢ To Learn about C++ Programme
- Objective of the course is to provide knowledge about the basics of Computer programming in C++ and to solve problems by writing programs. The paper does not need any special prerequisite and the learners are expected to come out with the ability to apply the computer language C++ to solve problems
- > To discuss about operators.
- ➤ To learn about programme goading.

Syllabus

OBJECT ORIENTED PROGRAMMING WTH C++

UNIT-I: Evolution of C++ - applications of C++ - structure of C++ program. Tokens – keywords – identifiers and constants

- basic data types - user-defined data types - constant pointers and pointers to constants - symbolic constants - type compatibility - declaration of variables - dynamic initialization of variables - reference variables - operators in C++ - scope resolution

operator – memory management operators – manipulators – type cast operator – expressions and their types – special assignment expressions –

implicit conversions – operator precedence.

UNIT-II: Functions in C++ : The main function – function prototyping – call by reference – return by reference – inline functions – default arguments – const arguments – function overloading. Managing Console I/O Operations: C++ streams – C++ stream classes – unformatted console I/O operations – formatted console I/O operations – formatted console I/O operations – managing output with manipulators.

UNIT-III: Classes and Objects: Specifying a class – defining member functions – making an outside function inline – nesting of member functions – private member functions – arrays within a class – memory allocation for objects –arrays of objects – objects as function arguments – friend functions – returning objects – const member functions. Constructors and Destructors: Introduction – constructors – parameterized constructors – multiple constructors in a class – constructors with default arguments – copy constructor.

UNIT-IV: Operator Overloading: Introduction – defining operator overloading – overloading unary operators – overloading binary operators - overloading binary operators using friends – rules for overloading operators. Inheritance: Introduction – defining derived classes – single inheritance – making a private member inheritable – multilevel inheritance – multiple inheritance – hierarchical inheritance – hybrid inheritance

UNIT-V: Working with Files: Introduction – Classes for File Stream Operations -Opening and Closing a File – Detecting End-of-file – More about open(): File Modes – File Pointers and their Manipulations – Sequential Input and Output Operations – Updating a File: Random Access

Hour	Class Schedule	
allotment		
	EVEN Semester 03.12.2018	
1-L1	UNIT-I: Evolution of C++ - applications of C++	
2-L2	Tokens – keywords – identifiers and constants	
3- L3	basic data types – user-defined data types	
4-L4	constant pointers and pointers to constants – symbolic constants	

5-L5	constant pointers and pointers to constants – symbolic constants	
6-L6	type compatibility – declaration of variables – dynamic initialization of variables	
	– reference variables	
7-L7	operators in C++ - scope resolution operator – memory management operators	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	manipulators - type cast operator - expressions and their types - special	
	assignment expressions	
10- L9	implicit conversions – operator precedence	
11-L10	Functions in C++ : The main function – function prototyping – call by reference	
12-L11	return by reference – inline functions – default arguments – const arguments –	
12 1 12	function overloading	
13-L12	Managing Console I/O Operations: C++ streams – C++ stream classes –	
14-L13	unformatted console I/O operations – formatted console I/O	
14-L15 15-L14	formatted console I/O operations –managing output with manipulators.	
13-L14	Allotting portion for Internal Test-I Internal Test I begins 18.01.2019	
16-L15	Classes and Objects: Specifying a class – defining member functions – making	
10-L15	an outside function inline – nesting of member functions	
17-IT-1	Internal Test-I	
18-L16	private member functions – arrays within a class – memory allocation for object	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	arrays of objects – objects as function arguments – friend functions – returning	
	objects – const member functions.	
21- L19	Constructors and Destructors: Introduction – constructors – parameterized	
	constructors – multiple constructors in a class	
22- P2	College level meeting/Cell function	
23-L20	Constructors and Destructors: Introduction – constructors – parameterized	
	constructors – multiple constructors in a class	
24-L21	Operator Overloading: Introduction	
25-L22	defining operator overloading – overloading unary operators	
26-L23	overloading binary operators - overloading binary operators using friends -	
27-L24	overloading binary operators - overloading binary operators using friends -	
28-L25	rules for overloading operators	
29-L26	Inheritance: Introduction	
30-L27	defining derived classes	
31-L28	single inheritance	
32-L29	making a private member inheritable	
33-L30	multilevel inheritance	
34- P3 35-L31	Department Seminar	
35-L31 36-L32	Rivision	
30-L32	Allotting portion for Internal Test-II Internal Test II begins 25.02.2019	
37- L33	hierarchical inheritance	
37- L33 38- IT-II	Internal Test-II	
39-L34	hybrid inheritance	
40-L35	Test Paper distribution and result analysis	
10 200	Entering Internal Test-II Marks into University portal	
41-L36	Working with Files: Introduction	

42- L37	Classes for File Stream Operations	
43- L38	Opening and Closing a File	
44- P4	College level meeting/ function	
45-L39	Detecting End-of-file	
46-L40	More about open	
47-L41	Revision	
48-L42	Revision Class	
49-L43	File Modes	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins 22.03.2019	
51 L45	File Pointers and their Manipulations	
52- L46	Revision	
53-IT-III	Internal Test-III	
54-L47	Sequential Input and Output Operations – Updating a File: Random Access	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins 08.04.2019	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.04.2019	

Learning Outcomes	COs of the course " <computer ++="" c="" in="" programming="">"</computer>	
C01	Get insight knowledge about the language.	
CO2	Get trained in writing small programs.	
CO3	Capable of executes any programs and identifying errors in them	
CO4	Design and implement C programs for any given problem	
CO5	Work with existing programs and modify it as per the	
	requirements.	
CO6	Identify the errors in a C program.	
CO7	Identify the output of a C program without actually executing it	
Experimental	Experimental	
Learning		
EL1	Capable coding any problem.	
EL2	Capable of identifying errors in a coding	
EL3	Capable handling any project assigned by a company.	
Integrated Activity		
IA1	Individual and Team Work: Function effectively on teams to	
	accomplish a common goal	
IA2	Communication: Communicate effectively with a range of audiences and prepare technical documents and make effective oral presentations	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2019-2020)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Computer Programming in C ++	
Course Code	GMPH41	
Class	II Year (2019-2020)	
Semester	Even	
Staff Name	Dr. A.Arul Gnanam	
	Dr.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours 4 / WK		
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➢ To Learn about C++ Programme
- Objective of the course is to provide knowledge about the basics of Computer programming in C++ and to solve problems by writing programs. The paper does not need any special prerequisite and the learners are expected to come out with the ability to apply the computer language C++ to solve problems
- ➤ To discuss about operators.
- ➤ To learn about programme goading.

Syllabus

OBJECT ORIENTED PROGRAMMING WTH C++

UNIT-I: Evolution of C++ - applications of C++ - structure of C++ program. Tokens – keywords – identifiers and constants

- basic data types - user-defined data types - constant pointers and pointers to constants - symbolic constants - type compatibility - declaration of variables - dynamic initialization of variables - reference variables - operators in C++ - scope resolution

operator – memory management operators – manipulators – type cast operator – expressions and their types – special assignment expressions –

implicit conversions – operator precedence.

UNIT-II: Functions in C++ : The main function – function prototyping – call by reference – return by reference – inline functions – default arguments – const arguments – function overloading. Managing Console I/O Operations: C++ streams – C++ stream classes – unformatted console I/O operations – formatted console I/O operations – formatted console I/O operations – managing output with manipulators.

UNIT-III: Classes and Objects: Specifying a class – defining member functions – making an outside function inline – nesting of member functions – private member functions – arrays within a class – memory allocation for objects –arrays of objects – objects as function arguments – friend functions – returning objects – const member functions. Constructors and Destructors: Introduction – constructors – parameterized constructors – multiple constructors in a class – constructors with default arguments – copy constructor.

UNIT-IV: Operator Overloading: Introduction – defining operator overloading – overloading unary operators – overloading binary operators - overloading binary operators using friends – rules for overloading operators. Inheritance: Introduction – defining derived classes – single inheritance – making a private member inheritable – multilevel inheritance – multiple inheritance – hierarchical inheritance – hybrid inheritance

UNIT-V: Working with Files: Introduction – Classes for File Stream Operations -Opening and Closing a File – Detecting End-of-file – More about open(): File Modes – File Pointers and their Manipulations – Sequential Input and Output Operations – Updating a File: Random Access

Hour	Class Schedule	
allotment		
	EVEN Semester 02.12.2019	
1-L1	UNIT-I: Evolution of C++ - applications of C++	
2-L2	Tokens – keywords – identifiers and constants	
3- L3	basic data types – user-defined data types	
4-L4	constant pointers and pointers to constants – symbolic constants	

5-L5	constant pointers and pointers to constants – symbolic constants	
6-L6	type compatibility – declaration of variables – dynamic initialization of variables	
	– reference variables	
7-L7	operators in C++ - scope resolution operator – memory management operators	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	manipulators - type cast operator - expressions and their types - special	
	assignment expressions	
10- L9	implicit conversions – operator precedence	
11-L10	Functions in C++ : The main function – function prototyping – call by reference	
12-L11	return by reference – inline functions – default arguments – const arguments –	
10 1 10	function overloading	
13-L12	Managing Console I/O Operations: C++ streams – C++ stream classes –	
14112	unformatted console I/O operations – formatted console I/O	
14-L13	formatted console I/O operations –managing output with manipulators.	
15-L14	Allotting portion for Internal Test-I	
16-L15	Internal Test I begins	
10-L13	Classes and Objects: Specifying a class – defining member functions – making	
17-IT-1	an outside function inline – nesting of member functions Internal Test-I	
17-11-1 18-L16	private member functions – arrays within a class – memory allocation for object	
18-L10 19-L17	Test Paper distribution and result analysis	
19-L17	Entering Internal Test-I Marks into University portal	
20-L18	arrays of objects – objects as function arguments – friend functions – returning	
20-110	objects – const member functions.	
21- L19	Constructors and Destructors: Introduction – constructors – parameterized	
	constructors – multiple constructors in a class	
22- P2	College level meeting/Cell function	
23-L20	Constructors and Destructors: Introduction – constructors – parameterized	
	constructors – multiple constructors in a class	
24-L21	Operator Overloading: Introduction	
25-L22	defining operator overloading – overloading unary operators	
26-L23	overloading binary operators - overloading binary operators using friends -	
27-L24	overloading binary operators - overloading binary operators using friends -	
28-L25	rules for overloading operators	
29-L26	Inheritance: Introduction	
30-L27	defining derived classes	
31-L28	single inheritance	
32-L29	making a private member inheritable	
33-L30	multilevel inheritance	
34- P3	Department Seminar	
35-L31	Rivision	
36-L32	Allotting portion for Internal Test-II	
27 1 22	Internal Test II begins	
37-L33	hierarchical inheritance	
38- IT-II	Internal Test-II	
39-L34	hybrid inheritance	
40-L35	Test Paper distribution and result analysis	
41 I 26	Entering Internal Test-II Marks into University portal	
41-L36	Working with Files: Introduction	

42- L37	Classes for File Stream Operations
43- L38	Opening and Closing a File
44- P4	College level meeting/ function
45-L39	Detecting End-of-file
46-L40	More about open
47-L41	Revision
48-L42	Revision Class
49-L43	File Modes
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	File Pointers and their Manipulations
52- L46	Revision
53-IT-III	Internal Test-III
54-L47	Sequential Input and Output Operations – Updating a File: Random Access
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on

Learning Outcomes	COs of the course " <computer ++="" c="" in="" programming="">"</computer>	
C01	Get insight knowledge about the language.	
CO2	Get trained in writing small programs.	
CO3	Capable of executes any programs and identifying errors in them	
CO4	Design and implement C programs for any given problem	
CO5	Work with existing programs and modify it as per the	
	requirements.	
CO6	Identify the errors in a C program.	
CO7	Identify the output of a C program without actually executing it	
Experimental		
Learning		
EL1	Capable coding any problem.	
EL2	Capable of identifying errors in a coding	
EL3	Capable handling any project assigned by a company.	
Integrated Activity		
IA1	Individual and Team Work: Function effectively on teams to	
	accomplish a common goal	
IA2	Communication: Communicate effectively with a range of audiences and prepare technical documents and make effective oral presentations	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Communication Electronics	
Course Code	JMPH5C	
Class	III year (2018-2019)	
Semester	Odd	
Staff Name	Dr.A.Arul Gnanam	
	Mrs.D.Priscilla Koilpillai	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

UNIT I: AMPLITUDE MODULATION AND TRANSMISSION Introduction – amplitude Modulation – AM envelop – AM frequency spectrum and bandwidth – Phasor representation of AM with carrier – coefficient of modulation or percentage modulation or modulation index – degrees of modulation – AM power distribution – AM Current relation and efficiency - modulation by complex information signal doubleside band suppressed carrier AM - single side band suppressed carrier AM – Vestigal side band amplitude modulation – AM modulator circuits – emitter modulations or low power AM – collector modulator or medium and high power AM modulator - AM transmitters – Broadcast AM transmitters – Low level of AM transmitter – High level AM transmitter. (15L) UNIT II: AMPLITUDE MODULATION -RECEPTION Comparison of AM system – Quadrature amplitude modulation – principles of AM detection – AM receivers – receiver parameters – Tuned radio frequency (TRF) receiver or straight receiver – principles of superhetrodyne –double frequency conversion AM receiver. (11L)

Page 20 of 54

UNIT III:ANGLE MODULATION – TRANSMISSION Introduction – Frequency modulation – Phase modulation – Phase deviation and modulation index – Multitone modulation – Transmission band width of FM – conversion of PM to FM or frequency modulator – conversion of FM to PM / phase modulators – commercial broadcast FM – phasor representation of an FM and PM – average power of an AM/FM wave – generation of FM – direct method of FM generation – reactance tube modulator – indirect method of FM wave generation – FM transmitters – indirect method – Comparison of AM and FM. (13L)

UNIT IV:FM RECEPTION FM detectors – Balanced slope detector – Foster seely discriminator – ratio detector – FM super heterodyne receiver – FM noise suppression – threshold extension by FMFB technique. (11L)

UNIT – V: DIGITAL MODULATION TECHNIQUES Introduction – BFSK – Binary phase shift keying – Quadrature PSK – Differential PSK – Performance comparison of digital modulation schemes - M ary FSK – correlative coding – Duobinary encoding. (10L)

Book For Study 1.Principles Of Communication Engineering-Dr. K.S. Srinivasan, Second Edition : 2010.

Book For Reference 1.Electronic communication systems – George Kennedy & Bernard Davis, Tata Mcgraw Hills, 4th edition, 2008 2.Electronic communication Systems – Blake, Joseph J. Adams ki, Sun Yifeng, Delamer publication, 2nd edition, 2012 (Rupa Publication, India). 3.Fundamentals of Electrical engineering – Wayone tomasi

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2018
1-L1	UNIT I: AMPLITUDE MODULATION AND TRANSMISSION
2-L2	amplitude Modulation – AM envelop – AM frequency spectrum and bandwidth
3- L3	Phasor representation of AM with carrier
4-L4	coefficient of modulation or percentage modulation or modulation index
5-L5	– degrees of modulation – AM power distribution -
6-L6	AM Current relation and efficiency - modulation by complex information signal
7-L7	doubleside band suppressed carrier AM
8- P1	single side band suppressed carrier AM
9- L8	Vestigal side band amplitude modulation
10- L9	AM modulator circuits – emitter modulations or low power AM
11-L10	collector modulator or medium and high power AM modulator
12-L11	AM transmitters – Broadcast AM transmitters
13-L12	Low level of AM transmitter – High level AM transmitter
14-L13	Welcoming of First year and Inauguration of MathematicsAssociation
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	UNIT II: AMPLITUDE MODULATION -RECEPTION
17-IT-1	Internal Test-I
18-L16	Comparison of AM system – Quadrature amplitude modulation
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	principles of AM detection – AM receivers – receiver parameters
21- L19	Tuned radio frequency (TRF) receiver or straight receiver
22- P2	College level meeting/Cell function
23-L20	principles of superhetrodyne
24-L21	double frequency conversion AM receiver
25-L22	UNIT III:ANGLE MODULATION – TRANSMISSION
26-L23	Frequency modulation – Phase modulation
27-L24	Phase deviation and modulation index
28-L25	Multitone modulation
29-L26	Transmission band width of FM
30-L27	conversion of PM to FM or frequency modulator
31-L28	conversion of FM to PM / phase modulators
32-L29	commercial broadcast FM
33-L30	average power of an AM/FM wave
34- P3	Department Seminar
35-L31	generation of FM – direct method of FM generation
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	reactance tube modulator
38- IT-II	Internal Test-II
39-L34	indirect method of FM wave generation – FM transmitters

40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Comparison of AM and FM.
42- L37	UNIT IV:FM RECEPTION FM
43- L38	detectors – Balanced slope detector
44- P4	College level meeting/ function
45-L39	Foster seely discriminator – ratio detector
46-L40	FM super heterodyne receiver – FM noise suppression
47-L41	threshold extension by FMFB technique
48-L42	UNIT – V: DIGITAL MODULATION TECHNIQUES
49-L43	BFSK – Binary phase shift keying
50-L44	Quadrature PSK – Differential PSK
	Internal Test III begins
51 L45	correlative coding – Duobinary encoding
52- L46	Performance comparison of digital modulation schemes M ary FSK
53-IT-III	Internal Test-III
54-L47	correlative coding – Duobinary encoding
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.11.2018

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	

IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Communication Electronics	
Course Code	SEPH5C	
Class	III year (2019-2020)	
Semester	Odd	
Staff Name	Dr.A.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

AAAA

Syllabus

UNIT I: AMPLITUDE MODULATION AND TRANSMISSION Introduction – amplitude Modulation – AM envelop – AM frequency spectrum and bandwidth – Phasor representation of AM with carrier – coefficient of modulation or percentage modulation or modulation index – degrees of modulation – AM power distribution – AM Current relation and efficiency - modulation by complex information signal doubleside band suppressed carrier AM - single side band suppressed carrier AM – Vestigal side band amplitude modulation – AM modulator circuits – emitter modulations or low power AM – collector modulator or medium and high power AM modulator - AM transmitters – Broadcast AM transmitters – Low level of AM transmitter – High level AM transmitter. (15L) UNIT II: AMPLITUDE MODULATION -RECEPTION Comparison of AM system – Quadrature amplitude modulation – principles of AM detection – AM receivers – receiver parameters – Tuned radio frequency (TRF) receiver or straight receiver – principles of superhetrodyne –double frequency conversion AM receiver. (11L)

Page 20 of 54

UNIT III:ANGLE MODULATION – TRANSMISSION Introduction – Frequency modulation – Phase modulation – Phase deviation and modulation index – Multitone modulation – Transmission band width of FM – conversion of PM to FM or frequency modulator – conversion of FM to PM / phase modulators – commercial broadcast FM – phasor representation of an FM and PM – average power of an AM/FM wave – generation of FM – direct method of FM generation – reactance tube modulator – indirect method of FM wave generation – FM transmitters – indirect method – Comparison of AM and FM. (13L)

UNIT IV:FM RECEPTION FM detectors – Balanced slope detector – Foster seely discriminator – ratio detector – FM super heterodyne receiver – FM noise suppression – threshold extension by FMFB technique. (11L)

UNIT – V: DIGITAL MODULATION TECHNIQUES Introduction – BFSK – Binary phase shift keying – Quadrature PSK – Differential PSK – Performance comparison of digital modulation schemes - M ary FSK – correlative coding – Duobinary encoding. (10L)

Book For Study 1.Principles Of Communication Engineering-Dr. K.S. Srinivasan, Second Edition : 2010.

Book For Reference 1.Electronic communication systems – George Kennedy & Bernard Davis, Tata Mcgraw Hills, 4th edition, 2008 2.Electronic communication Systems – Blake, Joseph J. Adams ki, Sun Yifeng, Delamer publication, 2nd edition, 2012 (Rupa Publication, India). 3.Fundamentals of Electrical engineering – Wayone tomasi

Hour	Class Schedule
allotment	
	Odd Semester Begin on 17.06.2019
1-L1	UNIT I: AMPLITUDE MODULATION AND TRANSMISSION
2-L2	amplitude Modulation – AM envelop – AM frequency spectrum and bandwidth
3- L3	Phasor representation of AM with carrier
4-L4	coefficient of modulation or percentage modulation or modulation index
5-L5	– degrees of modulation – AM power distribution -
6-L6	AM Current relation and efficiency - modulation by complex information signal
7-L7	doubleside band suppressed carrier AM
8- P1	single side band suppressed carrier AM
9- L8	Vestigal side band amplitude modulation
10- L9	AM modulator circuits – emitter modulations or low power AM
11-L10	collector modulator or medium and high power AM modulator
12-L11	AM transmitters – Broadcast AM transmitters
13-L12	Low level of AM transmitter – High level AM transmitter
14-L13	Welcoming of First year and Inauguration of MathematicsAssociation
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	UNIT II: AMPLITUDE MODULATION -RECEPTION
17-IT-1	Internal Test-I
18-L16	Comparison of AM system – Quadrature amplitude modulation
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	principles of AM detection – AM receivers – receiver parameters
21- L19	Tuned radio frequency (TRF) receiver or straight receiver
22- P2	College level meeting/Cell function
23-L20	principles of superhetrodyne
24-L21	double frequency conversion AM receiver
25-L22	UNIT III:ANGLE MODULATION – TRANSMISSION
26-L23	Frequency modulation – Phase modulation
27-L24	Phase deviation and modulation index
28-L25	Multitone modulation
29-L26	Transmission band width of FM
30-L27	conversion of PM to FM or frequency modulator
31-L28	conversion of FM to PM / phase modulators
32-L29	commercial broadcast FM
33-L30	average power of an AM/FM wave
34- P3	Department Seminar
35-L31	generation of FM – direct method of FM generation
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	reactance tube modulator
38- IT-II	Internal Test-II
39-L34	indirect method of FM wave generation – FM transmitters

40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Comparison of AM and FM.
42- L37	UNIT IV:FM RECEPTION FM
43- L38	detectors – Balanced slope detector
44- P4	College level meeting/ function
45-L39	Foster seely discriminator – ratio detector
46-L40	FM super heterodyne receiver – FM noise suppression
47-L41	threshold extension by FMFB technique
48-L42	UNIT – V: DIGITAL MODULATION TECHNIQUES
49-L43	BFSK – Binary phase shift keying
50-L44	Quadrature PSK – Differential PSK
	Internal Test III begins
51 L45	correlative coding – Duobinary encoding
52- L46	Performance comparison of digital modulation schemes M ary FSK
53-IT-III	Internal Test-III
54-L47	correlative coding – Duobinary encoding
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on30.10.2019

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	

IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Digital Electronics	
Course Code	GMPH63	
Class	III year (2012-2015)	
Semester	Even	
Staff Name	Dr. M. Daniel Sweetlin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

Syllabus

SEMESTER-VI

PAPER XII

DIGITAL ELECTRONICS

L T P C

3204

Preamble: This course provides an understanding of Boolean algebra and digital

circuits. The paper need a basic knowledge in solid state electronics and the learners are expected to gain knowledge to design electronic circuits

UNIT I: NUMBER SYSTEMS, BINARY ARITHMETIC AND CODES

Decimal, binary, octal and hexadecimal number systems and their interconversions

-binary arithmetic-binary addition-subtraction-1's and 2's

complements- BCD codes, ASCII code, Excess-3code, Gray code. (7L+5T) UNIT II: BOOLEAN ALGEBRA AND LOGIC GATES

Boolean algebra-De Morgan's theorem –Positive logic and negative logic systems-Basic logic gates, OR, AND, NOT (symbol, Boolean equation, truth table,

circuit diagram and working)-NAND, NOR, EX-OR (symbol, Boolean equation,

truth table only)-NAND and NOR as universal building blocks. (8L+6T) UNIT III:ARITHMETIC CIRCUITS, FLIP-FLOPS AND MULTIVIBRATORS

Half and full adders- Half and full subtractors-RS Flip-flop-clocked RS Flip-flop, JK Flip-flop, JK master slave Flip-flop, D Flip-flop, T Flip-flop 555 timer-Astable multivibrator, monostable multivibrator-Frequency divider(11L+7T)

5 Hrs

Page **24** of **54**

UNIT IV: KARNAUGH MAP AND COMBINATIONAL CIRCUIT APPLICATIONS

Karnaugh map - 2,3and 4 variables –simplification-SOP and POS form of Boolean functions - Don't care conditions-Multiplexer, Demultiplexer, Encoder, Decoder, parity generator and checker. (10L+6T)

UNIT V : SHIFT REGISTERS AND COUNTERS

Types of registers- Serial in –Serial out-Serial in-Parallel out- Parallel in- Serial out- Parallel in- Parallel out-Asynchronous and Synchronous counters-

Ring counter- Binary counter- Up- Down counter- Mod-5 counter- Mod-10 counter (decade counter)-A/D and D/A converters(9L+6T)

Books for study

1.Digital principles and applications - Albert Paul Malvino & Donald P.Leach Books for reference

1.Digital logic and computer design-Morris Mano-Prentice Hall of India, Pvt.Ltd.

2.GothmannW.H., Digital Electronics- Prentice Hall of India, Pvt.Ltd.

3.Metha V.K.Mehtha.R.Principles of electronics, S.Chand & Co.

4. Fundamentals of Digital Electronics and Microprocessors - Anokh singh

Hour	Class Schedule
allotment	
	Even Semester Begin on 03.12.2014

1-L1	Decimal, binary, octal
2-L2	hexadecimal number systems
3- L3	Interconversions
4-L4	binary arithmetic-binary addition
5-L5	subtraction-1's and 2's complements
6-L6	BCD codes, ASCII code
7-L7	Excess-3code, Gray code. (7L+5T)
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	Boolean algebra
10- L9	De Morgan's theorem
11-L10	Positive logic and negative logic system
12-L11	Basic logic gates, OR, AND, NOT
13-L12	NAND and NOR as universal building blocks. (8L+6T)
14-L13	Half and full adders
15-L14	Half and full subtractors
16-L15	RS Flip-flop-clocked RS Flip
17- L16	, JK Flip-flop, JK master slave Flip-flop
18- L17	D Flip-flop, T Flip-flop 555 timer
19- L18	Astable multivibrator, monostable multivibrator
20- L19	Frequency divider(11L+7T)
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins
22- L21	Karnaugh map
23- IT-1	Internal Test-I
24- L22	2,3 Variables
25- L23	4 Variables
26- L24	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
27- L25	Simplification
28- L26	SOP form of Boolean Function
29- L27	POS Form of Boolean Function
30- P2	College level meeting/Cell function
31-L28	Don't Care Conditions
32-L29 33-L30	Multiplexer DeMultiplexer Exploration
33-L30 34- L31	DeMultiplexer Explanation Encoder
34- L31 35- L32	Decoder
36- L33	Parity Generator
30- L33 37- L34	
37-L34 38-L35	checker. (10L+6T) Types of Resisters
38-L35 39- L36	Serial In
40- L37	Serial Out

41- L38	Parallel in	
42-P3	Department Seminar	
43- L39	Parallel out	
44- L40	Parallel In	
45- L41	Serial out- Parallel in- Parallel out	
46- L42	Asynchronous Counters	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins	
48- L44	Synchronous Counters	
49-IT-II	Internal Test-II	
50-L45	Ring counter	
51- L46	-Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	Ring counter	
53- L48	Up- Down counter	
54- L49	Mod-5 counter	
55- L50	Mod-10 Counter	
56- L51	decade counter	
57- L52	A/D Counter	
58- L53	D/A Counter	
59-P4	College level meeting/ function	
60- L54	Practical work	
61- L55	Problems explanation	
62- L56	Problems explanation	
63-L57	Revision	
64- L58	- Allotting portion for Internal Test-III	
65- L59	Internal Test III begins Practical	
65-L59 66-L60	Problems	
67-IT-III	Internal Test-III	
68- L61	Revision	
69-L62	Revision Test	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
71-MT	Model Test	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
751.65	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.4.2015	

Learning Outcomes	COs of the course " <course name="">"</course>

CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Digital Electronics	
Course Code	GMPH63	
Class	III year (2012-2015)	
Semester	Even	
Staff Name	Dr. M. Daniel Sweetlin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

Syllabus

SEMESTER-VI

PAPER XII

DIGITAL ELECTRONICS

LTPC

3204

Preamble: This course provides an understanding of Boolean algebra and digital

circuits. The paper need a basic knowledge in solid state electronics and the learners are expected to gain knowledge to design electronic circuits

UNIT I: NUMBER SYSTEMS, BINARY ARITHMETIC AND CODES

Decimal, binary, octal and hexadecimal number systems and their interconversions

-binary arithmetic-binary addition-subtraction-1's and 2's

complements- BCD codes, ASCII code, Excess-3code, Gray code. (7L+5T) UNIT II: BOOLEAN ALGEBRA AND LOGIC GATES

Boolean algebra-De Morgan's theorem –Positive logic and negative logic systems-Basic logic gates, OR, AND, NOT (symbol, Boolean equation, truth table,

circuit diagram and working)-NAND, NOR, EX-OR (symbol, Boolean equation,

truth table only)-NAND and NOR as universal building blocks. (8L+6T) UNIT III:ARITHMETIC CIRCUITS, FLIP-FLOPS AND MULTIVIBRATORS

Half and full adders- Half and full subtractors-RS Flip-flop-clocked RS Flip-flop, JK Flip-flop, JK master slave Flip-flop, D Flip-flop, T Flip-flop 555 timer-Astable multivibrator, monostable multivibrator-Frequency divider(11L+7T)

5 Hrs

Page **24** of **54**

UNIT IV: KARNAUGH MAP AND COMBINATIONAL CIRCUIT APPLICATIONS

Karnaugh map - 2,3and 4 variables –simplification-SOP and POS form of Boolean functions - Don't care conditions-Multiplexer, Demultiplexer, Encoder, Decoder, parity generator and checker. (10L+6T)

UNIT V : SHIFT REGISTERS AND COUNTERS

Types of registers- Serial in –Serial out-Serial in-Parallel out- Parallel in- Serial out- Parallel in- Parallel out-Asynchronous and Synchronous counters-

Ring counter- Binary counter- Up- Down counter- Mod-5 counter- Mod-10 counter (decade counter)-A/D and D/A converters(9L+6T)

Books for study

1.Digital principles and applications - Albert Paul Malvino & Donald P.Leach Books for reference

1.Digital logic and computer design-Morris Mano-Prentice Hall of India, Pvt.Ltd.

2.GothmannW.H., Digital Electronics- Prentice Hall of India, Pvt.Ltd.

3.Metha V.K.Mehtha.R.Principles of electronics, S.Chand & Co.

4. Fundamentals of Digital Electronics and Microprocessors - Anokh singh

Hour	Class Schedule	
allotment		
	Even Semester Begin on 03.12.2014	

Decimal, binary, octal
hexadecimal number systems
Interconversions
binary arithmetic-binary addition
subtraction-1's and 2's complements
BCD codes, ASCII code
Excess-3code, Gray code. (7L+5T)
Welcoming of First year and Inauguration of MathematicsAssociation
Boolean algebra
De Morgan's theorem
Positive logic and negative logic system
Basic logic gates, OR, AND, NOT
NAND and NOR as universal building blocks. (8L+6T)
Half and full adders
Half and full subtractors
RS Flip-flop-clocked RS Flip
, JK Flip-flop, JK master slave Flip-flop
D Flip-flop, T Flip-flop 555 timer
Astable multivibrator, monostable multivibrator
Frequency divider(11L+7T)
Allotting portion for Internal Test-I
Internal Test I begins
Karnaugh map
Internal Test-I
2,3 Variables
4 Variables
Test Paper distribution and result analysis
Entering Internal Test-I Marks into University portal
Simplification
SOP form of Boolean Function
POS Form of Boolean Function College level meeting/Cell function
COURSE LEVEL MEETING/CELL TIINCTION
Don't Care Conditions
Don't Care Conditions Multiplexer
Don't Care Conditions Multiplexer DeMultiplexer Explanation
Don't Care Conditions Multiplexer DeMultiplexer Explanation Encoder
Don't Care Conditions Multiplexer DeMultiplexer Explanation Encoder Decoder
Don't Care Conditions Multiplexer DeMultiplexer Explanation Encoder Decoder Parity Generator
Don't Care Conditions Multiplexer DeMultiplexer Explanation Encoder Decoder Parity Generator checker. (10L+6T)
Don't Care Conditions Multiplexer DeMultiplexer Explanation Encoder Decoder Parity Generator

41- L38	Parallel in	
42-P3	Department Seminar	
43- L39	Parallel out	
44- L40	Parallel In	
45- L41	Serial out- Parallel in- Parallel out	
46- L42	Asynchronous Counters	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins	
48- L44	Synchronous Counters	
49-IT-II	Internal Test-II	
50-L45	Ring counter	
51- L46	-Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	Ring counter	
53- L48	Up- Down counter	
54- L49	Mod-5 counter	
55- L50	Mod-10 Counter	
56- L51	decade counter	
57- L52	A/D Counter	
58- L53	D/A Counter	
59-P4	College level meeting/ function	
60- L54	Practical work	
61- L55	Problems explanation	
62- L56	Problems explanation	
63-L57	Revision	
64- L58	- Allotting portion for Internal Test-III	
65- L59	Internal Test III begins Practical	
65-L59 66-L60	Problems	
67-IT-III	Internal Test-III	
68- L61	Revision	
69-L62	Revision Test	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
71-MT	Model Test	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
751.65	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.4.2015	

Learning Outcomes	COs of the course " <course name="">"</course>

CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Digital Electronics	
Course Code	GMPH63	
Class	III year (2014-2017)	
Semester	Even	
Staff Name	Dr. M. Daniel Sweetlin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

Syllabus

SEMESTER-VI

PAPER XII

DIGITAL ELECTRONICS

LTPC

3204

Preamble: This course provides an understanding of Boolean algebra and digital

circuits. The paper need a basic knowledge in solid state electronics and the learners are expected to gain knowledge to design electronic circuits

UNIT I: NUMBER SYSTEMS, BINARY ARITHMETIC AND CODES

Decimal, binary, octal and hexadecimal number systems and their interconversions

-binary arithmetic-binary addition-subtraction-1's and 2's

complements- BCD codes, ASCII code, Excess-3code, Gray code. (7L+5T) UNIT II: BOOLEAN ALGEBRA AND LOGIC GATES

Boolean algebra-De Morgan's theorem –Positive logic and negative logic systems-Basic logic gates, OR, AND, NOT (symbol, Boolean equation, truth table,

circuit diagram and working)-NAND, NOR, EX-OR (symbol, Boolean equation,

truth table only)-NAND and NOR as universal building blocks. (8L+6T) UNIT III:ARITHMETIC CIRCUITS, FLIP-FLOPS AND MULTIVIBRATORS

Half and full adders- Half and full subtractors-RS Flip-flop-clocked RS Flip-flop, JK Flip-flop, JK master slave Flip-flop, D Flip-flop, T Flip-flop 555 timer-Astable multivibrator, monostable multivibrator-Frequency divider(11L+7T)

5 Hrs

Page **24** of **54**

UNIT IV: KARNAUGH MAP AND COMBINATIONAL CIRCUIT APPLICATIONS

Karnaugh map - 2,3and 4 variables –simplification-SOP and POS form of Boolean functions - Don't care conditions-Multiplexer, Demultiplexer, Encoder, Decoder, parity generator and checker. (10L+6T)

UNIT V : SHIFT REGISTERS AND COUNTERS

Types of registers- Serial in –Serial out-Serial in-Parallel out- Parallel in- Serial out- Parallel in- Parallel out-Asynchronous and Synchronous counters-

Ring counter- Binary counter- Up- Down counter- Mod-5 counter- Mod-10 counter (decade counter)-A/D and D/A converters(9L+6T)

Books for study

1.Digital principles and applications - Albert Paul Malvino & Donald P.Leach Books for reference

1.Digital logic and computer design-Morris Mano-Prentice Hall of India, Pvt.Ltd.

2.GothmannW.H., Digital Electronics- Prentice Hall of India, Pvt.Ltd.

3.Metha V.K.Mehtha.R.Principles of electronics, S.Chand & Co.

4. Fundamentals of Digital Electronics and Microprocessors - Anokh singh

Hour allotment	Class Schedule
	Even Semester Begin on 01.12.2016

1-L1	Decimal, binary, octal
2-L2	hexadecimal number systems
3- L3	Interconversions
4-L4	binary arithmetic-binary addition
5-L5	subtraction-1's and 2's complements
6-L6	BCD codes, ASCII code
7-L7	Excess-3code, Gray code. (7L+5T)
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	Boolean algebra
10- L9	De Morgan's theorem
11-L10	Positive logic and negative logic system
12-L11	Basic logic gates, OR, AND, NOT
13-L12	NAND and NOR as universal building blocks. (8L+6T)
14-L13	Half and full adders
15-L14	Half and full subtractors
16-L15	RS Flip-flop-clocked RS Flip
17- L16	, JK Flip-flop, JK master slave Flip-flop
18- L17	D Flip-flop, T Flip-flop 555 timer
19- L18	Astable multivibrator, monostable multivibrator
20- L19	Frequency divider(11L+7T)
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins
22- L21	Karnaugh map
23- IT-1	Internal Test-I
24- L22	2,3 Variables
25- L23	4 Variables
26- L24	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
27- L25	Simplification
28- L26	SOP form of Boolean Function
29- L27	POS Form of Boolean Function
30- P2	College level meeting/Cell function
31-L28	Don't Care Conditions
32-L29 33-L30	Multiplexer
	DeMultiplexer Explanation Encoder
34- L31 35- L32	Decoder
36- L32	
30- L33 37- L34	Parity Generator
37-L34 38-L35	checker. (10L+6T) Types of Resisters
38-L35 39- L36	Serial In
40- L37	Serial Out

41- L38	Parallel in	
42-P3	Department Seminar	
43- L39	Parallel out	
44- L40	Parallel In	
45- L41	Serial out- Parallel in- Parallel out	
46- L42	Asynchronous Counters	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins	
48- L44	Synchronous Counters	
49-IT-II	Internal Test-II	
50-L45	Ring counter	
51- L46	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	Ring counter	
53- L48	Up- Down counter	
54- L49	Mod-5 counter	
55- L50	Mod-10 Counter	
56- L51	decade counter	
57- L52	A/D Counter	
58- L53	D/A Counter	
59-P4	College level meeting/ function	
60- L54	Practical work	
61- L55	Problems explanation	
62- L56	Problems explanation	
63- L57	Revision	
64- L58	Allotting portion for Internal Test-III	
65 J 50	Internal Test III begins	
65-L59	Practical	
66-L60	Problems	
67-IT-III 68- L61	Internal Test-III Revision	
69- L62	Revision Test	
70- L63	- Test Paper distribution and result analysis	
10 105	Entering Internal Test-III Marks into University portal	
	Model Test begins	
71-MT	Model Test	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 21.4.2017	

Learning Outcomes	COs of the course " <course name="">"</course>

CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Digital Electronics	
Course Code	JMPH63	
Class	III year (2016-2019)	
Semester	Even	
Staff Name	Dr. M. Daniel Sweetlin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

Syllabus

SEMESTER-VI

PAPER XII

DIGITAL ELECTRONICS

L T P C

3204

Preamble: This course provides an understanding of Boolean algebra and digital

circuits. The paper need a basic knowledge in solid state electronics and the learners are expected to gain knowledge to design electronic circuits

UNIT I: NUMBER SYSTEMS, BINARY ARITHMETIC AND CODES

Decimal, binary, octal and hexadecimal number systems and their interconversions

-binary arithmetic-binary addition-subtraction-1's and 2's

complements- BCD codes, ASCII code, Excess-3code, Gray code. (7L+5T) UNIT II: BOOLEAN ALGEBRA AND LOGIC GATES

Boolean algebra-De Morgan's theorem –Positive logic and negative logic systems-Basic logic gates, OR, AND, NOT (symbol, Boolean equation, truth table,

circuit diagram and working)-NAND, NOR, EX-OR (symbol, Boolean equation,

truth table only)-NAND and NOR as universal building blocks. (8L+6T) UNIT III:ARITHMETIC CIRCUITS, FLIP-FLOPS AND MULTIVIBRATORS

Half and full adders- Half and full subtractors-RS Flip-flop-clocked RS Flip-flop, JK Flip-flop, JK master slave Flip-flop, D Flip-flop, T Flip-flop 555 timer-Astable multivibrator, monostable multivibrator-Frequency divider(11L+7T)

5 Hrs

Page **24** of **54**

UNIT IV: KARNAUGH MAP AND COMBINATIONAL CIRCUIT APPLICATIONS

Karnaugh map - 2,3and 4 variables –simplification-SOP and POS form of Boolean functions - Don't care conditions-Multiplexer, Demultiplexer, Encoder, Decoder, parity generator and checker. (10L+6T)

UNIT V : SHIFT REGISTERS AND COUNTERS

Types of registers- Serial in –Serial out-Serial in-Parallel out- Parallel in- Serial out- Parallel in- Parallel out-Asynchronous and Synchronous counters-

Ring counter- Binary counter- Up- Down counter- Mod-5 counter- Mod-10 counter (decade counter)-A/D and D/A converters(9L+6T)

Books for study

1.Digital principles and applications - Albert Paul Malvino & Donald P.Leach Books for reference

1.Digital logic and computer design-Morris Mano-Prentice Hall of India, Pvt.Ltd.

2.GothmannW.H., Digital Electronics- Prentice Hall of India, Pvt.Ltd.

3.Metha V.K.Mehtha.R.Principles of electronics, S.Chand & Co.

4. Fundamentals of Digital Electronics and Microprocessors - Anokh singh

Hour allotment	Class Schedule
	Even Semester Begin on 3.12.2018

1-L1	Decimal, binary, octal
2-L2	hexadecimal number systems
3- L3	Interconversions
4-L4	binary arithmetic-binary addition
5-L5	subtraction-1's and 2's complements
6-L6	BCD codes, ASCII code
7-L7	Excess-3code, Gray code. (7L+5T)
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	Boolean algebra
10- L9	De Morgan's theorem
11-L10	Positive logic and negative logic system
12-L11	Basic logic gates, OR, AND, NOT
13-L12	NAND and NOR as universal building blocks. (8L+6T)
14-L13	Half and full adders
15-L14	Half and full subtractors
16-L15	RS Flip-flop-clocked RS Flip
17- L16	, JK Flip-flop, JK master slave Flip-flop
18- L17	D Flip-flop, T Flip-flop 555 timer
19- L18	Astable multivibrator, monostable multivibrator
20- L19	Frequency divider(11L+7T)
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins
22- L21	Karnaugh map
23- IT-1	Internal Test-I
24- L22	2,3 Variables
25- L23	4 Variables
26- L24	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
27- L25	Simplification
28- L26	SOP form of Boolean Function
29- L27	POS Form of Boolean Function
30- P2	College level meeting/Cell function
31-L28	Don't Care Conditions
32-L29 33-L30	Multiplexer DeMultiplexer Exploration
33-L30 34- L31	DeMultiplexer Explanation Encoder
34- L31 35- L32	Decoder
36- L33	Parity Generator
30- L33 37- L34	
37-L34 38-L35	checker. (10L+6T) Types of Resisters
38-L35 39- L36	Serial In
40- L37	Serial Out

41- L38	Parallel in	
42-P3	Department Seminar	
43- L39	Parallel out	
44- L40	Parallel In	
45- L41	Serial out- Parallel in- Parallel out	
46- L42	Asynchronous Counters	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins	
48- L44	Synchronous Counters	
49-IT-II	Internal Test-II	
50-L45	Ring counter	
51- L46	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	Ring counter	
53- L48	Up- Down counter	
54- L49	Mod-5 counter	
55- L50	Mod-10 Counter	
56- L51	decade counter	
57- L52	A/D Counter	
58- L53	D/A Counter	
59-P4	College level meeting/ function	
60- L54	Practical work	
61- L55	Problems explanation	
62- L56	Problems explanation	
63- L57	Revision	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins	
65- L59	Practical	
66-L60	Problems	
67-IT-III	Internal Test-III	
68- L61 69- L62	Revision Revision Test	
70- L63	- Test Paper distribution and result analysis	
70- L03		
	Entering Internal Test-III Marks into University portal Model Test begins	
71-MT	Model Test	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.4.2019	

Learning Outcomes	COs of the course " <course name="">"</course>

CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Digital Electronics
Course Code	JMPH63
Class	III year (2016-2019)
Semester	Even
Staff Name	Dr. M. Daniel Sweetlin
Credits	5
L. Hours /P. Hours	5 / WK
Total 75 Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /	unit)

Course Objectives

Syllabus

SEMESTER-VI

PAPER XII

DIGITAL ELECTRONICS

L T P C 3 2 0 4

Preamble: This course provides an understanding of Boolean algebra and digital

circuits. The paper need a basic knowledge in solid state electronics and the learners are expected to gain knowledge to design electronic circuits

UNIT I: NUMBER SYSTEMS, BINARY ARITHMETIC AND CODES

Decimal, binary, octal and hexadecimal number systems and their interconversions

-binary arithmetic-binary addition-subtraction-1's and 2's

complements- BCD codes, ASCII code, Excess-3code, Gray code. (7L+5T) UNIT II: BOOLEAN ALGEBRA AND LOGIC GATES

Boolean algebra-De Morgan's theorem –Positive logic and negative logic systems-Basic logic gates, OR, AND, NOT (symbol, Boolean equation, truth table,

circuit diagram and working)-NAND, NOR, EX-OR (symbol, Boolean equation,

truth table only)-NAND and NOR as universal building blocks. (8L+6T) UNIT III:ARITHMETIC CIRCUITS, FLIP-FLOPS AND

MULTIVIBRATORS

Half and full adders- Half and full subtractors-RS Flip-flop-clocked RS Flip-flop, JK Flip-flop, JK master slave Flip-flop, D Flip-flop, T Flip-flop 555 timer-Astable multivibrator, monostable multivibrator-Frequency divider(11L+7T)

5 Hrs

Page **24** of **54**

UNIT IV: KARNAUGH MAP AND COMBINATIONAL CIRCUIT APPLICATIONS

Karnaugh map - 2,3and 4 variables –simplification-SOP and POS form of Boolean functions - Don't care conditions-Multiplexer, Demultiplexer, Encoder, Decoder, parity generator and checker. (10L+6T)

UNIT V : SHIFT REGISTERS AND COUNTERS

Types of registers- Serial in –Serial out-Serial in-Parallel out- Parallel in- Serial out- Parallel in- Parallel out-Asynchronous and Synchronous counters-

Ring counter- Binary counter- Up- Down counter- Mod-5 counter- Mod-10 counter (decade counter)-A/D and D/A converters(9L+6T)

Books for study

1.Digital principles and applications - Albert Paul Malvino & Donald P.Leach Books for reference

1.Digital logic and computer design-Morris Mano-Prentice Hall of India, Pvt.Ltd.

2.GothmannW.H., Digital Electronics- Prentice Hall of India, Pvt.Ltd.

3.Metha V.K.Mehtha.R.Principles of electronics, S.Chand & Co.

4. Fundamentals of Digital Electronics and Microprocessors - Anokh singh

Hour	Class Schedule
allotment	

	Even Semester Begin on 3.12.2018
1-L1	Decimal, binary, octal
2-L2	hexadecimal number systems
3- L3	Interconversions
4-L4	binary arithmetic-binary addition
5-L5	subtraction-1's and 2's complements
6-L6	BCD codes, ASCII code
7-L7	Excess-3code, Gray code. (7L+5T)
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	Boolean algebra
10- L9	De Morgan's theorem
11-L10	Positive logic and negative logic system
12-L11	Basic logic gates, OR, AND, NOT
13-L12	NAND and NOR as universal building blocks. (8L+6T)
14-L13	Half and full adders
15-L14	Half and full subtractors
16-L15	RS Flip-flop-clocked RS Flip
17- L16	, JK Flip-flop, JK master slave Flip-flop
18- L17	D Flip-flop, T Flip-flop 555 timer
19- L18	Astable multivibrator, monostable multivibrator
20- L19	Frequency divider(11L+7T)
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins
22- L21	Karnaugh map
23- IT-1	Internal Test-I
24- L22	2,3 Variables
25- L23	4 Variables
26- L24	Test Paper distribution and result analysis
27- L25	Entering Internal Test-I Marks into University portal
27- L23 28- L26	Simplification SOP form of Boolean Function
28- L20 29- L27	POS Form of Boolean Function
30- P2	College level meeting/Cell function
30 12 31-L28	Don't Care Conditions
32-L29	Multiplexer
33-L30	DeMultiplexer Explanation
34- L31	Encoder
35- L32	Decoder
36- L33	Parity Generator
37- L34	checker. (10L+6T)
38-L35	Types of Resisters
39- L36	Serial In

Serial Out
Parallel in
Department Seminar
Parallel out
Parallel In
Serial out- Parallel in- Parallel out
Asynchronous Counters
Allotting portion for Internal Test-II
Internal Test II begins
Synchronous Counters
Internal Test-II
Ring counter
-Test Paper distribution and result analysis
Entering Internal Test-II Marks into University portal
Ring counter
Up- Down counter
Mod-5 counter
Mod-10 Counter
decade counter
A/D Counter
D/A Counter
College level meeting/ function
Practical work
Problems explanation
Problems explanation
Revision
Allotting portion for Internal Test-III
Internal Test III begins Practical
Problems
Internal Test-III
Revision
Revision Test
Test Paper distribution and result analysis
Entering Internal Test-III Marks into University portal
Model Test begins
Model Test
Model Test
Model TestModel test paper distribution and previous year university question paper
discussion
Feedback of the Course, analysis and report preparation
Last Working day on 23.4.2019

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Digital Electronics
Course Code	SMPH63
Class	III year (2017-2020)
Semester	Even
Staff Name	Dr. M. Daniel Sweetlin
Credits	5
L. Hours /P. Hours	5 / WK
Total 75 Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /	unit)

Course Objectives

Syllabus

SEMESTER-VI

PAPER XII

DIGITAL ELECTRONICS

LTPC

3204

Preamble: This course provides an understanding of Boolean algebra and digital

circuits. The paper need a basic knowledge in solid state electronics and the learners are expected to gain knowledge to design electronic circuits

UNIT I: NUMBER SYSTEMS, BINARY ARITHMETIC AND CODES

Decimal, binary, octal and hexadecimal number systems and their interconversions

-binary arithmetic-binary addition-subtraction-1's and 2's

complements- BCD codes, ASCII code, Excess-3code, Gray code. (7L+5T) UNIT II: BOOLEAN ALGEBRA AND LOGIC GATES

Boolean algebra-De Morgan's theorem –Positive logic and negative logic systems-Basic logic gates, OR, AND, NOT (symbol, Boolean equation, truth table,

circuit diagram and working)-NAND, NOR, EX-OR (symbol, Boolean equation,

truth table only)-NAND and NOR as universal building blocks. (8L+6T) UNIT III:ARITHMETIC CIRCUITS, FLIP-FLOPS AND MULTIVIBRATORS

Half and full adders- Half and full subtractors-RS Flip-flop-clocked RS Flip-flop, JK Flip-flop, JK master slave Flip-flop, D Flip-flop, T Flip-flop 555 timer-Astable multivibrator, monostable multivibrator-Frequency divider(11L+7T)

5 Hrs

Page **24** of **54**

UNIT IV: KARNAUGH MAP AND COMBINATIONAL CIRCUIT APPLICATIONS

Karnaugh map - 2,3and 4 variables –simplification-SOP and POS form of Boolean functions - Don't care conditions-Multiplexer, Demultiplexer, Encoder, Decoder, parity generator and checker. (10L+6T)

UNIT V : SHIFT REGISTERS AND COUNTERS

Types of registers- Serial in –Serial out-Serial in-Parallel out- Parallel in- Serial out- Parallel in- Parallel out-Asynchronous and Synchronous counters-

Ring counter- Binary counter- Up- Down counter- Mod-5 counter- Mod-10 counter (decade counter)-A/D and D/A converters(9L+6T)

Books for study

1.Digital principles and applications - Albert Paul Malvino & Donald P.Leach Books for reference

1.Digital logic and computer design-Morris Mano-Prentice Hall of India, Pvt.Ltd.

2.GothmannW.H., Digital Electronics- Prentice Hall of India, Pvt.Ltd.

3.Metha V.K.Mehtha.R.Principles of electronics, S.Chand & Co.

4. Fundamentals of Digital Electronics and Microprocessors - Anokh singh

Hour allotment	Class Schedule
	Even Semester Begin on 2.12.2019

Decimal, binary, octal
hexadecimal number systems
Interconversions
binary arithmetic-binary addition
subtraction-1's and 2's complements
BCD codes, ASCII code
Excess-3code, Gray code. (7L+5T)
Welcoming of First year and Inauguration of MathematicsAssociation
Boolean algebra
De Morgan's theorem
Positive logic and negative logic system
Basic logic gates, OR, AND, NOT
NAND and NOR as universal building blocks. (8L+6T)
Half and full adders
Half and full subtractors
RS Flip-flop-clocked RS Flip
, JK Flip-flop, JK master slave Flip-flop
D Flip-flop, T Flip-flop 555 timer
Astable multivibrator, monostable multivibrator
Frequency divider(11L+7T)
Allotting portion for Internal Test-I
Internal Test I begins
Karnaugh map
Internal Test-I
2,3 Variables
4 Variables
Test Paper distribution and result analysis
Entering Internal Test-I Marks into University portal
Simplification
SOP form of Boolean Function
DOS Farmer of Deplacer Free (
POS Form of Boolean Function
College level meeting/Cell function
College level meeting/Cell function Don't Care Conditions
College level meeting/Cell function Don't Care Conditions Multiplexer
Don't Care ConditionsMultiplexerDeMultiplexer Explanation
College level meeting/Cell function Don't Care Conditions Multiplexer DeMultiplexer Explanation Encoder
Don't Care ConditionsMultiplexerDeMultiplexer ExplanationEncoderDecoder
Don't Care ConditionsMultiplexerDeMultiplexer ExplanationEncoderDecoderParity Generator
Don't Care ConditionsMultiplexerDeMultiplexer ExplanationEncoderDecoderParity Generatorchecker. (10L+6T)
Don't Care ConditionsMultiplexerDeMultiplexer ExplanationEncoderDecoderParity Generator

41- L38	Parallel in	
42-P3	Department Seminar	
43- L39	Parallel out	
44- L40	Parallel In	
45- L41	Serial out- Parallel in- Parallel out	
46- L42	Asynchronous Counters	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins	
48- L44	Synchronous Counters	
49-IT-II	Internal Test-II	
50-L45	Ring counter	
51- L46	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	Ring counter	
53- L48	Up- Down counter	
54- L49	Mod-5 counter	
55- L50	Mod-10 Counter	
56- L51	decade counter	
57- L52	A/D Counter	
58- L53	D/A Counter	
59-P4	College level meeting/ function	
60- L54	Practical work	
61- L55	Problems explanation	
62- L56	Problems explanation	
63- L57	Revision	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins	
65- L59	Practical	
66-L60	Problems	
67-IT-III	Internal Test-III	
68- L61 69- L62	Revision Revision Test	
70- L63	- Test Paper distribution and result analysis	
70- L03	Entering Internal Test-III Marks into University portal	
	Model Test begins	
71-MT	Model Test	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 27.4.2020	

Learning Outcomes	COs of the course " <course name="">"</course>
-------------------	---

CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Electricity	
Course Code	SMPH31	
Class	II year (2014-2015)	
Semester	Odd	
Staff Name	Dr. A. Arul Gnanam	
Credits	4	
L. Hours /P. Hours 4 / WK		
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- Objective of the paper is to provide a basic knowledge about electricity and various methods of analyzing electric circuits with d.c. and a.c. sources.
- This paper does not require any special prerequisite except the basic ideas on electricity at the school level and learners are expected to gain knowledge to design and characterize electric circuits.

Syllabus

UNIT-1: ELETRIC FIELD AND POTENTIAL

Introduction-electric charge- coulomb's law-electric field-lines of force electric flux-Gauss's law-applications-coulomb's law from Gauss's law- electric field at a point due to point charge-line charge- spherically symmetric charge distribution-sheet of charge. -electric potential- relation connecting electric field and potential- equip potential lines and surfaces - potential at a point due to point charge-collection of charges-dipole and charged spherical shell-electric potential energy (12L)

UNIT-II: THERMO ELECTRICITY

Seebeck effect- laws of thermo e.m.f-- measurement of thermo e.m.f using potentiometer-Peltier effect-demonstration—Thomson effect- demonstration -thermodynamics of thermo couple –thermo electric power diagram –uses applications- thermopile-Boy's radio micrometre –thermo-milli ammeter (11L)

UNIT-III: CHEMICAL EFFECT OF ELECTRIC CURRENT

Introduction -Faradays laws of electrolysis- electrical conductivity of an electrolyte-specific conductivity- Kohlrausch's bridge method of determining the specific conductivity of an electrolyte -Arrhenius theory of electrolytic dissociation- —mobility of ions- Secondary cells-Gibbs —Helmholtz equation for a reversible cell . (10L)

UNIT-IV: STEADY CURRENT AND TRANSIENT CURRENT

Current and current density-ohm's law in vector form-conversion of galvanometer into voltmeter and ammeter-kirchoff's law-application to wheat stone's network Growth and decay of current in a circuit containing L and R with d.c.voltages - growth and decay of charge in a capacitance ,resistance circuit determination of high resistance by leakage – growth and decay of charge in LCR circuit-conditions for the discharge to be oscillatory – frequency of oscillation.

(15L)

UNIT-V: ALTERNATING CURRENT

Alternating Current- j operator method –use of j operator in the study of AC circuits-Resistance in an AC circuit-Inductance in an AC circuit- Capacitance in an AC circuit-AC through an inductance and resistance in series- capacitance and resistance in series – LCR series resonance circuit -sharpness of resonance parallel resonance circuit -power in an AC circuit-power factor. (12L)

Books for study

1. Electricity and Magnetism -R. Murugesan (S.Chand &Co.)

Books for Reference

1. Electricity and Magnetism -D.N.Vasudeva (Twelfth revised edition)

- 2. Electricity and Magnetism K.K.Tiwari (S.Chand &Co.)
- 3. Electricity and Magnetism -E.M.Pourcel,Berkley Physics Cource, Vol.2 (Mc Grraw-Hill)

4. Electricity and Magnetism - Tayal (Himalalaya Publishing Co.)

5. Fundamentals of Physics, 6th Edition, by D Halliday, R Resnick and J Walker.

Wiley NY 2001

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.6.2014
1-L1	Introduction-electric charge
2-L2	coulomb's law-electric field
3- L3	lines of forceelectric flux
4-L4	Gauss's law-applications
5-L5	coulomb's law from Gauss's law
6-L6	electric field at a point due to point charge
7-L7	line charge- spherically symmetric charge
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	distribution-sheet of charge
10- L9	electric potential
11-L10	relation connecting electric field and potential
12-L11	equipotential lines and surfaces

13-L12	potential at a point due to point charge	
14-L13	dipole and charged spherical shell	
15-L14	Allotting portion for Internal Test-I	
13-L14	Internal Test I begins 30.07.2014	
16-L15	electric potential Energy	
10-L15 17-IT-1	Internal Test-I	
17-11-1 18-L16	UNIT-II: THERMO ELECTRICITY	
10-L10	Seebeck effect	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	laws of thermo e.m.f	
21- L19	measurement of thermo e.m.f using potentiometer	
22- P2	College level meeting/Cell function	
23-L20	Peltier effect-demonstration	
23-L23 24-L21	Thomson effect	
25-L22	demonstration -thermodynamics of thermo couple	
26-L23	thermo electric power diagram	
27-L24	Usesapplications	
28-L25	CHEMICAL EFFECT OF ELECTRIC CURRENT	
20 220	Introduction	
29-L26	Faradays laws of electrolysis	
30-L27	electrical conductivity of an electrolyte	
31-L28	specific conductivity	
32-L29	Kohlrausch's bridge method	
33-L30	specific conductivity of an electrolyte	
34- P3	Department Seminar	
35-L31	Arrhenius theory of electrolytic dissociation	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins 18.08.2014	
37- L33	mobility of ions	
38- IT-II	Internal Test-II	
39-L34	Secondary cells- Gibbs	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Helmholtz equation	
42- L37	Current and current density	
43- L38	ohm's law in vector form	
44- P4	College level meeting/ function	
45-L39	conversion of galvanometer into voltmeter and ammeter-kirchoff's law	
46-L40	application to wheat stone's network	
47-L41	Growth and decay of current in a circuit containing L and R with	
	d.c.voltages	
48-L42	growth and decay of charge in a capacitance ,resistance circuitdetermination	
49-L43	growth and decay of charge in LCR circuit-conditions for the discharge to be	
	oscillatory	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins 15.09.2014	
51 L45	Alternating Current- j operator method –use of j operator in the study of AC	

	circuits
52- L46	Capacitance and resistance in series
53-IT-III	Internal Test-III
54-L47	LCR series resonance circuit
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 24.10.2014
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 31.11.2014

Learning Outcomes	COs of the course " <electricity>"</electricity>	
CO1	Analysis of Resistive Circuits and Solution of resistive circuits	
	with independent sources	
CO2	Two Terminal Element Relationships for inductors and capacitors	
	and analysis of magnetic	
CO3	Analysis of Single Phase AC Circuits, the representation of	
	alternating quantities and determining the power in these circuit	
CO4	To acquire the knowledge about the characteristics and working	
	principles of semiconductor diodes, Bipolar Junction Transistor	
CO5	To get an insight about the basic introduction of Digital	
	electronics.	
CO6	Acquire basic knowledge on the working of various semi-	
	conductor devices	
CO7		
CO8	Develop competence in frequency response analysis of discrete amplifiers	
CO9		
	BJT and FET	
Experimental		
Learning	~	
EL1	Design and experiment with various application circuits using diodes	
EL2	Design and experiment with various signal and power amplifier	
	circuits using BJTs and FETs	
EL3	Design and experiment with various voltage regulation circuits	
EL4	Study different meters and instruments for measurement of	
	electronic quantities	
Integrated Activity		
IA1		
IA2		

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
	iourining resources, coogle classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014 - 2015)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Electricity	
Course Code	SMPH31	
Class	II year (2018-2019)	
Semester	Odd	
Staff Name	Dr. A. Arul Gnanam	
Credits	4	
L. Hours /P. Hours 4 / WK		
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Objective of the paper is to provide a basic knowledge about electricity and various methods of analyzing electric circuits with d.c. and a.c. sources. This paper does not require any special prerequisite except the basic ideas on electricity at the school level and learners are expected to gain knowledge to design and characterize electric circuits.

Syllabus

ELECTRICITY

Preamble:

UNIT-1: ELETRIC FIELD AND POTENTIAL

Introduction-electric charge- coulomb's law-electric field-lines of forceelectric flux-Gauss's law-applications-coulomb's law from Gauss's law- electric field at a point due to point charge-line charge- spherically symmetric charge distribution-sheet of charge. -electric potential- relation connecting electric field and potential- equipotential lines and surfaces -potential at a point due to point charge-collection of charges-dipole and charged spherical shell-electric potential energy (12L)

UNIT-II: THERMO ELECTRICITY

See beck effect- laws of thermo e.m.f-- measurement of thermo e.m.f using potentiometer-Peltier effect-demonstration—Thomson effect- demonstration - thermodynamics of thermo couple –thermo electric power diagram –uses applications-thermopile-Boy's radio micrometre –thermo-milli ammeter (11L)

UNIT-III: CHEMICAL EFFECT OF ELECTRIC CURRENT

Introduction -Faradays laws of electrolysis- electrical conductivity of an electrolyte-specific conductivity- Kohlrausch's bridge method of determining the specific conductivity of an electrolyte -Arrhenius theory of electrolytic dissociation- —mobility of ions- Secondary cells- Gibbs –Helmholtz equation for a reversible cell . (10L)

UNIT-IV: STEADY CURRENT AND TRANSIENT CURRENT

Current and current density-ohm's law in vector form-conversion of Galvanometer into voltmeter and ammeter-kirch off's law-application to wheat stone's network Growth and decay of current in a circuit containing L and R with d.c. voltages - growth and decay of charge in a capacitance, resistance circuit determination of high resistance by leakage–growth and decay of charge in LCR circuit-conditions for the discharge to be oscillatory –frequency of oscillation.

(15L)

UNIT-V: ALTERNATING CURRENT

Alternating Current- j operator method –use of j operator in the study of

AC circuits-Resistance in an AC circuit-Inductance in an AC circuit- Capacitance in an AC circuit-AC through an inductance and resistance in series- capacitance and resistance in series – LCR series resonance circuit -sharpness of resonance parallel resonance circuit -power in an AC circuit-power factor. (12L)

Books for study

1. Electricity and Magnetism -R. Murugesan (S.Chand &Co.)

Books for Reference

1. Electricity and Magnetism -D.N.Vasudeva (Twelfth revised edition)

- 2. Electricity and Magnetism K.K.Tiwari (S.Chand &Co.)
- 3. Electricity and Magnetism -E.M.Pourcel,Berkley Physics Cource, Vol.2 (Mc Grraw-Hill)

4. Electricity and Magnetism - Tayal (Himalalaya Publishing Co.)

5. Fundamentals of Physics, 6th Edition, by D Halliday, R Resnick and J Walker. Wiley NY 2001

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.6.2014
1-L1	Introduction-electric charge
2-L2	coulomb's law-electric field
3- L3	lines of force electric flux
4-L4	Gauss's law-applications
5-L5	coulomb's law from Gauss's law
6-L6	electric field at a point due to point charge
7-L7	line charge- spherically symmetric charge
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	distribution-sheet of charge
10- L9	electric potential
11-L10	relation connecting electric field and potential
12-L11	equipotential lines and surfaces
13-L12	potential at a point due to point charge
14-L13	dipole and charged spherical shell

15-L14	Allotting portion for Internal Test-I
	Internal Test I begins 30.07.2014
16-L15	electric potential Energy
17-IT-1	
-	Internal Test-I
18-L16	UNIT-II: THERMO ELECTRICITY
	Seebeck effect
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	laws of thermo e.m.f
21- L19	measurement of thermo e.m.f using potentiometer
22- P2	College level meeting/Cell function
23-L20	Peltier effect-demonstration
24-L21	Thomson effect
25-L22	demonstration -thermodynamics of thermo couple
26-L23	thermo electric power diagram
27-L24	Uses applications
28-L25	CHEMICAL EFFECT OF ELECTRIC CURRENT
	Introduction
29-L26	Faradays laws of electrolysis
30-L27	electrical conductivity of an electrolyte
31-L28	specific conductivity
32-L29	Kohlrausch's bridge method
33-L30	specific conductivity of an electrolyte
34- P3	Department Seminar
35-L31	Arrhenius theory of electrolytic dissociation
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins 18.08 .2014
37- L33	mobility of ions
38- IT-II	Internal Test-II
39-L34	Secondary cells- Gibbs
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Helmholtz equation
42- L37	Current and current density
43- L38	ohm's law in vector form
44- P4	College level meeting/ function
45-L39	conversion of galvanometer into voltmeter and ammeter-kirchoff's law
46-L40	application to wheat stone's network
47-L41	Growth and decay of current in a circuit containing L and R with
	d.c.voltages
48-L42	growth and decay of charge in a capacitance ,resistance circuit determination
49-L43	growth and decay of charge in LCR circuit-conditions for the discharge to be
	oscillatory
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins 15.09 .2014
51 L45	Alternating Current- j operator method –use of j operator in the study of AC
	circuits

52- L46	Capacitance and resistance in series
53-IT-III	Internal Test-III
54-L47	LCR series resonance circuit
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 24.10.2014
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.11.2018

Learning Outcomes	COs of the course " <electricity>"</electricity>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Electricity	
Course Code	SMPH31	
Class	II year (2019-2020)	
Semester	Odd	
Staff Name	Dr. A. Arul Gnanam	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

SEMESTER- III PAPER -V

LTPC 4004 ELECTRICITY

Preamble: Objective of the paper is to provide a basic knowledge about electricity and various methods of analyzing electric circuits with d.c. and a.c. sources. This paper does not require any special prerequisite except the basic ideas

on electricity at the school level and learners are expected to gain knowledge to design and characterize electric circuits.

UNIT-1: ELETRIC FIELD AND POTENTIAL

Introduction-electric charge- coulomb's law-electric field-lines of forceelectric flux-Gauss's law-applications-coulomb's law from Gauss's law- electric field at a point due to point charge-line charge- spherically symmetric charge distribution-sheet of charge. -electric potential- relation connecting electric field and potential- equipotential lines and surfaces -potential at a point due to point charge-collection of charges-dipole and charged spherical shell-electric potential

energy (12L)

UNIT-II: THERMO ELECTRICITY

Seebeck effect- laws of thermo e.m.f- measurement of thermo e.m.f using potentiometer-Peltier effect-demonstration—Thomson effect- demonstration - thermodynamics of thermo couple –thermo electric power diagram – usesapplications-

thermopile-Boy's radio micrometre -thermo-milli ammeter (11L)

UNIT-III: CHEMICAL EFFECT OF ELECTRIC CURRENT

Introduction -Faradays laws of electrolysis- electrical conductivity of an electrolyte-specific conductivity- Kohlrausch's bridge method of determining the

specific conductivity of an electrolyte -Arrhenius theory of electrolytic dissociation- —mobility of ions- Secondary cells- Gibbs –Helmholtz equation for

a reversible cell. (10L)

Page **6** of **54**

UNIT-IV: STEADY CURRENT AND TRANSIENT CURRENT

Current and current density-ohm's law in vector form-conversion of galvanometer into voltmeter and ammeter-kirchoff's law-application to wheat stone's network

Growth and decay of current in a circuit containing L and R with d.c.voltages - growth and decay of charge in a capacitance ,resistance circuitdetermination

of high resistance by leakage –growth and decay of charge in LCR circuit-conditions for the discharge to be oscillatory –frequency of oscillation. (15L)

UNIT-V: ALTERNATING CURRENT

Alternating Current- j operator method –use of j operator in the study of AC circuits-Resistance in an AC circuit-Inductance in an AC circuit-Capacitance

in an AC circuit-AC through an inductance and resistance in series- capacitance and resistance in series – LCR series resonance circuit -sharpness of resonanceparallel

resonance circuit -power in an AC circuit-power factor. (12L)

Books for study

1. Electricity and Magnetism -R. Murugesan (S.Chand &Co.)

Books for Reference

1. Electricity and Magnetism -D.N.Vasudeva (Twelfth revised edition)

2. Electricity and Magnetism - K.K.Tiwari (S.Chand &Co.)

3. Electricity and Magnetism -E.M.Pourcel,Berkley Physics Cource, Vol.2 (Mc Grraw-Hill)

4. Electricity and Magnetism - Tayal (Himalalaya Publishing Co.)

5. Fundamentals of Physics, 6th Edition, by D Halliday, R Resnick and J Walker.

Wiley NY 2001

Hour allotment	Class Schedule	
anotment	Odd Semester Begin on 17.6.2019	
1-L1	Introduction-electric charge	
2-L2	coulomb's law-electric field	
3- L3	lines of forceelectric flux	
4-L4	Gauss's law-applications	
5-L5	coulomb's law from Gauss's law	
6-L6	electric field at a point due to point charge	
7-L7	line charge- spherically symmetric charge	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	distribution-sheet of charge	
10- L9	electric potential	
11-L10	relation connecting electric field and potential	
12-L11	equipotential lines and surfaces	
13-L12	potential at a point due to point charge	
14-L13	dipole and charged spherical shell	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	electric potential Energy	
17-IT-1		
	Internal Test-I	
18-L16	UNIT-II: THERMO ELECTRICITY	
	Seebeck effect	
19-L17	Test Paper distribution and result analysis	
20 I 10	Entering Internal Test-I Marks into University portal	
20-L18	laws of thermo e.m.f	
21- L19	measurement of thermo e.m.f using potentiometer	
22- P2	College level meeting/Cell function	
23-L20	Peltier effect-demonstration	
24-L21	Thomson effect	

25-L22	demonstration -thermodynamics of thermo couple	
26-L23	thermo electric power diagram	
27-L24	Usesapplications	
28-L25	CHEMICAL EFFECT OF ELECTRIC CURRENT	
	Introduction	
29-L26	Faradays laws of electrolysis	
30-L27	electrical conductivity of an electrolyte	
31-L28	specific conductivity	
32-L29	Kohlrausch's bridge method	
33-L30	specific conductivity of an electrolyte	
34- P3	Department Seminar	
35-L31	Arrhenius theory of electrolytic dissociation	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	mobility of ions	
38- IT-II	Internal Test-II	
39-L34	Secondary cells- Gibbs	
40-L35	Test Paper distribution and result analysis	
41.1.2.6	Entering Internal Test-II Marks into University portal	
41-L36	Helmholtz equation	
42- L37	Current and current density	
43- L38	ohm's law in vector form	
44- P4	College level meeting/ function	
45-L39	conversion of galvanometer into voltmeter and ammeter-kirchoff's	
AC I 40	law	
46-L40	application to wheat stone's network	
47-L41	Growth and decay of current in a circuit containing L and R with	
	d.c.voltages	
48-L42	growth and decay of charge in a capacitance, resistance	
	circuitdetermination	
49-L43	growth and decay of charge in LCR circuit-conditions for the	
19 110	discharge to be oscillatory	
50-L44	Allotting portion for Internal Test-III	
50 ETT	Internal Test III begins	
51 L45	Alternating Current- j operator method –use of j operator in the study	
	of AC circuits	
52- L46	Capacitance and resistance in series	
53-IT-III	Internal Test-III	
54-L47	LCR series resonance circuit	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	

56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 30.10.2019

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Electricity and Magnetism	
Course Code	GMPH31	
Class	II year (2014-2015)	
Semester	Odd	
Staff Name	Mrs. R. Nithya Agnes	
Credits	4	
L. Hours /P. Hours 4 / WK		
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

ELECTRICITY AND MAGNETISM

Unit I

Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – electric potential – relation connecting electric potential and electric field – potential at a point due to a point charge – potential due to an electric dipole – capacity – capacitance of a spherical and cylindrical

capacitor – energy of a charged capacitor – Loss of energy due to sharing of charges. Unit II

Chemical Effects of Electric Current: Faraday's Laws of Electrolysis – electrical conductivity of an electrolyte – specific conductivity – Kohlrausch bridge – Thermoelectricity –

Seebeck effect – Peltier effect – Thomson effect – total e.m.f – thermodynamics of thermocouple

- thermoelectric power diagram - its uses - applications.

Unit III

Transient Current: Growth and decay of current in a circuit containing resistance and inductance – Growth and decay of charge in a circuit containing resistance and capacitance – Detremination of high resistance by leakage – Growth and decay of charge in a LCR circuit – condition for the discharge to be oscillatory – Frequency of Oscillation. 672

Unit IV

Alternating Current: j operator – properties – use of j operator in the study of A.C Circuit with R only – inductance only – capacitance only – LCR series and parallel circuits – power in

an AC circuit – Wattless current – choke coil – construction and working of AC generator, 1 phase and 3 phase AC generator – distribution of 3 phase AC – star connection – delta connection.

Unit V

Magnetic Properties of Materials: Magnetic induction – Magnetism – Relation between B, H and M – Magnetic susceptibility – Magnetic permeability – Relation between them – Electron theory of dia, para and ferromagnetism – Determination of susceptibility – Curie balance method – Moving coil Ballistic galvanometer – construction – theory – correction for damping in B.G – Measurement of Charge sensitiveness – absolute capacity of a condenser. Books for Study and reference:

1. Electricity and Magnetism - D.N. Vasudeva

2.Electricity and Magnetism - Brijlal and Subramanian

3. Electricity and Magnetism - R. Murugeshan

4.Electricity and Magnetism - K.K. Tewari

5.Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.6.2014	
1-L1	Electrostatics: Coulomb's law – electric field – electric dipole – electric flux	
2-L2	Coulomb's law – electric field – electric dipole – electric flux – electric potential	
	_	
	relation connecting electric potential and electric field	
3- L3	potential at a point due to a point	
	charge – potential due to an electric dipole	
4-L4	potential due to an electric dipole – capacity	
5-L5	capacitance of a spherical and cylindrical	
6-L6	capacitor - energy of a charged capacitor - Loss of energy due to sharing of	
	charges	
7-L7	Unit II	
	Chemical Effects of Electric Current: Faraday's Laws of Electrolysis	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	Electrical conductivity of an electrolyte	
10- L9	specific conductivity – Kohlrausch bridge – Thermoelectricity –	

11-L10	Seebeck effect – Peltier effect – Thomson effect	
12-L11	thermoelectric power diagram – its uses – applications	
13-L12	Unit III	
	Transient Current: Growth and decay of current in a circuit	
14-L13	Growth and decay of charge in a circuit containing resistance and capacitance	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	Detremination of high resistance by leakage –	
17-IT-1	Growth and decay of charge in a LCR circuit –Internal Test-I	
18-L16	Condition for the discharge to be oscillatory – Frequency of Oscillation.	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Alternating Current: j operator – properties	
21- L19	properties – use of j operator in the study of A.C Circuit	
22- P2	College level meeting/Cell function	
23-L20	inductance only – capacitance only – LCR series and parallel circuits – power in	
	an AC circuit	
24-L21	Wattless current – choke coil	
25-L22	construction and working of AC generator, 1	
26-L23	phase and 3 phase AC generator	
27-L24	distribution of 3 phase AC	
28-L25	star connection – delta connection	
29-L26	Magnetic Properties of Materials	
30-L27	Magnetic induction – Magnetism –	
31-L28	Relation between B, H and M – Magnetic susceptibility	
32-L29	Magnetic permeability	
33-L30	Relation between them Electron theory of dia, para and ferromagnetism	
34- P3	Department Seminar	
35-L31	Determination of susceptibility	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Curie balance method	
38- IT-II	Internal Test-II	
39-L34	Moving coil Ballistic galvanometer	
40-L35		
	Entering Internal Test-II Marks into University portal	
41-L36	Moving coil Ballistic galvanometer – construction	
42- L37	theory – correction for	
43- L38	correction for damping in B.G	
44- P4	College level meeting/ function	
45-L39	Measurement of Charge sensitiveness	
46-L40	absolute capacity of a condenser	
47-L41	Solving Problems	
48-L42	Curie balance method explanation	
49-L43	Determination of susceptibility	
50-L44	Allotting portion for Internal Test-III	
-	Internal Test III begins	
51 L45	Practical explanation	

52- L46	Measurement of Charge sensitiveness
53-IT-III	Internal Test-III
54-L47	Revision
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 31.10.2014

Learning Outcomes	COs of the course " <course name="">"</course>
C01	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Electricity and Magnetism	
Course Code	GMPH31	
Class	II year (2015-2016)	
Semester	Odd	
Staff Name	Mrs. R. Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

ELECTRICITY AND MAGNETISM

Unit I

Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – electric potential – relation connecting electric potential and electric field – potential at a point due to a point charge – potential due to an electric dipole – capacity – capacitance of a spherical and cylindrical

capacitor – energy of a charged capacitor – Loss of energy due to sharing of charges. Unit II

Chemical Effects of Electric Current: Faraday's Laws of Electrolysis – electrical conductivity of an electrolyte – specific conductivity – Kohlrausch bridge – Thermoelectricity –

 $See beck\ effect-Peltier\ effect-Thomson\ effect-total\ e.m.f-thermodynamics\ of\ thermocouple$

- thermoelectric power diagram - its uses - applications.

Unit III

Transient Current: Growth and decay of current in a circuit containing resistance and inductance – Growth and decay of charge in a circuit containing resistance and capacitance – Detremination of high resistance by leakage – Growth and decay of charge in a LCR circuit – condition for the discharge to be oscillatory – Frequency of Oscillation. 672

Unit IV

Alternating Current: j operator – properties – use of j operator in the study of A.C Circuit with R only – inductance only – capacitance only – LCR series and parallel circuits – power in

an AC circuit – Wattless current – choke coil – construction and working of AC generator, 1 phase and 3 phase AC generator – distribution of 3 phase AC – star connection – delta connection.

Unit V

Magnetic Properties of Materials: Magnetic induction – Magnetism – Relation between B, H and M – Magnetic susceptibility – Magnetic permeability – Relation between them – Electron theory of dia, para and ferromagnetism – Determination of susceptibility – Curie balance method – Moving coil Ballistic galvanometer – construction – theory – correction for damping in B.G – Measurement of Charge sensitiveness – absolute capacity of a condenser. Books for Study and reference:

1. Electricity and Magnetism - D.N. Vasudeva

2.Electricity and Magnetism - Brijlal and Subramanian

3. Electricity and Magnetism - R. Murugeshan

4.Electricity and Magnetism - K.K. Tewari

5.Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.6.2015
1-L1	Electrostatics: Coulomb's law – electric field – electric dipole – electric flux
2-L2	Coulomb's law – electric field – electric dipole – electric flux – electric potential
	_
	relation connecting electric potential and electric field
3- L3	potential at a point due to a point
	charge – potential due to an electric dipole
4-L4	potential due to an electric dipole – capacity
5-L5	capacitance of a spherical and cylindrical
6-L6	capacitor – energy of a charged capacitor – Loss of energy due to sharing of
	charges
7-L7	Unit II
	Chemical Effects of Electric Current: Faraday's Laws of Electrolysis
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	Electrical conductivity of an electrolyte
10- L9	specific conductivity – Kohlrausch bridge – Thermoelectricity –

11-L10	Seebeck effect – Peltier effect – Thomson effect
12-L11	- thermoelectric power diagram - its uses - applications
13-L12	Unit III
	Transient Current: Growth and decay of current in a circuit
14-L13	- Growth and decay of charge in a circuit containing resistance and capacitance
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Detremination of high resistance by leakage –
17-IT-1	Growth and decay of charge in a LCR circuit –
	Internal Test-I
18-L16	condition for the discharge to be oscillatory – Frequency of Oscillation.
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Alternating Current: j operator – properties
21- L19	– properties – use of j operator in the study of A.C Circuit
22- P2	College level meeting/Cell function
23-L20	– inductance only – capacitance only – LCR series and parallel circuits – power
	in an AC circuit
24-L21	Wattless current – choke coil
25-L22	construction and working of AC generator, 1
26-L23	phase and 3 phase AC generator
27-L24	- distribution of 3 phase AC
28-L25	– star connection – delta connection
29-L26	Magnetic Properties of Materials
30-L27	Magnetic induction – Magnetism –
30 L27 31-L28	Relation between B, H and M – Magnetic susceptibility
31-L20 32-L29	Magnetic permeability
33-L30	Relation between them Electron theory of dia, para and ferromagnetism
34- P3	Department Seminar
35-L31	Determination of susceptibility
36-L32	Allotting portion for Internal Test-II
00 202	Internal Test II begins
37- L33	Curie balance method
38- IT-II	Internal Test-II
39-L34	Moving coil Ballistic galvanometer
40-L35	-Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Moving coil Ballistic galvanometer – construction
42- L37	theory – correction for
43- L38	correction for damping in B.G
44- P4	College level meeting/ function
45-L39	Measurement of Charge sensitiveness
46-L40	absolute capacity of a condenser
47-L41	Solving Problems
48-L42	Curie balance method explanation

49-L43	Determination of susceptibility
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Practical explanation
52- L46	Measurement of Charge sensitiveness
53-IT-III	Internal Test-III
54-L47	Revision
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 29.10.2015

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1 EL2	
EL2 EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.

	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Electricity and Magnetism	
Course Code	GMPH31	
Class	II year (2016-2017)	
Semester	Odd	
Staff Name	Mrs. R. Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

ELECTRICITY AND MAGNETISM

Unit I

Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – electric potential – relation connecting electric potential and electric field – potential at a point due to a point charge – potential due to an electric dipole – capacity – capacitance of a spherical and cylindrical

capacitor – energy of a charged capacitor – Loss of energy due to sharing of charges. Unit II

Chemical Effects of Electric Current: Faraday's Laws of Electrolysis – electrical conductivity of an electrolyte – specific conductivity – Kohlrausch bridge – Thermoelectricity –

Seebeck effect – Peltier effect – Thomson effect – total e.m.f – thermodynamics of thermocouple

- thermoelectric power diagram - its uses - applications.

Unit III

Transient Current: Growth and decay of current in a circuit containing resistance and inductance – Growth and decay of charge in a circuit containing resistance and capacitance – Detremination of high resistance by leakage – Growth and decay of charge in a LCR circuit – condition for the discharge to be oscillatory – Frequency of Oscillation. 672

Unit IV

Alternating Current: j operator – properties – use of j operator in the study of A.C Circuit with R only – inductance only – capacitance only – LCR series and parallel circuits – power in

an AC circuit – Wattless current – choke coil – construction and working of AC generator, 1 phase and 3 phase AC generator – distribution of 3 phase AC – star connection – delta connection.

Unit V

Magnetic Properties of Materials: Magnetic induction – Magnetism – Relation between B, H and M – Magnetic susceptibility – Magnetic permeability – Relation between them – Electron theory of dia, para and ferromagnetism – Determination of susceptibility – Curie balance method – Moving coil Ballistic galvanometer – construction – theory – correction for damping in B.G – Measurement of Charge sensitiveness – absolute capacity of a condenser. Books for Study and reference:

1. Electricity and Magnetism - D.N. Vasudeva

2.Electricity and Magnetism - Brijlal and Subramanian

3. Electricity and Magnetism - R. Murugeshan

4.Electricity and Magnetism - K.K. Tewari

5.Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.6.2016
1-L1	Electrostatics: Coulomb's law – electric field – electric dipole – electric flux
2-L2	Coulomb's law – electric field – electric dipole – electric flux – electric potential
	-
	relation connecting electric potential and electric field
3- L3	potential at a point due to a point
	charge – potential due to an electric dipole
4-L4	potential due to an electric dipole – capacity
5-L5	capacitance of a spherical and cylindrical
6-L6	capacitor - energy of a charged capacitor - Loss of energy due to sharing of
	charges
7-L7	Unit II
	Chemical Effects of Electric Current: Faraday's Laws of Electrolysis
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	Electrical conductivity of an electrolyte
10- L9	specific conductivity – Kohlrausch bridge – Thermoelectricity –

11-L10	Seebeck effect – Peltier effect – Thomson effect	
12-L11	- thermoelectric power diagram - its uses - applications	
13-L12	Unit III	
	Transient Current: Growth and decay of current in a circuit	
14-L13	- Growth and decay of charge in a circuit containing resistance and capacitance	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	Detremination of high resistance by leakage –	
17-IT-1	Growth and decay of charge in a LCR circuit –	
	Internal Test-I	
18-L16	condition for the discharge to be oscillatory – Frequency of Oscillation.	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Alternating Current: j operator – properties	
21- L19	– properties – use of j operator in the study of A.C Circuit	
22- P2	College level meeting/Cell function	
23-L20	– inductance only – capacitance only – LCR series and parallel circuits – power	
	in an AC circuit	
24-L21	Wattless current – choke coil	
25-L22	construction and working of AC generator, 1	
26-L23	phase and 3 phase AC generator	
27-L24	- distribution of 3 phase AC	
28-L25	- star connection – delta connection	
29-L26	Magnetic Properties of Materials	
30-L27	Magnetic induction – Magnetism –	
31-L28	Relation between B, H and M – Magnetic susceptibility	
32-L29	Magnetic permeability	
33-L30	Relation between them Electron theory of dia, para and ferromagnetism	
34- P3	Department Seminar	
35-L31	Determination of susceptibility	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Curie balance method	
38- IT-II	Internal Test-II	
39-L34	Moving coil Ballistic galvanometer	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Moving coil Ballistic galvanometer – construction	
42- L37	theory – correction for	
43- L38	correction for damping in B.G	
44- P4	College level meeting/ function	
45-L39	Measurement of Charge sensitiveness	
46-L40	absolute capacity of a condenser	
47-L41	Solving Problems	
48-L42	Curie balance method explanation	

49-L43	Determination of susceptibility
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Practical explanation
52- L46	Measurement of Charge sensitiveness
53-IT-III	Internal Test-III
54-L47	Revision
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 30.11.2016

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO1	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.

	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Electromagnetism
Course Code	SMPH41
Class	II year (2018-2019)
Semester	Even
Staff Name	Dr.A.Arul Gnanam
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /	unit)

Course Objectives

Syllabus

UNIT-1: ELECTROMAGNETIC INDUCTION

Faraday's laws of electromagnetic induction-self induction –self inductance of a long solenoid –toroidal solenoid-determination of L by Anderson's and Rayleigh's methods-Owen's bridge-mutual induction-experimental determination

of mutual inductance between a pair of coils using BG-co efficient of couplingenergy

stored in a coil-eddy currents-uses (13L)

UNIT-1I: MAGNETIC EFFECT OF ELECTRIC CURRENT

Magnetic flux and magnetic induction-relation between them- Biot Savart law- magnetic induction at a point on the axis of a circular coil carrying currentamperes circuital law-magnetic field inside a long solenoid -toroid- Lorent'z force on a moving charge- direction of force-torque on a current loop in a uniform magnetic field -Moving coil Ballistic galvanometer-theory -experiment to find charge sensitivity and absolute capacity of a capacitor-De sauty bridge. (14L) UNIT-11I: MAGNETIC FIELDS AND MAXWELL'S EQUATION The three magnetic vectors M, B, and H –relation between thempermeability and susceptibility- relation between them -B-H curve -Hysteresis-

Energy loss-Displacement current-Maxwell's equations-Boundary conditions-Poynting vector-Electromagnetic waves in free space-Hertz experiment for production and detection of EM waves. (12L)

UNIT-1V: ELECROMAGNETIC WAVES

Wave equations for Electric field and Magnetic field-monochromatic plane waves-EM waves in a matter-Reflection and Transmission at normal incidence and

oblique incidence-Polarization by reflection. (10L)

UNIT-V: APPLICATIONS OF ELECTROMAGNETISM

Earth inductor-uses of Earth inductor-measurement of horizontal component of the Earth's magnetic field-measurement of vertical component of Earth's Magnetic field-calibration of BG-measurement of intense magnetic field using search coil and BG-induction coil and uses. (11L)

Books for study

1.Electricity and Magnetism -R. Murugesan (S.Chand &Co.)

Hour allotment	Class Schedule
anotinent	Even Semester Begin on03.12.2018
1-L1	UNIT-1: ELECTROMAGNETIC INDUCTION
	Faraday's laws of electromagnetic induction
2-L2	self induction- self inductance of a toroidal solenoid
3- L3	self inductance of a long solenoid
4-L4	determination of L by Anderson's and Rayleigh's methods
5-L5	Owen's bridge
6-L6	mutual induction- experimental determination of mutual inductance
	between a pair of coils using BG
7-L7	co efficient of coupling energy stored in a coil
8- P1	Welcoming of First year and Inauguration of Mathematics Association
9- L8	eddy currents-uses
10- L9	Magnetic flux and magnetic induction
11-L10	relation between them- Biot Savart law
12-L11	magnetic induction at a point on the axis of a circular coil carrying
	current

13-L12	Amperes circuital law
14-L13	magnetic field inside a long solenoid -toroid
15-L14	- Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Lorent'z force on a moving charge- direction of force
17-IT-1	Internal Test-I
18-L16	Moving coil Ballistic galvanometer-theory
19-L17	Test Paper distribution and result analysis
20 J 10	Entering Internal Test-I Marks into University portal
20-L18	De sauty bridge
21- L19	torque on a current loop in a uniform magnetic field
22- P2	College level meeting/Cell function
23-L20	MAGNETIC FIELDS AND MAXWELL'S EQUATION
24-L21	relation between thempermeability and susceptibility
25-L22	Hertz experiment for production and detection of EM waves.
26-L23	Wave equations for Electric field and Magnetic field
27-L24	EM waves in a matter
28-L25	Reflection and Transmission at normal incidence and oblique
	incidence
29-L26	The three magnetic vectors M, B, and H
30-L27	relation between them
31-L28	Hysteresis-Energy loss
32-L29	Maxwell's equations-Boundary conditions-Poynting vector
33-L30	Electromagnetic waves in free space
34- P3	Department Seminar
35-L31	monochromatic plane waves
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	B-H curve
38- IT-II	Internal Test-II
39-L34	Polarization by reflection
40-L35	-Test Paper distribution and result analysis
41-L36	Entering Internal Test-II Marks into University portal
41-L30 42- L37	Displacement current
42- L37	experiment to find charge sensitivity and absolute capacity of a
42 1 20	capacitor
43- L38	experiment to find charge sensitivity and absolute capacity of a
44 D4	capacitor
44- P4 45-L39	College level meeting/ function Class test
45-L39 46-L40	measurement of horizontal component of Earth's Magnetic field
40-L40	calibration of BG
47-L41 48-L42	
	induction coil and uses
49-L43	UNIT-V: APPLICATIONS OF ELECTROMAGNETISM

50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Earth inductor-uses of Earth inductor	
52- L46	measurement of vertical component of Earth's Magnetic field	
53-IT-III	Internal Test-III	
54-L47	measurement of intense magnetic field using search coil and BG	
55-L48	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	component of the Earth's magnetic field	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on23.04.2019	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.

# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Electromagnetism
Course Code	SMPH41
Class	II year (2019-2020)
Semester	Even
Staff Name	Dr.A.Arul Gnanam
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /	unit)

Course Objectives

Syllabus

UNIT-1: ELECTROMAGNETIC INDUCTION

Faraday's laws of electromagnetic induction-self induction –self inductance of a long solenoid –toroidal solenoid-determination of L by Anderson's and Rayleigh's methods-Owen's bridge-mutual induction-experimental determination

of mutual inductance between a pair of coils using BG-co efficient of couplingenergy

stored in a coil-eddy currents-uses (13L)

UNIT-1I: MAGNETIC EFFECT OF ELECTRIC CURRENT

Magnetic flux and magnetic induction-relation between them- Biot Savart law- magnetic induction at a point on the axis of a circular coil carrying currentamperes circuital law-magnetic field inside a long solenoid -toroid- Lorent'z force on a moving charge- direction of force-torque on a current loop in a uniform magnetic field -Moving coil Ballistic galvanometer-theory -experiment to find charge sensitivity and absolute capacity of a capacitor-De sauty bridge. (14L) UNIT-11I: MAGNETIC FIELDS AND MAXWELL'S EQUATION The three magnetic vectors M, B, and H –relation between thempermeability and susceptibility- relation between them -B-H curve -Hysteresis-

Energy loss-Displacement current-Maxwell's equations-Boundary conditions-Poynting vector-Electromagnetic waves in free space-Hertz experiment for production and detection of EM waves. (12L)

UNIT-1V: ELECROMAGNETIC WAVES

Wave equations for Electric field and Magnetic field-monochromatic plane waves-EM waves in a matter-Reflection and Transmission at normal incidence and

oblique incidence-Polarization by reflection. (10L)

UNIT-V: APPLICATIONS OF ELECTROMAGNETISM

Earth inductor-uses of Earth inductor-measurement of horizontal component of the Earth's magnetic field-measurement of vertical component of Earth's Magnetic field-calibration of BG-measurement of intense magnetic field using search coil and BG-induction coil and uses. (11L)

Books for study

1.Electricity and Magnetism -R. Murugesan (S.Chand &Co.)

Hour allotment	Class Schedule
anotinent	Even Semester Begin on02.12.2019
1-L1	UNIT-1: ELECTROMAGNETIC INDUCTION
	Faraday's laws of electromagnetic induction
2-L2	self induction- self inductance of a toroidal solenoid
3- L3	self inductance of a long solenoid
4-L4	determination of L by Anderson's and Rayleigh's methods
5-L5	Owen's bridge
6-L6	mutual induction- experimental determination of mutual inductance
	between a pair of coils using BG
7-L7	co efficient of coupling energy stored in a coil
8- P1	Welcoming of First year and Inauguration of Mathematics Association
9- L8	eddy currents-uses
10- L9	Magnetic flux and magnetic induction
11-L10	relation between them- Biot Savart law
12-L11	magnetic induction at a point on the axis of a circular coil carrying
	current

13-L12	Amperes circuital law
14-L13	magnetic field inside a long solenoid -toroid
15-L14	- Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Lorent'z force on a moving charge- direction of force
17-IT-1	Internal Test-I
18-L16	Moving coil Ballistic galvanometer-theory
19-L17	Test Paper distribution and result analysis
20 J 10	Entering Internal Test-I Marks into University portal
20-L18	De sauty bridge
21- L19	torque on a current loop in a uniform magnetic field
22- P2	College level meeting/Cell function
23-L20	MAGNETIC FIELDS AND MAXWELL'S EQUATION
24-L21	relation between thempermeability and susceptibility
25-L22	Hertz experiment for production and detection of EM waves.
26-L23	Wave equations for Electric field and Magnetic field
27-L24	EM waves in a matter
28-L25	Reflection and Transmission at normal incidence and oblique
	incidence
29-L26	The three magnetic vectors M, B, and H
30-L27	relation between them
31-L28	Hysteresis-Energy loss
32-L29	Maxwell's equations-Boundary conditions-Poynting vector
33-L30	Electromagnetic waves in free space
34- P3	Department Seminar
35-L31	monochromatic plane waves
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	B-H curve
38- IT-II	Internal Test-II
39-L34	Polarization by reflection
40-L35	Test Paper distribution and result analysis
11 7 9 1	Entering Internal Test-II Marks into University portal
41-L36	Displacement current
42- L37	experiment to find charge sensitivity and absolute capacity of a
	capacitor
43- L38	experiment to find charge sensitivity and absolute capacity of a
	capacitor
44- P4	College level meeting/ function
45-L39	Class test
46-L40	measurement of horizontal component of Earth's Magnetic field
47-L41	calibration of BG
48-L42	induction coil and uses
49-L43	UNIT-V: APPLICATIONS OF ELECTROMAGNETISM

50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Earth inductor-uses of Earth inductor
52- L46	measurement of vertical component of Earth's Magnetic field
53-IT-III	Internal Test-III
54-L47	measurement of intense magnetic field using search coil and BG
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	component of the Earth's magnetic field
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on27.04.2020

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.

# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Energy Physics	
Course Code	JMPH6B	
Class	III year (2018 – 2019)	
Semester	Even	
Staff Name	Mr.A.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

ENERGY PHYSICS (Major Elective Paper)

Unit I

Conventional Energy Sources: World's reserve of commercial energy sources and their availability - various forms of energy - renewable and conventional energy systems - comparison

- coal, oil and natural gas - availability - statistical details - applications - merits and demerits. Nuclear energy – merits and demerits

Unit II

Non-Conventional Energy Sources: Renewable energy sources - solar energy - nature of solar radiation - components - solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water desalination - photovoltaic generation basics - merits and demerits of solar energy.

Unit III

Biomass energy: Biomass energy - classification - photosynthesis - biomass conversion process - gobar gas plants - wood gasification - ethanol from wood - advantages and disadvantages of biomass as energy source

Unit IV

Geothermal energy - wind energy - ocean thermal energy conversion (OTEC) - energy from waves and tides (Basic ideas, nature, applications, merits and demerits of these).

Unit V

Impacts of Conventional Energy: Energy crisis and possible solutions - energy options for the developing countries - energy storage and hydrogen as a fuel(basics) - impact due to conventional energy sources – Thermal, Hydel, Nuclear - global warming- ecological damage -

Nuclear pollution (leaks, accidents, nuclear waste disposal).

Text Books:

1. Solar Energy by G.D. Rai, Ed. V, 1995.

2. Solar energy by S.P. Sukhatme, Tata McGraw-Hill Publishing Company, Ed. II, 1997. Reference Books:

1 Non Conventional Energy Sources, G.D. Rai, 4th Edition, 1997.

2 Energy Technology by S. Rao and Dr. B.B. Parulekar 2nd Edition, 1997.

3 Power Plant technology by A.K. Wahil 1993

4 Renewable Energy: Power for a sustainable Future by Godfery Boyle, Alden Oess Ltd., Oxford, 1996.

5 Energy models for 2000 and beyond by Jyoti Parikh, Tata McGraw Hill Publishing Company, New Delhi, 1997.

Hour	Class Schedule
allotment	
	Even Semester Begin on 03.12.2018
1-L1	World's reserve of commercial energy sources and their availability
2-L2	various forms of energy
3- L3	renewable and conventional energy systems
4-L4	Class Test
5-L5	Comparison - coal, oil and natural gas
6-L6	availability - statistical details
7-L7	applications
8- P1	Welcoming of First year and Inauguration of Mathematics Association
9- L8	merits and demerits
10- L9	Class Test
11-L10	Nuclear energy
12-L11	merits and demerits

13-L12	Renewable energy sources
14-L13	nature of solar radiation
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	components - solar heaters
17-IT-1	Internal Test-I
18-L16	crop dryers - space cooling
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Class Test
21- L19	Solar cookers
22- P2	College level meeting/Cell function
23-L20	water desalination
24-L21	photovoltaic generation basics
25-L22	merits and demerits of solar energy
26-L23	Class Test
20-L23 27-L24	Biomass energy
27-L24 28-L25	classification – photosynthesis
28-L25 29-L26	biomass conversion process
30-L27	Class Test
31-L28	gobar gas plants - wood gasification
31-L28 32-L29	ethanol from wood
33-L30	advantages and disadvantages of biomass as energy source
33-L30 34- P3	Department Seminar
35-L31	Class Test
36-L32	Allotting portion for Internal Test-II
50 152	Internal Test II begins
37- L33	Geothermal energy
38- IT-II	Internal Test-II
39-L34	wind energy
40-L35	-Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	ocean thermal energy conversion (OTEC)
42- L37	Class Test
43- L38	Energy from waves and tides
44- P4	College level meeting/ function
45-L39	Basic ideas, nature, applications, merits and demerits of these
46-L40	Class Test
47-L41	Energy crisis and possible solutions
48-L42	energy options for the developing countries
49-L43	energy storage and hydrogen as a fuel(basics)
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	impact due to conventional energy sources
52- L46	Thermal, Hydel, Nuclear - global warming- ecological damage
53-IT-III	Internal Test-III
54-L47	Nuclear pollution (leaks, accidents, nuclear waste disposal).
55-L48	- Test Paper distribution and result analysis

	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.04.2019

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Energy Physics	
Course Code	SMPH6B	
Class	III year (2019–2020)	
Semester	Even	
Staff Name	Mr.A.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

ENERGY PHYSICS (Major Elective Paper)

Unit I

Conventional Energy Sources: World's reserve of commercial energy sources and their availability - various forms of energy - renewable and conventional energy systems - comparison

- coal, oil and natural gas - availability - statistical details - applications - merits and demerits. Nuclear energy – merits and demerits

Unit II

Non-Conventional Energy Sources: Renewable energy sources - solar energy - nature of solar radiation - components - solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water desalination - photovoltaic generation basics - merits and demerits of solar energy.

Unit III

Biomass energy: Biomass energy - classification - photosynthesis - biomass conversion process - gobar gas plants - wood gasification - ethanol from wood - advantages and disadvantages of biomass as energy source

Unit IV

Geothermal energy - wind energy - ocean thermal energy conversion (OTEC) - energy from waves and tides (Basic ideas, nature, applications, merits and demerits of these).

Unit V

Impacts of Conventional Energy: Energy crisis and possible solutions - energy options for the developing countries - energy storage and hydrogen as a fuel(basics) - impact due to conventional energy sources – Thermal, Hydel, Nuclear - global warming- ecological damage -

Nuclear pollution (leaks, accidents, nuclear waste disposal).

Text Books:

1. Solar Energy by G.D. Rai, Ed. V, 1995.

2. Solar energy by S.P. Sukhatme, Tata McGraw-Hill Publishing Company, Ed. II, 1997. Reference Books:

1 Non Conventional Energy Sources, G.D. Rai, 4th Edition, 1997.

2 Energy Technology by S. Rao and Dr. B.B. Parulekar 2nd Edition, 1997.

3 Power Plant technology by A.K. Wahil 1993

4 Renewable Energy: Power for a sustainable Future by Godfery Boyle, Alden Oess Ltd., Oxford, 1996.

5 Energy models for 2000 and beyond by Jyoti Parikh, Tata McGraw Hill Publishing Company, New Delhi, 1997.

Hour	Class Schedule	
allotment		
	Even Semester Begin on 02.12.2019	
1-L1	World's reserve of commercial energy sources and their availability	
2-L2	various forms of energy	
3- L3	renewable and conventional energy systems	
4-L4	Class Test	
5-L5	Comparison - coal, oil and natural gas	
6-L6	availability - statistical details	
7-L7	applications	
8- P1	Welcoming of First year and Inauguration of Mathematics Association	
9- L8	merits and demerits	
10- L9	Class Test	
11-L10	Nuclear energy	
12-L11	merits and demerits	
13-L12	Renewable energy sources	
14-L13	nature of solar radiation	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	

16-L15	components - solar heaters	
17-IT-1	Internal Test-I	
18-L16	crop dryers - space cooling	
19-L17	-Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Class Test	
21- L19	Solar cookers	
22- P2	College level meeting/Cell function	
23-L20	water desalination	
24-L21	photovoltaic generation basics	
25-L22	merits and demerits of solar energy	
26-L23	Class Test	
27-L24	Biomass energy	
28-L25	classification – photosynthesis	
29-L26	biomass conversion process	
30-L27	Class Test	
31-L28	gobar gas plants - wood gasification	
32-L29	ethanol from wood	
33-L30	advantages and disadvantages of biomass as energy source	
34- P3	Department Seminar	
35-L31	Class Test	
36-L32	Allotting portion for Internal Test-II	
27.1.22	Internal Test II begins	
37-L33	Geothermal energy	
38- IT-II	Internal Test-II	
39-L34 40-L35	wind energy Test Paper distribution and result analysis	
40-L33	-Test Paper distribution and result analysis	
41-L36	Entering Internal Test-II Marks into University portal ocean thermal energy conversion (OTEC)	
42- L37	Class Test	
43- L38	Energy from waves and tides	
43 L30	College level meeting/ function	
45-L39	Basic ideas, nature, applications, merits and demerits of these	
46-L40	Class Test	
47-L41	Energy crisis and possible solutions	
48-L42	energy options for the developing countries	
49-L43	energy storage and hydrogen as a fuel(basics)	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	impact due to conventional energy sources	
52- L46	Thermal, Hydel, Nuclear - global warming- ecological damage	
53-IT-III	Internal Test-III	
54-L47	Nuclear pollution (leaks, accidents, nuclear waste disposal).	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	

58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 27.04.2020

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
: use library books, E- books, motivate student to prepare for higher study.
: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Energy Physics	
Course Code	GNPH3B	
Class	II year (2014-2015)	
Semester	Odd	
Staff Name	Mrs.D.Priscilla Koilpillai	
	Mrs.R.Nithya Agnes	
Credits	2	
L. Hours /P. Hours	2 / WK	
Total 30Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 20 Hrs (5 units; 5×4=20; 4Hrs /unit)		

Course Objectives

Syllabus

ENERGY PHYSICS (Major Elective Paper) Unit I Conventional Energy Sources: World's reserve of commercial energy sources and their availability - various forms of energy - renewable and conventional energy systems comparison - coal, oil and natural gas - availability - statistical details - applications - merits and demerits. Nuclear energy – merits and demerits Unit II Non-Conventional Energy Sources: Renewable energy sources - solar energy - nature of solar radiation - components - solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water desalination - photovoltaic generation basics - merits and demerits of solar

energy.

Unit III

Biomass energy: Biomass energy - classification - photosynthesis - biomass conversion

process - gobar gas plants - wood gasification - ethanol from wood - advantages and disadvantages of biomass as energy source Unit IV

Geothermal energy - wind energy - ocean thermal energy conversion (OTEC) - energy from waves and tides (Basic ideas, nature, applications, merits and demerits of these). Unit V

Impacts of Conventional Energy: Energy crisis and possible solutions - energy options for the developing countries - energy storage and hydrogen as a fuel(basics) - impact due to conventional energy sources – Thermal, Hydel, Nuclear - global warming- ecological damage -

Nuclear pollution (leaks, accidents, nuclear waste disposal).

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2014	
1-L1	Unit I:Conventional Energy Sources: World's reserve of commercial energy	
	sources and their availability	
2-L2	various forms of energy	
3- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
4-L3	renewable and conventional energy systems - comparison- coal, oil and natural	
	gas	
5-L4	Allotting portion for Internal Test-I	
	Internal Test I begins	
6-IT-I	Internal Test-I	
7-L5	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
8-L6	availability - statistical details - applications - merits and demerits	
9-L7	Nuclear energy – merits and demerits	
	Unit II	
	Non-Conventional Energy Sources: Renewable energy sources - solar energy -	
	nature of solar radiation - components	
10-P2	College level meeting/Cell function	
11-L8	solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water	
	desalination - photovoltaic generation basics - merits and demerits of solar	
	energy.	
12-L9	Unit III Biomass energy: Biomass energy - classification - photosynthesis -	
	biomass conversion process - gobar gas plants - wood gasification - ethanol	
	from wood	
13-P3	Department Seminar	
14-L10	advantages and disadvantages of biomass as energy source	
15-L11	Unit IV Geothermal energy - wind energy - ocean thermal energy conversion	
	(OTEC) – energy from waves and tides (Basic ideas, nature, applications, merits	
	and demerits of these).	
16-L12	Allotting portion for Internal Test-II	
	Internal Test II begins	

17-IT-1	Internal Test-II	
18-L13	-Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
19-L14	Unit V Impacts of Conventional Energy: Energy crisis and possible solutions -	
	energy options for the developing countries - energy storage and hydrogen as a	
	fuel(basics) - impact due to conventional energy source	
20- P2	College level meeting/ function	
21-L15	Thermal, Hydel, Nuclear - global warming- ecological damage	
22-L16	Nuclear pollution (leaks, accidents, nuclear waste disposal).	
23- L17	Allotting portion for Internal Test-III	
	Internal Test III begins	
24- IT-III	Internal Test-III	
25-L18	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
26-MT	Model Test	
27-MT	Model Test	
28-MT	Model Test	
29-L19	Model test paper distribution and previous year university question paper	
	discussion	
30-L20	Feedback of the Course, analysis and report preparation	
	Last Working day on 31.10.2014	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.
HOD Signature	Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Energy Physics	
Course Code	GNPH3B	
Class	II year (2015-2016)	
Semester	Odd	
Staff Name	Mrs.D.Priscilla Koilpillai	
	Mrs.R.Nithya Agnes	
Credits	2	
L. Hours /P. Hours	2 / WK	
Total 30Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 20 Hrs (5 units; 5×4=20; 4Hrs /unit)		

Course Objectives

Syllabus

ENERGY PHYSICS (Major Elective Paper) Unit I Conventional Energy Sources: World's reserve of commercial energy sources and their availability - various forms of energy - renewable and conventional energy systems comparison - coal, oil and natural gas - availability - statistical details - applications - merits and demerits. Nuclear energy – merits and demerits Unit II Non-Conventional Energy Sources: Renewable energy sources - solar energy - nature of solar radiation - components - solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water desalination - photovoltaic generation basics - merits and demerits of solar

energy.

Unit III

Biomass energy: Biomass energy - classification - photosynthesis - biomass conversion

process - gobar gas plants - wood gasification - ethanol from wood - advantages and disadvantages of biomass as energy source Unit IV

Geothermal energy - wind energy - ocean thermal energy conversion (OTEC) - energy from waves and tides (Basic ideas, nature, applications, merits and demerits of these). Unit V

Impacts of Conventional Energy: Energy crisis and possible solutions - energy options for the developing countries - energy storage and hydrogen as a fuel(basics) - impact due to conventional energy sources – Thermal, Hydel, Nuclear - global warming- ecological damage -

Nuclear pollution (leaks, accidents, nuclear waste disposal).

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2015	
1-L1	Unit I:Conventional Energy Sources: World's reserve of commercial energy	
	sources and their availability	
2-L2	various forms of energy	
3- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
4-L3	renewable and conventional energy systems - comparison- coal, oil and natural	
	gas	
5-L4	Allotting portion for Internal Test-I	
	Internal Test I begins	
6-IT-I	Internal Test-I	
7-L5	-Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
8-L6	availability - statistical details - applications - merits and demerits	
9-L7	Nuclear energy – merits and demerits	
	Unit II	
	Non-Conventional Energy Sources: Renewable energy sources - solar energy -	
	nature of solar radiation - components	
10-P2	College level meeting/Cell function	
11-L8	solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water	
	desalination - photovoltaic generation basics - merits and demerits of solar	
	energy.	
12-L9	Unit III Biomass energy: Biomass energy - classification - photosynthesis -	
	biomass conversion process - gobar gas plants - wood gasification - ethanol	
	from wood	
13-P3	Department Seminar	
14-L10	advantages and disadvantages of biomass as energy source	
15-L11	Unit IV Geothermal energy - wind energy - ocean thermal energy conversion	
	(OTEC) – energy from waves and tides (Basic ideas, nature, applications, merits	
	and demerits of these).	
16-L12	Allotting portion for Internal Test-II	
	Internal Test II begins	

17-IT-1	Internal Test-II	
18-L13	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
19-L14	Unit V Impacts of Conventional Energy: Energy crisis and possible solutions -	
	energy options for the developing countries - energy storage and hydrogen as a	
	fuel(basics) - impact due to conventional energy source	
20- P2	College level meeting/ function	
21-L15	Thermal, Hydel, Nuclear - global warming- ecological damage	
22-L16	Nuclear pollution (leaks, accidents, nuclear waste disposal).	
23- L17	Allotting portion for Internal Test-III	
	Internal Test III begins	
24- IT-III	Internal Test-III	
25-L18	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
26-MT	Model Test	
27-MT	Model Test	
28-MT	Model Test	
29-L19	Model test paper distribution and previous year university question paper	
	discussion	
30-L20	Feedback of the Course, analysis and report preparation	
	Last Working day on 29.10.2015	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.
HOD Signature	Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Energy Physics	
Course Code	GNPH3B	
Class	II year a(2016-2017)	
Semester	Odd	
Staff Name	Mrs.D.Priscilla Koilpillai	
	Mrs.R.Nithya Agnes	
Credits	2	
L. Hours /P. Hours	2 / WK	
Total 30Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 20 Hrs (5 units; 5×4=20; 4Hrs /unit)		

Course Objectives

Syllabus

ENERGY PHYSICS (Major Elective Paper) Unit I Conventional Energy Sources: World's reserve of commercial energy sources and their availability - various forms of energy - renewable and conventional energy systems comparison - coal, oil and natural gas - availability - statistical details - applications - merits and demerits. Nuclear energy – merits and demerits Unit II Non-Conventional Energy Sources: Renewable energy sources - solar energy - nature of solar radiation - components - solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water desalination - photovoltaic generation basics - merits and demerits of solar

energy.

Unit III

Biomass energy: Biomass energy - classification - photosynthesis - biomass conversion

process - gobar gas plants - wood gasification - ethanol from wood - advantages and disadvantages of biomass as energy source Unit IV

Geothermal energy - wind energy - ocean thermal energy conversion (OTEC) - energy from waves and tides (Basic ideas, nature, applications, merits and demerits of these). Unit V

Impacts of Conventional Energy: Energy crisis and possible solutions - energy options for the developing countries - energy storage and hydrogen as a fuel(basics) - impact due to conventional energy sources – Thermal, Hydel, Nuclear - global warming- ecological damage -

Nuclear pollution (leaks, accidents, nuclear waste disposal).

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 16.06.2016	
1-L1	Unit I:Conventional Energy Sources: World's reserve of commercial energy	
	sources and their availability	
2-L2	various forms of energy	
3- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
4-L3	renewable and conventional energy systems - comparison- coal, oil and natural	
	gas	
5-L4	Allotting portion for Internal Test-I	
	Internal Test I begins	
6-IT-I	Internal Test-I	
7-L5	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
8-L6	availability - statistical details - applications - merits and demerits	
9-L7	Nuclear energy – merits and demerits	
	Unit II	
	Non-Conventional Energy Sources: Renewable energy sources - solar energy -	
	nature of solar radiation - components	
10-P2	College level meeting/Cell function	
11-L8	solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water	
	desalination - photovoltaic generation basics - merits and demerits of solar	
	energy.	
12-L9	Unit III Biomass energy: Biomass energy - classification - photosynthesis -	
	biomass conversion process - gobar gas plants - wood gasification - ethanol	
	from wood	
13-P3	Department Seminar	
14-L10	advantages and disadvantages of biomass as energy source	
15-L11	Unit IV Geothermal energy - wind energy - ocean thermal energy conversion	
	(OTEC) – energy from waves and tides (Basic ideas, nature, applications, merits	
	and demerits of these).	
16-L12	Allotting portion for Internal Test-II	
	Internal Test II begins	

17-IT-1	Internal Test-II
18-L13	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
19-L14	Unit V Impacts of Conventional Energy: Energy crisis and possible solutions -
	energy options for the developing countries - energy storage and hydrogen as a
	fuel(basics) - impact due to conventional energy source
20- P2	College level meeting/ function
21-L15	Thermal, Hydel, Nuclear - global warming- ecological damage
22-L16	Nuclear pollution (leaks, accidents, nuclear waste disposal).
23- L17	Allotting portion for Internal Test-III
	Internal Test III begins
24- IT-III	Internal Test-III
25-L18	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
26-MT	Model Test
27-MT	Model Test
28-MT	Model Test
29-L19	Model test paper distribution and previous year university question paper
	discussion
30-L20	Feedback of the Course, analysis and report preparation
	Last Working day on 30.11.2016

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.
HOD Signature	Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Energy Physics	
Course Code	JNPH3B	
Class	II year (2017-2018)	
Semester	Odd	
Staff Name	Mrs.D.Priscilla Koilpillai	
	Mrs.R.Nithya Agnes	
Credits	2	
L. Hours /P. Hours	2 / WK	
Total 30Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 20 Hrs (5 units; 5×4=20; 4Hrs /unit)		

Course Objectives

Syllabus

ENERGY PHYSICS (Major Elective Paper) Unit I Conventional Energy Sources: World's reserve of commercial energy sources and their availability - various forms of energy - renewable and conventional energy systems comparison - coal, oil and natural gas - availability - statistical details - applications - merits and demerits. Nuclear energy – merits and demerits Unit II Non-Conventional Energy Sources: Renewable energy sources - solar energy - nature of solar radiation - components - solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water desalination - photovoltaic generation basics - merits and demerits of solar

energy.

Unit III

Biomass energy: Biomass energy - classification - photosynthesis - biomass conversion

process - gobar gas plants - wood gasification - ethanol from wood - advantages and disadvantages of biomass as energy source Unit IV

Geothermal energy - wind energy - ocean thermal energy conversion (OTEC) - energy from waves and tides (Basic ideas, nature, applications, merits and demerits of these). Unit V

Impacts of Conventional Energy: Energy crisis and possible solutions - energy options for the developing countries - energy storage and hydrogen as a fuel(basics) - impact due to conventional energy sources – Thermal, Hydel, Nuclear - global warming- ecological damage -

Nuclear pollution (leaks, accidents, nuclear waste disposal).

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 16.06.2017	
1-L1	Unit I:Conventional Energy Sources: World's reserve of commercial energy	
	sources and their availability	
2-L2	various forms of energy	
3- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
4-L3	renewable and conventional energy systems - comparison- coal, oil and natural	
	gas	
5-L4	Allotting portion for Internal Test-I	
	Internal Test I begins	
6-IT-I	Internal Test-I	
7-L5	-Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
8-L6	availability - statistical details - applications - merits and demerits	
9-L7	Nuclear energy – merits and demerits	
	Unit II	
	Non-Conventional Energy Sources: Renewable energy sources - solar energy -	
	nature of solar radiation - components	
10-P2	College level meeting/Cell function	
11-L8	solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water	
	desalination - photovoltaic generation basics - merits and demerits of solar	
	energy.	
12-L9	Unit III Biomass energy: Biomass energy - classification - photosynthesis -	
	biomass conversion process - gobar gas plants - wood gasification - ethanol	
	from wood	
13-P3	Department Seminar	
14-L10	advantages and disadvantages of biomass as energy source	
15-L11	Unit IV Geothermal energy - wind energy - ocean thermal energy conversion	
	(OTEC) – energy from waves and tides (Basic ideas, nature, applications, merits	
	and demerits of these).	
16-L12	Allotting portion for Internal Test-II	
	Internal Test II begins	

17-IT-1	Internal Test-II	
18-L13	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
19-L14	Unit V Impacts of Conventional Energy: Energy crisis and possible solutions -	
	energy options for the developing countries - energy storage and hydrogen as a	
	fuel(basics) - impact due to conventional energy source	
20- P2	College level meeting/ function	
21-L15	Thermal, Hydel, Nuclear - global warming- ecological damage	
22-L16	Nuclear pollution (leaks, accidents, nuclear waste disposal).	
23- L17	Allotting portion for Internal Test-III	
	Internal Test III begins	
24- IT-III	Internal Test-III	
25-L18	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
26-MT	Model Test	
27-MT	Model Test	
28-MT	Model Test	
29-L19	Model test paper distribution and previous year university question paper	
	discussion	
30-L20	Feedback of the Course, analysis and report preparation	
	Last Working day on 06.11.2017	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.
HOD Signature	Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Energy Physics	
Course Code	SNPH3B	
Class	II year (2018-2019)	
Semester	Odd	
Staff Name	Mrs.D.Priscilla Koilpillai	
	Mrs.R.Nithya Agnes	
Credits	2	
L. Hours /P. Hours	2 / WK	
Total 30Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 20 Hrs (5 units; 5×4=20; 4Hrs /unit)		

Course Objectives

Syllabus

ENERGY PHYSICS (Major Elective Paper) Unit I Conventional Energy Sources: World's reserve of commercial energy sources and their availability - various forms of energy - renewable and conventional energy systems comparison - coal, oil and natural gas - availability - statistical details - applications - merits and demerits. Nuclear energy – merits and demerits Unit II Non-Conventional Energy Sources: Renewable energy sources - solar energy - nature of solar radiation - components - solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water desalination - photovoltaic generation basics - merits and demerits of solar

energy.

Unit III

Biomass energy: Biomass energy - classification - photosynthesis - biomass conversion

process - gobar gas plants - wood gasification - ethanol from wood - advantages and disadvantages of biomass as energy source Unit IV

Geothermal energy - wind energy - ocean thermal energy conversion (OTEC) - energy from waves and tides (Basic ideas, nature, applications, merits and demerits of these). Unit V

Impacts of Conventional Energy: Energy crisis and possible solutions - energy options for the developing countries - energy storage and hydrogen as a fuel(basics) - impact due to conventional energy sources – Thermal, Hydel, Nuclear - global warming- ecological damage -

Nuclear pollution (leaks, accidents, nuclear waste disposal).

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2018	
1-L1	Unit I:Conventional Energy Sources: World's reserve of commercial energy	
	sources and their availability	
2-L2	various forms of energy	
3- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
4-L3	renewable and conventional energy systems - comparison- coal, oil and natural	
	gas	
5-L4	Allotting portion for Internal Test-I	
	Internal Test I begins	
6-IT-I	Internal Test-I	
7-L5	-Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
8-L6	availability - statistical details - applications - merits and demerits	
9-L7	Nuclear energy – merits and demerits	
	Unit II	
	Non-Conventional Energy Sources: Renewable energy sources - solar energy -	
	nature of solar radiation - components	
10-P2	College level meeting/Cell function	
11-L8	solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water	
	desalination - photovoltaic generation basics - merits and demerits of solar	
	energy.	
12-L9	Unit III Biomass energy: Biomass energy - classification - photosynthesis -	
	biomass conversion process - gobar gas plants - wood gasification - ethanol	
	from wood	
13-P3	Department Seminar	
14-L10	advantages and disadvantages of biomass as energy source	
15-L11	Unit IV Geothermal energy - wind energy - ocean thermal energy conversion	
	(OTEC) – energy from waves and tides (Basic ideas, nature, applications, merits	
	and demerits of these).	
16-L12	Allotting portion for Internal Test-II	
	Internal Test II begins	

17-IT-1	Internal Test-II
18-L13	-Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
19-L14	Unit V Impacts of Conventional Energy: Energy crisis and possible solutions -
	energy options for the developing countries - energy storage and hydrogen as a
	fuel(basics) - impact due to conventional energy source
20- P2	College level meeting/ function
21-L15	Thermal, Hydel, Nuclear - global warming- ecological damage
22-L16	Nuclear pollution (leaks, accidents, nuclear waste disposal).
23- L17	Allotting portion for Internal Test-III
	Internal Test III begins
24- IT-III	Internal Test-III
25-L18	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
26-MT	Model Test
27-MT	Model Test
28-MT	Model Test
29-L19	Model test paper distribution and previous year university question paper
	discussion
30-L20	Feedback of the Course, analysis and report preparation
	Last Working day on 23.11.2018

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.
HOD Signature	Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Energy Physics	
Course Code	SNPH3B	
Class	II year (2019-2020)	
Semester	Odd	
Staff Name	Mrs.D.Priscilla Koilpillai	
Credits	2	
L. Hours /P. Hours	2 / WK	
Total 30Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 20 Hrs (5 units; 5×4=20; 4Hrs /unit)		

Course Objectives

Syllabus

ENERGY PHYSICS

(Major Elective Paper)

Unit I

Conventional Energy Sources: World's reserve of commercial energy sources and their availability - various forms of energy - renewable and conventional energy systems - comparison

- coal, oil and natural gas - availability - statistical details - applications - merits and demerits. Nuclear energy – merits and demerits

Unit II

Non-Conventional Energy Sources: Renewable energy sources - solar energy - nature of solar radiation - components - solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water desalination - photovoltaic generation basics - merits and demerits of solar energy.

Unit III

Biomass energy: Biomass energy - classification - photosynthesis - biomass conversion process - gobar gas plants - wood gasification - ethanol from wood - advantages and

disadvantages of biomass as energy source Unit IV

Geothermal energy - wind energy - ocean thermal energy conversion (OTEC) - energy from waves and tides (Basic ideas, nature, applications, merits and demerits of these). Unit V

Impacts of Conventional Energy: Energy crisis and possible solutions - energy options for the developing countries - energy storage and hydrogen as a fuel(basics) - impact due to conventional energy sources – Thermal, Hydel, Nuclear - global warming- ecological damage -

Nuclear pollution (leaks, accidents, nuclear waste disposal).

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 17.06.2019	
1-L1	Unit I:Conventional Energy Sources: World's reserve of commercial energy	
	sources and their availability	
2-L2	various forms of energy	
3- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
4-L3	renewable and conventional energy systems - comparison- coal, oil and natural	
	gas	
5-L4	Allotting portion for Internal Test-I	
	Internal Test I begins	
6-IT-I	Internal Test-I	
7-L5	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
8-L6	availability - statistical details - applications - merits and demerits	
9-L7	Nuclear energy – merits and demerits	
	Unit II	
	Non-Conventional Energy Sources: Renewable energy sources - solar energy -	
	nature of solar radiation - components	
10-P2	College level meeting/Cell function	
11-L8	solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water	
	desalination - photovoltaic generation basics - merits and demerits of solar	
	energy.	
12-L9	Unit III Biomass energy: Biomass energy - classification - photosynthesis -	
	biomass conversion process - gobar gas plants - wood gasification - ethanol	
	from wood	
13-P3	Department Seminar	
14-L10	advantages and disadvantages of biomass as energy source	
15-L11	Unit IV Geothermal energy - wind energy - ocean thermal energy conversion	
	(OTEC) – energy from waves and tides (Basic ideas, nature, applications, merits	
	and demerits of these).	
16-L12	Allotting portion for Internal Test-II	
	Internal Test II begins	
17-IT-1	Internal Test-II	

18-L13	-Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
19-L14	Unit V Impacts of Conventional Energy: Energy crisis and possible solutions -
	energy options for the developing countries - energy storage and hydrogen as a
	fuel(basics) - impact due to conventional energy source
20- P2	College level meeting/ function
21-L15	Thermal, Hydel, Nuclear - global warming- ecological damage
22-L16	Nuclear pollution (leaks, accidents, nuclear waste disposal).
23- L17	Allotting portion for Internal Test-III
	Internal Test III begins
24- IT-III	Internal Test-III
25-L18	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
26-MT	Model Test
27-MT	Model Test
28-MT	Model Test
29-L19	Model test paper distribution and previous year university question paper
	discussion
30-L20	Feedback of the Course, analysis and report preparation
	Last Working day on 30.10.2019

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

Blended Learning

: using PPT, video, library resources, ICT techniques, Elearning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Energy Physics
Course Code	SNPH3B
Class	II year (2019-2020)
Semester	Odd
Staff Name	Mrs.D.Priscilla Koilpillai
Credits	2
L. Hours /P. Hours	2 / WK
Total 30Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 20 Hrs (5 units; 5×4=20; 4Hrs /unit)	

Course Objectives

Syllabus

ENERGY PHYSICS

(Major Elective Paper)

Unit I

Conventional Energy Sources: World's reserve of commercial energy sources and their availability - various forms of energy - renewable and conventional energy systems - comparison

- coal, oil and natural gas - availability - statistical details - applications - merits and demerits. Nuclear energy – merits and demerits

Unit II

Non-Conventional Energy Sources: Renewable energy sources - solar energy - nature of solar radiation - components - solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water desalination - photovoltaic generation basics - merits and demerits of solar energy.

Unit III

Biomass energy: Biomass energy - classification - photosynthesis - biomass conversion process - gobar gas plants - wood gasification - ethanol from wood - advantages and

disadvantages of biomass as energy source Unit IV

Geothermal energy - wind energy - ocean thermal energy conversion (OTEC) - energy from waves and tides (Basic ideas, nature, applications, merits and demerits of these). Unit V

Impacts of Conventional Energy: Energy crisis and possible solutions - energy options for the developing countries - energy storage and hydrogen as a fuel(basics) - impact due to conventional energy sources – Thermal, Hydel, Nuclear - global warming- ecological damage -

Nuclear pollution (leaks, accidents, nuclear waste disposal).

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 17.06.2019	
1-L1	Unit I:Conventional Energy Sources: World's reserve of commercial energy	
	sources and their availability	
2-L2	various forms of energy	
3- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
4-L3	renewable and conventional energy systems - comparison- coal, oil and natural	
	gas	
5-L4	Allotting portion for Internal Test-I	
	Internal Test I begins	
6-IT-I	Internal Test-I	
7-L5	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
8-L6	availability - statistical details - applications - merits and demerits	
9-L7	Nuclear energy – merits and demerits	
	Unit II	
	Non-Conventional Energy Sources: Renewable energy sources - solar energy -	
	nature of solar radiation - components	
10-P2	College level meeting/Cell function	
11-L8	solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water	
	desalination - photovoltaic generation basics - merits and demerits of solar	
	energy.	
12-L9	Unit III Biomass energy: Biomass energy - classification - photosynthesis -	
	biomass conversion process - gobar gas plants - wood gasification - ethanol	
	from wood	
13-P3	Department Seminar	
14-L10	advantages and disadvantages of biomass as energy source	
15-L11	Unit IV Geothermal energy - wind energy - ocean thermal energy conversion	
	(OTEC) – energy from waves and tides (Basic ideas, nature, applications, merits	
	and demerits of these).	
16-L12	Allotting portion for Internal Test-II	
	Internal Test II begins	
17-IT-1	Internal Test-II	

18-L13	-Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
19-L14	Unit V Impacts of Conventional Energy: Energy crisis and possible solutions -
	energy options for the developing countries - energy storage and hydrogen as a
	fuel(basics) - impact due to conventional energy source
20- P2	College level meeting/ function
21-L15	Thermal, Hydel, Nuclear - global warming- ecological damage
22-L16	Nuclear pollution (leaks, accidents, nuclear waste disposal).
23- L17	Allotting portion for Internal Test-III
	Internal Test III begins
24- IT-III	Internal Test-III
25-L18	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
26-MT	Model Test
27-MT	Model Test
28-MT	Model Test
29-L19	Model test paper distribution and previous year university question paper
	discussion
30-L20	Feedback of the Course, analysis and report preparation
	Last Working day on 30.10.2019

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

Blended Learning

: using PPT, video, library resources, ICT techniques, Elearning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Maintanance of electronic equipments
Course Code	JSPH4A
Class	II year (2017-2018)
Semester	Even
Staff Name	Mrs.P.Justina Angeline
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

Syllabus

MAINTANANCE OF ELECTRONIC EQUIPMENTS

UNIT-I: ELECTRONIC COMPONENTS

Study of electronic components - resistors - types - characteristics - colour coding – wattage rating-potential divider arrangement-capacitors - type - characteristics --working voltage-star and delta connection of resistors and capacitors -soldering and desoldering techniques-Groove board,bread board and printed circuit board (11L)

UNIT-II: MEASURING INSTRUMENTS

Practical uses of Multimeter (analog and digital) - CRO - Block Diagram - measurement of voltage, frequency and phase - waveforms and Lissajoue's

figures- Digital Storage Oscilloscopes-LCD display for instruments -A/F and R/F oscillators. (10L)

UNIT-III: TRANSDUCERS

Classification of transducers-basic requirements/characteristics of Transducers-active and passive transducers, resistive (Potentiometer -Theory, temperature compensation & applications), Capacitive (variable air gap

type), Inductive (LVDT) &piezoelectric transducers.

Measurement of temperature (RTD, semiconductor IC sensors)-Light

transducers (photo resistors & photovoltaic cells). (13L)

UNIT-IV: COMMUNICATION DEVICES

Basic concepts of radio transmitter and receiver - TV antennas-resonance antennas and their characteristics - Dipole antenna - Folded dipole - Yagi antenna - Yagi antenna design - Dish antenna - DTH system - Mobile communication system- MODEM.

Telephone systems-cellular Telephone systems-mobile phone-principle of operation-integrated services-digital networks(ISDN) (15L)

UNIT-V: Photography

Introduction to cameras-parts of camera and accessories—lens shutterapertureflash photography-filters-battery-tele and wide angle lens Digital formats data transfer to computer ISO speed resolution(11L)

Digital formats-data transfer to computer-ISO speed-resolution(11L)

Hour	Class Schedule
allotment	
	Even Semester Begin on07.12.2017
1-L1	UNIT-I: ELECTRONIC COMPONENTS
	Study of electronic components
2-L2	star and delta connection of resistors
3- L3	wattage rating-potential divider arrangement
4-L4	capacitors - type -characteristicsworking voltage
5-L5	resistors - types - characteristics - colour coding
6-L6	soldering and desoldering techniques
7-L7	Groove board, bread board
8- P1	Welcoming of First year and Inauguration of Mathematics Association
9- L8	Practical uses of Multimeter (analog and digital)
10- L9	measurement of voltage, frequency and phase
11-L10	waveforms and Lissajoue's figures
12-L11	CRO - Block Diagram
13-L12	Digital Storage Oscilloscopes
14-L13	LCD display for instruments
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins

16-L15	A/F and R/F oscillators	
17-IT-1	Internal Test-I	
18-L16	printed circuit board	
19-L17	-Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Classification of transducers	
21- L19	active and passive transducers, resistive (Potentiometer-Theory,	
	temperature compensation & applications	
22- P2	College level meeting/Cell function	
23-L20	Capacitive (variable air gap type),	
24-L21	Inductive (LVDT) & piezoelectric transducers.	
25-L22	Measurement of temperature (RTD, semiconductor IC sensors)	
26-L23	Light transducers	
27-L24	Basic concepts of radio transmitter and receiver	
28-L25	TV antennas	
29-L26	Dipole antenna - Folded dipole	
30-L27	Yagi antenna	
31-L28	Dish antenna	
32-L29	Mobile communication system	
33-L30	MODEM.	
34- P3	Department Seminar	
35-L31	Telephone systems	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	cellular Telephone systems	
38- IT-II	Internal Test-II	
39-L34	mobile phone-principle of operation	
40-L35	Test Paper distribution and result analysis	
41-L36	Entering Internal Test-II Marks into University portal	
	integrated services	
42-L37	digital networks(ISDN)	
43- L38	Yagi antenna design	
44- P4 45-L39	College level meeting/ function	
45-L39 46-L40	resonance antennas and their characteristics	
	basic requirements/characteristics of Transducers	
47-L41 48-L42	DTH system	
48-L42 49-L43	(photo resistors & photovoltaic cells).	
	Class test	
50-L44	Allotting portion for Internal Test-III Internal Test III begins	
51 L45	UNIT-V: Photography	
21210	Introduction to cameras-parts of camera and accessories	
52- L46	lens shutteraperture	
53-IT-III	Internal Test-III	
55 11-111		

54-L47	flash photography-filters-battery
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	tele and wide angle lens Digital formats-data transfer to computer-
	ISO speed-resolution
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on23.04.2018

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Maintanance of electronic appliances
Course Code	SSPH4A
Class	II year (2018-2019)
Semester	Even
Staff Name	Mrs.P.Justina Angeline
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

Syllabus

MAINTANANCE OF ELECTRONIC EQUIPMENTS

UNIT-I: ELECTRONIC COMPONENTS

Study of electronic components - resistors - types - characteristics - colour coding – wattage rating-potential divider arrangement-capacitors - type - characteristics --working voltage-star and delta connection of resistors and capacitors -soldering and desoldering techniques-Groove board,bread board and printed circuit board (11L)

UNIT-II: MEASURING INSTRUMENTS

Practical uses of Multimeter (analog and digital) - CRO - Block Diagram - measurement of voltage, frequency and phase - waveforms and Lissajoue's

figures- Digital Storage Oscilloscopes-LCD display for instruments -A/F and R/F oscillators. (10L)

UNIT-III: TRANSDUCERS

Classification of transducers-basic requirements/characteristics of Transducers-active and passive transducers, resistive (Potentiometer -Theory, temperature compensation & applications), Capacitive (variable air gap type), Inductive (LVDT) & piezoelectric transducers.

Measurement of temperature (RTD, semiconductor IC sensors)-Light

transducers (photo resistors & photovoltaic cells). (13L)

UNIT-IV: COMMUNICATION DEVICES

Basic concepts of radio transmitter and receiver - TV antennas-resonance antennas and their characteristics - Dipole antenna - Folded dipole - Yagi antenna - Yagi antenna design - Dish antenna - DTH system - Mobile communication system- MODEM.

Telephone systems-cellular Telephone systems-mobile phone-principle of operation-integrated services-digital networks(ISDN) (15L)

UNIT-V: Photography

Introduction to cameras-parts of camera and accessories—lens shutterapertureflash photography-filters-battery-tele and wide angle lens Digital formats data transfer to computer ISO speed resolution(11L)

Digital formats-data transfer to computer-ISO speed-resolution(11L)

Hour	Class Schedule
allotment	
	Even Semester Begin on03.12.2018
1-L1	UNIT-I: ELECTRONIC COMPONENTS
	Study of electronic components
2-L2	star and delta connection of resistors
3- L3	wattage rating-potential divider arrangement
4-L4	capacitors - type -characteristicsworking voltage
5-L5	resistors - types - characteristics - colour coding
6-L6	soldering and desoldering techniques
7-L7	Groove board, bread board
8- P1	Welcoming of First year and Inauguration of Mathematics Association
9- L8	Practical uses of Multimeter (analog and digital)
10- L9	measurement of voltage, frequency and phase
11-L10	waveforms and Lissajoue's figures
12-L11	CRO - Block Diagram
13-L12	Digital Storage Oscilloscopes
14-L13	LCD display for instruments
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins

16-L15	A/F and R/F oscillators
17-IT-1	Internal Test-I
18-L16	printed circuit board
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Classification of transducers
21- L19	active and passive transducers, resistive (Potentiometer-Theory,
	temperature compensation & applications
22- P2	College level meeting/Cell function
23-L20	Capacitive (variable air gap type),
24-L21	Inductive (LVDT) & piezoelectric transducers.
25-L22	Measurement of temperature (RTD, semiconductor IC sensors)
26-L23	Light transducers
27-L24	Basic concepts of radio transmitter and receiver
28-L25	TV antennas
29-L26	Dipole antenna - Folded dipole
30-L27	Yagi antenna
31-L28	Dish antenna
32-L29	Mobile communication system
33-L30	MODEM.
34- P3	Department Seminar
35-L31	Telephone systems
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	cellular Telephone systems
38- IT-II	Internal Test-II
39-L34	mobile phone-principle of operation
40-L35	-Test Paper distribution and result analysis
41-L36	Entering Internal Test-II Marks into University portal integrated services
42- L37	digital networks(ISDN)
43- L38	Yagi antenna design
44- P4	College level meeting/ function
45-L39	resonance antennas and their characteristics
46-L40	basic requirements/characteristics of Transducers
47-L41	DTH system
48-L42	(photo resistors & photovoltaic cells).
49-L43	Class test
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	UNIT-V: Photography
	Introduction to cameras-parts of camera and accessories
52- L46	lens shutteraperture
	Internal Test-III

54-L47	flash photography-filters-battery
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	tele and wide angle lens Digital formats-data transfer to computer-
	ISO speed-resolution
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on23.04.2019

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Maintanance of electronic appliances
Course Code	SSPH4A
Class	II year (2019-2020)
Semester	Even
Staff Name	Dr.D.Arul Asir Abraham
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

Syllabus

MAINTANANCE OF ELECTRONIC EQUIPMENTS

UNIT-I: ELECTRONIC COMPONENTS

Study of electronic components - resistors - types - characteristics - colour coding – wattage rating-potential divider arrangement-capacitors - type - characteristics --working voltage-star and delta connection of resistors and capacitors -soldering and desoldering techniques-Groove board,bread board and printed circuit board (11L)

UNIT-II: MEASURING INSTRUMENTS

Practical uses of Multimeter (analog and digital) - CRO - Block Diagram - measurement of voltage, frequency and phase - waveforms and Lissajoue's

figures- Digital Storage Oscilloscopes-LCD display for instruments -A/F and R/F oscillators. (10L)

UNIT-III: TRANSDUCERS

Classification of transducers-basic requirements/characteristics of Transducers-active and passive transducers, resistive (Potentiometer -Theory, temperature compensation & applications), Capacitive (variable air gap

type), Inductive (LVDT) & piezoelectric transducers.

Measurement of temperature (RTD, semiconductor IC sensors)-Light

transducers (photo resistors & photovoltaic cells). (13L)

UNIT-IV: COMMUNICATION DEVICES

Basic concepts of radio transmitter and receiver - TV antennas-resonance antennas and their characteristics - Dipole antenna - Folded dipole - Yagi antenna - Yagi antenna design - Dish antenna - DTH system - Mobile communication system- MODEM.

Telephone systems-cellular Telephone systems-mobile phone-principle of operation-integrated services-digital networks(ISDN) (15L)

UNIT-V: Photography

Introduction to cameras-parts of camera and accessories—lens shutterapertureflash photography-filters-battery-tele and wide angle lens Digital formats data transfer to computer ISO speed resolution(11L)

Digital formats-data transfer to computer-ISO speed-resolution(11L)

Hour	Class Schedule
allotment	
	Even Semester Begin on02.12.2019
1-L1	UNIT-I: ELECTRONIC COMPONENTS
	Study of electronic components
2-L2	star and delta connection of resistors
3- L3	wattage rating-potential divider arrangement
4-L4	capacitors - type -characteristicsworking voltage
5-L5	resistors - types - characteristics - colour coding
6-L6	soldering and desoldering techniques
7-L7	Groove board, bread board
8- P1	Welcoming of First year and Inauguration of Mathematics Association
9- L8	Practical uses of Multimeter (analog and digital)
10- L9	measurement of voltage, frequency and phase
11-L10	waveforms and Lissajoue's figures
12-L11	CRO - Block Diagram
13-L12	Digital Storage Oscilloscopes
14-L13	LCD display for instruments
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins

16-L15	A/F and R/F oscillators
17-IT-1	Internal Test-I
18-L16	printed circuit board
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Classification of transducers
21- L19	active and passive transducers, resistive (Potentiometer-Theory,
	temperature compensation & applications
22- P2	College level meeting/Cell function
23-L20	Capacitive (variable air gap type),
24-L21	Inductive (LVDT) & piezoelectric transducers.
25-L22	Measurement of temperature (RTD, semiconductor IC sensors)
26-L23	Light transducers
27-L24	Basic concepts of radio transmitter and receiver
28-L25	TV antennas
29-L26	Dipole antenna - Folded dipole
30-L27	Yagi antenna
31-L28	Dish antenna
32-L29	Mobile communication system
33-L30	MODEM.
34- P3	Department Seminar
35-L31	Telephone systems
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	cellular Telephone systems
38- IT-II	Internal Test-II
39-L34	mobile phone-principle of operation
40-L35	Test Paper distribution and result analysis
41-L36	Entering Internal Test-II Marks into University portal
41-L30 42- L37	integrated services
43- L38	digital networks(ISDN)
43- L38 44- P4	Yagi antenna design College level meeting/ function
44-14 45-L39	resonance antennas and their characteristics
46-L40	basic requirements/characteristics of Transducers
47-L41	DTH system
48-L42	(photo resistors & photovoltaic cells).
49-L43	Class test
50-L44	Allotting portion for Internal Test-III
20 2011	Internal Test III begins
51 L45	UNIT-V: Photography
	Introduction to cameras-parts of camera and accessories
52- L46	lens shutteraperture
53-IT-III	Internal Test-III

54-L47	flash photography-filters-battery
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	tele and wide angle lens Digital formats-data transfer to computer-
	ISO speed-resolution
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on27.04.2020

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Maintenance Of Electrical Appliances
Course Code	SSPH3A
Class	II year (2018-2019)
Semester	Odd
Staff Name	Mrs.P.Justina Angeline
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

AAAA

Syllabus

MAINTAINANCE OF ELECTRICAL EQUIPMENT (Skilled Based Subject)

Unit-I,

Network Analysis: Direct Current and Alternating Current, power, Ohms law,kircoff law resistances, capacitances, combination in series, parallel - problems

Unit-II

Two Port Networks: Resistance, impedence and reactances, Impedance Parameters, Admittance Parameters, Hybrid Parameters, Inverse Hybrid Parameters,

Unit-III

Elecrical bulb, choke, starter, tube light wiring, cfl functioning, LED lighting , staircase switch, domestic wiring, fuse, ELCB,(Earth leak circuit breaker), circuit breaker(MCB),

Unit-IV

Transformers, Electric iron, fan, mixie, grinder, refrigerator, circuit diagram and working Two Port Networks: Resistance, impedence and reactances, Impedance Parameters, Admittance Parameters, Hybrid Parameters, Inverse Hybrid Parameters,

Unit-III

Elecrical bulb, choke, starter, tube light wiring, cfl functioning, LED lighting, staircase switch, domestic wiring, fuse, ELCB,(Earth leak circuit breaker), circuit breaker(MCB),

Unit-IV

Transformers, Electric iron, fan, mixie , grinder, refrigerator, circuit diagram and working

Unit-V

Soldering and Desoldering Techniques : Grove board, bread board, printed circuit board, wave soldering

Reference Books.:

1. Circuits and Networks by A. Sudhakar and Shyam Mohan 2. Instrumentation Repair and Maintenance by R.G. Gupta 3. Basic Electronics and Linear Circuits by Bhargava & Kulshreshtha (TTTI) 4. Integrated Electronics by Millman and Halkias 5. Instrumentation Cooper 6. Internet

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2018
1-L1	Network Analysis: Direct Current and Alternating Current,
2-L2	power, Ohms law,
3- L3	Kircoff law
4-L4	resistances,
5-L5	Capacitances
6-L6	combination in series,
7-L7	Parallel
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation

9- L8	- problems
10- L9	Problems for solving
10 L) 11-L10	Revision for unit-I
12-L11	Unit-II introduction
13-L12	Two Port Networks:
13 L12 14-L13	: Resistance
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Revision
17-IT-1	Internal Test-I
18-L16	, impedence and
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	reactances,
21- L19	Impedance Parameters,
22- P2	College level meeting/Cell function
23-L20	Admittance Parameters,
24-L21	Hybrid Parameters,
25-L22	Inverse Hybrid Parameters,
26-L23	Solving for problems
27-L24	Revision
28-L25	Class test
29-L26	Unit-III Introduction
30-L27	choke, starter,
31-L28	tube light wiring, cfl functioning, LED lighting, staircase switch, domestic wiring,
32-L29	fuse,
33-L30	ELCB,(Earth leak circuit breaker),
34- P3	Department Seminar
35-L31	circuit breaker(MCB),
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Revision
38- IT-II	Internal Test-II
39-L34	Unil-IV Introduction
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Transformers, Electric iron, fan, mixie, iagram
42- L37	grinder, refrigerator, circuit diagram and working
43- L38	Soldering and Desoldering Techniques :
44- P4	College level meeting/ function
45-L39	: Grove board, bread board,
46-L40	printed circuit board,

47-L41	wave soldering
48-L42	Problems
49-L43	Solving for problems
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Revision
52- L46	Class test
53-IT-III	Internal Test-III
54-L47	Revision
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working 23.11.2018

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

Blended Learning

: using PPT, video, library resources, ICT techniques, Elearning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Maintenance Of Electrical Appliances
Course Code	SSPH3A
Class	II year (2019-2020)
Semester	Odd
Staff Name	Dr.D.Arul Asir Abraham
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

AAAA

Syllabus

MAINTAINANCE OF ELECTRICAL EQUIPMENT (Skilled Based Subject)

Unit-I,

Network Analysis: Direct Current and Alternating Current, power, Ohms law,kircoff law resistances, capacitances, combination in series, parallel - problems

Unit-II

Two Port Networks: Resistance, impedence and reactances, Impedance Parameters, Admittance Parameters, Hybrid Parameters, Inverse Hybrid Parameters,

Unit-III

Elecrical bulb, choke, starter, tube light wiring, cfl functioning, LED lighting , staircase switch, domestic wiring, fuse, ELCB,(Earth leak circuit breaker), circuit breaker(MCB),

Unit-IV

Transformers, Electric iron, fan, mixie, grinder, refrigerator, circuit diagram and working Two Port Networks: Resistance, impedence and reactances, Impedance Parameters, Admittance Parameters, Hybrid Parameters, Inverse Hybrid Parameters,

Unit-III

Elecrical bulb, choke, starter, tube light wiring, cfl functioning, LED lighting, staircase switch, domestic wiring, fuse, ELCB,(Earth leak circuit breaker), circuit breaker(MCB),

Unit-IV

Transformers, Electric iron, fan, mixie , grinder, refrigerator, circuit diagram and working

Unit-V

Soldering and Desoldering Techniques : Grove board, bread board, printed circuit board, wave soldering

Reference Books.:

1. Circuits and Networks by A. Sudhakar and Shyam Mohan 2. Instrumentation Repair and Maintenance by R.G. Gupta 3. Basic Electronics and Linear Circuits by Bhargava & Kulshreshtha (TTTI) 4. Integrated Electronics by Millman and Halkias 5. Instrumentation Cooper 6. Internet

Hour	Class Schedule
allotment	
	Odd Semester Begin on 17.06.2019
1-L1	Network Analysis: Direct Current and Alternating Current,
2-L2	power, Ohms law,
3- L3	Kircoff law
4-L4	resistances,
5-L5	Capacitances
6-L6	combination in series,
7-L7	Parallel
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation

9- L8	- problems
10- L9	Problems for solving
10 L) 11-L10	Revision for unit-I
12-L11	Unit-II introduction
13-L12	Two Port Networks:
13 L12 14-L13	: Resistance
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Revision
17-IT-1	Internal Test-I
18-L16	, impedence and
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	reactances,
21- L19	Impedance Parameters,
22- P2	College level meeting/Cell function
23-L20	Admittance Parameters,
24-L21	Hybrid Parameters,
25-L22	Inverse Hybrid Parameters,
26-L23	Solving for problems
27-L24	Revision
28-L25	Class test
29-L26	Unit-III Introduction
30-L27	choke, starter,
31-L28	tube light wiring, cfl functioning, LED lighting , staircase switch, domestic wiring,
32-L29	fuse,
33-L30	ELCB,(Earth leak circuit breaker),
34- P3	Department Seminar
35-L31	circuit breaker(MCB),
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Revision
38- IT-II	Internal Test-II
39-L34	Unil-IV Introduction
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Transformers, Electric iron, fan, mixie, iagram
42- L37	grinder, refrigerator, circuit diagram and working
43- L38	Soldering and Desoldering Techniques :
44- P4	College level meeting/ function
45-L39	: Grove board, bread board,
46-L40	printed circuit board,

47-L41	wave soldering
48-L42	Problems
49-L43	Solving for problems
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Revision
52- L46	Class test
53-IT-III	Internal Test-III
54-L47	Revision
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working 30.10.2019

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

Blended Learning

: using PPT, video, library resources, ICT techniques, Elearning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Maintenance Of Electrical Equipment
Course Code	GSPH3A
Class	II year (2014-2015)
Semester	Odd
Staff Name	Dr.S.JohnKennadyVethanathan,
	Mr.A.Arul Gnanam
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /	unit)

Course Objectives

Syllabus

MAINTAINANCE OF ELECTRICAL EQUIPMENT (Skilled Based Subject)

Unit-I,

Network Analysis: Direct Current and Alternating Current, power, Ohms law,kircoff law resistances, capacitances, combination in series, parallel - problems

Unit-II

Two Port Networks: Resistance, impedence and reactances, Impedance Parameters, Admittance Parameters, Hybrid Parameters, Inverse Hybrid Parameters,

Unit-III

Elecrical bulb, choke, starter, tube light wiring, cfl functioning, LED lighting , staircase switch, domestic wiring, fuse, ELCB,(Earth leak circuit breaker), circuit breaker(MCB),

Unit-IV

Transformers, Electric iron, fan, mixie, grinder, refrigerator, circuit diagram and working Two Port Networks: Resistance, impedence and reactances, Impedance Parameters, Admittance Parameters, Hybrid Parameters, Inverse Hybrid Parameters,

Unit-III

Elecrical bulb, choke, starter, tube light wiring, cfl functioning, LED lighting, staircase switch, domestic wiring, fuse, ELCB,(Earth leak circuit breaker), circuit breaker(MCB),

Unit-IV

Transformers, Electric iron, fan, mixie , grinder, refrigerator, circuit diagram and working

Unit-V

Soldering and Desoldering Techniques : Grove board, bread board, printed circuit board, wave soldering

Reference Books.:

1. Circuits and Networks by A. Sudhakar and Shyam Mohan 2. Instrumentation Repair and Maintenance by R.G. Gupta 3. Basic Electronics and Linear Circuits by Bhargava & Kulshreshtha (TTTI) 4. Integrated Electronics by Millman and Halkias 5. Instrumentation Cooper 6. Internet

Hour allotment	Class Schedule	
	Odd Semester Begin on 18.06.2014	
1-L1	Network Analysis: Direct Current and Alternating Current,	
2-L2	power, Ohms law,	
3- L3	Kircoff law	
4-L4	resistances,	
5-L5	Capacitances	
6-L6	combination in series,	

7-L7	Parallel
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	- problems
10- L9	Problems for solving
11-L10	Revision for unit-I
12-L11	Unit-II introduction
13-L12	Two Port Networks:
14-L13	: Resistance
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Revision
17-IT-1	Internal Test-I
18-L16	, impedence and
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	reactances,
21- L19	Impedance Parameters,
22- P2	College level meeting/Cell function
23-L20	Admittance Parameters,
24-L21	Hybrid Parameters,
25-L22	Inverse Hybrid Parameters,
26-L23	Solving for problems
27-L24	Revision
28-L25	Class test
29-L26	Unit-III Introduction
30-L27	choke, starter,
31-L28	tube light wiring, cfl functioning, LED lighting, staircase switch, domestic
	wiring,
32-L29	fuse,
33-L30	ELCB,(Earth leak circuit breaker),
34- P3	Department Seminar
35-L31	circuit breaker(MCB),
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Revision
38- IT-II	Internal Test-II
39-L34	Unil-IV Introduction
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Transformers, Electric iron, fan, mixie, iagram
42- L37	grinder, refrigerator, circuit diagram and working
43- L38	Soldering and Desoldering Techniques :
44- P4	College level meeting/ function
44- P4 45-L39	: Grove board, bread board,
ーコーレンフ	1. OTOVE UVATU, UTCAU UVATU,

46-L40	printed circuit board,
47-L41	wave soldering
⊣ <i>I</i> − L−I	wave soldering
48-L42	Problems
49-L43	Solving for problems
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Revision
52- L46	Class test
53-IT-III	Internal Test-III
54-L47	Revision
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working 31.10.2014

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.
HOD Signature	Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Maintenance Of Electrical Equipment
Course Code	GSPH3A
Class	II year (2015-2016)
Semester	Odd
Staff Name	Dr.S.JohnKennadyVethanathan,
	Mr.A.Arul Gnanam
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /	unit)

Course Objectives

Syllabus

MAINTAINANCE OF ELECTRICAL EQUIPMENT (Skilled Based Subject)

Unit-I,

Network Analysis: Direct Current and Alternating Current, power, Ohms law,kircoff law resistances, capacitances, combination in series, parallel - problems

Unit-II

Two Port Networks: Resistance, impedence and reactances, Impedance Parameters, Admittance Parameters, Hybrid Parameters, Inverse Hybrid Parameters,

Unit-III

Elecrical bulb, choke, starter, tube light wiring, cfl functioning, LED lighting , staircase switch, domestic wiring, fuse, ELCB,(Earth leak circuit breaker), circuit breaker(MCB),

Unit-IV

Transformers, Electric iron, fan, mixie, grinder, refrigerator, circuit diagram and working Two Port Networks: Resistance, impedence and reactances, Impedance Parameters, Admittance Parameters, Hybrid Parameters, Inverse Hybrid Parameters,

Unit-III

Elecrical bulb, choke, starter, tube light wiring, cfl functioning, LED lighting, staircase switch, domestic wiring, fuse, ELCB,(Earth leak circuit breaker), circuit breaker(MCB),

Unit-IV

Transformers, Electric iron, fan, mixie , grinder, refrigerator, circuit diagram and working

Unit-V

Soldering and Desoldering Techniques : Grove board, bread board, printed circuit board, wave soldering

Reference Books.:

1. Circuits and Networks by A. Sudhakar and Shyam Mohan 2. Instrumentation Repair and Maintenance by R.G. Gupta 3. Basic Electronics and Linear Circuits by Bhargava & Kulshreshtha (TTTI) 4. Integrated Electronics by Millman and Halkias 5. Instrumentation Cooper 6. Internet

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2015	
1-L1	Network Analysis: Direct Current and Alternating Current,	
2-L2	power, Ohms law,	
3- L3	Kircoff law	
4-L4	resistances,	
5-L5	Capacitances	
6-L6	combination in series,	

7-L7	Parallel
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	- problems
10- L9	Problems for solving
11-L10	Revision for unit-I
12-L11	Unit-II introduction
13-L12	Two Port Networks:
14-L13	: Resistance
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Revision
17-IT-1	Internal Test-I
18-L16	, impedence and
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	reactances,
21- L19	Impedance Parameters,
22- P2	College level meeting/Cell function
23-L20	Admittance Parameters,
24-L21	Hybrid Parameters,
25-L22	Inverse Hybrid Parameters,
26-L23	Solving for problems
27-L24	Revision
28-L25	Class test
29-L26	Unit-III Introduction
30-L27	choke, starter,
31-L28	tube light wiring, cfl functioning, LED lighting , staircase switch, domestic
	wiring,
32-L29	fuse,
33-L30	ELCB,(Earth leak circuit breaker),
34- P3	Department Seminar
35-L31	circuit breaker(MCB),
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Revision
38- IT-II	Internal Test-II
39-L34	Unil-IV Introduction
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Transformers, Electric iron, fan, mixie, iagram
42- L37	grinder, refrigerator, circuit diagram and working
43- L38	Soldering and Desoldering Techniques :
44- P4	College level meeting/ function
44- P4 45-L39	: Grove board, bread board,
- + J-LJ7	1. OTOVE UVATU, UTCAU UVATU,

46-L40	printed circuit board,
47-L41	wave soldering
48-L42	Problems
49-L43	Solving for problems
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Revision
52- L46	Class test
53-IT-III	Internal Test-III
54-L47	Revision
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working 29.10.2015

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.
HOD Signature	Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Maintenance Of Electrical Equipment	
Course Code	GSPH3A	
Class	II year (2016-2017)	
Semester	Odd	
Staff Name	Dr.S.JohnKennadyVethanathan,	
	Mr.A.Arul Gnanam	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

MAINTAINANCE OF ELECTRICAL EQUIPMENT (Skilled Based Subject)

Unit-I,

Network Analysis: Direct Current and Alternating Current, power, Ohms law,kircoff law resistances, capacitances, combination in series, parallel - problems

Unit-II

Two Port Networks: Resistance, impedence and reactances, Impedance Parameters, Admittance Parameters, Hybrid Parameters, Inverse Hybrid Parameters,

Unit-III

Elecrical bulb, choke, starter, tube light wiring, cfl functioning, LED lighting , staircase switch, domestic wiring, fuse, ELCB,(Earth leak circuit breaker), circuit breaker(MCB),

Unit-IV

Transformers, Electric iron, fan, mixie, grinder, refrigerator, circuit diagram and working Two Port Networks: Resistance, impedence and reactances, Impedance Parameters, Admittance Parameters, Hybrid Parameters, Inverse Hybrid Parameters,

Unit-III

Elecrical bulb, choke, starter, tube light wiring, cfl functioning, LED lighting, staircase switch, domestic wiring, fuse, ELCB,(Earth leak circuit breaker), circuit breaker(MCB),

Unit-IV

Transformers, Electric iron, fan, mixie , grinder, refrigerator, circuit diagram and working

Unit-V

Soldering and Desoldering Techniques : Grove board, bread board, printed circuit board, wave soldering

Reference Books.:

1. Circuits and Networks by A. Sudhakar and Shyam Mohan 2. Instrumentation Repair and Maintenance by R.G. Gupta 3. Basic Electronics and Linear Circuits by Bhargava & Kulshreshtha (TTTI) 4. Integrated Electronics by Millman and Halkias 5. Instrumentation Cooper 6. Internet

Hour allotment	Class Schedule	
	Odd Semester Begin on 16.06.2016	
1-L1	Network Analysis: Direct Current and Alternating Current,	
2-L2	power, Ohms law,	
3- L3	Kircoff law	
4-L4	resistances,	
5-L5	Capacitances	
6-L6	combination in series,	

7-L7	Parallel
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	- problems
10- L9	Problems for solving
11-L10	Revision for unit-I
12-L11	Unit-II introduction
13-L12	Two Port Networks:
14-L13	: Resistance
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Revision
17-IT-1	Internal Test-I
18-L16	, impedence and
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	reactances,
21- L19	Impedance Parameters,
22- P2	College level meeting/Cell function
23-L20	Admittance Parameters,
24-L21	Hybrid Parameters,
25-L22	Inverse Hybrid Parameters,
26-L23	Solving for problems
27-L24	Revision
28-L25	Class test
29-L26	Unit-III Introduction
30-L27	choke, starter,
31-L28	tube light wiring, cfl functioning, LED lighting, staircase switch, domestic
	wiring,
32-L29	fuse,
33-L30	ELCB,(Earth leak circuit breaker),
34- P3	Department Seminar
35-L31	circuit breaker(MCB),
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Revision
38- IT-II	Internal Test-II
39-L34	Unil-IV Introduction
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Transformers, Electric iron, fan, mixie, iagram
42- L37	grinder, refrigerator, circuit diagram and working
43- L38	Soldering and Desoldering Techniques :
44- P4	College level meeting/ function
45-L39	: Grove board, bread board,

printed circuit board,
wave soldering
Problems
Solving for problems
Allotting portion for Internal Test-III
Internal Test III begins
Revision
Class test
Internal Test-III
Revision
Test Paper distribution and result analysis
Entering Internal Test-III Marks into University portal
Model Test begins
Model Test
Model Test
Model Test
Model test paper distribution and previous year university question paper
discussion
Feedback of the Course, analysis and report preparation
Last Working 30.11.2016

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.
HOD Signature	Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Maintenance Of Electrical Equipment	
Course Code	JSPH3A	
Class	II year (2017-2018)	
Semester	Odd	
Staff Name	Mr.K.G.Dhinakar	
	Mr.D.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours 4 / WK		
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

MAINTAINANCE OF ELECTRICAL EQUIPMENT (Skilled Based Subject)

Unit-I,

Network Analysis: Direct Current and Alternating Current, power, Ohms law,kircoff law resistances, capacitances, combination in series, parallel - problems

Unit-II

Two Port Networks: Resistance, impedence and reactances, Impedance Parameters, Admittance Parameters, Hybrid Parameters, Inverse Hybrid Parameters,

Unit-III

Elecrical bulb, choke, starter, tube light wiring, cfl functioning, LED lighting , staircase switch, domestic wiring, fuse, ELCB,(Earth leak circuit breaker), circuit breaker(MCB),

Unit-IV

Transformers, Electric iron, fan, mixie, grinder, refrigerator, circuit diagram and working Two Port Networks: Resistance, impedence and reactances, Impedance Parameters, Admittance Parameters, Hybrid Parameters, Inverse Hybrid Parameters,

Unit-III

Elecrical bulb, choke, starter, tube light wiring, cfl functioning, LED lighting, staircase switch, domestic wiring, fuse, ELCB,(Earth leak circuit breaker), circuit breaker(MCB),

Unit-IV

Transformers, Electric iron, fan, mixie , grinder, refrigerator, circuit diagram and working

Unit-V

Soldering and Desoldering Techniques : Grove board, bread board, printed circuit board, wave soldering

Reference Books.:

1. Circuits and Networks by A. Sudhakar and Shyam Mohan 2. Instrumentation Repair and Maintenance by R.G. Gupta 3. Basic Electronics and Linear Circuits by Bhargava & Kulshreshtha (TTTI) 4. Integrated Electronics by Millman and Halkias 5. Instrumentation Cooper 6. Internet

Hour allotment	Class Schedule	
	Odd Semester Begin on 16.06.2017	
1-L1	Network Analysis: Direct Current and Alternating Current,	
2-L2	power, Ohms law,	
3- L3	Kircoff law	
4-L4	resistances,	
5-L5	Capacitances	
6-L6	combination in series,	

7-L7	Parallel	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	- problems	
10- L9	Problems for solving	
11-L10	Revision for unit-I	
12-L11	Unit-II introduction	
13-L12	Two Port Networks:	
14-L13	: Resistance	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	Revision	
17-IT-1	Internal Test-I	
18-L16	, impedence and	
19-L17	-Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	reactances,	
21- L19	Impedance Parameters,	
22- P2	College level meeting/Cell function	
23-L20	Admittance Parameters,	
24-L21	Hybrid Parameters,	
25-L22	Inverse Hybrid Parameters,	
26-L23	Solving for problems	
27-L24	Revision	
28-L25	Class test	
29-L26	Unit-III Introduction	
30-L27	choke, starter,	
31-L28	tube light wiring, cfl functioning, LED lighting, staircase switch, domestic	
	wiring,	
32-L29	fuse,	
33-L30	ELCB,(Earth leak circuit breaker),	
34- P3	Department Seminar	
35-L31	circuit breaker(MCB),	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Revision	
38- IT-II	Internal Test-II	
39-L34	Unil-IV Introduction	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Transformers, Electric iron, fan, mixie, iagram	
42- L37	grinder, refrigerator, circuit diagram and working	
43- L38	Soldering and Desoldering Techniques :	
44- P4	College level meeting/ function	
44- P4 45-L39	: Grove board, bread board,	
ーコーレンフ	1. OTOVE UVATU, UTCAU UVATU,	

46-L40	printed circuit board,	
47-L41	wave soldering	
48-L42	Problems	
49-L43	Solving for problems	
50-L44	- Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Revision	
52- L46	Class test	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working 06.11.2017	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.
HOD Signature	Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Mechanics And Relativity	
Course Code	GMPH21	
Class	I year (2014-2017)	
Semester	EVEN	
Staff Name	Mr.A.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

MECHANICS AND RELATIVITY UNIT-I: VECTORS Vector analysis - components of a vector - gradient of a scalar point function-divergence and curl of vector point function- angular momentum as a vector-product of two vectors - work as a scalar product of two vectors - line, surface and volume integrals - Gauss divergence, Stokes and Greens theorem

UNIT-II: CONSERVATION LAWS Laws of conservation of energy, linear momentum and angular momentum - work energy theorem - work done by gravitational force - work done by spring force - potential energy - conservative and non conservative forces - potential energy curve - centre of mass - Two body problem and reduced mass - central field motion - motion of planets in elliptical orbits - proof of Kepler's second and third laws - Rocket motion - systems of varying mass - multistage rocket.

UNIT-III: DYNAMICS OF RIGID BODIES Translational and rotational motion - Angular momentum and angular impulse - moment of inertia and radius of gyration - moment of inertia of a thin circular ring, solid sphere, solid cylinder. Torque - Rotational Kinetic energy - parallel axis and perpendicular axis theorem - Newton's second law for rotation - work, rotational Kinetic

energy and expression for power during rotation - Kinetic energy of rolling - Acceleration of a uniform body, rolling down an inclined plane. Precessional motion – Gyrostat

UNIT-IV: HYDROSTATICS AND HYDRODYNAMICS Pressure and thrust - Thrust on a plane surface immersed in a liquid - centre of pressure - centre of pressure on a rectangular lamina, a triangular lamina. Laws of floation - determination of meta centric height of a ship - steady and streamline flow - equation of continuity - energy of a fluid - Bernoulli's theorem – proof - pitot's tube and venturimeter

UNIT-V: RELATIVITY

Introduction - Reference frames-inertial frames - the ether hypothesis - Michelson morley experiment - Postulates of special theory of relativity - Lorentz transformation equations -Lorentz Fitzgerald contraction - time dilation - Relativistic addition of velocities - velocity addition theorem - simultaneity - Relativistic mass - Relativistic momentum - mass energy equivalence. Relation between total energy, rest mass energy and momentum. Accelerated frames and Gravity - general theory of relativity (basics) - gravity waves.

Hour	Class Schedule	
allotment		
	Even Semester Begin on 3.12.2014	
1-L1	MECHANICS AND RELATIVITY UNIT-I:Introduction	
2-L2	VECTORS Vector analysis gradient of a scalar point function	
3- L3	components of a vector	
4-L4	gradient of a scalar point function	
5-L5	angular momentum as a vector-product of two vectors	
6-L6	work as a scalar product of two vectors - line, surface and volume integrals	
7-L7	Gauss divergence, Stokes and Greens theorem	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	Laws of conservation of energy, linear momentum and angular momentum	
10- L9	linear momentum and angular momentum	
11-L10	work energy theorem	
12-L11	work done by gravitational force - work done by spring force	
13-L12	proof of Kepler's second and third laws	
14-L13	Two body problem and reduced mass - central field motion - motion of planets in	
	elliptical orbits	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	conservative and non conservative forces - potential energy curve - centre of mass	
17-IT-1	Internal Test-I	
18-L16	work done by gravitational force - work done by spring force - potential energy	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	work energy theorem	
21- L19	Translational and rotational motion	
22- P2	College level meeting/Cell function	
23-L20	moment of inertia and radius of gyration	
24-L21	Angular momentum and angular impulse	

25-L22	moment of inertia of a thin circular ring, solid sphere	
26-L23	Torque- Rotational Kinetic energy	
27-L24	Kinetic energy of rolling	
28-L25	Gyrostat	
20 L25 29-L26	moment of inertia of a solid cylinder	
30-L27	parallel axis and perpendicular axis theorem	
30 L27 31-L28	Newton's second law for rotation - work, rotational	
31-L20 32-L29	Kinetic energy and expression for power during rotation	
33-L30	Acceleration of a uniform body, rolling down an inclined plane.	
33-L30 34- P3	Department Seminar	
35-L31	Precessional motion	
36-L32	Allotting portion for Internal Test-II	
50 152	Internal Test II begins	
37- L33	Pressure and thrust - Thrust on a plane surface immersed in a liquid	
38- IT-II	Internal Test-II	
39-L34	centre of pressure	
40-L35	-Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	centre of pressure on a rectangular lamina, a triangular lamina	
42- L37	Laws of floation - determination of meta centric height of a ship	
43- L38	steady and streamline flow - equation of continuity - energy of a fluid	
44- P4	College level meeting/ function	
45-L39	Bernoulli's theorem – proof - pitot's tube and venturimeter	
46-L40	Introduction - Reference frames-inertial frames	
47-L41	the ether hypothesis - Michelson morley experiment	
48-L42	Postulates of special theory of relativity - Lorentz transformation equations	
49-L43	Lorentz Fitzgerald contraction - time dilation - Relativistic addition of velocities	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	velocity addition theorem - simultaneity - Relativistic mass - Relativistic	
	momentum - mass energy equivalence	
52- L46	Relation between total energy, rest mass energy and momentum	
53-IT-III	Internal Test-III	
54-L47	Accelerated frames and Gravity - general theory of relativity (basics) - gravity waves.	
55-L48	- Test Paper distribution and result analysis Entering Internal Test-III Marks into University portal Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper discussion	
60-L50	Feedback of the Course, analysis and report preparation	
00-LJU	Last Working day on 23.04.2015	
	Last working day on 23.04.2015	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Mechanics And Relativity	
Course Code	GMPH21	
Class	I year (2015-2018)	
Semester	EVEN	
Staff Name	Mr.A.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

MECHANICS AND RELATIVITY UNIT-I: VECTORS Vector analysis - components of a vector - gradient of a scalar point function-divergence and curl of vector point function- angular momentum as a vector-product of two vectors - work as a scalar product of two vectors - line, surface and volume integrals - Gauss divergence, Stokes and Greens theorem

UNIT-II: CONSERVATION LAWS Laws of conservation of energy, linear momentum and angular momentum - work energy theorem - work done by gravitational force - work done by spring force - potential energy - conservative and non conservative forces - potential energy curve - centre of mass - Two body problem and reduced mass - central field motion - motion of planets in elliptical orbits - proof of Kepler's second and third laws - Rocket motion - systems of varying mass - multistage rocket.

UNIT-III: DYNAMICS OF RIGID BODIES Translational and rotational motion - Angular momentum and angular impulse - moment of inertia and radius of gyration - moment of inertia of a thin circular ring, solid sphere, solid cylinder. Torque - Rotational Kinetic energy - parallel axis and perpendicular axis theorem - Newton's second law for rotation - work, rotational Kinetic

energy and expression for power during rotation - Kinetic energy of rolling - Acceleration of a uniform body, rolling down an inclined plane. Precessional motion – Gyrostat

UNIT-IV: HYDROSTATICS AND HYDRODYNAMICS Pressure and thrust - Thrust on a plane surface immersed in a liquid - centre of pressure - centre of pressure on a rectangular lamina, a triangular lamina. Laws of floation - determination of meta centric height of a ship - steady and streamline flow - equation of continuity - energy of a fluid - Bernoulli's theorem – proof - pitot's tube and venturimeter

UNIT-V: RELATIVITY

Introduction - Reference frames-inertial frames - the ether hypothesis - Michelson morley experiment - Postulates of special theory of relativity - Lorentz transformation equations -Lorentz Fitzgerald contraction - time dilation - Relativistic addition of velocities - velocity addition theorem - simultaneity - Relativistic mass - Relativistic momentum - mass energy equivalence. Relation between total energy, rest mass energy and momentum. Accelerated frames and Gravity - general theory of relativity (basics) - gravity waves.

Hour	Class Schedule	
allotment		
	Even Semester Begin on 2.12.2015	
1-L1	MECHANICS AND RELATIVITY UNIT-I:Introduction	
2-L2	VECTORS Vector analysis gradient of a scalar point function	
3- L3	components of a vector	
4-L4	gradient of a scalar point function	
5-L5	angular momentum as a vector-product of two vectors	
6-L6	work as a scalar product of two vectors - line, surface and volume integrals	
7-L7	Gauss divergence, Stokes and Greens theorem	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	Laws of conservation of energy, linear momentum and angular momentum	
10- L9	linear momentum and angular momentum	
11-L10	work energy theorem	
12-L11	work done by gravitational force - work done by spring force	
13-L12	proof of Kepler's second and third laws	
14-L13	Two body problem and reduced mass - central field motion - motion of planets in	
	elliptical orbits	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	conservative and non conservative forces - potential energy curve - centre of mass	
17-IT-1	Internal Test-I	
18-L16	work done by gravitational force - work done by spring force - potential energy	
19-L17	-Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	work energy theorem	
21- L19	Translational and rotational motion	
22- P2	College level meeting/Cell function	
23-L20	moment of inertia and radius of gyration	
24-L21	Angular momentum and angular impulse	

25-L22	moment of inertia of a thin circular ring, solid sphere	
26-L23	Torque- Rotational Kinetic energy	
27-L24	Kinetic energy of rolling	
28-L25	Gyrostat	
20 L25 29-L26	moment of inertia of a solid cylinder	
30-L27	parallel axis and perpendicular axis theorem	
30 L27 31-L28	Newton's second law for rotation - work, rotational	
31 L20 32-L29	Kinetic energy and expression for power during rotation	
33-L30	Acceleration of a uniform body, rolling down an inclined plane.	
34- P3	Department Seminar	
35-L31	Precessional motion	
36-L32	Allotting portion for Internal Test-II	
00 202	Internal Test II begins	
37- L33	Pressure and thrust - Thrust on a plane surface immersed in a liquid	
38- IT-II	Internal Test-II	
39-L34	centre of pressure	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	centre of pressure on a rectangular lamina, a triangular lamina	
42- L37	Laws of floation - determination of meta centric height of a ship	
43- L38	steady and streamline flow - equation of continuity - energy of a fluid	
44- P4	College level meeting/ function	
45-L39	Bernoulli's theorem – proof - pitot's tube and venturimeter	
46-L40	Introduction - Reference frames-inertial frames	
47-L41	the ether hypothesis - Michelson morley experiment	
48-L42	Postulates of special theory of relativity - Lorentz transformation equations	
49-L43	Lorentz Fitzgerald contraction - time dilation - Relativistic addition of velocities	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	velocity addition theorem - simultaneity - Relativistic mass - Relativistic	
	momentum - mass energy equivalence	
52- L46	Relation between total energy, rest mass energy and momentum	
53-IT-III	Internal Test-III	
54-L47	Accelerated frames and Gravity - general theory of relativity (basics) - gravity waves.	
55-L48	Test Paper distribution and result analysis	
Entering Internal Test-III Marks into University portal		
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper discussion	
60-L50	Feedback of the Course, analysis and report preparation	
00-LJU	Last Working day on 22.04.2016	
	Last WULKING UAY UN 22.04.2010	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Mechanics And Relativity	
Course Code	JMPH21	
Class	I year (2016-2019)	
Semester	EVEN	
Staff Name	Mrs.D.Priscilla Koilpillai	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

MECHANICS AND RELATIVITY UNIT-I: VECTORS Vector analysis - components of a vector - gradient of a scalar point function-divergence and curl of vector point function- angular momentum as a vector-product of two vectors - work as a scalar product of two vectors - line, surface and volume integrals - Gauss divergence, Stokes and Greens theorem

UNIT-II: CONSERVATION LAWS Laws of conservation of energy, linear momentum and angular momentum - work energy theorem - work done by gravitational force - work done by spring force - potential energy - conservative and non conservative forces - potential energy curve - centre of mass - Two body problem and reduced mass - central field motion - motion of planets in elliptical orbits - proof of Kepler's second and third laws - Rocket motion - systems of varying mass - multistage rocket.

UNIT-III: DYNAMICS OF RIGID BODIES Translational and rotational motion - Angular momentum and angular impulse - moment of inertia and radius of gyration - moment of inertia of a thin circular ring, solid sphere, solid cylinder. Torque - Rotational Kinetic energy - parallel axis and perpendicular axis theorem - Newton's second law for rotation - work, rotational Kinetic

energy and expression for power during rotation - Kinetic energy of rolling - Acceleration of a uniform body, rolling down an inclined plane. Precessional motion – Gyrostat

UNIT-IV: HYDROSTATICS AND HYDRODYNAMICS Pressure and thrust - Thrust on a plane surface immersed in a liquid - centre of pressure - centre of pressure on a rectangular lamina, a triangular lamina. Laws of floation - determination of meta centric height of a ship - steady and streamline flow - equation of continuity - energy of a fluid - Bernoulli's theorem – proof - pitot's tube and venturimeter

UNIT-V: RELATIVITY

Introduction - Reference frames-inertial frames - the ether hypothesis - Michelson morley experiment - Postulates of special theory of relativity - Lorentz transformation equations -Lorentz Fitzgerald contraction - time dilation - Relativistic addition of velocities - velocity addition theorem - simultaneity - Relativistic mass - Relativistic momentum - mass energy equivalence. Relation between total energy, rest mass energy and momentum. Accelerated frames and Gravity - general theory of relativity (basics) - gravity waves.

Hour	Class Schedule
allotment	
	Even Semester Begin on 1.12.2016
1-L1	MECHANICS AND RELATIVITY UNIT-I:Introduction
2-L2	VECTORS Vector analysis gradient of a scalar point function
3- L3	components of a vector
4-L4	gradient of a scalar point function
5-L5	angular momentum as a vector-product of two vectors
6-L6	work as a scalar product of two vectors - line, surface and volume integrals
7-L7	Gauss divergence, Stokes and Greens theorem
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	Laws of conservation of energy, linear momentum and angular momentum
10- L9	linear momentum and angular momentum
11-L10	work energy theorem
12-L11	work done by gravitational force - work done by spring force
13-L12	proof of Kepler's second and third laws
14-L13	Two body problem and reduced mass - central field motion - motion of planets in
	elliptical orbits
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	conservative and non conservative forces - potential energy curve - centre of mass
17-IT-1	Internal Test-I
18-L16	work done by gravitational force - work done by spring force - potential energy
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	work energy theorem
21- L19	Translational and rotational motion
22- P2	College level meeting/Cell function
23-L20	moment of inertia and radius of gyration
24-L21	Angular momentum and angular impulse

25-L22	moment of inertia of a thin circular ring, solid sphere	
26-L23	Torque- Rotational Kinetic energy	
27-L24	Kinetic energy of rolling	
27 L24 28-L25	Gyrostat	
29-L25 29-L26	moment of inertia of a solid cylinder	
30-L27	parallel axis and perpendicular axis theorem	
31-L28	Newton's second law for rotation - work, rotational	
31-L20 32-L29	Kinetic energy and expression for power during rotation	
32-L2) 33-L30	Acceleration of a uniform body, rolling down an inclined plane.	
33-L30 34- P3	Department Seminar	
35-L31	Precessional motion	
36-L32	Allotting portion for Internal Test-II	
30 132	Internal Test II begins	
37- L33	Pressure and thrust - Thrust on a plane surface immersed in a liquid	
38- IT-II	Internal Test-II	
39-L34	centre of pressure	
40-L35	-Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	centre of pressure on a rectangular lamina, a triangular lamina	
42- L37	Laws of floation - determination of meta centric height of a ship	
43- L38	steady and streamline flow - equation of continuity - energy of a fluid	
44- P4	College level meeting/ function	
45-L39	Bernoulli's theorem – proof - pitot's tube and venturimeter	
46-L40	Introduction - Reference frames-inertial frames	
47-L41	the ether hypothesis - Michelson morley experiment	
48-L42	Postulates of special theory of relativity - Lorentz transformation equations	
49-L43	Lorentz Fitzgerald contraction - time dilation - Relativistic addition of velocities	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	velocity addition theorem - simultaneity - Relativistic mass - Relativistic	
	momentum - mass energy equivalence	
52- L46	Relation between total energy, rest mass energy and momentum	
53-IT-III	Internal Test-III	
54-L47	Accelerated frames and Gravity - general theory of relativity (basics) - gravity waves.	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
CO T 50	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 21.04.2017	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Mechanics And Relativity	
Course Code	SMPH11	
Class	I year (2017-2020)	
Semester	ODD	
Staff Name	Mrs.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

MECHANICS AND RELATIVITY UNIT-I: VECTORS Vector analysis - components of a vector - gradient of a scalar point function-divergence and curl of vector point function- angular momentum as a vector-product of two vectors - work as a scalar product of two vectors - line, surface and volume integrals - Gauss divergence, Stokes and Greens theorem

UNIT-II: CONSERVATION LAWS Laws of conservation of energy, linear momentum and angular momentum - work energy theorem - work done by gravitational force - work done by spring force - potential energy - conservative and non conservative forces - potential energy curve - centre of mass - Two body problem and reduced mass - central field motion - motion of planets in elliptical orbits - proof of Kepler's second and third laws - Rocket motion - systems of varying mass - multistage rocket.

UNIT-III: DYNAMICS OF RIGID BODIES Translational and rotational motion - Angular momentum and angular impulse - moment of inertia and radius of gyration - moment of inertia of a thin circular ring, solid sphere, solid cylinder. Torque - Rotational Kinetic energy - parallel axis and perpendicular axis theorem - Newton's second law for rotation - work, rotational Kinetic

energy and expression for power during rotation - Kinetic energy of rolling - Acceleration of a uniform body, rolling down an inclined plane. Precessional motion – Gyrostat

UNIT-IV: HYDROSTATICS AND HYDRODYNAMICS Pressure and thrust - Thrust on a plane surface immersed in a liquid - centre of pressure - centre of pressure on a rectangular lamina, a triangular lamina. Laws of floation - determination of meta centric height of a ship - steady and streamline flow - equation of continuity - energy of a fluid - Bernoulli's theorem – proof - pitot's tube and venturimeter

UNIT-V: RELATIVITY

Introduction - Reference frames-inertial frames - the ether hypothesis - Michelson morley experiment - Postulates of special theory of relativity - Lorentz transformation equations -Lorentz Fitzgerald contraction - time dilation - Relativistic addition of velocities - velocity addition theorem - simultaneity - Relativistic mass - Relativistic momentum - mass energy equivalence. Relation between total energy, rest mass energy and momentum. Accelerated frames and Gravity - general theory of relativity (basics) - gravity waves.

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.06.2017
1-L1	MECHANICS AND RELATIVITY UNIT-I:Introduction
2-L2	VECTORS Vector analysis gradient of a scalar point function
3- L3	components of a vector
4-L4	gradient of a scalar point function
5-L5	angular momentum as a vector-product of two vectors
6-L6	work as a scalar product of two vectors - line, surface and volume integrals
7-L7	Gauss divergence, Stokes and Greens theorem
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	Laws of conservation of energy, linear momentum and angular momentum
10- L9	linear momentum and angular momentum
11-L10	work energy theorem
12-L11	work done by gravitational force - work done by spring force
13-L12	proof of Kepler's second and third laws
14-L13	Two body problem and reduced mass - central field motion - motion of planets in
	elliptical orbits
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	conservative and non conservative forces - potential energy curve - centre of mass
17-IT-1	Internal Test-I
18-L16	work done by gravitational force - work done by spring force - potential energy
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	work energy theorem
21- L19	Translational and rotational motion
22- P2	College level meeting/Cell function
23-L20	moment of inertia and radius of gyration
24-L21	Angular momentum and angular impulse

	Last Working day on 06.11.2017
60-L50	Feedback of the Course, analysis and report preparation
/	discussion
59- L49	Model test paper distribution and previous year university question paper
58-MT	Model Test
57-MT	Model Test
56- MT	Model Test
	Model Test begins
JJ-L 1 0	Entering Internal Test-III Marks into University portal
55-L48	Test Paper distribution and result analysis
J4-L4/	Accelerated frames and Gravity - general theory of relativity (basics) - gravity waves.
53-IT-III 54-L47	
52- L46	Relation between total energy, rest mass energy and momentum Internal Test-III
50 T 16	momentum - mass energy equivalence
51 L45	velocity addition theorem - simultaneity - Relativistic mass – Relativistic
F1 T 1 F	Internal Test III begins
50-L44	Allotting portion for Internal Test-III
49-L43	Lorentz Fitzgerald contraction - time dilation - Relativistic addition of velocities
48-L42	Postulates of special theory of relativity - Lorentz transformation equations
47-L41	the ether hypothesis - Michelson morley experiment
46-L40	Introduction - Reference frames-inertial frames
45-L39	Bernoulli's theorem – proof - pitot's tube and venturimeter
44- P4	College level meeting/ function
43- L38	steady and streamline flow - equation of continuity - energy of a fluid
42- L37	Laws of floation - determination of meta centric height of a ship
41-L36	centre of pressure on a rectangular lamina, a triangular lamina
	Entering Internal Test-II Marks into University portal
40-L35	-Test Paper distribution and result analysis
39-L34	centre of pressure
38- IT-II	Internal Test-II
37- L33	Pressure and thrust - Thrust on a plane surface immersed in a liquid
-	Internal Test II begins
36-L32	Allotting portion for Internal Test-II
35-L31	Precessional motion
34- P3	Department Seminar
33-L30	Acceleration of a uniform body, rolling down an inclined plane.
32-L29	Kinetic energy and expression for power during rotation
31-L28	Newton's second law for rotation - work, rotational
30-L27	parallel axis and perpendicular axis theorem
29-L25	moment of inertia of a solid cylinder
27-L24 28-L25	Gyrostat
27-L24	Torque- Rotational Kinetic energy Kinetic energy of rolling
26-L23	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Mechanics And Relativity
Course Code	SMPH11
Class	I year (2018-2021)
Semester	ODD
Staff Name	Mrs.R.Nithya Agnes
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

Syllabus

MECHANICS AND RELATIVITY UNIT-I: VECTORS Vector analysis - components of a vector - gradient of a scalar point function-divergence and curl of vector point function- angular momentum as a vector-product of two vectors - work as a scalar product of two vectors - line, surface and volume integrals - Gauss divergence, Stokes and Greens theorem

UNIT-II: CONSERVATION LAWS Laws of conservation of energy, linear momentum and angular momentum - work energy theorem - work done by gravitational force - work done by spring force - potential energy - conservative and non conservative forces - potential energy curve - centre of mass - Two body problem and reduced mass - central field motion - motion of planets in elliptical orbits - proof of Kepler's second and third laws - Rocket motion - systems of varying mass - multistage rocket.

UNIT-III: DYNAMICS OF RIGID BODIES Translational and rotational motion - Angular momentum and angular impulse - moment of inertia and radius of gyration - moment of inertia of a thin circular ring, solid sphere, solid cylinder. Torque - Rotational Kinetic energy - parallel axis and perpendicular axis theorem - Newton's second law for rotation - work, rotational Kinetic

energy and expression for power during rotation - Kinetic energy of rolling - Acceleration of a uniform body, rolling down an inclined plane. Precessional motion – Gyrostat

UNIT-IV: HYDROSTATICS AND HYDRODYNAMICS Pressure and thrust - Thrust on a plane surface immersed in a liquid - centre of pressure - centre of pressure on a rectangular lamina, a triangular lamina. Laws of floation - determination of meta centric height of a ship - steady and streamline flow - equation of continuity - energy of a fluid - Bernoulli's theorem – proof - pitot's tube and venturimeter

UNIT-V: RELATIVITY

Introduction - Reference frames-inertial frames - the ether hypothesis - Michelson morley experiment - Postulates of special theory of relativity - Lorentz transformation equations -Lorentz Fitzgerald contraction - time dilation - Relativistic addition of velocities - velocity addition theorem - simultaneity - Relativistic mass - Relativistic momentum - mass energy equivalence. Relation between total energy, rest mass energy and momentum. Accelerated frames and Gravity - general theory of relativity (basics) - gravity waves.

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2018
1-L1	MECHANICS AND RELATIVITY UNIT-I:Introduction
2-L2	VECTORS Vector analysis gradient of a scalar point function
3- L3	components of a vector
4-L4	gradient of a scalar point function
5-L5	angular momentum as a vector-product of two vectors
6-L6	work as a scalar product of two vectors - line, surface and volume integrals
7-L7	Gauss divergence, Stokes and Greens theorem
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	Laws of conservation of energy, linear momentum and angular momentum
10- L9	linear momentum and angular momentum
11-L10	work energy theorem
12-L11	work done by gravitational force - work done by spring force
13-L12	proof of Kepler's second and third laws
14-L13	Two body problem and reduced mass - central field motion - motion of planets in
	elliptical orbits
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	conservative and non conservative forces - potential energy curve - centre of mass
17-IT-1	Internal Test-I
18-L16	work done by gravitational force - work done by spring force - potential energy
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	work energy theorem
21- L19	Translational and rotational motion
22- P2	College level meeting/Cell function
23-L20	moment of inertia and radius of gyration
24-L21	Angular momentum and angular impulse

25-L22	moment of inertia of a thin circular ring, solid sphere	
26-L23	Torque- Rotational Kinetic energy	
27-L24	Kinetic energy of rolling	
27 L24 28-L25	Gyrostat	
29-L25 29-L26	moment of inertia of a solid cylinder	
30-L27	parallel axis and perpendicular axis theorem	
31-L28	Newton's second law for rotation - work, rotational	
31-L28 32-L29	Kinetic energy and expression for power during rotation	
32-L2) 33-L30	Acceleration of a uniform body, rolling down an inclined plane.	
33-L30 34- P3	Department Seminar	
35-L31	Precessional motion	
36-L32	Allotting portion for Internal Test-II	
30 232	Internal Test II begins	
37- L33	Pressure and thrust - Thrust on a plane surface immersed in a liquid	
38- IT-II	Internal Test-II	
39-L34	centre of pressure	
40-L35	-Test Paper distribution and result analysis	
10 200	Entering Internal Test-II Marks into University portal	
41-L36	centre of pressure on a rectangular lamina, a triangular lamina	
42- L37	Laws of floation - determination of meta centric height of a ship	
43- L38	steady and streamline flow - equation of continuity - energy of a fluid	
44- P4	College level meeting/ function	
45-L39	Bernoulli's theorem – proof - pitot's tube and venturimeter	
46-L40	Introduction - Reference frames-inertial frames	
47-L41	the ether hypothesis - Michelson morley experiment	
48-L42	Postulates of special theory of relativity - Lorentz transformation equations	
49-L43	Lorentz Fitzgerald contraction - time dilation - Relativistic addition of velocities	
50-L44		
51 L45	velocity addition theorem - simultaneity - Relativistic mass – Relativistic	
	momentum - mass energy equivalence	
52- L46	Relation between total energy, rest mass energy and momentum	
53-IT-III	Internal Test-III	
54-L47	Accelerated frames and Gravity - general theory of relativity (basics) - gravity waves.	
55-L48	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper discussion	
60-L50	Feedback of the Course, analysis and report preparation	
00-LJU	Last Working day on 23.11.2018	
	Last working day on 23.11.2010	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Mechanics And Relativity
Course Code	SMPH11
Class	I year (2019-2022)
Semester	ODD
Staff Name	Mrs.D.Priscilla Koilpillai
	Mrs.G.Gomathisankari
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /	unit)

Course Objectives

Syllabus

MECHANICS AND RELATIVITY UNIT-I: VECTORS Vector analysis - components of a vector - gradient of a scalar point function-divergence and curl of vector point function- angular momentum as a vector-product of two vectors - work as a scalar product of two vectors - line, surface and volume integrals - Gauss divergence, Stokes and Greens theorem

UNIT-II: CONSERVATION LAWS Laws of conservation of energy, linear momentum and angular momentum - work energy theorem - work done by gravitational force - work done by spring force - potential energy - conservative and non conservative forces - potential energy curve - centre of mass - Two body problem and reduced mass - central field motion - motion of planets in elliptical orbits - proof of Kepler's second and third laws - Rocket motion - systems of varying mass - multistage rocket.

UNIT-III: DYNAMICS OF RIGID BODIES Translational and rotational motion - Angular momentum and angular impulse - moment of inertia and radius of gyration - moment of inertia of a thin circular ring, solid sphere, solid cylinder. Torque - Rotational Kinetic energy - parallel axis and perpendicular axis theorem - Newton's second law for rotation - work, rotational Kinetic

energy and expression for power during rotation - Kinetic energy of rolling - Acceleration of a uniform body, rolling down an inclined plane. Precessional motion – Gyrostat

UNIT-IV: HYDROSTATICS AND HYDRODYNAMICS Pressure and thrust - Thrust on a plane surface immersed in a liquid - centre of pressure - centre of pressure on a rectangular lamina, a triangular lamina. Laws of floation - determination of meta centric height of a ship - steady and streamline flow - equation of continuity - energy of a fluid - Bernoulli's theorem – proof - pitot's tube and venturimeter

UNIT-V: RELATIVITY

Introduction - Reference frames-inertial frames - the ether hypothesis - Michelson morley experiment - Postulates of special theory of relativity - Lorentz transformation equations -Lorentz Fitzgerald contraction - time dilation - Relativistic addition of velocities - velocity addition theorem - simultaneity - Relativistic mass - Relativistic momentum - mass energy equivalence. Relation between total energy, rest mass energy and momentum. Accelerated frames and Gravity - general theory of relativity (basics) - gravity waves.

Hour	Class Schedule
allotment	
	Odd Semester Begin on 17.06.2019
1-L1	MECHANICS AND RELATIVITY UNIT-I:Introduction
2-L2	VECTORS Vector analysis gradient of a scalar point function
3- L3	components of a vector
4-L4	gradient of a scalar point function
5-L5	angular momentum as a vector-product of two vectors
6-L6	work as a scalar product of two vectors - line, surface and volume integrals
7-L7	Gauss divergence, Stokes and Greens theorem
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	Laws of conservation of energy, linear momentum and angular momentum
10- L9	linear momentum and angular momentum
11-L10	work energy theorem
12-L11	work done by gravitational force - work done by spring force
13-L12	proof of Kepler's second and third laws
14-L13	Two body problem and reduced mass - central field motion - motion of planets in
	elliptical orbits
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	conservative and non conservative forces - potential energy curve - centre of mass
17-IT-1	Internal Test-I
18-L16	work done by gravitational force - work done by spring force - potential energy
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	work energy theorem
21- L19	Translational and rotational motion
22- P2	College level meeting/Cell function
23-L20	moment of inertia and radius of gyration
24-L21	Angular momentum and angular impulse

25-L22	moment of inertia of a thin circular ring, solid sphere	
26-L23	Torque- Rotational Kinetic energy	
27-L24	Kinetic energy of rolling	
27 L24 28-L25	Gyrostat	
29-L25 29-L26	moment of inertia of a solid cylinder	
30-L27	parallel axis and perpendicular axis theorem	
31-L28	Newton's second law for rotation - work, rotational	
31-L28 32-L29	Kinetic energy and expression for power during rotation	
32-L2) 33-L30	Acceleration of a uniform body, rolling down an inclined plane.	
33-L30 34- P3	Department Seminar	
35-L31	Precessional motion	
36-L32		
30 132	Internal Test II begins	
37- L33	Pressure and thrust - Thrust on a plane surface immersed in a liquid	
38- IT-II	Internal Test-II	
39-L34	centre of pressure	
40-L35	-Test Paper distribution and result analysis	
10 200	Entering Internal Test-II Marks into University portal	
41-L36	centre of pressure on a rectangular lamina, a triangular lamina	
42- L37	Laws of floation - determination of meta centric height of a ship	
43- L38	steady and streamline flow - equation of continuity - energy of a fluid	
44- P4	College level meeting/ function	
45-L39	Bernoulli's theorem – proof - pitot's tube and venturimeter	
46-L40	Introduction - Reference frames-inertial frames	
47-L41	the ether hypothesis - Michelson morley experiment	
48-L42	Postulates of special theory of relativity - Lorentz transformation equations	
49-L43	Lorentz Fitzgerald contraction - time dilation - Relativistic addition of velocities	
50-L44		
51 L45	velocity addition theorem - simultaneity - Relativistic mass – Relativistic	
	momentum - mass energy equivalence	
52- L46	Relation between total energy, rest mass energy and momentum	
53-IT-III	Internal Test-III	
54-L47	Accelerated frames and Gravity - general theory of relativity (basics) - gravity waves.	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 30.10.2019	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Nuclear physics
Course Code	GMPH61
Class	III year (2014-2015)
Semester	Even
Staff Name	Dr. S. John Kennady vethanathan
	Mrs.D.Priscilla Koilpillai
Credits	6
L. Hours /P. Hours	6 / WK
Total 90 Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 80 Hrs (5 units; 5×16=80; 16Hrs /unit)	

Course Objectives

Syllabus

NUCLEAR PHYSICS

UNIT – I Atomic Nucleus : General properties of nucleus - Binding energy - Mass defect - Proton - proton hypothesis - proton neutron hypothesis - Nuclear forces -Characteristics of nuclear forces - Liquid drop model - Weizsacker semi-empirical mass formula - Shell model - Magic Numbers

UNIT – II Natural radioactivity - alpha, beta and gamma rays - properties - Radioactive series - Laws of radio active disintegration - Radio - Carbon dating - Alpha decay - Beta decay - Neutrino and its properties - Gamma decay - Internal Conversion - Nuclear energy levels - Nuclear isomerism

UNIT – III Particle accelerators: Cyclotron - Betatron – Synchrotron - Types of Nuclear reaction - Q value of Nuclear Reactions - The balance of mass and energy in Nuclear reactions - Nuclear transmutations.

UNIT – IV Energy from the Nucleus: Nuclear fission - Types of fission - P-E Curve for fission - Bohr Wheeler's Theory of Nuclear fission - Nuclear fusion and Thermonuclear reactions - Controlled thermonuclear reactions - Nuclear chain reaction - critical size of a reactor - radiation hazards. UNIT – V Detection and measurements of Nuclear radiations Elementary particles : G-M Counter - Scintillation Counter - Cloud Chamber Bubble Chamber - Cerenkov Counters - Classification of elementary particles - Particle interaction - Conservation Laws - Leptons - Hardons - The Quark model

Hour	Class Schedule
allotment	
	Even Semester Begin on 03.12.2014
1-L1	UNIT -I Atomic Nucleus
2-L2	General properties of nucleus
3- L3	Binding energy
4-L4	Mass defect
5-L5	Proton
6-L6	proton hypothesis
7-L7	proton neutron hypothesis
8-L8	Nuclear forces
9-L9	Characteristics of nuclear forces
10-P1	Problem solving
11-L10	Weizsacker semi-empirical mass formula
12-L11	Shell model
13-L12	Magic Numbers
14-L13	UNIT – II Natural radioactivity
15-L14	Natural radioactivity
16-L15	alpha, beta and gamma rays
17-L16	properties
18-L17	Radioactive series
19-L18	Laws of radio active disintegration
20-L19	Radio
21-L20	
22-L21	Alpha decay
23-L22	Allotting portion for Internal Test-I
	Internal Test I begins

24-L23	Beta decay
25-L24	Neutrino and its properties
26-IT-1	Internal Test-I
27-L25	Gamma decay
28-L26	Internal Conversion
29-L27	Nuclear energy levels
30-L28	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
31- L29	Nuclear isomerism
32- L30	UNIT – III Particle accelerators
33- L31	Cyclotron
34-P2	College level meeting/Cell function
35- L32	Betatron
36- L33	Synchrotron
37- L34	Types of Nuclear reaction
38- L35	Q value of Nuclear Reactions
39- L36	The balance of mass and energy in Nuclear reactions
40- L37	Nuclear transmutations
41- L38	UNIT – IV Energy from the Nucleus
42- L39	Nuclear fission
43- L40	Types of fission
44- L41	P-E Curve for fission
45- L42	Bohr Wheeler's Theory of Nuclear fission
46- L43	Nuclear fusion and Thermonuclear reactions
47-L44	Controlled thermonuclear reactions
48- L45	- Nuclear chain reaction
49- L46	critical size of a reactor
50- L47 51- P3	radiation hazards
51- F3	Department Seminar UNIT – V Detection and measurements of Nuclear
53- L48	G-M Counter
54- L50	Scintillation Counter
55- L51	Cloud Chamber
56-L52	Allotting portion for Internal Test-II
50 152	Internal Test II begins
57-L53	Bubble Chamber
57 L55 58-L54	Cerenkov Counters
59-IT-II	Internal Test-II
60- L55	Classification of elementary particles
61- L56	
-	Entering Internal Test-II Marks into University portal
62- L57	Particle interaction
63- L58	Conservation Laws
64- L59	Leptons
65- L60	Hardons
66- L61	The Quark model
67- L62	Liquid drop model
68- L63	Problem solving

69- L64	Carbon dating
70- L65	Problem solving
71- L66	Problem solving
72- L67	Bohr Wheeler's Theory of Nuclear fission
73- L68	Types of Nuclear reaction
74-P4	College level meeting/ function
75- L69	G-M Counter
76- L70	Problem solving
77- L71	Neutrino and its properties
78- L72	Problem solving
79- L73	Allotting portion for Internal Test-III
	Internal Test III begins
80- L74	Problem solving
81- L75	Nuclear fusion and Thermonuclear reactions
82-IT-III	Internal Test-III
83- L76	Problem solving
84- L77	- Test Paper distribution and result analysis
85- L78	Problem solving
	Entering Internal Test-III Marks into University portal
	Model Test begins
86- L79	Model Test
87-MT	Model Test
88-MT	Model Test
89-MT	Model test paper distribution and previous year university question paper
	discussion
90-L-80	Feedback of the Course, analysis and report preparation
	Even semester end with 23.04.2015

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	

IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Nuclear physics
Course Code	GMPH61
Class	III year (2015-2016)
Semester	Even
Staff Name	Dr. S. John Kennady vethanathan
	Mrs.D.Priscilla Koilpillai
Credits	6
L. Hours /P. Hours	6 / WK
Total 90 Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 80 Hrs (5 units; 5×16=80; 16Hrs /unit)	

Course Objectives

Syllabus

NUCLEAR PHYSICS

UNIT – I Atomic Nucleus : General properties of nucleus - Binding energy - Mass defect - Proton - proton hypothesis - proton neutron hypothesis - Nuclear forces -Characteristics of nuclear forces - Liquid drop model - Weizsacker semi-empirical mass formula - Shell model - Magic Numbers

UNIT – II Natural radioactivity - alpha, beta and gamma rays - properties - Radioactive series - Laws of radio active disintegration - Radio - Carbon dating - Alpha decay - Beta decay - Neutrino and its properties - Gamma decay - Internal Conversion - Nuclear energy levels - Nuclear isomerism

UNIT – III Particle accelerators: Cyclotron - Betatron – Synchrotron - Types of Nuclear reaction - Q value of Nuclear Reactions - The balance of mass and energy in Nuclear reactions - Nuclear transmutations.

UNIT – IV Energy from the Nucleus: Nuclear fission - Types of fission - P-E Curve for fission - Bohr Wheeler's Theory of Nuclear fission - Nuclear fusion and Thermonuclear reactions - Controlled thermonuclear reactions - Nuclear chain reaction - critical size of a reactor - radiation hazards. UNIT – V Detection and measurements of Nuclear radiations Elementary particles : G-M Counter - Scintillation Counter - Cloud Chamber Bubble Chamber - Cerenkov Counters - Classification of elementary particles - Particle interaction - Conservation Laws - Leptons - Hardons - The Quark model

Hour allotment	Class Schedule
anotinent	Even Semester Begin on 02.12.2015
1-L1	UNIT -I Atomic Nucleus
2-L2	General properties of nucleus
3- L3	Binding energy
4-L4	Mass defect
5-L5	Proton
6-L6	proton hypothesis
7-L7	proton neutron hypothesis
8-L8	Nuclear forces
9-L9	Characteristics of nuclear forces
10-P1	Problem solving
11-L10	Weizsacker semi-empirical mass formula
12-L11	Shell model
13-L12	Magic Numbers
14-L13	UNIT – II Natural radioactivity
15-L14	Natural radioactivity
16-L15	alpha, beta and gamma rays
17-L16	properties
18-L17	Radioactive series
19-L18	Laws of radio active disintegration
20-L19	Radio
21-L20	
22-L21	Alpha decay
23-L22	Allotting portion for Internal Test-I
	Internal Test I begins

24-L23	Beta decay
25-L24	Neutrino and its properties
26-IT-1	Internal Test-I
27-L25	Gamma decay
28-L26	Internal Conversion
29-L27	Nuclear energy levels
30-L28	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
31- L29	Nuclear isomerism
32- L30	UNIT – III Particle accelerators
33- L31	Cyclotron
34-P2	College level meeting/Cell function
35- L32	Betatron
36- L33	Synchrotron
37- L34	Types of Nuclear reaction
38- L35	Q value of Nuclear Reactions
39- L36	The balance of mass and energy in Nuclear reactions
40- L37	Nuclear transmutations
41-L38	UNIT – IV Energy from the Nucleus
42- L39	Nuclear fission
43- L40	Types of fission
44- L41	P-E Curve for fission
45- L42	Bohr Wheeler's Theory of Nuclear fission
46- L43	Nuclear fusion and Thermonuclear reactions
47- L44 48- L45	Controlled thermonuclear reactions
48- L43 49- L46	- Nuclear chain reaction critical size of a reactor
49- L40 50- L47	radiation hazards
50- L47 51- P3	Department Seminar
51-15 52-L48	UNIT – V Detection and measurements of Nuclear
53- L49	G-M Counter
53 LT	Scintillation Counter
51 L50	Cloud Chamber
56-L52	
	Internal Test II begins
57-L53	Bubble Chamber
58-L54	Cerenkov Counters
59-IT-II	Internal Test-II
60- L55	Classification of elementary particles
61- L56	-Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
62- L57	Particle interaction
63- L58	Conservation Laws
64- L59	Leptons
65- L60	Hardons
66- L61	The Quark model
67-L62	Liquid drop model
68- L63	Problem solving

69- L64	Carbon dating
70- L65	Problem solving
71- L66	Problem solving
72- L67	Bohr Wheeler's Theory of Nuclear fission
73- L68	Types of Nuclear reaction
74-P4	College level meeting/ function
75- L69	G-M Counter
76- L70	Problem solving
77- L71	Neutrino and its properties
78- L72	Problem solving
79- L73	Allotting portion for Internal Test-III
	Internal Test III begins
80- L74	Problem solving
81- L75	Nuclear fusion and Thermonuclear reactions
82-IT-III	Internal Test-III
83- L76	Problem solving
84- L77	- Test Paper distribution and result analysis
85- L78	Problem solving
	Entering Internal Test-III Marks into University portal
	Model Test begins
86- L79	Model Test
87-MT	Model Test
88-MT	Model Test
89-MT	Model test paper distribution and previous year university question paper
	discussion
90-L-80	Feedback of the Course, analysis and report preparation
	Even semester end with 22.04.2016

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	

IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Nuclear physics	
Course Code	GMPH61	
Class	III year (2016-2017)	
Semester	Even	
Staff Name	Dr. S. John Kennady vethanathan	
	Mrs.D.Priscilla Koilpillai	
Credits	6	
L. Hours /P. Hours	6 / WK	
Total 90 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 80 Hrs (5 units; 5×16=80; 16Hrs /	unit)	

Course Objectives

Syllabus

NUCLEAR PHYSICS

UNIT – I Atomic Nucleus : General properties of nucleus - Binding energy - Mass defect - Proton - proton hypothesis - proton neutron hypothesis - Nuclear forces -Characteristics of nuclear forces - Liquid drop model - Weizsacker semi-empirical mass formula - Shell model - Magic Numbers

UNIT – II Natural radioactivity - alpha, beta and gamma rays - properties - Radioactive series - Laws of radio active disintegration - Radio - Carbon dating - Alpha decay - Beta decay - Neutrino and its properties - Gamma decay - Internal Conversion - Nuclear energy levels - Nuclear isomerism

UNIT – III Particle accelerators: Cyclotron - Betatron – Synchrotron - Types of Nuclear reaction - Q value of Nuclear Reactions - The balance of mass and energy in Nuclear reactions - Nuclear transmutations.

UNIT – IV Energy from the Nucleus: Nuclear fission - Types of fission - P-E Curve for fission - Bohr Wheeler's Theory of Nuclear fission - Nuclear fusion and Thermonuclear reactions - Controlled thermonuclear reactions - Nuclear chain reaction - critical size of a reactor - radiation hazards. UNIT – V Detection and measurements of Nuclear radiations Elementary particles : G-M Counter - Scintillation Counter - Cloud Chamber Bubble Chamber - Cerenkov Counters - Classification of elementary particles - Particle interaction - Conservation Laws - Leptons - Hardons - The Quark model

Hour allotment	Class Schedule
unotiment	Even Semester Begin on 01.12.2016
1-L1	UNIT -I Atomic Nucleus
2-L2	General properties of nucleus
3- L3	Binding energy
4-L4	Mass defect
5-L5	Proton
6-L6	proton hypothesis
7-L7	proton neutron hypothesis
8-L8	Nuclear forces
9-L9	Characteristics of nuclear forces
10-P1	Problem solving
11-L10	Weizsacker semi-empirical mass formula
12-L11	Shell model
13-L12	Magic Numbers
14-L13	UNIT – II Natural radioactivity
15-L14	Natural radioactivity
16-L15	alpha, beta and gamma rays
17-L16	properties
18-L17	Radioactive series
19-L18	Laws of radio active disintegration
20-L19	Radio
21-L20	
22-L21	Alpha decay
23-L22	Allotting portion for Internal Test-I
	Internal Test I begins

24-L23	Beta decay
25-L24	Neutrino and its properties
26-IT-1	Internal Test-I
27-L25	Gamma decay
28-L26	Internal Conversion
29-L27	Nuclear energy levels
30-L28	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
31- L29	Nuclear isomerism
32- L30	UNIT – III Particle accelerators
33- L31	Cyclotron
34-P2	College level meeting/Cell function
35- L32	Betatron
36- L33	Synchrotron
37- L34	Types of Nuclear reaction
38- L35	Q value of Nuclear Reactions
39- L36	The balance of mass and energy in Nuclear reactions
40- L37	Nuclear transmutations
41- L38	UNIT – IV Energy from the Nucleus
42- L39	Nuclear fission
43- L40	Types of fission
44- L41	P-E Curve for fission
45- L42	Bohr Wheeler's Theory of Nuclear fission
46- L43	Nuclear fusion and Thermonuclear reactions
47-L44	Controlled thermonuclear reactions
48- L45 49- L46	- Nuclear chain reaction
49- L46 50- L47	critical size of a reactor radiation hazards
50- L47 51- P3	
52- L48	Department Seminar UNIT – V Detection and measurements of Nuclear
53- L48	G-M Counter
54- L50	Scintillation Counter
54- L50	Cloud Chamber
56-L52	Allotting portion for Internal Test-II
50 152	Internal Test II begins
57-L53	Bubble Chamber
58-L54	Cerenkov Counters
59-IT-II	Internal Test-II
60- L55	Classification of elementary particles
61- L56	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
62- L57	Particle interaction
63- L58	Conservation Laws
64- L59	Leptons
65- L60	Hardons
66- L61	The Quark model
67- L62	Liquid drop model
68- L63	Problem solving

69- L64	Carbon dating
70- L65	Problem solving
71- L66	Problem solving
72- L67	Bohr Wheeler's Theory of Nuclear fission
73- L68	Types of Nuclear reaction
74-P4	College level meeting/ function
75- L69	G-M Counter
76- L70	Problem solving
77- L71	Neutrino and its properties
78- L72	Problem solving
79- L73	Allotting portion for Internal Test-III
	Internal Test III begins
80- L74	Problem solving
81- L75	Nuclear fusion and Thermonuclear reactions
82-IT-III	Internal Test-III
83- L76	Problem solving
84- L77	Test Paper distribution and result analysis
85- L78	Problem solving
	Entering Internal Test-III Marks into University portal
	Model Test begins
86- L79	Model Test
87-MT	Model Test
88-MT	Model Test
89-MT	Model test paper distribution and previous year university question paper
	discussion
90-L-80	Feedback of the Course, analysis and report preparation
	Even semester end with 21.04.2017

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	

IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Nuclear physics
Course Code	GMPH61
Class	III year (2017-2018)
Semester	Even
Staff Name	Dr. S. John Kennady vethanathan
	Mrs.D.Priscilla Koilpillai
Credits	6
L. Hours /P. Hours	6 / WK
Total 90 Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 80 Hrs (5 units; 5×16=80; 16Hrs /	unit)

Course Objectives

Syllabus

NUCLEAR PHYSICS

UNIT – I Atomic Nucleus : General properties of nucleus - Binding energy - Mass defect - Proton - proton hypothesis - proton neutron hypothesis - Nuclear forces -Characteristics of nuclear forces - Liquid drop model - Weizsacker semi-empirical mass formula - Shell model - Magic Numbers

UNIT – II Natural radioactivity - alpha, beta and gamma rays - properties - Radioactive series - Laws of radio active disintegration - Radio - Carbon dating - Alpha decay - Beta decay - Neutrino and its properties - Gamma decay - Internal Conversion - Nuclear energy levels - Nuclear isomerism

UNIT – III Particle accelerators: Cyclotron - Betatron – Synchrotron - Types of Nuclear reaction - Q value of Nuclear Reactions - The balance of mass and energy in Nuclear reactions - Nuclear transmutations.

UNIT – IV Energy from the Nucleus: Nuclear fission - Types of fission - P-E Curve for fission - Bohr Wheeler's Theory of Nuclear fission - Nuclear fusion and Thermonuclear reactions - Controlled thermonuclear reactions - Nuclear chain reaction - critical size of a reactor - radiation hazards. UNIT – V Detection and measurements of Nuclear radiations Elementary particles : G-M Counter - Scintillation Counter - Cloud Chamber Bubble Chamber - Cerenkov Counters - Classification of elementary particles - Particle interaction - Conservation Laws - Leptons - Hardons - The Quark model

Hour	Class Schedule
allotment	
	Even Semester Begin on 07.12.2017
1-L1	UNIT -I Atomic Nucleus
2-L2	General properties of nucleus
3- L3	Binding energy
4-L4	Mass defect
5-L5	Proton
6-L6	proton hypothesis
7-L7	proton neutron hypothesis
8-L8	Nuclear forces
9-L9	Characteristics of nuclear forces
10-P1	Problem solving
11-L10	Weizsacker semi-empirical mass formula
12-L11	Shell model
13-L12	Magic Numbers
14-L13	UNIT – II Natural radioactivity
15-L14	Natural radioactivity
16-L15	alpha, beta and gamma rays
17-L16	properties
18-L17	Radioactive series
19-L18	Laws of radio active disintegration
20-L19	Radio
21-L20	
22-L21	Alpha decay
23-L22	Allotting portion for Internal Test-I
	Internal Test I begins

24-L23	Beta decay
25-L24	Neutrino and its properties
26-IT-1	Internal Test-I
27-L25	Gamma decay
28-L26	Internal Conversion
29-L27	Nuclear energy levels
30-L28	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
31- L29	Nuclear isomerism
32- L30	UNIT – III Particle accelerators
33- L31	Cyclotron
34-P2	College level meeting/Cell function
35- L32	Betatron
36- L33	Synchrotron
37- L34	Types of Nuclear reaction
38- L35	Q value of Nuclear Reactions
39- L36	The balance of mass and energy in Nuclear reactions
40- L37	Nuclear transmutations
41-L38	UNIT – IV Energy from the Nucleus
42- L39	Nuclear fission
43- L40	Types of fission
44- L41	P-E Curve for fission
45- L42	Bohr Wheeler's Theory of Nuclear fission
46- L43	Nuclear fusion and Thermonuclear reactions
47- L44 48- L45	Controlled thermonuclear reactions
48- L43 49- L46	- Nuclear chain reaction critical size of a reactor
49- L40 50- L47	radiation hazards
50- L47 51- P3	Department Seminar
51-15 52-L48	UNIT – V Detection and measurements of Nuclear
53- L49	G-M Counter
53 LT	Scintillation Counter
51 L50	Cloud Chamber
56-L52	
	Internal Test II begins
57-L53	Bubble Chamber
58-L54	Cerenkov Counters
59-IT-II	Internal Test-II
60- L55	Classification of elementary particles
61- L56	-Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
62- L57	Particle interaction
63- L58	Conservation Laws
64- L59	Leptons
65- L60	Hardons
66- L61	The Quark model
67-L62	Liquid drop model
68- L63	Problem solving

69- L64	Carbon dating
70- L65	Problem solving
71- L66	Problem solving
72- L67	Bohr Wheeler's Theory of Nuclear fission
73- L68	Types of Nuclear reaction
74-P4	College level meeting/ function
75- L69	G-M Counter
76- L70	Problem solving
77- L71	Neutrino and its properties
78- L72	Problem solving
79- L73	Allotting portion for Internal Test-III
	Internal Test III begins
80- L74	Problem solving
81- L75	Nuclear fusion and Thermonuclear reactions
82-IT-III	Internal Test-III
83- L76	Problem solving
84- L77	- Test Paper distribution and result analysis
85- L78	Problem solving
	Entering Internal Test-III Marks into University portal
	Model Test begins
86- L79	Model Test
87-MT	Model Test
88-MT	Model Test
89-MT	Model test paper distribution and previous year university question paper
	discussion
90-L-80	Feedback of the Course, analysis and report preparation
	Even semester end with 23.04.2018

Learning Outcomes	COs of the course " <course name="">"</course>
C01	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	

IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Nuclear Physics
Course Code	SMPH63
Class	III Year (2019-2020)
Semester	Even
Staff Name	Dr.A.Arul Gnanam
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

SYLLABUS

NUCLEAR PHYSICS

UNIT – I Atomic Nucleus : General properties of nucleus - Binding energy - Mass defect - Proton - proton hypothesis - proton neutron hypothesis - Nuclear forces -Characteristics of nuclear forces - Liquid drop model - Weizsacker semi-empirical mass formula - Shell model - Magic Numbers

UNIT – II Natural radioactivity - alpha, beta and gamma rays - properties - Radioactive series - Laws of radio active disintegration - Radio - Carbon dating - Alpha decay - Beta decay - Neutrino and its properties - Gamma decay - Internal Conversion - Nuclear energy levels - Nuclear isomerism

UNIT – III Particle accelerators: Cyclotron - Betatron – Synchrotron - Types of Nuclear reaction - Q value of Nuclear Reactions - The balance of mass and energy in Nuclear reactions - Nuclear transmutations.

UNIT – IV Energy from the Nucleus: Nuclear fission - Types of fission - P-E Curve for fission - Bohr Wheeler's Theory of Nuclear fission - Nuclear fusion and Thermonuclear reactions - Controlled thermonuclear reactions - Nuclear chain reaction - critical size of a reactor - radiation hazards

UNIT – V Detection and measurements of Nuclear radiations Elementary particles : G-M Counter - Scintillation Counter - Cloud Chamber Bubble Chamber - Cerenkov Counters - Classification of elementary particles - Particle interaction - Conservation Laws - Leptons - Hardons - The Quark model

Books for Reference: 1. Nuclear Physics by Irving Kaplan

- 2. Nuclear Physics by D.C Tayal
- 3. Halliday Rhesnick walker Ed 6 Wiley

Course	Calendar
Course	Cultural

Hour	Class Schedule
allotment	
	Even Semester Begin on 02-12-2019
1-L1	UNIT – I Atomic Nucleus
2-L2	General properties of nucleus - Binding energy -mass defect
3- L3	Proton - proton hypothesis
4-L4	proton neutron hypothesis - Nuclear forces
5-L5	Characteristics of nuclear forces
6-L6	Liquid drop model
7-L7	Weizsacker semi-empirical mass formula -
8- P1	Shell model - Magic Numbers
9- L8	UNIT – II Natural radioactivity
10- L9	alpha, beta and gamma rays properties
11-L10	Radioactive series
12-L11	Laws of radio active disintegration
13-L12	Radio - Carbon dating
14-L13	Alpha decay - Beta decay - Neutrino and its properties - Gamma decay
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Internal Conversion - Nuclear energy levels - Nuclear isomerism

17-IT-1	Internal Test-I
18-L16	UNIT – III Particle accelerators
19-L17	-Test Paper distribution and result analysis
17 117	Entering Internal Test-I Marks into University portal
20-L18	Cyclotron - Betatron
21-L19	Synchrotron - Types of Nuclear reaction -
22- P2	College level meeting/Cell function
23-L20	Q value of Nuclear Reactions -
24-L21	The balance of mass and energy in Nuclear reactions -
25-L22	Nuclear transmutations
26-L23	UNIT – IV Energy from the Nucleus
27-L24	Nuclear fission - Types of fission
28-L25	P-E Curve for fission -
29-L26	Bohr Wheeler's Theory of Nuclear fission
30-L27	Nuclear fusion and Thermonuclear reactions
31-L28	Controlled thermonuclear reactions
32-L29	Nuclear chain reaction
33-L30	critical size of a reactor
34- P3	Department Seminar
35-L31	Revision
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Class test
38- IT-II	Internal Test-II
39-L34	UNIT – V Detection and measurements of Nuclear radiations Elementary particles
40-L35	Test Paper distribution and result analysis
40-L33	Entering Internal Test-II Marks into University portal
41-L36	G-M Counter
41 L30 42- L37	Scintillation Counter
43- L38	Cloud Chamber Bubble Chamber -
44- P4	College level meeting/ function
45-L39	Cerenkov Counters
46-L40	Classification of elementary particles
47-L41	Particle interaction
48-L42	Conservation Laws -
49-L43	Leptons - Hardons
50-L44	
	Internal Test III begins
51 L45	The Quark model
52- L46	Revision
53-IT-III	Internal Test-III
54-L47	Problems
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test

58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working on 27-04-2020

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Optics	
Course Code	GMPH12	
Class	I year (2014-2017)	
Semester	Odd	
Staff Name	Mrs.D. Priscilla Koilpillai	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

UNIT-I: GEOMETRICAL OPTICS

Introduction - chromatic and spherical aberration in lenses and their removal –Dispersion of light - Refraction through a thin prism - Dispersive power of a prism - deviation without dispersion - Dispersion without deviation - constant deviation spectroscope. Eyepieces - Huygen , Ramsden and Gauss eyepieces - Aplanatic points - oil immersion objective - prism binocular. UNIT-II: **INTERFERENCE**

Analytical treatment of interference - theory of interference fringes - Fresnel's biprism theory and experiment to measure wavelength - Interference in thin films due to reflected light - Air wedge - experiment to find thickness of a wire - Testing the plainness of surfaces - Michaelson's interferometer and applications.

UNIT-III: **DIFFRACTION** (Fresnel and Fraunhofer)

Diffraction by single slit and determination of intensity distribution by phasor method -Diffraction by circular aperture - plane transmission grating- diffraction grating at normal and oblique incidence - Limit of resolution and resolving power-Rayleigh Criterion for resolution -Resolving power of a plane diffraction grating and prism - Fresnel wavefront and theory of half period zones - zone plate-comparison with convex lens - comparison between Fresnel and fraunhofer diffraction

UNIT-IV: POLARIZATION AND FIBRE OPTICS

Double refraction - Nicol Prism as polarizer and analyser -Production and detection of plane polarized,elliptically polarized and circularly polarized light - Quarter wave and Half wave plates - optical activity-Fresnel's theory of optical activity - Dichroism. Optical fibre and principles of fibre optics - Acceptance angle - numerical aperture expression - step index optical fibre. Single mode and multimode step index optical fibres; their characteristics - sources of power loss in optical fibres - Advantages of fibre optic communication. 5

UNIT-V: LASER AND ITS APPLICATIONS

Principle of laser - spontaneous emission - stimulated emission - threshold condition (Schaw low and townes equations) - rate equation - optical excitation-three and four level lasers. Types of lasers - semiconductor diode lasers - dye laser-nitrogen and carbon - di- oxide lasers - di- oxide lasers. Holography and simple application

Books for Study

1. Optics by Subramaniam N & Brij Lal, S Chand & Co. Pvt. Ltd., New Delhi, 1990

2. Laser and nonlinear optics by B.B.Laud 2nd edition Wiley Eastern Ltd., 1991

3.Optic fibre and fibre optic communication systems-Subir kumar sankar-. S Chand & Co. Pvt. Ltd., New Delhi,

Books for Reference

1. Fundamentals of Optics by Jenkins A Francis and White E Harvey, McGRaw Hill Inc., New Delhi, 1976.

2. Optical Physics by Lipson. S G, Lipson H and Tannhauser D S, Cambridge University Press (1995)

3. Fundamentals of Optics by Raj M G, Anmol Publications Pvt. Ltd., (1996), New Delhi

4. Fundamentals of Physics, 6th Edition, by D Halliday, R Resnick and J Walker. Wiley NY 2001.

5.Optics and Spectroscopy by Murugeshan, S Chand & Co. Pvt. Ltd., New Delhi 6

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2014
1-L1	Introduction - chromatic and spherical aberration in lenses and their removal
2-L2	Dispersion of light - Refraction through a thin prism
3- L3	Dispersive power of a prism
4-L4	Constant deviation spectroscope. Eyepieces
5-L5	Huygen, Ramsden and Gauss eyepieces -
6-L6	Aplanatic points - oil immersion objective
7-L7	Prism binocular.
8- P1	Analytical treatment of interference
9- L8	Theory of interference fringes
10- L9	Fresnel's biprism theory and experiment to measure wavelength
11-L10	Interference in thin films due to reflected light
12-L11	Air wedge - experiment to find thickness of a wire
13-L12	Testing the plainness of surfaces
14-L13	Michaelson's interferometer and applications.
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Diffraction by single slit and determination of intensity distribution by phasor
	method
17-IT-1	Internal Test-I
18-L16	Diffraction by circular aperture
19-L17	Test Paper distribution and result analysis

	Entering Internal Test-I Marks into University portal
20-L18	Plane transmission grating
21- L19	Diffraction grating at normal and oblique incidence
22- P2	College level meeting/Cell function
23-L20	Limit of resolution and resolving power
24-L21	Rayleigh Criterion for resolution
25-L22	Resolving power of a plane diffraction grating and prism
26-L23	Fresnel wave front and theory of half period zones
27-L24	Zone plate-comparison with convex lens
28-L25	Double refraction - Nicol Prism as polarizer and analyser
29-L26	Production and detection of plane polarized, elliptically polarized and circularly
	polarized light
30-L27	Quarter wave and Half wave plates - optical activity
31-L28	Dichroism. Optical fibre and principles of fibre optics
32-L29	Acceptance angle - numerical aperture expression
33-L30	Step index optical fibre. Single mode and multimode step index optical fibres; their
	characteristics
34- P3	Department Seminar
35-L31	Sources of power loss in optical fibres
36-L32	Allotting portion for Internal Test-II
07 1 00	Internal Test II begins
37- L33	Advantages of fibre optic communication
38- IT-II	Internal Test-II
39-L34	Problem solving
40-L35	-Test Paper distribution and result analysis
41-L36	Entering Internal Test-II Marks into University portal Principle of laser - spontaneous emission stimulated emission
41-L30 42- L37	Threshold condition (Schaw low and townes equations
43- L37	Rate equation - optical excitation
43- L38 44- P4	College level meeting/ function
45-L39	Three and four level lasers
46-L40	Types of lasers
47-L41	Semiconductor diode lasers
48-L42	Dye laser-nitrogen and carbon -di- oxide lasers
49-L43	Holography and simple application
50-L44	Allotting portion for Internal Test-III
20 11	Internal Test III begins
51 L45	Problem Solving
52- L46	Revision
53-IT-III	Internal Test-III
54-L47	Revision
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test

	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 31.10.2014

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Optics	
Course Code	GMPH12	
Class	I year (2015-2018)	
Semester	Odd	
Staff Name	Mrs.D.Priscilla Koilpillai	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

UNIT-I: GEOMETRICAL OPTICS

Introduction - chromatic and spherical aberration in lenses and their removal –Dispersion of light - Refraction through a thin prism - Dispersive power of a prism - deviation without dispersion - Dispersion without deviation - constant deviation spectroscope. Eyepieces - Huygen , Ramsden and Gauss eyepieces - Aplanatic points - oil immersion objective - prism binocular.

UNIT-II: **INTERFERENCE**

Analytical treatment of interference - theory of interference fringes - Fresnel's biprism theory and experiment to measure wavelength - Interference in thin films due to reflected light - Air wedge - experiment to find thickness of a wire - Testing the plainness of surfaces - Michaelson's interferometer and applications.

UNIT-III: DIFFRACTION (Fresnel and Fraunhofer)

Diffraction by single slit and determination of intensity distribution by phasor method -Diffraction by circular aperture - plane transmission grating- diffraction grating at normal and oblique incidence - Limit of resolution and resolving power-Rayleigh Criterion for resolution -Resolving power of a plane diffraction grating and prism - Fresnel wavefront and theory of half period zones - zone plate-comparison with convex lens - comparison between Fresnel and fraunhofer diffraction

UNIT-IV: POLARIZATION AND FIBRE OPTICS

Double refraction - Nicol Prism as polarizer and analyser -Production and detection of plane polarized,elliptically polarized and circularly polarized light - Quarter wave and Half wave plates - optical activity-Fresnel's theory of optical activity - Dichroism. Optical fibre and principles of fibre optics - Acceptance angle - numerical aperture expression - step index optical fibre. Single mode and multimode step index optical fibres; their characteristics - sources of power loss in optical fibres - Advantages of fibre optic communication. 5

UNIT-V: LASER AND ITS APPLICATIONS

Principle of laser - spontaneous emission - stimulated emission - threshold condition (Schaw low and townes equations) - rate equation - optical excitation-three and four level lasers. Types of lasers - semiconductor diode lasers - dye laser-nitrogen and carbon - di- oxide lasers - di- oxide lasers. Holography and simple application

Books for Study

1. Optics by Subramaniam N & Brij Lal, S Chand & Co. Pvt. Ltd., New Delhi, 1990

2. Laser and nonlinear optics by B.B.Laud 2nd edition Wiley Eastern Ltd., 1991

3.Optic fibre and fibre optic communication systems-Subir kumar sankar-. S Chand & Co. Pvt. Ltd., New Delhi,

Books for Reference

1. Fundamentals of Optics by Jenkins A Francis and White E Harvey, McGRaw Hill Inc., New Delhi, 1976.

2. Optical Physics by Lipson. S G, Lipson H and Tannhauser D S, Cambridge University Press (1995)

3. Fundamentals of Optics by Raj M G, Anmol Publications Pvt. Ltd., (1996), New Delhi

4. Fundamentals of Physics, 6th Edition, by D Halliday, R Resnick and J Walker. Wiley NY 2001.

5.Optics and Spectroscopy by Murugeshan, S Chand & Co. Pvt. Ltd., New Delhi 6

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2015
1-L1	Introduction - chromatic and spherical aberration in lenses and their removal
2-L2	Dispersion of light - Refraction through a thin prism
3- L3	Dispersive power of a prism
4-L4	Constant deviation spectroscope. Eyepieces
5-L5	Huygen , Ramsden and Gauss eyepieces -
6-L6	Aplanatic points - oil immersion objective
7-L7	Prism binocular.
8- P1	Analytical treatment of interference
9- L8	Theory of interference fringes
10- L9	Fresnel's biprism theory and experiment to measure wavelength
11-L10	Interference in thin films due to reflected light
12-L11	Air wedge - experiment to find thickness of a wire
13-L12	Testing the plainness of surfaces
14-L13	Michaelson's interferometer and applications.
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Diffraction by single slit and determination of intensity distribution by phasor
	method
17-IT-1	Internal Test-I
18-L16	Diffraction by circular aperture
19-L17	Test Paper distribution and result analysis

	Entering Internal Test-I Marks into University portal
20-L18	Plane transmission grating
21- L19	Diffraction grating at normal and oblique incidence
22- P2	College level meeting/Cell function
23-L20	Limit of resolution and resolving power
24-L21	Rayleigh Criterion for resolution
25-L22	Resolving power of a plane diffraction grating and prism
26-L23	Fresnel wave front and theory of half period zones
27-L24	Zone plate-comparison with convex lens
28-L25	Double refraction - Nicol Prism as polarizer and analyser
29-L26	Production and detection of plane polarized, elliptically polarized and circularly
	polarized light
30-L27	Quarter wave and Half wave plates - optical activity
31-L28	Dichroism. Optical fibre and principles of fibre optics
32-L29	Acceptance angle - numerical aperture expression
33-L30	Step index optical fibre. Single mode and multimode step index optical fibres; their
	characteristics
34- P3	Department Seminar
35-L31	Sources of power loss in optical fibres
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37-L33	Advantages of fibre optic communication
38- IT-II	Internal Test-II
39-L34	Problem solving
40-L35	-Test Paper distribution and result analysis
41-L36	Entering Internal Test-II Marks into University portal Principle of laser - spontaneous emission stimulated emission
41-L30 42- L37	Threshold condition (Schaw low and townes equations
43- L37	Rate equation - optical excitation
43- L38 44- P4	College level meeting/ function
45-L39	Three and four level lasers
46-L40	Types of lasers
47-L41	Semiconductor diode lasers
48-L42	Dye laser-nitrogen and carbon -di- oxide lasers
49-L43	Holography and simple application
50-L44	Allotting portion for Internal Test-III
20 11	Internal Test III begins
51 L45	Problem Solving
52- L46	Revision
53-IT-III	Internal Test-III
54-L47	Revision
55-L48	Test Paper distribution and result analysis
-	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
57-MT 58-MT	Model Test Model Test

	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 29.10.2015

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Optics
Course Code	JMPH12
Class	I year (2016-2019)
Semester	Odd
Staff Name	Mrs.R.Nithya Agnes
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

Syllabus

UNIT-I: GEOMETRICAL OPTICS

Introduction - chromatic and spherical aberration in lenses and their removal –Dispersion of light - Refraction through a thin prism - Dispersive power of a prism - deviation without dispersion - Dispersion without deviation - constant deviation spectroscope. Eyepieces - Huygen , Ramsden and Gauss eyepieces - Aplanatic points - oil immersion objective - prism binocular.

UNIT-II: INTERFERENCE

Analytical treatment of interference - theory of interference fringes - Fresnel's biprism theory and experiment to measure wavelength - Interference in thin films due to reflected light - Air wedge - experiment to find thickness of a wire - Testing the plainness of surfaces - Michaelson's interferometer and applications.

UNIT-III: DIFFRACTION (Fresnel and Fraunhofer)

Diffraction by single slit and determination of intensity distribution by phasor method -Diffraction by circular aperture - plane transmission grating- diffraction grating at normal and oblique incidence - Limit of resolution and resolving power-Rayleigh Criterion for resolution -Resolving power of a plane diffraction grating and prism - Fresnel wavefront and theory of half period zones - zone plate-comparison with convex lens - comparison between Fresnel and fraunhofer diffraction

UNIT-IV: POLARIZATION AND FIBRE OPTICS

Double refraction - Nicol Prism as polarizer and analyser -Production and detection of plane polarized,elliptically polarized and circularly polarized light - Quarter wave and Half wave plates - optical activity-Fresnel's theory of optical activity - Dichroism. Optical fibre and principles of fibre optics - Acceptance angle - numerical aperture expression - step index optical fibre. Single mode and multimode step index optical fibres; their characteristics - sources of power loss in optical fibres - Advantages of fibre optic communication. 5

UNIT-V: LASER AND ITS APPLICATIONS

Principle of laser - spontaneous emission - stimulated emission - threshold condition (Schaw low and townes equations) - rate equation - optical excitation-three and four level lasers. Types of lasers - semiconductor diode lasers - dye laser-nitrogen and carbon - di- oxide lasers - di- oxide lasers. Holography and simple application

Books for Study

1. Optics by Subramaniam N & Brij Lal, S Chand & Co. Pvt. Ltd., New Delhi, 1990

2. Laser and nonlinear optics by B.B.Laud 2nd edition Wiley Eastern Ltd., 1991

3.Optic fibre and fibre optic communication systems-Subir kumar sankar-. S Chand & Co. Pvt. Ltd., New Delhi,

Books for Reference

1. Fundamentals of Optics by Jenkins A Francis and White E Harvey, McGRaw Hill Inc., New Delhi, 1976.

2. Optical Physics by Lipson. S G, Lipson H and Tannhauser D S, Cambridge University Press (1995)

3. Fundamentals of Optics by Raj M G, Anmol Publications Pvt. Ltd., (1996), New Delhi

4. Fundamentals of Physics, 6th Edition, by D Halliday, R Resnick and J Walker. Wiley NY 2001.

5.Optics and Spectroscopy by Murugeshan, S Chand & Co. Pvt. Ltd., New Delhi 6

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.06.2016
1-L1	Introduction - chromatic and spherical aberration in lenses and their removal
2-L2	Dispersion of light - Refraction through a thin prism
3- L3	Dispersive power of a prism
4-L4	Constant deviation spectroscope. Eyepieces
5-L5	Huygen , Ramsden and Gauss eyepieces -
6-L6	Aplanatic points - oil immersion objective
7-L7	Prism binocular.
8- P1	Analytical treatment of interference
9- L8	Theory of interference fringes
10- L9	Fresnel's biprism theory and experiment to measure wavelength
11-L10	Interference in thin films due to reflected light
12-L11	Air wedge - experiment to find thickness of a wire
13-L12	Testing the plainness of surfaces
14-L13	Michaelson's interferometer and applications.
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Diffraction by single slit and determination of intensity distribution by phasor
	method
17-IT-1	Internal Test-I
18-L16	Diffraction by circular aperture
19-L17	Test Paper distribution and result analysis

	Entering Internal Test-I Marks into University portal	
20-L18	Plane transmission grating	
21- L19	Diffraction grating at normal and oblique incidence	
22- P2	College level meeting/Cell function	
23-L20	Limit of resolution and resolving power	
24-L21	Rayleigh Criterion for resolution	
25-L22	Resolving power of a plane diffraction grating and prism	
26-L23	Fresnel wave front and theory of half period zones	
27-L24	Zone plate-comparison with convex lens	
28-L25	Double refraction - Nicol Prism as polarizer and analyser	
29-L26	Production and detection of plane polarized, elliptically polarized and circularly	
	polarized light	
30-L27	Quarter wave and Half wave plates - optical activity	
31-L28	Dichroism. Optical fibre and principles of fibre optics	
32-L29	Acceptance angle - numerical aperture expression	
33-L30	Step index optical fibre. Single mode and multimode step index optical fibres; their	
	characteristics	
34- P3	Department Seminar	
35-L31	Sources of power loss in optical fibres	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Advantages of fibre optic communication	
38- IT-II	Internal Test-II	
39-L34	Problem solving	
40-L35	Test Paper distribution and result analysis	
41 1 26	Entering Internal Test-II Marks into University portal	
41-L36	Principle of laser - spontaneous emission stimulated emission	
42- L37	Threshold condition (Schaw low and townes equations	
43- L38 44- P4	Rate equation - optical excitation	
44- P4 45-L39	College level meeting/ function	
43-L39 46-L40	Three and four level lasers	
40-L40 47-L41	Types of lasers Semiconductor diode lasers	
47-L41 48-L42	Dye laser-nitrogen and carbon -di- oxide lasers	
49-L43	Holography and simple application	
50-L44	- Allotting portion for Internal Test-III	
JU-L++	Allotting portion for Internal Test-III Internal Test III begins	
51 L45	Problem Solving	
52- L46	Revision	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
57-MT 58-MT	Model Test Model Test	

	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 30.11.2016

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

•

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Optics	
Course Code	SMPH22	
Class	I year (2017-2020)	
Semester	Even	
Staff Name	Mrs.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours 4 / WK		
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

AAAA

Syllabus

Paper II OPTICS

UNIT-I GEOMETRICAL OPTICS: Refraction through a thin lens – power of a lens – Effective focal length of two thin lenses in and out of contact – chromatic and spherical aberration and their removal. Dispersion of light – Refraction of light through a thin prism – dispersive power of a prism – deviation without dispersion – dispersion without deviation – Direct vision spectroscope. UNIT – II PHYSICAL OPTICS:- INTERFERENCE: Conditions for interference – Fresnel's prism determination of wavelength of light (Theory & Expt) – Newton's ring – Determination of wavelength of light (Theory & Expt) – Airwedge – Determination of diameter for thin wire (Theory & Expt) – Testing a surface for planeness – Michelson's interferometer – Determination of wavelength of light.

UNIT – III DIFFRACTION: Fraunhofer diffraction – single slit – double slit – theory of plane transmission grating – oblique incidence – wavelength determination – resolving power of a grating – diffraction by a circular aperture – Fraunhofer diffraction – theory of half period zones – theory of zone plate – diffraction at a circular aperture.

UNIT – IV POLARISATION: Double refraction – nicol prism quarter wave plate – half wave plate – production, detection and analysis of plane, circularly and elliptically polarized light – optical rotation – Fresnel's theory of optical rotation – Laurentz half shade polarimeter – determination of specific rotatory power.

UNIT – V MODERN OPTICS:- Principles of fiber optics – optical fiber – critical angle of propagation – modes of propagation – acceptance angle – numerical aperture – types of optical fibers – single mode fiber and multimode fiber. Lasers – Einstein A and B coefficients – Ruby and He – Ne Lasers – Three level pumping scheme for laser operation – Holography and simple applications.

BOOKS FOR STUDY

1. A text book of OPTICS by N. Subramaniyam, Birjlal revised by M.N. Avadhanulu, S. Chand & Company Ltd., Ram Nagar, New Delhi – 110055. 2. OPTICS and SPECTROSCOPY by R. Murugeshan, S. Chand & Company Ltd., Ram Nagar, New Delhi – 110055. 3. Physics, Robert Resnick, David Halliday, Jearl Walker Wiley and Sons Inc., Sixth Edition.

Hour	Class Schedule
allotment	
	Even Semester Begin on 07.12.2017
1-L1	UNIT-I GEOMETRICAL OPTICS
2-L2	Refraction through a thin lens
3- L3	power of a lens Effective focal length of two thin lenses in and out of contact
4-L4	chromatic and spherical aberration and their removal
5-L5	Dispersion of light – Refraction of light through a thin prism
6-L6	dispersive power of a prism

7-L7	deviation without dispersion – dispersion without deviation
8- P1	Direct vision spectroscope
9- L8	UNIT – II PHYSICAL OPTICS
10- L9	INTERFERENCE: Conditions for interference
11-L10	Fresnel's prism determination of wavelength of light (Theory & Expt)
12-L11	Newton's ring Determination of wavelength of light (Theory & Expt)
13-L12	Airwedge – Determination of diameter for thin wire (Theory & Expt)
14-L13	Testing a surface for planeness Determination of wavelength of light
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	UNIT – III DIFFRACTION
17-IT-1	Internal Test-I
18-L16	Fraunhofer diffraction – single slit – double slit
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	theory of plane transmission grating oblique incidence
21- L19	wavelength determination – resolving power of a grating diffraction by a
	circular aperture
22- P2	College level meeting/Cell function
23-L20	Fraunhofer diffraction – theory of half period zones – theory of zone plate
24-L21	determination of specific rotatory power
25-L22	UNIT – IV POLARISATION
26-L23	Principles of fiber optics
27-L24	nicol prism quarter wave plate – half wave plate
28-L25	production, detection and analysis of plane, circularly and elliptically polarized light
29-L26	optical rotation – Fresnel's theory of optical rotation
30-L27	Laurentz half shade polarimeter
31-L28	determination of specific rotatory power
32-L29	UNIT – V MODERN OPTICS
33-L30	Principles of fiber optics
34- P3	Department Seminar
35-L31	optical fiber – critical angle of propagation
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	modes of propagation
38- IT-II	Internal Test-II
39-L34	acceptance angle
40-L35	-Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	numerical aperture
42- L37	types of optical fibers
43- L38	single mode fiber
44- P4	College level meeting/ function
45-L39	multimode fiber
46-L40	Lasers – Einstein A and B coefficients
47-L41	Problem solving
48-L42	Ruby and He

49-L43	Ne Lasers
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Three level pumping scheme for laser operation
52- L46	Problem solving
53-IT-III	Internal Test-III
54-L47	Holography and simple applications
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.04.2018

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
# For Advanced Learner	learning resources, Google classroom, study tour, etc.,: use library books, E- books, motivate student to prepare for
	higher study.

# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Optics	
Course Code	SMPH22	
Class	I year (2018-2021)	
Semester	Even	
Staff Name	Mrs.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

AAAA

Syllabus

Paper II OPTICS

UNIT-I GEOMETRICAL OPTICS: Refraction through a thin lens – power of a lens – Effective focal length of two thin lenses in and out of contact – chromatic and spherical aberration and their removal. Dispersion of light – Refraction of light through a thin prism – dispersive power of a prism – deviation without dispersion – dispersion without deviation – Direct vision spectroscope.

UNIT – II PHYSICAL OPTICS:- INTERFERENCE: Conditions for interference – Fresnel's prism determination of wavelength of light (Theory & Expt) – Newton's ring – Determination of wavelength of light (Theory & Expt) – Airwedge – Determination of diameter for thin wire (Theory & Expt) – Testing a surface for planeness – Michelson's interferometer – Determination of wavelength of light.

UNIT – III DIFFRACTION: Fraunhofer diffraction – single slit – double slit – theory of plane transmission grating – oblique incidence – wavelength determination – resolving power of a grating – diffraction by a circular aperture – Fraunhofer diffraction – theory of half period zones – theory of zone plate – diffraction at a circular aperture.

UNIT – IV POLARISATION: Double refraction – nicol prism quarter wave plate – half wave plate – production, detection and analysis of plane, circularly and elliptically polarized light – optical rotation – Fresnel's theory of optical rotation – Laurentz half shade polarimeter – determination of specific rotatory power.

UNIT – V MODERN OPTICS:- Principles of fiber optics – optical fiber – critical angle of propagation – modes of propagation – acceptance angle – numerical aperture – types of optical fibers – single mode fiber and multimode fiber. Lasers – Einstein A and B coefficients – Ruby and He – Ne Lasers – Three level pumping scheme for laser operation – Holography and simple applications.

BOOKS FOR STUDY

1. A text book of OPTICS by N. Subramaniyam, Birjlal revised by M.N. Avadhanulu, S. Chand & Company Ltd., Ram Nagar, New Delhi – 110055. 2. OPTICS and SPECTROSCOPY by R. Murugeshan, S. Chand & Company Ltd., Ram Nagar, New Delhi – 110055. 3. Physics, Robert Resnick, David Halliday, Jearl Walker Wiley and Sons Inc., Sixth Edition.

Hour	Class Schedule
allotment	
	Even Semester Begin on 03.12.2018
1-L1	UNIT-I GEOMETRICAL OPTICS
2-L2	Refraction through a thin lens
3- L3	power of a lens Effective focal length of two thin lenses in and out of contact
4-L4	chromatic and spherical aberration and their removal
5-L5	Dispersion of light – Refraction of light through a thin prism
6-L6	dispersive power of a prism
7-L7	deviation without dispersion – dispersion without deviation
8- P1	Direct vision spectroscope
9- L8	UNIT – II PHYSICAL OPTICS

10- L9	INTERFERENCE: Conditions for interference	
11-L10	Fresnel's prism determination of wavelength of light (Theory & Expt)	
12-L11	Newton's ring Determination of wavelength of light (Theory & Expt)	
13-L12	Airwedge – Determination of diameter for thin wire (Theory & Expt)	
14-L13	Testing a surface for planeness Determination of wavelength of light	
15-L14	- Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	UNIT – III DIFFRACTION	
17-IT-1	Internal Test-I	
18-L16	Fraunhofer diffraction – single slit – double slit	
19-L17	-Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	theory of plane transmission grating oblique incidence	
21- L19	wavelength determination – resolving power of a grating diffraction by a	
	circular aperture	
22- P2	College level meeting/Cell function	
23-L20	Fraunhofer diffraction – theory of half period zones – theory of zone plate	
24-L21	determination of specific rotatory power	
25-L22	UNIT – IV POLARISATION	
26-L23	Principles of fiber optics	
27-L24	nicol prism quarter wave plate – half wave plate	
28-L25	production, detection and analysis of plane, circularly and elliptically	
	polarized light	
29-L26	optical rotation – Fresnel's theory of optical rotation	
30-L27	Laurentz half shade polarimeter	
31-L28	determination of specific rotatory power	
32-L29	UNIT – V MODERN OPTICS	
33-L30	Principles of fiber optics	
34- P3	Department Seminar	
35-L31	optical fiber – critical angle of propagation	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	modes of propagation	
38- IT-II	Internal Test-II	
39-L34	acceptance angle	
40-L35	Test Paper distribution and result analysis	
41 1 2 5	Entering Internal Test-II Marks into University portal	
41-L36	numerical aperture	
42-L37	types of optical fibers	
43- L38	single mode fiber	
44- P4	College level meeting/ function	
45-L39	multimode fiber	
46-L40	Lasers – Einstein A and B coefficients	
47-L41	Problem solving	
48-L42	Ruby and He	
49-L43	Ne Lasers	
50-L44	- Allotting portion for Internal Test-III	
	Internal Test III begins	

51 L45	Three level pumping scheme for laser operation
52- L46	Problem solving
53-IT-III	Internal Test-III
54-L47	Holography and simple applications
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.04.2019

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.

Extension activity : Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Optics	
Course Code	SMPH22	
Class	I year (2019-2022)	
Semester	Even	
Staff Name	Mrs.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

AAAA

Syllabus

Paper II OPTICS

UNIT-I GEOMETRICAL OPTICS: Refraction through a thin lens – power of a lens – Effective focal length of two thin lenses in and out of contact – chromatic and spherical aberration and their removal. Dispersion of light – Refraction of light through a thin prism – dispersive power of a prism – deviation without dispersion – dispersion without deviation – Direct vision spectroscope.

UNIT – II PHYSICAL OPTICS:- INTERFERENCE: Conditions for interference – Fresnel's prism determination of wavelength of light (Theory & Expt) – Newton's ring – Determination of wavelength of light (Theory & Expt) – Airwedge – Determination of diameter for thin wire (Theory & Expt) – Testing a surface for planeness – Michelson's interferometer – Determination of wavelength of light.

UNIT – III DIFFRACTION: Fraunhofer diffraction – single slit – double slit – theory of plane transmission grating – oblique incidence – wavelength determination – resolving power of a grating – diffraction by a circular aperture – Fraunhofer diffraction – theory of half period zones – theory of zone plate – diffraction at a circular aperture.

UNIT – IV POLARISATION: Double refraction – nicol prism quarter wave plate – half wave plate – production, detection and analysis of plane, circularly and elliptically polarized light – optical rotation – Fresnel's theory of optical rotation – Laurentz half shade polarimeter – determination of specific rotatory power.

UNIT – V MODERN OPTICS:- Principles of fiber optics – optical fiber – critical angle of propagation – modes of propagation – acceptance angle – numerical aperture – types of optical fibers – single mode fiber and multimode fiber. Lasers – Einstein A and B coefficients – Ruby and He – Ne Lasers – Three level pumping scheme for laser operation – Holography and simple applications.

BOOKS FOR STUDY

1. A text book of OPTICS by N. Subramaniyam, Birjlal revised by M.N. Avadhanulu, S. Chand & Company Ltd., Ram Nagar, New Delhi – 110055. 2. OPTICS and SPECTROSCOPY by R. Murugeshan, S. Chand & Company Ltd., Ram Nagar, New Delhi – 110055. 3. Physics, Robert Resnick, David Halliday, Jearl Walker Wiley and Sons Inc., Sixth Edition.

Hour	Class Schedule
allotment	
	Even Semester Begin on 02.12.2019
1-L1	UNIT-I GEOMETRICAL OPTICS
2-L2	Refraction through a thin lens
3- L3	power of a lens Effective focal length of two thin lenses in and out of contact
4-L4	chromatic and spherical aberration and their removal
5-L5	Dispersion of light – Refraction of light through a thin prism
6-L6	dispersive power of a prism
7-L7	deviation without dispersion – dispersion without deviation
8- P1	Direct vision spectroscope
9- L8	UNIT – II PHYSICAL OPTICS

10 10	
10- L9	INTERFERENCE: Conditions for interference
11-L10	Fresnel's prism determination of wavelength of light (Theory & Expt)
12-L11	Newton's ring Determination of wavelength of light (Theory & Expt)
13-L12	Airwedge – Determination of diameter for thin wire (Theory & Expt)
14-L13	Testing a surface for planeness Determination of wavelength of light
15-L14	Allotting portion for Internal Test-I
16115	Internal Test I begins
16-L15	UNIT – III DIFFRACTION
17-IT-1	Internal Test-I
18-L16	Fraunhofer diffraction – single slit – double slit
19-L17	-Test Paper distribution and result analysis
20 I 10	Entering Internal Test-I Marks into University portal
20-L18	theory of plane transmission grating oblique incidence
21- L19	wavelength determination – resolving power of a grating diffraction by a
22- P2	circular aperture
22- P2 23-L20	College level meeting/Cell function Fraunhofer diffraction – theory of half period zones – theory of zone plate
23-L20 24-L21	determination of specific rotatory power
24-L21 25-L22	UNIT – IV POLARISATION
26-L23	Principles of fiber optics
20-L23 27-L24	nicol prism quarter wave plate – half wave plate
27-L24 28-L25	production, detection and analysis of plane, circularly and elliptically
20-1223	polarized light
29-L26	optical rotation – Fresnel's theory of optical rotation
30-L27	Laurentz half shade polarimeter
31-L28	determination of specific rotatory power
32-L29	UNIT – V MODERN OPTICS
33-L30	Principles of fiber optics
34- P3	Department Seminar
35-L31	optical fiber – critical angle of propagation
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	modes of propagation
38- IT-II	Internal Test-II
39-L34	acceptance angle
40-L35	-Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	numerical aperture
42- L37	types of optical fibers
43- L38	single mode fiber
44- P4	College level meeting/ function
45-L39	multimode fiber
46-L40	Lasers – Einstein A and B coefficients
47-L41	Problem solving
48-L42	Ruby and He
49-L43	Ne Lasers
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins

51 L45	Three level pumping scheme for laser operation
52- L46	Problem solving
53-IT-III	Internal Test-III
54-L47	Holography and simple applications
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 27.04.2020

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.

Extension activity : Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	PHYSICS FOR COMPETITIVE	
	EXAMINATIONS	
Course Code	GSPH4A	
Class	II Year (2014-2015)	
Semester	Even	
Staff Name	Dr. S. John Kennady vedhanathan	
	Mrs. R. Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- •
- •

- •

Syllabus

PHYSICS FOR COMPETITIVE EXAMINATIONS (Skilled Based Subject)

Unit I

PEPotential Energy, Path dependence of conservative forces, Determining values, Conservation a PE curve, work done on a system by external forces, Conservation of energy of mechanical energy, Reading

Unit II

Avogadro's number, Ideal gases, Pressure, temperature and RMS speed, Translational KE, Mean free path, Distribution of molecular speedsspecifi, f ideal gasmolar c heats of ideal gases, C, quantum theory basics, adiabatic expansion o **Unit III** Electric potential energy, , equipotential SurfaceElectric Calculating potentialspotential from, field, Potential due to a group of chargesPE for a group o, f charges, ipolePE due to a d, PE due to continous distribution, calculating Field from Potential, Potential of a system of point charges, potential of a charged conductor.

Unit IV

Diffraction and wave theory, single slit maxima, minima, intensity single slit diffraction, circular aperture, double slitdouble slit, , dispersion, resolving power,

Unit V

Waves on a string and matter waves, Energies of trapped electrons, wave function of trapped electrons, finite well, different electron wells, hydrogen atom

Hour	Class Schedule	
allotment		
	Even Semester Begin on 03.12.2014	
1-L1	PEPotential Energy, Path dependence of conservative forces, Determining	
2-L2	, Determining values, Conservation	
3- L3	a PE curve, work done on a system by external forces	
4-L4	Conservation of energyof mechanical energy, Reading	
5-L5	Init II Introduction Avagatro's Number	
6-L6	Avogadro's number	
7-L7	, Ideal gases, Pressure	
8- P1	Pressure, temperature and RMS speed	
9- L8	Translational KE	
10- L9	Mean free path, Distribution of molecular speedsspecifi	
11-L10	, f ideal gasmolar c heats of ideal gases	
12-L11	quantum theory basics	
13-L12	adiabatic Expression Introduction	
14-L13	adiabatic expansion	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	Problem Solving	
17-IT-1	Internal Test-I	
18-L16	Unit III Introduction	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Unit III	
	Electric potential energy	
21- L19	equipotential SurfaceElectric potentials	
22- P2	Calculating potentialspotential from, field,	
23-L20	Potential due to a group of charges	
24-L21	chargesPE for a group o f charges	
25-L22	dipolePE due to a PE	

26-L23	to continous distribution	
27-L24	calculating Field from Potential	
28-L25	Potential of a system of point charges	
29-L26	potential of a charged conductor	
30-L27	Problem Solving	
31-L28	Introduction of III Unit	
32-L29	Discussion for the solving Problems	
33-L30	Preparation for Internal Exam	
34- P3	Department Seminar	
35-L31	Unit ly Diffraction Introduction	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Diffraction and wave theory	
38- IT-II	Internal Test-II	
39-L34	wave theory	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	single slit maxima	
42- L37	intensity single slit	
43- L38	diffraction, circular	
44- P4	diffraction, circular	
45-L39	aperture, double	
46-L40	Problem Solving	
47-L41	Introduction of the double slit	
48-L42	double slit,	
49-L43	double slitdouble slit	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Revision	
52- L46	Revision Class test	
53-IT-III	Internal Test-III	
54-L47	resolving power,	
	Unit V	
	Waves on a string and matter waves, Energies of trapped electrons	
55-L48	Test Paper distribution and result analysis	
	wave function of trapped	
	electrons, finite well, different electron wells, hydrogen atom	
	Madel Test hesing	
56- MT	Model Test begins Model Test	
	Model Test	
57-MT 58-MT	Model Test Model Test	
59- L49	Model test paper distribution and previous year university question paper	
5)- L 4 7	discussion	
60-L50		
00 100		
60-L50	Feedback of the Course, analysis and report preparationLast Working day on 23.04.2015	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	PHYSICS FOR COMPETITIVE	
	EXAMINATIONS	
Course Code	GSPH4A	
Class	II Year (2015-2016)	
Semester	Even	
Staff Name	Dr. S. John Kennady vedhanathan	
	Mrs. R. Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- •
- •

- •

Syllabus

PHYSICS FOR COMPETITIVE EXAMINATIONS (Skilled Based Subject)

Unit I

PEPotential Energy, Path dependence of conservative forces, Determining values, Conservation a PE curve, work done on a system by external forces, Conservation of energy of mechanical energy, Reading

Unit II

Avogadro's number, Ideal gases, Pressure, temperature and RMS speed, Translational KE, Mean free path, Distribution of molecular speedsspecifi, f ideal gasmolar c heats of ideal gases, C, quantum theory basics, adiabatic expansion o **Unit III** Electric potential energy, , equipotential SurfaceElectric Calculating potentialspotential from, field, Potential due to a group of chargesPE for a group o, f charges, ipolePE due to a d, PE due to continous distribution, calculating Field from Potential, Potential of a system of point charges, potential of a charged conductor.

Unit IV

Diffraction and wave theory, single slit maxima, minima, intensity single slit diffraction, circular aperture, double slitdouble slit, , dispersion, resolving power,

Unit V

Waves on a string and matter waves, Energies of trapped electrons, wave function of trapped electrons, finite well, different electron wells, hydrogen atom

Hour	Class Schedule	
allotment		
	Even Semester Begin on 02.12.2015	
1-L1	PEPotential Energy, Path dependence of conservative forces, Determining	
2-L2	, Determining values, Conservation	
3- L3	a PE curve, work done on a system by external forces	
4-L4	Conservation of energyof mechanical energy, Reading	
5-L5	Init II Introduction Avagatro's Number	
6-L6	Avogadro's number	
7-L7	, Ideal gases, Pressure	
8- P1	Pressure, temperature and RMS speed	
9- L8	Translational KE	
10- L9	Mean free path, Distribution of molecular speedsspecifi	
11-L10	, f ideal gasmolar c heats of ideal gases	
12-L11	quantum theory basics	
13-L12	adiabatic Expression Introduction	
14-L13	adiabatic expansion	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	Problem Solving	
17-IT-1	Internal Test-I	
18-L16	Unit III Introduction	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Unit III	
	Electric potential energy	
21- L19	equipotential SurfaceElectric potentials	
22- P2	Calculating potentialspotential from, field,	
23-L20	Potential due to a group of charges	
24-L21	chargesPE for a group o f charges	
25-L22	dipolePE due to a PE	

26-L23	to continous distribution	
27-L24	calculating Field from Potential	
28-L25	Potential of a system of point charges	
29-L26	potential of a charged conductor	
30-L27	Problem Solving	
31-L28	Introduction of III Unit	
32-L29	Discussion for the solving Problems	
33-L30	Preparation for Internal Exam	
34- P3	Department Seminar	
35-L31	Unit ly Diffraction Introduction	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Diffraction and wave theory	
38- IT-II	Internal Test-II	
39-L34	wave theory	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	single slit maxima	
42- L37	intensity single slit	
43- L38	diffraction, circular	
44- P4	diffraction, circular	
45-L39	aperture, double	
46-L40	Problem Solving	
47-L41	Introduction of the double slit	
48-L42	double slit,	
49-L43	double slitdouble slit	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Revision	
52- L46	Revision Class test	
53-IT-III	Internal Test-III	
54-L47	resolving power,	
	Unit V	
	Waves on a string and matter waves, Energies of trapped electrons	
55-L48	Test Paper distribution and result analysis	
	wave function of trapped	
	electrons, finite well, different electron wells, hydrogen atom	
	Model Test basing	
56- MT	Model Test begins	
57-MT	Model Test Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
JJ- L 1 7	discussion	
60-L50		
00 100		
60-L50	Feedback of the Course, analysis and report preparationLast Working day on 22.04.2016	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	PHYSICS FOR COMPETITIVE	
	EXAMINATIONS	
Course Code	GSPH4A	
Class	II Year (2016-2017)	
Semester	Even	
Staff Name	Dr. S. John Kennady vedhanathan	
	Mrs. R. Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- •
- •

- •

Syllabus

PHYSICS FOR COMPETITIVE EXAMINATIONS (Skilled Based Subject)

Unit I

PEPotential Energy, Path dependence of conservative forces, Determining values, Conservation a PE curve, work done on a system by external forces, Conservation of energy of mechanical energy, Reading

Unit II

Avogadro's number, Ideal gases, Pressure, temperature and RMS speed, Translational KE, Mean free path, Distribution of molecular speedsspecifi, f ideal gasmolar c heats of ideal gases, C, quantum theory basics, adiabatic expansion o **Unit III** Electric potential energy, , equipotential SurfaceElectric Calculating potentialspotential from, field, Potential due to a group of chargesPE for a group o, f charges, ipolePE due to a d, PE due to continous distribution, calculating Field from Potential, Potential of a system of point charges, potential of a charged conductor.

Unit IV

Diffraction and wave theory, single slit maxima, minima, intensity single slit diffraction, circular aperture, double slitdouble slit, , dispersion, resolving power, **Unit V**

Waves on a string and matter waves, Energies of trapped electrons, wave function of trapped electrons, finite well, different electron wells, hydrogen atom

Hour	Class Schedule	
allotment		
	Even Semester Begin on 01.12.2016	
1-L1	PEPotential Energy, Path dependence of conservative forces, Determining	
2-L2	, Determining values, Conservation	
3- L3	a PE curve, work done on a system by external forces	
4-L4	Conservation of energyof mechanical energy, Reading	
5-L5	Init II Introduction Avagatro's Number	
6-L6	Avogadro's number	
7-L7	, Ideal gases, Pressure	
8- P1	Pressure, temperature and RMS speed	
9- L8	Translational KE	
10- L9	Mean free path, Distribution of molecular speedsspecifi	
11-L10	, f ideal gasmolar c heats of ideal gases	
12-L11	quantum theory basics	
13-L12	adiabatic Expression Introduction	
14-L13	adiabatic expansion	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	Problem Solving	
17-IT-1	Internal Test-I	
18-L16	Unit III Introduction	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Unit III	
	Electric potential energy	
21- L19	equipotential SurfaceElectric potentials	
22- P2	Calculating potentialspotential from, field,	
23-L20	Potential due to a group of charges	
24-L21	chargesPE for a group o f charges	
25-L22	dipolePE due to a PE	

26-L23	to continous distribution	
27-L24	calculating Field from Potential	
28-L25	Potential of a system of point charges	
29-L26	potential of a charged conductor	
30-L27	Problem Solving	
31-L28	Introduction of III Unit	
32-L29	Discussion for the solving Problems	
33-L30	Preparation for Internal Exam	
34- P3	Department Seminar	
35-L31	Unit Iv Diffraction Introduction	
36-L32	- Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Diffraction and wave theory	
38- IT-II	Internal Test-II	
39-L34	wave theory	
40-L35	-Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	single slit maxima	
42- L37	intensity single slit	
43- L38	diffraction, circular	
44- P4	diffraction, circular	
45-L39	aperture, double	
46-L40	Problem Solving	
47-L41	Introduction of the double slit	
48-L42	double slit,	
49-L43	double slit	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Revision	
52- L46	Revision Class test	
53-IT-III	Internal Test-III	
54-L47	resolving power,	
	Unit V	
	Waves on a string and matter waves, Energies of trapped electrons	
55-L48	Test Paper distribution and result analysis	
	wave function of trapped	
	electrons, finite well, different electron wells, hydrogen atom	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
57 MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 21.04.2017	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Properties of Matter	
Course Code	GMPH11	
Class	I Year (2014-2015)	
Semester	Odd	
Staff Name	Mr.Dhinakaran	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

UNIT-I: ELASTICITY Hooke's law - Stress-strain diagram - Elastic moduli-Relation between elastic constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants - experimental determination of poisson's ratio of rubber - Twisting couple on a cylinder -Work done in twisting a wire - Torsional pendulum-Determination of Rigidity modulus and moment of inertia - q, n and σ by Searles method -I - section griders

UNIT-II: BENDING OF BEAMS Bending of beams - Expression for bending moment -Cantilever - Expression for cantilever depression and oscillations - oscillations -Uniform bending and Non- Determination of Young's modulus by cantilever uniform bending - theory and experiments . UNIT-III: FLUIDS Surface Tension - Synclastic and anticlastic surface - Excess of pressure - Application to spherical and cylindrical drops and bubbles - variation of surface tension with temperature - Jaegar's method. Capillary rise - Experimental determination of surface tension by capillary rise - angle of contact of mercury-Quincke's method. Viscosity - Rate flow of liquid in a capillary tube - Poiseuille's formula - Determination of coefficient of viscosity by capillary flow -Variations of viscosity of a liquid with temperature- lubricants. UNIT-IV: SOUND Sound - Simple harmonic motion - free, damped, forced vibrations and resonance -Helmholtz resonator-laws of transverse vibration of strings - Sonometer-Determination of AC frequency using sonometer - Determination of frequency using Melde's apparatus. Decibels - Intensity levels - musical notes - musical scale. UNIT-V: ULTRASONICS Ultrasonics - production - piezoelectric method-magnetostriction method- detection - properties – applications. Acoustics - Intensity level and loudness

3

Acoustics of buildings: Reverberation - reverberation time - derivation of Sabine's formula - determination of absorption coefficient - optimum reverberation time-factors affecting acoustics of buildings-sources of noises and its control-sound level meter.

Books for study

1. Properties of matter by Murugeshan R, S Chand & Co. Pvt. Ltd., New Delhi

2. Text book of sound by Brij Lal & Subramaniam, N Vikas Publishing House, New Delhi, 1982

Books for Reference

1. Elements of Properties of Matter by Mathur D S, Shyamlal Charitable Trust, New Delhi, 1993

2. Fundamentals of General Properties of Matter by Gulati H R, R Chand & Co. New Delhi, 1982

3. Waves & Oscillations by Subrahmanyam N & Brij Lal, Vikas Publishing House Pvt. Ltd., New Delhi, 1994

4. A Textbook of Sound by Khanna D R & Bedi R S, Atma Ram & Sons, New Delhi 1985

5. Fundamentals of Physics, 6th Edition by D Halliday, R Resnick and J Walker, Wiley NY 2001.

6. The Feynman Lectures on Physics, Vols. I, II and III, by R P Feynman, RB

Hour	Class Schedule	
allotment	E	
1 T 1	Even Semester Begin on 18.6.2014	
1-L1	Hooke's law - Stress-strain diagram	
2-L2	Elastic moduli-Relation between elastic constants	
3-L3 -	Poisson's Ratio	
4-L4	Expression for Poisson's ratio in terms of elastic constants	
5-L5	- experimental determination of poisson's ratio of rubber	
6-L6	Twisting couple on a cylinder	
7-L7	-Work done in twisting a wire	
8- P1	Torsional pendulum-	
9- L8	Determination of Rigidity modulus and moment of inertia	
10- L9	q, n and σ by Searles method	
11-L10	- section griders	
12-L11	BEAMS Bending of beams	
13-L12	Expression for bending moment	
14-L13	Rivision	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	Cantilever	
17-IT-1	Internal Test-I	
18-L16	Uniform bending and Non-uniform bending - theory and experiments	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Expression for cantilever depression and oscillations	
21- L19	oscillations - Uniform bending and Non- Determination of Young's	
	modulus by cantilever uniform bending	
22- P2	College level meeting/Cell function	
23-L20	theory and experiments	
24-L21	FLUIDS Surface Tension	
25-L22	Synclastic and anticlastic surface	
26-L23	Excess of pressure	
27-L24	Application to spherical and cylindrical drops and bubbles	
28-L25	variation of surface tension with temperature	
29-L26	- Jaegar's method	
30-L27	Capillary rise - Experimental determination of surface tension by capillary rise	
31-L28	- Experimental determination of surface tension by capillary rise - angle of	
51-120	contact of mercury	
32-L29	Quincke's method	
32-L29 33-L30	Viscosity - Rate flow of liquid in a capillary tube - Poiseuille's formula	
33-L30 34- P3	Department Seminar	
54- 55	Department Seminar	

35-L31	Rivision	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Determination of coefficient of viscosity by capillary flow - Variations of	
	viscosity of a liquid with temperature- lubricants.	
38- IT-II	Internal Test-II	
39-L34	: SOUND Sound - Simple harmonic motion - free, damped, forced	
	vibrations and resonance -Helmholtz resonator-	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Helmholtz resonator-laws of transverse vibration of strings - Sonometer-	
	Determination of AC frequency using sonometer	
42- L37	- Determination of frequency using Melde's apparatus. Decibels - Intensity	
	levels - musical notes - musical scale	
43- L38	ULTRASONICS Ultrasonics - production - piezoelectric method-	
	magnetostriction method- detection - properties – applications	
44- P4	College level meeting/ function	
45-L39	Intensity level and loudness	
	Acoustics of buildings	
46-L40	Reverberation - reverberation time - derivation of Sabine's formula -	
	determination of absorption coefficient -	
47-L41	factors affecting acoustics of buildings-	
48-L42		
49-L43		
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	optimum reverberation time	
52- L46	Rivision	
53-IT-III	Internal Test-III	
54-L47	- sources of noises and its control-sound level meter130	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 31.10.2014	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Properties of Matter	
Course Code	GMPH11	
Class	I Year (2015-2016)	
Semester	Odd	
Staff Name	Mrs.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

UNIT-I: ELASTICITY Hooke's law - Stress-strain diagram - Elastic moduli-Relation between elastic constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants - experimental determination of poisson's ratio of rubber - Twisting couple on a cylinder -Work done in twisting a wire - Torsional pendulum-Determination of Rigidity modulus and moment of inertia - q, n and σ by Searles method -I - section griders

UNIT-II: BENDING OF BEAMS Bending of beams - Expression for bending moment -Cantilever - Expression for cantilever depression and oscillations - oscillations -Uniform bending and Non- Determination of Young's modulus by cantilever uniform bending - theory and experiments . UNIT-III: FLUIDS Surface Tension - Synclastic and anticlastic surface - Excess of pressure - Application to spherical and cylindrical drops and bubbles - variation of surface tension with temperature - Jaegar's method. Capillary rise - Experimental determination of surface tension by capillary rise - angle of contact of mercury-Quincke's method. Viscosity - Rate flow of liquid in a capillary tube - Poiseuille's formula - Determination of coefficient of viscosity by capillary flow -Variations of viscosity of a liquid with temperature- lubricants. UNIT-IV: SOUND Sound - Simple harmonic motion - free, damped, forced vibrations and resonance -Helmholtz resonator-laws of transverse vibration of strings - Sonometer-Determination of AC frequency using sonometer - Determination of frequency using Melde's apparatus. Decibels - Intensity levels - musical notes - musical scale. UNIT-V: ULTRASONICS Ultrasonics - production - piezoelectric method-magnetostriction method- detection - properties – applications. Acoustics - Intensity level and loudness

3

Acoustics of buildings: Reverberation - reverberation time - derivation of Sabine's formula - determination of absorption coefficient - optimum reverberation time-factors affecting acoustics of buildings-sources of noises and its control-sound level meter.

Books for study

1. Properties of matter by Murugeshan R, S Chand & Co. Pvt. Ltd., New Delhi

2. Text book of sound by Brij Lal & Subramaniam, N Vikas Publishing House, New Delhi, 1982

Books for Reference

1. Elements of Properties of Matter by Mathur D S, Shyamlal Charitable Trust, New Delhi, 1993

2. Fundamentals of General Properties of Matter by Gulati H R, R Chand & Co. New Delhi, 1982

3. Waves & Oscillations by Subrahmanyam N & Brij Lal, Vikas Publishing House Pvt. Ltd., New Delhi, 1994

4. A Textbook of Sound by Khanna D R & Bedi R S, Atma Ram & Sons, New Delhi 1985

5. Fundamentals of Physics, 6th Edition by D Halliday, R Resnick and J Walker, Wiley NY 2001.

6. The Feynman Lectures on Physics, Vols. I, II and III, by R P Feynman, RB

Hour	Class Schedule	
allotment		
	Even Semester Begin on 18.6.2015	
1-L1	Hooke's law - Stress-strain diagram	
2-L2	Elastic moduli-Relation between elastic constants	
3-L3 -	Poisson's Ratio	
4-L4	Expression for Poisson's ratio in terms of elastic constants	
5-L5	- experimental determination of poisson's ratio of rubber	
6-L6	Twisting couple on a cylinder	
7-L7	-Work done in twisting a wire	
8- P1	Torsional pendulum-	
9- L8	Determination of Rigidity modulus and moment of inertia	
10- L9	q, n and σ by Searles method	
11-L10	- section griders	
12-L11	BEAMS Bending of beams	
13-L12	Expression for bending moment	
14-L13	Rivision	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	Cantilever	
17-IT-1	Internal Test-I	
18-L16	Uniform bending and Non-uniform bending - theory and experiments	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Expression for cantilever depression and oscillations	
21- L19	oscillations - Uniform bending and Non- Determination of Young's	
	modulus by cantilever uniform bending	
22- P2	College level meeting/Cell function	
23-L20	theory and experiments	
24-L21	FLUIDS Surface Tension	
25-L22	Synclastic and anticlastic surface	
26-L23	Excess of pressure	
27-L24	Application to spherical and cylindrical drops and bubbles	
28-L25	variation of surface tension with temperature	
29-L26	- Jaegar's method	
30-L27	Capillary rise - Experimental determination of surface tension by capillary	
	rise	
31-L28	- Experimental determination of surface tension by capillary rise - angle of	
	contact of mercury	
32-L29	Quincke's method	
33-L30	Viscosity - Rate flow of liquid in a capillary tube - Poiseuille's formula	
34- P3	Department Seminar	

05 1 01	
35-L31	Rivision
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Determination of coefficient of viscosity by capillary flow - Variations of
	viscosity of a liquid with temperature- lubricants.
38- IT-II	Internal Test-II
39-L34	: SOUND Sound - Simple harmonic motion - free, damped, forced
	vibrations and resonance -Helmholtz resonator-
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Helmholtz resonator-laws of transverse vibration of strings - Sonometer-
	Determination of AC frequency using sonometer
42- L37	- Determination of frequency using Melde's apparatus. Decibels - Intensity
	levels - musical notes - musical scale
43- L38	ULTRASONICS Ultrasonics - production - piezoelectric method-
	magnetostriction method- detection - properties – applications
44- P4	College level meeting/ function
45-L39	Intensity level and loudness
	Acoustics of buildings
46-L40	Reverberation - reverberation time - derivation of Sabine's formula -
	determination of absorption coefficient -
47-L41	factors affecting acoustics of buildings-
48-L42	
49-L43	
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	optimum reverberation time
52- L46	Rivision
53-IT-III	Internal Test-III
54-L47	- sources of noises and its control-sound level meter130
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 29.10.2015

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	

CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics			
Course Name	Properties of Matter			
Course Code	JMPH11			
Class	I Year (2016-2017)			
Semester	Odd			
Staff Name	Mrs.R.Nithya Agnes			
Credits	4			
L. Hours /P. Hours	4 / WK			
Total 60Hrs/Sem				
Internal Test-3 Hrs				
Model Test-3 Hrs				
Dept. Meetings-2 Hrs				
College Meetings-2 Hrs				
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)				

Course Objectives

AAAA

Syllabus

UNIT-I: ELASTICITY Hooke's law - Stress-strain diagram - Elastic moduli-Relation between elastic constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants - experimental determination of poisson's ratio of rubber - Twisting couple on a cylinder -Work done in twisting a wire - Torsional pendulum-Determination of Rigidity modulus and moment of inertia - q, n and σ by Searles method -I - section griders

UNIT-II: BENDING OF BEAMS Bending of beams - Expression for bending moment -Cantilever - Expression for cantilever depression and oscillations - oscillations -Uniform bending and Non- Determination of Young's modulus by cantilever uniform bending - theory and experiments . UNIT-III: FLUIDS Surface Tension - Synclastic and anticlastic surface - Excess of pressure - Application to spherical and cylindrical drops and bubbles - variation of surface tension with temperature - Jaegar's method. Capillary rise - Experimental determination of surface tension by capillary rise - angle of contact of mercury-Quincke's method. Viscosity - Rate flow of liquid in a capillary tube - Poiseuille's formula - Determination of coefficient of viscosity by capillary flow -Variations of viscosity of a liquid with temperature- lubricants. UNIT-IV: SOUND Sound - Simple harmonic motion - free, damped, forced vibrations and resonance -Helmholtz resonator-laws of transverse vibration of strings - Sonometer-Determination of AC frequency using sonometer - Determination of frequency using Melde's apparatus. Decibels - Intensity levels - musical notes - musical scale. **UNIT-V:** ULTRASONICS Ultrasonics - production - piezoelectric method-magnetostriction method- detection - properties - applications. Acoustics - Intensity level and loudness

3

Acoustics of buildings: Reverberation - reverberation time - derivation of Sabine's formula - determination of absorption coefficient - optimum reverberation time-factors affecting acoustics of buildings-sources of noises and its control-sound level meter.

Books for study

1. Properties of matter by Murugeshan R, S Chand & Co. Pvt. Ltd., New Delhi

2. Text book of sound by Brij Lal & Subramaniam, N Vikas Publishing House, New Delhi, 1982

Books for Reference

1. Elements of Properties of Matter by Mathur D S, Shyamlal Charitable Trust, New Delhi, 1993

2. Fundamentals of General Properties of Matter by Gulati H R, R Chand & Co. New Delhi, 1982

3. Waves & Oscillations by Subrahmanyam N & Brij Lal, Vikas Publishing House Pvt. Ltd., New Delhi, 1994

4. A Textbook of Sound by Khanna D R & Bedi R S, Atma Ram & Sons, New Delhi 1985

5. Fundamentals of Physics, 6th Edition by D Halliday, R Resnick and J Walker, Wiley NY 2001.

6. The Feynman Lectures on Physics, Vols. I, II and III, by R P Feynman, RB

Hour	Class Schedule
allotment	
	Even Semester Begin on 16.6.2016
1-L1	Hooke's law - Stress-strain diagram
2-L2	Elastic moduli-Relation between elastic constants
3-L3 -	Poisson's Ratio
4-L4	Expression for Poisson's ratio in terms of elastic constants
5-L5	- experimental determination of poisson's ratio of rubber
6-L6	Twisting couple on a cylinder
7-L7	-Work done in twisting a wire
8- P1	Torsional pendulum-
9- L8	Determination of Rigidity modulus and moment of inertia
10- L9	q, n and σ by Searles method
11-L10	- section griders
12-L11	BEAMS Bending of beams
13-L12	Expression for bending moment
14-L13	Rivision
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Cantilever
17-IT-1	Internal Test-I
18-L16	Uniform bending and Non-uniform bending - theory and experiments
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Expression for cantilever depression and oscillations
21- L19	oscillations - Uniform bending and Non- Determination of Young's
	modulus by cantilever uniform bending
22- P2	College level meeting/Cell function
23-L20	theory and experiments
24-L21	FLUIDS Surface Tension
25-L22	Synclastic and anticlastic surface
26-L23	Excess of pressure
27-L24	Application to spherical and cylindrical drops and bubbles
28-L25	variation of surface tension with temperature
29-L26	- Jaegar's method
30-L27	Capillary rise - Experimental determination of surface tension by capillary
	rise
31-L28	- Experimental determination of surface tension by capillary rise - angle of
	contact of mercury

32-L29	Quincke's method
33-L30	Viscosity - Rate flow of liquid in a capillary tube - Poiseuille's formula
34- P3	Department Seminar
35-L31	Rivision
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Determination of coefficient of viscosity by capillary flow - Variations of
	viscosity of a liquid with temperature- lubricants.
38- IT-II	Internal Test-II
39-L34	: SOUND Sound - Simple harmonic motion - free, damped, forced
	vibrations and resonance -Helmholtz resonator-
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Helmholtz resonator-laws of transverse vibration of strings - Sonometer-
	Determination of AC frequency using sonometer
42- L37	- Determination of frequency using Melde's apparatus. Decibels - Intensity
	levels - musical notes - musical scale
43- L38	ULTRASONICS Ultrasonics - production - piezoelectric method-
	magnetostriction method- detection - properties – applications
44- P4	College level meeting/ function
45-L39	Intensity level and loudness
	Acoustics of buildings
46-L40	Reverberation - reverberation time - derivation of Sabine's formula -
15 1 1	determination of absorption coefficient -
47-L41	factors affecting acoustics of buildings-
48-L42	
49-L43	
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	optimum reverberation time
52- L46	Rivision
53-IT-III	Internal Test-III
54-L47	- sources of noises and its control-sound level meter130
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
50 MT	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
CO 1 70	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 30.11.2016

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Properties Of Matter	
Course Code	SMPH12	
Class	I year (2017-2018)	
Semester	Odd	
Staff Name	Mr.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

Paper I Properties of Matter and Oscillations

Unit I. ELASTICITY: - Modulus of elasticity- Poisson's ratio- Relation between elastic constants and Poisson's ratio- Twisting couple on a cylinder -Energy stored in a twisted wire- - Torsional pendulum (with and without weights)- Bending of beams- Bending moment- Cantilever loading- -Non-uniform and uniform bending of a beam

Bending of beams- Bending moment- Cantilever loading- -Non-uniform and uniform bending of a beam

UnitII.Viscosity and low pressure : - Newton's law- Poiseuilles flow- Stoke's fall-Rotation viscometer- Ostwald viscometer- Meyer's formula for viscosity of gas-Rankine's method- Effect of temperature and pressure on viscosity- Vacuum pump-Rotary oil pump-Mercury diffusion pump- Knudsen Gauge. Unit III. SURFACE TENSION: - Molecular interpretation- surface energy- Pressure difference across a curved surface- Excess pressure in liquid drops and air bubbles-Molecular forces- Shape of liquid meniscus in capillary tube-Angle of contact- Capillary rise and energy consideration- Jaeger's method.

OSCILLATIONS Unit IV. Simple Harmonic Motion: Simple Harmonic Oscillator, Motion of simple and compound pendulum , loaded spring, Energy in simple harmonic motion. Superposition principle: (i) collinear SHM of same frequency, Standing wave on a stretched string (both ends fixed).. (ii) SHM of same frequency but perpendicular to each other and (iii) Lissajous figures .

Unit V. Damped Harmonic Motion: Equation of motion, Dead beat motion, Critically damped system, Lightly damped system: relaxation time, logarithmic decrement, quality factor. Forced Oscillations: Equation of motion, complete solution, Steady state solution, Resonance, Sharpness of resonance, Quality factor. Wave Motion: One dimensional plane wave; Classical wave equation;;

Books for study 1. Properties of Matter - Brijlal & Subramaniam. 2. Properties of Matter - D.S. Mathur 3. Properties of Matter - Murugesan 4. Waves & Oscillations - Brijlal & Subramaniam 5. Satya Prakash and Akash Saluja- oscillations and waves-pragati prakashan (2002) Books for Reference

1. Physics, Robert Resnick, David Halliday, Jearl Walker Wiley and Sons Inc., Sixth Edition. 2. Waves and Oscillations, Berkeley Physics Course, Vol. 3. F. S. Crawford, Tata McGraw Hill 3. H.R Gulati- fundamental of general properties of matter-R.Chand and co- fifth edition (1977) 4. N.k Bajaj- The physics of waves and oscillations-Tata McGraw-Hill (1988)

Hour allotment	Class Schedule
unounu	Odd Semester Begin on 16.06.2017
1-L1	Unit I. ELASTICITY
2-L2	Modulus of elasticity- Poisson's ratio
3- L3	Relation between elastic constants and Poisson's ratio- Twisting couple on a cylinder
4-L4	Energy stored in a twisted wire Torsional pendulum (with and without weights)
5-L5	Torsional pendulum (with and without weights)- Bending of beams- Bending moment- Cantilever loading-
6-L6	Bending of beams- Bending moment- Cantilever loadingNon-uniform and uniform bending of a beam

7-L7	UnitII.Viscosity and low pressure
8- P1	Welcoming of First year and Inauguration of physics Association
9- L8	Newton's law- Poiseuilles flow- Stoke's fall
10- L9	Rotation viscometer- Ostwald viscometer- Meyer's formula for viscosity of
	gas-Rankine's method- Effect of temperature and pressure on viscosity
11-L10	Vacuum pump- Rotary oil pump-Mercury diffusion pump- Knudsen
	Gauge.
12-L11	Unit III. SURFACE TENSION
13-L12	- Molecular interpretation- surface energy- Pressure difference across a
	curved surface
14-L13	Excess pressure in liquid drops and air bubbles-Molecular forces- Shape of
15 1 1 4	liquid meniscus in capillary tube
15-L14	- Allotting portion for Internal Test-I
16 1 15	Internal Test I begins
16-L15	Angle of contact- Capillary rise and energy consideration- Jaeger's method.
17-IT-1	Internal Test-I
17-11-1 18-L16	Unit IV- OSCILLATIONS Simple Harmonic Motion
19-L17	-Test Paper distribution and result analysis
17-117	Entering Internal Test-I Marks into University portal
20-L18	, Motion of simple and compound pendulum , loaded spring,.:
20 L10 21- L19	. Superposition principle: (i) collinear SHM of same frequency but
21 21 21 2	perpendicular to each other.
22- P2	College level meeting/Cell function
23-L20	, Energy in simple harmonic motion. Superposition principle
24-L21	Lissajous figures
25-L22	Simple Harmonic Oscillator
26-L23	(i) collinear SHM of same frequency
27-L24	Unit V. Damped Harmonic Motion
28-L25	Equation of motion
29-L26	Dead beat motion
30-L27	Critically damped system,
31-L28	relaxation time, logarithmic decrement
32-L29	Problem solving
33-L30	relaxation time, logarithmic decrement
34- P3	Department Seminar
35-L31	logarithmic decrement,
36-L32	Allotting portion for Internal Test-II
37- L33	Internal Test II begins
37-L33 38- IT-II	quality factor. Forced Oscillations Internal Test-II
39-L34	Problem solving
40-L35	
- 1 0-LJJ	Entering Internal Test-II Marks into University portal
41-L36	Equation of motion, complete solution
42- L37	Dead beat motion
/	, Energy in simple harmonic motion. Superposition principle

44- P4	College level meeting/ function
45-L39	Energy in simple harmonic motion. Superposition principle
46-L40	Superposition principle
47-L41	Sharpness of resonance
48-L42	Quality factor. Wave Motion
49-L43	Wave Motion: One dimensional plane wave
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Classical wave equation
52- L46	Problem solving
53-IT-III	Internal Test-III
54-L47	Energy in simple harmonic motion
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 06.11.2017

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.
HOD Signature	Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Properties Of Matter	
Course Code	SMPH12	
Class	I year (2018-2019)	
Semester	Odd	
Staff Name	Mr.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

Paper I Properties of Matter and Oscillations

Unit I. ELASTICITY: - Modulus of elasticity- Poisson's ratio- Relation between elastic constants and Poisson's ratio- Twisting couple on a cylinder -Energy stored in a twisted wire- - Torsional pendulum (with and without weights)- Bending of beams- Bending moment- Cantilever loading- -Non-uniform and uniform bending of a beam

Bending of beams- Bending moment- Cantilever loading- -Non-uniform and uniform bending of a beam

UnitII.Viscosity and low pressure : - Newton's law- Poiseuilles flow- Stoke's fall-Rotation viscometer- Ostwald viscometer- Meyer's formula for viscosity of gas-Rankine's method- Effect of temperature and pressure on viscosity- Vacuum pump-Rotary oil pump-Mercury diffusion pump- Knudsen Gauge. Unit III. SURFACE TENSION: - Molecular interpretation- surface energy- Pressure difference across a curved surface- Excess pressure in liquid drops and air bubbles-Molecular forces- Shape of liquid meniscus in capillary tube-Angle of contact- Capillary rise and energy consideration- Jaeger's method.

OSCILLATIONS Unit IV. Simple Harmonic Motion: Simple Harmonic Oscillator, Motion of simple and compound pendulum , loaded spring, Energy in simple harmonic motion. Superposition principle: (i) collinear SHM of same frequency, Standing wave on a stretched string (both ends fixed).. (ii) SHM of same frequency but perpendicular to each other and (iii) Lissajous figures .

Unit V. Damped Harmonic Motion: Equation of motion, Dead beat motion, Critically damped system, Lightly damped system: relaxation time, logarithmic decrement, quality factor. Forced Oscillations: Equation of motion, complete solution, Steady state solution, Resonance, Sharpness of resonance, Quality factor. Wave Motion: One dimensional plane wave; Classical wave equation;;

Books for study 1. Properties of Matter - Brijlal & Subramaniam. 2. Properties of Matter - D.S. Mathur 3. Properties of Matter - Murugesan 4. Waves & Oscillations - Brijlal & Subramaniam 5. Satya Prakash and Akash Saluja- oscillations and waves-pragati prakashan (2002) Books for Reference

1. Physics, Robert Resnick, David Halliday, Jearl Walker Wiley and Sons Inc., Sixth Edition. 2. Waves and Oscillations, Berkeley Physics Course, Vol. 3. F. S. Crawford, Tata McGraw Hill 3. H.R Gulati- fundamental of general properties of matter-R.Chand and co- fifth edition (1977) 4. N.k Bajaj- The physics of waves and oscillations-Tata McGraw-Hill (1988)

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2018
1-L1	Unit I. ELASTICITY
2-L2	Modulus of elasticity- Poisson's ratio
3- L3	Relation between elastic constants and Poisson's ratio- Twisting couple on a
	cylinder
4-L4	Energy stored in a twisted wire Torsional pendulum (with and without
	weights)
5-L5	Torsional pendulum (with and without weights)- Bending of beams-
	Bending moment- Cantilever loading-
6-L6	Bending of beams- Bending moment- Cantilever loadingNon-uniform and
	uniform bending of a beam
	Ŭ

7-L7	UnitII.Viscosity and low pressure
8- P1	Welcoming of First year and Inauguration of physics Association
9- L8	Newton's law- Poiseuilles flow- Stoke's fall
10- L9	Rotation viscometer- Ostwald viscometer- Meyer's formula for viscosity of
	gas-Rankine's method- Effect of temperature and pressure on viscosity
11-L10	Vacuum pump- Rotary oil pump-Mercury diffusion pump- Knudsen
	Gauge.
12-L11	Unit III. SURFACE TENSION
13-L12	- Molecular interpretation- surface energy- Pressure difference across a
14110	curved surface
14-L13	Excess pressure in liquid drops and air bubbles-Molecular forces- Shape of
15 1 1 4	liquid meniscus in capillary tube
15-L14	Allotting portion for Internal Test-I
16-L15	Internal Test I begins Angle of contact- Capillary rise and energy consideration- Jaeger's method.
10-L15	Angle of contact- Capinary rise and energy consideration- Jaeger's method.
17-IT-1	Internal Test-I
18-L16	Unit IV- OSCILLATIONS Simple Harmonic Motion
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	, Motion of simple and compound pendulum , loaded spring,.:
21- L19	. Superposition principle: (i) collinear SHM of same frequency but
	perpendicular to each other.
22- P2	College level meeting/Cell function
23-L20	, Energy in simple harmonic motion. Superposition principle
24-L21	Lissajous figures
25-L22	Simple Harmonic Oscillator
26-L23	(i) collinear SHM of same frequency
27-L24	Unit V. Damped Harmonic Motion
28-L25	Equation of motion
29-L26	Dead beat motion
30-L27	Critically damped system,
31-L28	relaxation time, logarithmic decrement
32-L29	Problem solving
33-L30	relaxation time, logarithmic decrement
34- P3	Department Seminar
35-L31	logarithmic decrement,
36-L32	Allotting portion for Internal Test-II Internal Test II begins
37- L33	quality factor. Forced Oscillations
37-L33 38- IT-II	Internal Test-II
39-L34	Problem solving
40-L35	-Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Equation of motion, complete solution
42- L37	Dead beat motion
43- L38	, Energy in simple harmonic motion. Superposition principle

44- P4	College level meeting/ function
45-L39	Energy in simple harmonic motion. Superposition principle
46-L40	Superposition principle
47-L41	Sharpness of resonance
48-L42	Quality factor. Wave Motion
49-L43	Wave Motion: One dimensional plane wave
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Classical wave equation
52- L46	Problem solving
53-IT-III	Internal Test-III
54-L47	Energy in simple harmonic motion
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.11.2018

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.
HOD Signature	Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Properties Of Matter	
Course Code	SMPH12	
Class	I year (2019-2020)	
Semester	Odd	
Staff Name	Mrs. R. Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

Paper I Properties of Matter and Oscillations

Unit I. ELASTICITY: - Modulus of elasticity- Poisson's ratio- Relation between elastic constants and Poisson's ratio- Twisting couple on a cylinder -Energy stored in a twisted wire- - Torsional pendulum (with and without weights)- Bending of beams- Bending moment- Cantilever loading- -Non-uniform and uniform bending of a beam

Bending of beams- Bending moment- Cantilever loading- -Non-uniform and uniform bending of a beam

UnitII.Viscosity and low pressure : - Newton's law- Poiseuilles flow- Stoke's fall-Rotation viscometer- Ostwald viscometer- Meyer's formula for viscosity of gas-Rankine's method- Effect of temperature and pressure on viscosity- Vacuum pump-Rotary oil pump-Mercury diffusion pump- Knudsen Gauge. Unit III. SURFACE TENSION: - Molecular interpretation- surface energy- Pressure difference across a curved surface- Excess pressure in liquid drops and air bubbles-Molecular forces- Shape of liquid meniscus in capillary tube-Angle of contact- Capillary rise and energy consideration- Jaeger's method.

OSCILLATIONS Unit IV. Simple Harmonic Motion: Simple Harmonic Oscillator, Motion of simple and compound pendulum , loaded spring, Energy in simple harmonic motion. Superposition principle: (i) collinear SHM of same frequency, Standing wave on a stretched string (both ends fixed).. (ii) SHM of same frequency but perpendicular to each other and (iii) Lissajous figures .

Unit V. Damped Harmonic Motion: Equation of motion, Dead beat motion, Critically damped system, Lightly damped system: relaxation time, logarithmic decrement, quality factor. Forced Oscillations: Equation of motion, complete solution, Steady state solution, Resonance, Sharpness of resonance, Quality factor. Wave Motion: One dimensional plane wave; Classical wave equation;;

Books for study 1. Properties of Matter - Brijlal & Subramaniam. 2. Properties of Matter - D.S. Mathur 3. Properties of Matter - Murugesan 4. Waves & Oscillations - Brijlal & Subramaniam 5. Satya Prakash and Akash Saluja- oscillations and waves-pragati prakashan (2002) Books for Reference

1. Physics, Robert Resnick, David Halliday, Jearl Walker Wiley and Sons Inc., Sixth Edition. 2. Waves and Oscillations, Berkeley Physics Course, Vol. 3. F. S. Crawford, Tata McGraw Hill 3. H.R Gulati- fundamental of general properties of matter-R.Chand and co- fifth edition (1977) 4. N.k Bajaj- The physics of waves and oscillations-Tata McGraw-Hill (1988)

Hour	Class Schedule
allotment	
	Odd Semester Begin on 17.06.2019
1-L1	Unit I. ELASTICITY
2-L2	Modulus of elasticity- Poisson's ratio
3- L3	Relation between elastic constants and Poisson's ratio- Twisting couple on a
	cylinder
4-L4	Energy stored in a twisted wire Torsional pendulum (with and without
	weights)
5-L5	Torsional pendulum (with and without weights)- Bending of beams-
	Bending moment- Cantilever loading-
6-L6	Bending of beams- Bending moment- Cantilever loadingNon-uniform and
	uniform bending of a beam
	Ŭ

7-L7	UnitII.Viscosity and low pressure
8- P1	Welcoming of First year and Inauguration of physics Association
9- L8	Newton's law- Poiseuilles flow- Stoke's fall
10- L9	Rotation viscometer- Ostwald viscometer- Meyer's formula for viscosity of
	gas-Rankine's method- Effect of temperature and pressure on viscosity
11-L10	Vacuum pump- Rotary oil pump-Mercury diffusion pump- Knudsen
	Gauge.
12-L11	Unit III. SURFACE TENSION
13-L12	- Molecular interpretation- surface energy- Pressure difference across a
14110	curved surface
14-L13	Excess pressure in liquid drops and air bubbles-Molecular forces- Shape of
15 1 1 4	liquid meniscus in capillary tube
15-L14	Allotting portion for Internal Test-I
16-L15	Internal Test I begins Angle of contact- Capillary rise and energy consideration- Jaeger's method.
10-L15	Angle of contact- Capinary rise and energy consideration- Jaeger's method.
17-IT-1	Internal Test-I
18-L16	Unit IV- OSCILLATIONS Simple Harmonic Motion
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	, Motion of simple and compound pendulum , loaded spring,.:
21- L19	. Superposition principle: (i) collinear SHM of same frequency but
	perpendicular to each other.
22- P2	College level meeting/Cell function
23-L20	, Energy in simple harmonic motion. Superposition principle
24-L21	Lissajous figures
25-L22	Simple Harmonic Oscillator
26-L23	(i) collinear SHM of same frequency
27-L24	Unit V. Damped Harmonic Motion
28-L25	Equation of motion
29-L26	Dead beat motion
30-L27	Critically damped system,
31-L28	relaxation time, logarithmic decrement
32-L29	Problem solving
33-L30	relaxation time, logarithmic decrement
34- P3	Department Seminar
35-L31	logarithmic decrement,
36-L32	Allotting portion for Internal Test-II Internal Test II begins
37- L33	quality factor. Forced Oscillations
37-L33 38- IT-II	Internal Test-II
39-L34	Problem solving
40-L35	-Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Equation of motion, complete solution
42- L37	Dead beat motion
43- L38	, Energy in simple harmonic motion. Superposition principle

44- P4	College level meeting/ function
45-L39	Energy in simple harmonic motion. Superposition principle
46-L40	Superposition principle
47-L41	Sharpness of resonance
48-L42	Quality factor. Wave Motion
49-L43	Wave Motion: One dimensional plane wave
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Classical wave equation
52- L46	Problem solving
53-IT-III	Internal Test-III
54-L47	Energy in simple harmonic motion
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 30.10.2019

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.
HOD Signature	Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Quantum Mechanics	
Course Code	GMPH5B	
Class	III year (2014-2015)	
Semester	Odd	
Staff Name	Dr.S.John Kennedy Vedhanathan	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

· · ·

Syllabus

QUANTUM MECHANICS

(Major Elective Paper)

Unit I

Quantum Theory: Limitations of classical theory – Black body radiation – Black body radiation - Max Planck's theory of quantum radiation – Einstein's theory of Photo electric effect

- Compton effect – specific heat of solids – Bohr model of hydrogen atom – inadequacy of quantum theory – De Broglie's wave nature of particles – wave packet and its significance – wave packet and its motion.

Unit II

Wave Mechanics: The uncertainty principle – single slit experiment – Uncertainty for other variables – Applications of Uncertainty principle – Schrodinger wave equation – Time

dependent and Time independent forms - Interpretations of wave function - Probability current density - Expectation values - Ehrenfest's theorm. Unit III Quantum Mechanics: Linear vector space - Orthogonal functions - eigan functions and eigan values - Orthonormality of eigan functions - energy eigan values are real - linear operator Hermitian operator-Postulates of Quantum mechanics - Simultaneous measurements and commutating operators - The adjoint or self adjoint of an operator - Dirac's notation -Equations of motion in Schrodinger representation Unit IV Simple applications: Particle in one dimensional Square well with infinite walls - Square well with finite walls – Potential step – Square potential barrier – barrier penetration – Alpha emission Unit V Simple applications: Bloch waves in periodic potential -Kronig - Penny square well periodic potential - linear Harmonic Oscillator - Schrodinger method - Operator method -The free particle.

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2014	
1-L1	Quantum Theory: Limitations of classical theory	
2-L2	Max Planck's theory of quantum radiation	
3- L3	Einstein's theory of Photo electric effect	
4-L4	Compton effect – specific heat of solids	
5-L5	Bohr model of hydrogen atom	
6-L6	De Broglie's wave nature of particles	
7-L7	wave packet and its motion.	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	wave packet and its significance	
10- L9	Unit II-Wave Mechanics: Introduction	
11-L10	Schrodinger wave equation	
12-L11	Time dependent and Time independent forms	
13-L12	Interpretations of wave function	
14-L13	Uncertainty for other variables	
15-L14	Probability current density – Expectation values	
16-L15	Ehrenfest's theorm	
17- L16	single slit experiment	
18- L17	Applications of Uncertainty principle	
19- L18	Class test	
20- L19	Problem solving	
21- L20	Allotting portion for Internal Test-I	
	Internal Test I begins	

22- L21	Quantum Mechanics: Introduction
23- IT-1	Internal Test-I
24- L22	Orthogonal functions
25- L23	eigan functions
26- L24	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
27- L25	Orthonormality of eigan functions
28- L26	energy eigan values are real
29- L27	Hermitian operator
30- P2	College level meeting/Cell function
31-L28	Postulates of Quantum mechanics
32-L29	Simultaneous measurements
33-L30	The adjoint or self adjoint of an operator
34- L31	Dirac's notation
35- L32	Equations of motion in Schrodinger representation
36- L33	commutating operators
37- L34	linear operator
38-L35	eigan values
39- L36	Linear vector space
40- L37	The uncertainty principle
41- L38	inadequacy of quantum theory
42-P3	Department Seminar
43- L39	Black body radiation
44- L40	Problem solving
45- L41	Class test
46- L42	Revision
47- L43	Allotting portion for Internal Test-II
10 7 11	Internal Test II begins
48- L44	Unit IV
	Simple applications: Introduction
49-IT-II	Internal Test-II
50-L45	Particle in one dimensional Square well with infinite walls
51- L46	-Test Paper distribution and result analysis
50 I 47	Entering Internal Test-II Marks into University portal
52-L47	Square well with finite walls
53- L48 54- L49	Potential step
55- L50	Square potential barrier barrier penetration
56- L50	Alpha emission
50- L51	Alpha emission
57- L52	Problem solving
58- L53	Class Test
59-P4	College level meeting/ function
60- L54	Problem Test
61- L55	Unit V
	Simple applications: Introduction
62- L56	Bloch waves in periodic potential
63- L57	Kronig – Penny square well periodic potential

64- L58	- Allotting portion for Internal Test-III	
	Internal Test III begins	
65- L59	linear Harmonic Oscillator	
66- L60	Operator method	
67-IT-III	Internal Test-III	
68- L61	Schrodinger method	
69- L62	The free particle.	
70- L63	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
71-MT	Model Test	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 31.10.2014	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.

# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Quantum Mechanics	
Course Code	GMPH5B	
Class	III year (2015-2016)	
Semester	Odd	
Staff Name	Dr.S.John Kennedy Vedhanathan	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

· · ·

Syllabus

QUANTUM MECHANICS

(Major Elective Paper)

Unit I

Quantum Theory: Limitations of classical theory – Black body radiation – Black body radiation - Max Planck's theory of quantum radiation – Einstein's theory of Photo electric effect

- Compton effect – specific heat of solids – Bohr model of hydrogen atom – inadequacy of quantum theory – De Broglie's wave nature of particles – wave packet and its significance – wave packet and its motion.

Unit II

Wave Mechanics: The uncertainty principle – single slit experiment – Uncertainty for other variables – Applications of Uncertainty principle – Schrodinger wave equation – Time

dependent and Time independent forms - Interpretations of wave function - Probability current density - Expectation values - Ehrenfest's theorm. Unit III Quantum Mechanics: Linear vector space - Orthogonal functions - eigan functions and eigan values - Orthonormality of eigan functions - energy eigan values are real - linear operator Hermitian operator-Postulates of Quantum mechanics - Simultaneous measurements and commutating operators - The adjoint or self adjoint of an operator - Dirac's notation -Equations of motion in Schrodinger representation Unit IV Simple applications: Particle in one dimensional Square well with infinite walls - Square well with finite walls – Potential step – Square potential barrier – barrier penetration – Alpha emission Unit V Simple applications: Bloch waves in periodic potential -Kronig - Penny square well periodic potential - linear Harmonic Oscillator - Schrodinger method - Operator method -The free particle.

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2015	
1-L1	Quantum Theory: Limitations of classical theory	
2-L2	Max Planck's theory of quantum radiation	
3- L3	Einstein's theory of Photo electric effect	
4-L4	Compton effect – specific heat of solids	
5-L5	Bohr model of hydrogen atom	
6-L6	De Broglie's wave nature of particles	
7-L7	wave packet and its motion.	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	wave packet and its significance	
10- L9	Unit II-Wave Mechanics: Introduction	
11-L10	Schrodinger wave equation	
12-L11	Time dependent and Time independent forms	
13-L12	Interpretations of wave function	
14-L13	Uncertainty for other variables	
15-L14	Probability current density – Expectation values	
16-L15	Ehrenfest's theorm	
17- L16	single slit experiment	
18- L17	Applications of Uncertainty principle	
19- L18	Class test	
20- L19	Problem solving	
21- L20	Allotting portion for Internal Test-I	
	Internal Test I begins	

22- L21	Quantum Mechanics: Introduction	
23- IT-1	Internal Test-I	
24- L22	Orthogonal functions	
25- L23	eigan functions	
26- L24	-Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
27- L25	Orthonormality of eigan functions	
28- L26	energy eigan values are real	
29- L27	Hermitian operator	
30- P2	College level meeting/Cell function	
31-L28	Postulates of Quantum mechanics	
32-L29	Simultaneous measurements	
33-L30	The adjoint or self adjoint of an operator	
34- L31	Dirac's notation	
35- L32	Equations of motion in Schrodinger representation	
36- L33	commutating operators	
37-L34	linear operator	
38-L35	eigan values	
39- L36	Linear vector space	
40- L37	The uncertainty principle	
41-L38	inadequacy of quantum theory	
42-P3	Department Seminar	
43- L39	Black body radiation	
44- L40	Problem solving	
45- L41	Class test Revision	
46- L42		
47- L43	Allotting portion for Internal Test-II	
48- L44	Internal Test II begins Unit IV	
40- L44		
49-IT-II	Simple applications: Introduction Internal Test-II	
50-L45	Particle in one dimensional Square well with infinite walls	
50 LAS	Test Paper distribution and result analysis	
51 210	Entering Internal Test-II Marks into University portal	
52- L47	Square well with finite walls	
53- L48	Potential step	
54- L49	Square potential barrier	
55- L50	barrier penetration	
56- L51	Alpha emission	
57- L52	Problem solving	
58- L53	Class Test	
59-P4	College level meeting/ function	
60- L54	Problem Test	
61- L55	Unit V	
	Simple applications: Introduction	
62- L56	Bloch waves in periodic potential	
63- L57	Kronig – Penny square well periodic potential	

64- L58	- Allotting portion for Internal Test-III	
	Internal Test III begins	
65- L59	linear Harmonic Oscillator	
66- L60	Operator method	
67-IT-III	Internal Test-III	
68- L61	Schrodinger method	
69- L62	The free particle.	
70- L63	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
71-MT	Model Test	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 29.10.2015	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1 EL2	
EL2 EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.

# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Quantum Mechanics	
Course Code	GMPH5B	
Class	III year (2016-2017)	
Semester	Odd	
Staff Name	Dr.S.John Kennedy Vedhanathan	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

· · ·

Syllabus

QUANTUM MECHANICS

(Major Elective Paper)

Unit I

Quantum Theory: Limitations of classical theory – Black body radiation – Black body radiation - Max Planck's theory of quantum radiation – Einstein's theory of Photo electric effect

- Compton effect – specific heat of solids – Bohr model of hydrogen atom – inadequacy of quantum theory – De Broglie's wave nature of particles – wave packet and its significance – wave packet and its motion.

Unit II

Wave Mechanics: The uncertainty principle – single slit experiment – Uncertainty for other variables – Applications of Uncertainty principle – Schrodinger wave equation – Time

dependent and Time independent forms - Interpretations of wave function - Probability current density - Expectation values - Ehrenfest's theorm. Unit III Quantum Mechanics: Linear vector space - Orthogonal functions - eigan functions and eigan values - Orthonormality of eigan functions - energy eigan values are real - linear operator Hermitian operator-Postulates of Quantum mechanics - Simultaneous measurements and commutating operators - The adjoint or self adjoint of an operator - Dirac's notation -Equations of motion in Schrodinger representation Unit IV Simple applications: Particle in one dimensional Square well with infinite walls - Square well with finite walls – Potential step – Square potential barrier – barrier penetration – Alpha emission Unit V Simple applications: Bloch waves in periodic potential -Kronig - Penny square well periodic potential - linear Harmonic Oscillator - Schrodinger method - Operator method -The free particle.

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.06.2016
1-L1	Quantum Theory: Limitations of classical theory
2-L2	Max Planck's theory of quantum radiation
3- L3	Einstein's theory of Photo electric effect
4-L4	Compton effect – specific heat of solids
5-L5	Bohr model of hydrogen atom
6-L6	De Broglie's wave nature of particles
7-L7	wave packet and its motion.
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	wave packet and its significance
10- L9	Unit II-Wave Mechanics: Introduction
11-L10	Schrodinger wave equation
12-L11	Time dependent and Time independent forms
13-L12	Interpretations of wave function
14-L13	Uncertainty for other variables
15-L14	Probability current density – Expectation values
16-L15	Ehrenfest's theorm
17- L16	single slit experiment
18- L17	Applications of Uncertainty principle
19- L18	Class test
20- L19	Problem solving
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins

22- L21	Quantum Mechanics: Introduction	
23- IT-1	Internal Test-I	
24- L22	Orthogonal functions	
25- L23	eigan functions	
26- L24	-Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
27- L25	Orthonormality of eigan functions	
28- L26	energy eigan values are real	
29- L27	Hermitian operator	
30- P2	College level meeting/Cell function	
31-L28	Postulates of Quantum mechanics	
32-L29	Simultaneous measurements	
33-L30	The adjoint or self adjoint of an operator	
34- L31	Dirac's notation	
35- L32	Equations of motion in Schrodinger representation	
36- L33	commutating operators	
37- L34	linear operator	
38-L35	eigan values	
39- L36	Linear vector space	
40- L37	The uncertainty principle	
41- L38	inadequacy of quantum theory	
42-P3	Department Seminar	
43- L39	Black body radiation	
44- L40	Problem solving	
45- L41	Class test	
46- L42	Revision	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins	
48- L44	Unit IV	
	Simple applications: Introduction	
49-IT-II	Internal Test-II	
50-L45	Particle in one dimensional Square well with infinite walls	
51- L46	-Test Paper distribution and result analysis	
50 I 47	Entering Internal Test-II Marks into University portal	
52-L47	Square well with finite walls	
53-L48	Potential step	
54- L49	Square potential barrier	
55- L50 56- L51	barrier penetration	
50- L51	Alpha emission	
57- L52	Problem solving	
58- L53	Class Test	
59-P4	College level meeting/ function	
60- L54	Problem Test	
61- L55	Unit V	
	Simple applications: Introduction	
62- L56	Bloch waves in periodic potential	
63- L57	Kronig – Penny square well periodic potential	

64- L58	- Allotting portion for Internal Test-III
	Internal Test III begins
65- L59	linear Harmonic Oscillator
66- L60	Operator method
67-IT-III	Internal Test-III
68- L61	Schrodinger method
69- L62	The free particle.
70- L63	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
71-MT	Model Test
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 30.11.2016

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.

# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Quantum Mechanics	
Course Code	GMPH5B	
Class	III year (2017-2018)	
Semester	Odd	
Staff Name	Dr.S.John Kennedy Vedhanathan	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

· · ·

Syllabus

QUANTUM MECHANICS

(Major Elective Paper)

Unit I

Quantum Theory: Limitations of classical theory – Black body radiation – Black body radiation - Max Planck's theory of quantum radiation – Einstein's theory of Photo electric effect

- Compton effect – specific heat of solids – Bohr model of hydrogen atom – inadequacy of quantum theory – De Broglie's wave nature of particles – wave packet and its significance – wave packet and its motion.

Unit II

Wave Mechanics: The uncertainty principle – single slit experiment – Uncertainty for other variables – Applications of Uncertainty principle – Schrodinger wave equation – Time

dependent and Time independent forms - Interpretations of wave function - Probability current density - Expectation values - Ehrenfest's theorm. Unit III Quantum Mechanics: Linear vector space - Orthogonal functions - eigan functions and eigan values - Orthonormality of eigan functions - energy eigan values are real - linear operator Hermitian operator-Postulates of Quantum mechanics - Simultaneous measurements and commutating operators - The adjoint or self adjoint of an operator - Dirac's notation -Equations of motion in Schrodinger representation Unit IV Simple applications: Particle in one dimensional Square well with infinite walls - Square well with finite walls – Potential step – Square potential barrier – barrier penetration – Alpha emission Unit V Simple applications: Bloch waves in periodic potential -Kronig - Penny square well periodic potential - linear Harmonic Oscillator - Schrodinger method - Operator method -The free particle.

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.06.2017
1-L1	Quantum Theory: Limitations of classical theory
2-L2	Max Planck's theory of quantum radiation
3- L3	Einstein's theory of Photo electric effect
4-L4	Compton effect – specific heat of solids
5-L5	Bohr model of hydrogen atom
6-L6	De Broglie's wave nature of particles
7-L7	wave packet and its motion.
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	wave packet and its significance
10- L9	Unit II-Wave Mechanics: Introduction
11-L10	Schrodinger wave equation
12-L11	Time dependent and Time independent forms
13-L12	Interpretations of wave function
14-L13	Uncertainty for other variables
15-L14	Probability current density – Expectation values
16-L15	Ehrenfest's theorm
17- L16	single slit experiment
18- L17	Applications of Uncertainty principle
19- L18	Class test
20- L19	Problem solving
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins

22- L21	Quantum Mechanics: Introduction	
23- IT-1	Internal Test-I	
24- L22	Orthogonal functions	
25- L23	eigan functions	
26- L24	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
27- L25	Orthonormality of eigan functions	
28- L26	energy eigan values are real	
29- L27	Hermitian operator	
30- P2	College level meeting/Cell function	
31-L28	Postulates of Quantum mechanics	
32-L29	Simultaneous measurements	
33-L30	The adjoint or self adjoint of an operator	
34- L31	Dirac's notation	
35- L32	Equations of motion in Schrodinger representation	
36- L33	commutating operators	
37- L34	linear operator	
38-L35	eigan values	
39- L36	Linear vector space	
40- L37	The uncertainty principle	
41- L38	inadequacy of quantum theory	
42-P3	Department Seminar	
43- L39	Black body radiation	
44- L40	Problem solving	
45- L41	Class test	
46- L42	Revision	
47- L43	Allotting portion for Internal Test-II	
10 7 11	Internal Test II begins	
48- L44	Unit IV	
	Simple applications: Introduction	
49-IT-II	Internal Test-II	
50-L45	Particle in one dimensional Square well with infinite walls	
51- L46	-Test Paper distribution and result analysis	
50 I 47	Entering Internal Test-II Marks into University portal	
52-L47	Square well with finite walls	
53- L48	Potential step	
54- L49 55- L50	Square potential barrier	
	barrier penetration	
56- L51	Alpha emission	
57- L52	Problem solving	
58- L53	Class Test	
59-P4	College level meeting/ function	
60- L54	Problem Test	
61- L55	Unit V	
	Simple applications: Introduction	
62- L56	Bloch waves in periodic potential	
63- L57	Kronig – Penny square well periodic potential	

64- L58	- Allotting portion for Internal Test-III
	Internal Test III begins
65- L59	linear Harmonic Oscillator
66- L60	Operator method
67-IT-III	Internal Test-III
68- L61	Schrodinger method
69- L62	The free particle.
70- L63	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
71-MT	Model Test
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 06.11.2017

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.

# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name B.Sc. Physics			
Course Name	Quantum Mechanics		
Course Code	JMPH63		
Class III year (2018- 2019)			
Semester	Even		
Staff Name Dr. S. John Kennnady and vedhanathan			
D. Priscilla Koilpillai			
, Credits 5			
L. Hours /P. Hours 5 / WK			
Total 75 Hrs/Sem			
Internal Test-3 Hrs			
Model Test-3 Hrs			
Dept. Meetings-2 Hrs			
College Meetings-2 Hrs			
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)			

Course Objectives

- .
- •
- •
- •
- •
- •

Syllabus

UNIT I: DEVELOPMENT OF QUANTUM MECHANICS

Inadequacy of classical mechanics-Black body radiation – Theoretical laws of Black body radiation (Wein's displacement law –Wein's Radiation formula – Rayleigh Jeans law) – Planck's Quantum hypothesis – photoelectric effect- Einstein's explanation for photoelectric effect-Compton effect – Einstein's quantum theory of specific heat-Quantum states of energy. (8L+5T)

UNIT II : WAVE PROPERTIES OF MATTER

Wave particle duality-Phase and Group Velocity – Analytical expression for a of Group waves – Wave packets formed by Superposition of Number of Plane waves – De Broglie Hypothesis – Derivation of De Broglie relation – Phase velocity of De Broglie Waves – Relation between De Broglie wave and Phase velocity – Davision and Germer's experiment on electron diffraction-Diffraction of Atoms and Molecules (9L+6T) cc

Uncertainty Principle - Elementary Proof of Heisenberg's Uncertainty Relation and its Physical significance –Illustration by Thought experiments- consequences .(8L+5T)

UNIT IV: SCHRODINGER'S WAVE EQUATION:

Basic postulates of Quantum mechanics –Schrodinger's equation – 1D and 3D wave equation into the Time-dependent and Time-independent part – Physical Interpretation of the Wave Function ψ – Operators in quantum Mechanics, Eigen Function, Eigen value and Eigen Value equation – Expectation values – Orthogonality of Energy Eigen function - Schrodinger's Wave equation for the Complex Conjugate Wave function $\psi^*(x, y, z, t)$ – Probability current Density – Ehrenfest's Theorem – Momentum wave function for free particle – Momentum Eigen function – Exact statement and proof of Uncertainty principle for one dimensional wave packet (11L+8T)

UNIT V: APPLICATIONS OF QUANTUM MECHANICS

Free particle – Potential step – Rectangular Potential barrier- Tunnel effect – emission of α particles from Radioactive element - Square well potential- free states-Particle in 1D box – Particle in 3D box – Simple harmonic oscillator – 1D simple harmonic oscillator in quantum 1 D square well potential of finite Depth. (9L+6T) Books for Study 1. Elements of Quantum Mechanics, Kamal Singh & S P Singh-Chmechanics – Particle in and &Co; Books for Reference

1.Mathews P.M. and Venkatesh k. Quantum Mechanics Tata McGraw Hill Publishing Ltd.

2.Gipta,Kumar,Sharma -Quantum Mechanics-JaiPrakash Nath Company

3. Quantum Mechanics-G.Arul Das-PHI Private Learning Ltd.

4. Quantum Mechanics-V.Murugan-Pearson publication

5. Quantum Mechanics-Mahesh C.Jain- PHI Private Learning Ltd

Hour allotment	Class Schedule
	Even Semester Begin on 3.12.2018
1-L1	DEVELOPMENT OF QUANTUM MECHANICS
2-L2	Inadequacy of classical mechanics
3- L3	Black body radiation
4-L4	Theoretical laws of Black body
5-L5	radiation (Wein's displacement law
6-L6	Wein's Radiation formula
7-L7	Rayleigh Jeans law
8- P1	Planck's Quantum hypothesis
9- L8	– photoelectric effect-
10- L9	photoelectric effect
11-L10	Einstein's explanation
12-L11	Compton effect
13-L12	– Einstein's quantum
14-L13	theory of specific heat
15-L14	Class Exam
16-L15	Preparation of Internal Class test
17- L16	heat-Quantum
18- L17	states of energy
19- L18	Unit II Introduction Class
20- L19	UNIT II : WAVE PROPERTIES OF MATTER
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins
22- L21	Wave Properties of Matters
23- IT-1	Internal Test-I
24- L22	Wave particle duality
25- L23	Phase and Group Velocity
26- L24	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
27- L25	Phase and Group Velocity waves
28- L26	– Wave packets formed
29- L27	by Superposition
30- P2	of Number of Plane waves
31-L28	of Number of Plane waves
32-L29	De Broglie Hypothesis
33-L30	Derivation of De Broglie relation
34- L31	Phase velocity
35-L32	of De Broglie Waves
36- L33	Relation between De Broglie wave
37- L34	and Phase velocity
38-L35	– Davision and Germer's experiment
39- L36	Class Test
40- L37	on electron diffraction-

41- L38 Diffraction of Atoms and Molecules 42-P3 Department Seminar 43- L39 Introduction for the III Unit 44- L40 UNIT III : HEISENBERG UNCERTAINTY PRINCIPLE 45- L41 Uncertainty Principle 46- L42 Elementary Proof 47- L43 Allotting portion for Internal Test-II 48- L44 of Heisenberg's Uncertainty 49-IT-II Internal Test-II 50-L45 Relation and its Physical significance –Illustration by Thought experiments- consequences . . 51- L46 Test Paper distribution and result analysis	
43- L39 Introduction for the III Unit 44- L40 UNIT III : HEISENBERG UNCERTAINTY PRINCIPLE 45- L41 Uncertainty Principle 46- L42 Elementary Proof 47- L43 Allotting portion for Internal Test-II 1 Internal Test II begins 48- L44 of Heisenberg's Uncertainty 49-IT-II Internal Test-II 50-L45 Relation and its Physical significance –Illustration by Thought experiments- consequences .	
45- L41 Uncertainty Principle 46- L42 Elementary Proof 47- L43 Allotting portion for Internal Test-II Internal Test II begins 48- L44 of Heisenberg's Uncertainty 49-IT-II Internal Test-II 50-L45 Relation and its Physical significance –Illustration by Thought experiments- consequences . 51- L46	
46- L42 Elementary Proof 47- L43	
47- L43	
Internal Test II begins 48- L44 of Heisenberg's Uncertainty 49-IT-II Internal Test-II 50-L45 Relation and its Physical significance –Illustration by Thought experiments- consequences . 51- L46	
48- L44 of Heisenberg's Uncertainty 49-IT-II Internal Test-II 50-L45 Relation and its Physical significance –Illustration by Thought experiments- consequences . 51- L46	
49-IT-II Internal Test-II 50-L45 Relation and its Physical significance –Illustration by Thought experiments- consequences . 51-L46 Test Paper distribution and result analysis 52-L47 Introduction for the IV Init 53-L48 UNIT IV: SCHRODINGER'S WAVE EQUATION: 54-L49 Basic postulates of Quantum mechanics Ehrenfest's Theorem Momentum wave 55-L50 Schrodinger's equation Eigen Function, Eigen value and Eigen Value 56-L51 1D and 3D wave Physical Interpretation of the Wave Function of Operators in quantum 57-L52 equation into the Time-dependent and Time-independent part	
50-L45 Relation and its Physical significance –Illustration by Thought experiments- consequences . 51-L46	
experiments- consequences . 51- L46	
51- L46 Test Paper distribution and result analysis 51- L46 Test Paper distribution and result analysis 52- L47 Intering Internal Test-II Marks into University portal 52- L47 Introduction for the IV Init 53- L48 UNIT IV: SCHRODINGER'S WAVE EQUATION: 54- L49 Basic postulates of Quantum mechanics Ehrenfest's Theorem Momentum wave 55- L50 Schrodinger's equation Eigen Function, Eigen value and Eigen Value Equation 56- L51 1D and 3D wave Physical Interpretation of the Wave Function Value Operators in quantum 57- L52 equation into the Time-dependent and Time-independent part	
Entering Internal Test-II Marks into University portal 52- L47 Introduction for the IV Init 53- L48 UNIT IV: SCHRODINGER'S WAVE EQUATION: 54- L49 Basic postulates of Quantum mechanics Ehrenfest's Theorem Momentum wave 55- L50 Schrodinger's equation Eigen Function, Eigen value and Eigen Value 56- L51 1D and 3D wave Physical Interpretation of the Wave Function of the Wave Function 57- L52 equation into the Time-dependent and Time-independent part	
52- L47 Introduction for the IV Init 53- L48 UNIT IV: SCHRODINGER'S WAVE EQUATION: 54- L49 Basic postulates of Quantum mechanics Ehrenfest's Theorem Momentum wave 55- L50 Schrodinger's equation Eigen Function, Eigen value and Eigen Value 56- L51 1D and 3D wave Physical Interpretation of the Wave Function of Operators in quantum 57- L52 equation into the Time-dependent and Time-independent part	
53- L48UNIT IV: SCHRODINGER'S WAVE EQUATION:54- L49Basic postulates of Quantum mechanics Ehrenfest's Theorem Momentum wave55- L50Schrodinger's equation Eigen Function, Eigen value and Eigen Value equation56- L511D and 3D wave Physical Interpretation of the Wave Function value Operators in quantum57- L52equation into the Time-dependent and Time-independent part	
54- L49 Basic postulates of Quantum mechanics Ehrenfest's Theorem Momentum wave 55- L50 Schrodinger's equation Eigen Function, Eigen value and Eigen Value equation 56- L51 1D and 3D wave Physical Interpretation of the Wave Function Operators in quantum 57- L52 equation into the Time-dependent and Time-independent part	
Momentum wave 55- L50 Schrodinger's equation Eigen Function, Eigen value and Eigen Value equation 56- L51 1D and 3D wave Physical Interpretation of the Wave Function Value 57- L52 equation into the Time-dependent and Time-independent part	
equation56- L511D and 3D wave Physical Interpretation of the Wave FunctionOperators in quantum57- L52equation into the Time-dependent and Time-independent part	1 –
56- L511D and 3D wave Physical Interpretation of the Wave FunctionOperators in quantum57- L52equation into the Time-dependent and Time-independent part	alue
57- L52 equation into the Time-dependent and Time-independent part	ψ –
58-L53 – Function, Eigen value and Eigen Value equation – Expectation valu	es –
Orthogonality of Energy Eigen function - Schrodinger's	
59-P4 College level meeting/ function	
60- L54 Wave equation for the Complex Conjugate Wave function $\psi^*(x, y, z, Probability current Density – function for free$	t) –
61-L55 Momentum Eigen function – Exact statement and proof of Uncerta principle for one dimensional wave packet	inty
62- L56 Free particle – Potential step – Rectangular Potential barrier- Tu	nnel
effect – emission of α particles from Radioactive element - Square potential- free states-Particle in 1D box	
63- L57 Particle in 3D box – Simple harmonic oscillator – 1D simple harmonic o)
64- L58 Allotting portion for Internal Test-III	
Internal Test III begins	
65- L59 oscillator in quantum	
65-L60 mechanics – Particle	
67-IT-III Internal Test-III	
68-L61 1 D square well potential of finite Depth	
69- L62 Model Exam Preparation	
70- L63 Test Paper distribution and result analysis	
Entering Internal Test-III Marks into University portal	
Model Test begins	
71-MT Model Test	
72-MT Model Test	

73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 23.4.2019

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name B.Sc. Physics		
Course Name Quantum Mechanics		
Course Code SMPH63		
Class III year (2019- 2020)		
Semester Even		
Staff NameDr. S. John Kennnady and vedhanathan		
D. Priscilla Koilpillai		
, Credits	5	
L. Hours /P. Hours 5 / WK		
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- .
- •
- .
- •
- •

Syllabus

UNIT I: DEVELOPMENT OF QUANTUM MECHANICS

Inadequacy of classical mechanics-Black body radiation – Theoretical laws of Black body radiation (Wein's displacement law –Wein's Radiation formula – Rayleigh Jeans law) – Planck's Quantum hypothesis – photoelectric effect- Einstein's explanation for photoelectric effect-Compton effect – Einstein's quantum theory of specific heat-Quantum states of energy. (8L+5T)

UNIT II : WAVE PROPERTIES OF MATTER

Wave particle duality-Phase and Group Velocity – Analytical expression for a of Group waves – Wave packets formed by Superposition of Number of Plane waves – De Broglie Hypothesis – Derivation of De Broglie relation – Phase velocity of De Broglie Waves – Relation between De Broglie wave and Phase velocity – Davision and Germer's experiment on electron diffraction-Diffraction of Atoms and Molecules (9L+6T) cc

Uncertainty Principle - Elementary Proof of Heisenberg's Uncertainty Relation and its Physical significance –Illustration by Thought experiments- consequences .(8L+5T)

UNIT IV: SCHRODINGER'S WAVE EQUATION:

Basic postulates of Quantum mechanics –Schrodinger's equation – 1D and 3D wave equation into the Time-dependent and Time-independent part – Physical Interpretation of the Wave Function ψ – Operators in quantum Mechanics, Eigen Function, Eigen value and Eigen Value equation – Expectation values – Orthogonality of Energy Eigen function - Schrodinger's Wave equation for the Complex Conjugate Wave function $\psi^*(x, y, z, t)$ – Probability current Density – Ehrenfest's Theorem – Momentum wave function for free particle – Momentum Eigen function – Exact statement and proof of Uncertainty principle for one dimensional wave packet (11L+8T)

UNIT V: APPLICATIONS OF QUANTUM MECHANICS

Free particle – Potential step – Rectangular Potential barrier- Tunnel effect – emission of α particles from Radioactive element - Square well potential- free states-Particle in 1D box – Particle in 3D box – Simple harmonic oscillator – 1D simple harmonic oscillator in quantum 1 D square well potential of finite Depth. (9L+6T) Books for Study 1. Elements of Quantum Mechanics, Kamal Singh & S P Singh-Chmechanics – Particle in and &Co; Books for Reference

1.Mathews P.M. and Venkatesh k. Quantum Mechanics Tata McGraw Hill Publishing Ltd.

2.Gipta,Kumar,Sharma -Quantum Mechanics-JaiPrakash Nath Company

3. Quantum Mechanics-G.Arul Das-PHI Private Learning Ltd.

4. Quantum Mechanics-V.Murugan-Pearson publication

5. Quantum Mechanics-Mahesh C.Jain- PHI Private Learning Ltd

Hour allotment	Class Schedule
	Even Semester Begin on 02.12.2019

1-L1	DEVELOPMENT OF QUANTUM MECHANICS
2-L2	Inadequacy of classical mechanics
3- L3	Black body radiation
4-L4	Theoretical laws of Black body
5-L5	radiation (Wein's displacement law
6-L6	Wein's Radiation formula
7-L7	Rayleigh Jeans law
8- P1	Planck's Quantum hypothesis
9- L8	- photoelectric effect-
10.10	
10- L9	photoelectric effect
11-L10	Einstein's explanation
12-L11	Compton effect
13-L12	– Einstein's quantum
14-L13	theory of specific heat
15-L14	Class Exam
16-L15	Preparation of Internal Class test
17- L16	heat-Quantum
18- L17	states of energy
19- L18	Unit II Introduction Class
20- L19	UNIT II : WAVE PROPERTIES OF MATTER
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins
22- L21	Wave Properties of Matters
23- IT-1	Internal Test-I
24- L22	Wave particle duality
25- L23	Phase and Group Velocity
26- L24	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
27- L25	Phase and Group Velocity waves
28- L26	– Wave packets formed
29- L27	by Superposition
30- P2	of Number of Plane waves
31-L28	of Number of Plane waves
31-L20 32-L29	De Broglie Hypothesis
33-L30	Derivation of De Broglie relation
34- L31	Phase velocity
35- L32	of De Broglie Waves
36- L32	Relation between De Broglie wave
37-L34	and Phase velocity
38-L35	– Davision and Germer's experiment
39- L36	Class Test
40- L37	on electron diffraction-
41- L38	Diffraction of Atoms and Molecules
42-P3	Department Seminar
43- L39	Introduction for the III Unit
- 1 5- L37	

44- L40	UNIT III : HEISENBERG UNCERTAINTY PRINCIPLE
45- L41	Uncertainty Principle
46- L42	Elementary Proof
47- L43	Allotting portion for Internal Test-II
17 115	Internal Test II begins
48- L44	of Heisenberg's Uncertainty
49-IT-II	Internal Test-II
50-L45	Relation and its Physical significance –Illustration by Thought
50 115	experiments- consequences .
51- L46	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
52- L47	Introduction for the IV Init
53- L48	UNIT IV: SCHRODINGER'S WAVE EQUATION:
54- L49	Basic postulates of Quantum mechanics Ehrenfest's Theorem – Momentum wave
55- L50	Schrodinger's equation Eigen Function, Eigen value and Eigen Value equation
56- L51	1D and 3D wave Physical Interpretation of the Wave Function ψ – Operators in quantum
57- L52	equation into the Time-dependent and Time-independent part
58- L53	– Function, Eigen value and Eigen Value equation – Expectation values –
	Orthogonality of Energy Eigen function - Schrodinger's
59-P4	College level meeting/ function
60- L54	Wave equation for the Complex Conjugate Wave function $\psi^*(x, y, z, t)$ –
	Probability current Density – function for free
61- L55	Momentum Eigen function – Exact statement and proof of Uncertainty
	principle for one dimensional wave packet
62- L56	Free particle – Potential step – Rectangular Potential barrier- Tunnel effect – emission of α particles from Radioactive element - Square well
	potential- free states-Particle in 1D box
63- L57	Particle in 3D box – Simple harmonic oscillator – 1D simple harmonic o
64- L58	Allotting portion for Internal Test-III
	Internal Test III begins
65- L59	oscillator in quantum
66- L60	mechanics – Particle
67-IT-III	Internal Test-III
68- L61	1 D square well potential of finite Depth
69- L62	Model Exam Preparation
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
71 \ 100	Model Test begins
71-MT	Model Test
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion

75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 27.4.2020

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Solid State Physics
Course Code	GMPH5C
Class	III year (2014-2015)
Semester	ODD
Staff Name	R.Nithya Agnes
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /	unit)

Course Objectives

Syllabus

UNIT-I: CRYSTAL LATTICES

Introduction-seven classes of crystals - Bravais lattice in three dimensions crystal structure - Simple cubic, Face centered cubic, Body centered cubic and Hexagonal close packed structure -Sodium Chrloride, Zinc Blende and Diamond Structures.

Miller Indices and crystal planes - procedure for finding Miller Indices -Interplanar spacing - Diffraction of X-Rays - Bragg's Law - reciprocal lattices reciprocal lattice to SCC, BCC and FCC lattices. (13L)

UNIT-II: TYPES OF MAGNETIC MATERIALS

Introduction -classical theory of Diamagnetism - Langevin's theory of Paramagnetism - Weiss Theory of Para magnetism - Ferromagnetism -

Explanation of Heisenberg's internal field and quantum theory of ferromagnetism – Domain theory of ferromagnetism - Anti ferromagnetism ferrites – Fundamental Definitions of Dielectrics - Different types of Electric Polarizations- electronic, ionic, orientation and space charge Polarizations -Dielectric Loss - Internal Field -Clausius – Mosotti Relation(12L) 4 Hrs

4 Hrs

UNIT-III: BONDING IN SOLIDS

Types of bonds in crystals - Ionic, covalent, Metallic, Vander waal's and Hydrogen Bonding - Bond energy of sodium chloride molecule - Comparison between ionic and covalent solids - variation of inter atomic force with inter atomic spacing -cohesive energy - cohesive energy of ionic solids - application to sodium chloride crystal - evaluation of Madelung constant for sodium chloride. (11L)

UNIT-IV: SUPER CONDUCTIVITY

Introduction - General Properties of Superconductors - effect of magnetic field -Meissner effect - effect of current - Thermal properties-entropy- specific heat- energy gap - isotope effect - London equations - AC & DC Josephson effects - applications - Type–I and Type–II Superconductors - Explanation for the Occurrence of Super Conductivity - BCS theory - Application of Superconductors High Tc superconductors. (14L)

UNIT-V: NANOTECHNOLOGY

Nanomaterials-synthesis and classification —techniques used in synthesis of Nanomaterials -chemical vapour deposition-sol-gel technique-electro deposition method-ball milling method- charecterisation - properties and applications of nanomaterials- fullerence, graphine and carbon nanotubes (10L)

Books for Study

1. Solid State Physics - P.K.Palanisamy - SCITECH Publications pvt Ltd.Chennai

2. Nano-essentials and understanding - Pradeep.T.Mc-Graw-Hill Ltd.

Books for reference

- 1. Introduction to Solid State Physics Kittel Wiley and Sons, New Delhi
- 2. Material Science and Engineering V. Raghavan PHI
- 3. Introduction to Solids Azaroff TMH
- 4. Material Science M.Arumugam Anuradha Publishers
- 5. Solid State Physics H.C.Gupta -Vikas publishing house pvt.Ltd.

6. Principles of Nanoscience and technology - Shah M.A.Ahmed, Narosha publishing house pvt.Ltd.

PAPER XVI: MAJOR

Hour	Class Schedule
allotment	

	Odd Semester Begin on18.06.2014	
1-L1	Introduction-seven classes of crystals	
2-L2	Bravais lattice in three dimensions	
3- L3	Crystal structure - Simple cubic, Face centered cubic	
4-L4	Body centered cubic and Hexagonal close packed structure	
5-L5	Sodium Chrloride, Zinc Blende and Diamond Structures	
6-L6	Miller Indices and crystal planes	
7-L7	Procedure for finding Miller Indices	
8- P1	Problem solving	
9- L8	Inter planar spacing - Diffraction of X-Rays	
10- L9	Bragg's Law - reciprocal lattices	
11-L10	Reciprocal lattice to SCC, BCC and FCC lattices	
12-L11	Introduction -classical theory of Diamagnetism	
13-L12	Langevin's theory of Paramagnetism	
14-L13	Weiss Theory of Para magnetism – Ferromagnetism	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	Explanation of Heisenberg's internal field and quantum theory of	
	ferromagnetism	
17-IT-1	Internal Test-I	
18-L16	Do maintheory of ferromagnetism - Anti ferromagnetism - ferrites	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Fundamental Definitions of Dielectrics	
21- L19	Different types of Electric Polarizations	
22- P2	College level meeting/Cell function	
23-L20	Electronic, ionic, orientation and space charge Polarization	
24-L21	Dielectric Loss – Internal - Field Clausius – Mosotti Relation	
25-L22	Types of bonds in crystals - Ionic, covalent, Metallic, Vander waal's and Hydrogen Bonding	
26-L23	Bond energy of sodium chloride molecule	
27-L24	Comparison between ionic and covalent solids	
28-L25	Variation of inter atomic force with inter atomic	
29-L26	Cohesive energy - cohesive energy of ionic solids Application to	
27 220	sodium	
30-L27	Chloride crystal - evaluation of Madelung constant for sodium	
	chloride	
31-L28	Introduction - General Properties of Superconductors	
32-L29	Effect of magnetic field -Meissner effect - effect of current -	
33-L30	Thermal properties –entropy - specific heat- energy gap - isotope	
- ~	effect	
34- P3		
34- P3 35-L31	Department Seminar London equations - AC & DC Josephson effects Applications	

36-L32	- Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Type–I and Type–II Superconductors - Explanation for the	
	Occurrence of Super Conductivity	
38- IT-II	Internal Test-II	
39-L34	BCS theory- Application of Superconductors High Tc	
	superconductors	
40-L35	-Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Nanomaterials - synthesis and classification	
42- L37	Techniques used in synthesis of nanomaterials	
43- L38	Chemical vapour deposition	
44- P4	College level meeting/ function	
45-L39	Sol-gel technique-electro deposition method-Charecteristics	
46-L40	Problem Solving	
47-L41	Properties and applications of Nanomaterials	
48-L42	fullerence, graphine and carbon nanotubes	
49-L43	Problem Solving	
50-L44	- Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Revision	
52- L46	Problem Solving	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on31.10.2014	

Learning Outcomes	COs of the course " <course name="">"</course>
C01	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	

CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Solid State Physics
Course Code	GMPH5C
Class	III year (2015-2016)
Semester	Odd
Staff Name	R. Nithya Agnes
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /	unit)

Course Objectives

Syllabus

UNIT-I: CRYSTAL LATTICES

Introduction-seven classes of crystals - Bravais lattice in three dimensions - crystal structure - Simple cubic, Face centered cubic, Body centered cubic and Hexagonal close packed structure -Sodium Chrloride, Zinc Blende and Diamond Structures.

Miller Indices and crystal planes - procedure for finding Miller Indices -Interplanar spacing - Diffraction of X-Rays - Bragg's Law - reciprocal lattices reciprocal lattice to SCC, BCC and FCC lattices. (13L)

UNIT-II: TYPES OF MAGNETIC MATERIALS

Introduction -classical theory of Diamagnetism - Langevin's theory of Paramagnetism - Weiss Theory of Para magnetism - Ferromagnetism -Explanation of Heisenberg's internal field and quantum theory of ferromagnetism – Domain theory of ferromagnetism - Anti ferromagnetism ferrites – Fundamental Definitions of Dielectrics - Different types of Electric Polarizations- electronic, ionic, orientation and space charge Polarizations -Dielectric Loss - Internal Field -Clausius – Mosotti Relation(12L) 4 Hrs

UNIT-III: BONDING IN SOLIDS

Types of bonds in crystals - Ionic, covalent, Metallic, Vander waal's and Hydrogen Bonding - Bond energy of sodium chloride molecule - Comparison between ionic and covalent solids - variation of inter atomic force with inter atomic spacing -cohesive energy - cohesive energy of ionic solids - application to sodium chloride crystal - evaluation of Madelung constant for sodium chloride. (11L)

UNIT-IV: SUPER CONDUCTIVITY

Introduction - General Properties of Superconductors - effect of magnetic field -Meissner effect - effect of current - Thermal properties-entropy- specific heat- energy gap - isotope effect - London equations - AC & DC Josephson effects - applications - Type–I and Type–II Superconductors - Explanation for the Occurrence of Super Conductivity - BCS theory - Application of Superconductors High Tc superconductors. (14L)

UNIT-V: NANOTECHNOLOGY

Nanomaterials-synthesis and classification —techniques used in synthesis of Nanomaterials -chemical vapour deposition-sol-gel technique-electro deposition method-ball milling method- charecterisation - properties and applications of nanomaterials- fullerence, graphine and carbon nanotubes (10L)

Books for Study

1. Solid State Physics - P.K.Palanisamy - SCITECH Publications pvt Ltd.Chennai

2. Nano-essentials and understanding - Pradeep.T.Mc-Graw-Hill Ltd.

Books for reference

1. Introduction to Solid State Physics - Kittel - Wiley and Sons, New Delhi

- 2. Material Science and Engineering V. Raghavan PHI
- 3. Introduction to Solids -Azaroff TMH
- 4. Material Science M.Arumugam Anuradha Publishers
- 5. Solid State Physics H.C.Gupta -Vikas publishing house pvt.Ltd.
- 6. Principles of Nanoscience and technology Shah M.A.Ahmed,Narosha publishing house pvt.Ltd.

PAPER XVI: MAJOR

Hour	Class Schedule
allotment	
	Odd Semester Begin on18.06.2015

1-L1	Introduction-seven classes of crystals
2-L2	Bravais lattice in three dimensions
3- L3	Crystal structure - Simple cubic, Face centered cubic
4-L4	Body centered cubic and Hexagonal close packed structure
5-L5	Sodium Chrloride, Zinc Blende and Diamond Structures
6-L6	Miller Indices and crystal planes
7-L7	Procedure for finding Miller Indices
8- P1	Problem solving
9- L8	Inter planar spacing - Diffraction of X-Rays
10- L9	Bragg's Law - reciprocal lattices
11-L10	Reciprocal lattice to SCC, BCC and FCC lattices
12-L11	Introduction -classical theory of Diamagnetism
13-L12	Langevin's theory of Paramagnetism
14-L13	Weiss Theory of Para magnetism – Ferromagnetism
15-L14	Allotting portion for Internal Test-I
15 111	Internal Test I begins
16-L15	Explanation of Heisenberg's internal field and quantum theory of
	ferromagnetism
17-IT-1	Internal Test-I
18-L16	Do maintheory of ferromagnetism - Anti ferromagnetism - ferrites
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Fundamental Definitions of Dielectrics
21- L19	Different types of Electric Polarizations
22- P2	College level meeting/Cell function
23-L20	Electronic, ionic, orientation and space charge Polarization
24-L21	Dielectric Loss – Internal - Field Clausius – Mosotti Relation
25-L22	Types of bonds in crystals - Ionic, covalent, Metallic, Vander waal's
	and Hydrogen Bonding
26-L23	Bond energy of sodium chloride molecule
27-L24	Comparison between ionic and covalent solids
28-L25	Variation of inter atomic force with inter atomic
29-L26	Cohesive energy - cohesive energy of ionic solids Application to
	sodium
30-L27	Chloride crystal - evaluation of Madelung constant for sodium
	chloride
31-L28	Introduction - General Properties of Superconductors
32-L29	Effect of magnetic field -Meissner effect - effect of current -
33-L30	Thermal properties –entropy - specific heat- energy gap - isotope
	effect
34- P3	Department Seminar
35-L31	London equations - AC & DC Josephson effects Applications
36-L32	Allotting portion for Internal Test-II

	Internal Test II begins	
37- L33	Type–I and Type–II Superconductors - Explanation for the	
	Occurrence of Super Conductivity	
38- IT-II	Internal Test-II	
39-L34	BCS theory- Application of Superconductors High Tc	
	superconductors	
40-L35	-Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Nanomaterials - synthesis and classification	
42- L37	Techniques used in synthesis of nanomaterials	
43- L38	Chemical vapour deposition	
44- P4	College level meeting/ function	
45-L39	Sol-gel technique-electro deposition method-Charecteristics	
46-L40	Problem Solving	
47-L41	Properties and applications of Nanomaterials	
48-L42	fullerence, graphine and carbon nanotubes	
49-L43	Problem Solving	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Revision	
52- L46	Problem Solving	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 29.10.2015	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	

CO9	
Experimental Learning	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Solid State Physics	
Course Code	GMPH5C	
Class	III year (2016-2017)	
Semester	ODD	
Staff Name	R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

UNIT-I: CRYSTAL LATTICES

Introduction-seven classes of crystals - Bravais lattice in three dimensions - crystal structure - Simple cubic, Face centered cubic, Body centered cubic and Hexagonal close packed structure -Sodium Chrloride, Zinc Blende and Diamond Structures.

Miller Indices and crystal planes - procedure for finding Miller Indices -Interplanar spacing - Diffraction of X-Rays - Bragg's Law - reciprocal lattices reciprocal lattice to SCC, BCC and FCC lattices. (13L)

UNIT-II: TYPES OF MAGNETIC MATERIALS

Introduction -classical theory of Diamagnetism - Langevin's theory of Paramagnetism - Weiss Theory of Para magnetism - Ferromagnetism -Explanation of Heisenberg's internal field and quantum theory of ferromagnetism – Domain theory of ferromagnetism - Anti ferromagnetism ferrites – Fundamental Definitions of Dielectrics - Different types of Electric Polarizations- electronic, ionic, orientation and space charge Polarizations -Dielectric Loss - Internal Field -Clausius – Mosotti Relation(12L) 4 Hrs

UNIT-III: BONDING IN SOLIDS

Types of bonds in crystals - Ionic, covalent, Metallic, Vander waal's and Hydrogen Bonding - Bond energy of sodium chloride molecule - Comparison between ionic and covalent solids - variation of inter atomic force with inter atomic spacing -cohesive energy - cohesive energy of ionic solids - application to sodium chloride crystal - evaluation of Madelung constant for sodium chloride. (11L)

UNIT-IV: SUPER CONDUCTIVITY

Introduction - General Properties of Superconductors - effect of magnetic field -Meissner effect - effect of current - Thermal properties-entropy- specific heat- energy gap - isotope effect - London equations - AC & DC Josephson effects - applications - Type–I and Type–II Superconductors - Explanation for the Occurrence of Super Conductivity - BCS theory - Application of Superconductors High Tc superconductors. (14L)

UNIT-V: NANOTECHNOLOGY

Nanomaterials-synthesis and classification —techniques used in synthesis of Nanomaterials -chemical vapour deposition-sol-gel technique-electro deposition method-ball milling method- charecterisation - properties and applications of nanomaterials- fullerence, graphine and carbon nanotubes (10L)

Books for Study

1. Solid State Physics - P.K.Palanisamy - SCITECH Publications pvt Ltd.Chennai

2. Nano-essentials and understanding - Pradeep.T.Mc-Graw-Hill Ltd.

Books for reference

1. Introduction to Solid State Physics - Kittel - Wiley and Sons, New Delhi

- 2. Material Science and Engineering V. Raghavan PHI
- 3. Introduction to Solids -Azaroff TMH
- 4. Material Science M.Arumugam Anuradha Publishers
- 5. Solid State Physics H.C.Gupta -Vikas publishing house pvt.Ltd.
- 6. Principles of Nanoscience and technology Shah M.A.Ahmed, Narosha publishing house pvt.Ltd.

PAPER XVI: MAJOR

Hour	Class Schedule	
allotment		
	Odd Semester Begin on16.06.2016	

1-L1	Introduction-seven classes of crystals	
2-L2	Bravais lattice in three dimensions	
3- L3	Crystal structure - Simple cubic, Face centered cubic	
4-L4	Body centered cubic and Hexagonal close packed structure	
5-L5	Sodium Chrloride, Zinc Blende and Diamond Structures	
6-L6	Miller Indices and crystal planes	
7-L7		
8- P1	Procedure for finding Miller Indices Problem solving	
9- L8	Inter planar spacing - Diffraction of X-Rays	
10- L9	Bragg's Law - reciprocal lattices	
10 L) 11-L10	Reciprocal lattice to SCC, BCC and FCC lattices	
12-L11		
12-L11 13-L12	Introduction -classical theory of Diamagnetism	
	Langevin's theory of Paramagnetism	
14-L13	Weiss Theory of Para magnetism – Ferromagnetism	
15-L14	Allotting portion for Internal Test-I Internal Test I begins	
16-L15	Explanation of Heisenberg's internal field and quantum theory of	
10 115		
17-IT-1	ferromagnetism Internal Test-I	
18-L16	Do maintheory of ferromagnetism - Anti ferromagnetism - ferrites	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Fundamental Definitions of Dielectrics	
21- L19	Different types of Electric Polarizations	
22- P2	College level meeting/Cell function	
23-L20	Electronic, ionic, orientation and space charge Polarization	
24-L21	Dielectric Loss – Internal - Field Clausius – Mosotti Relation	
25-L22	Types of bonds in crystals - Ionic, covalent, Metallic, Vander waal's	
	and Hydrogen Bonding	
26-L23	Bond energy of sodium chloride molecule	
27-L24	Comparison between ionic and covalent solids	
28-L25	Variation of inter atomic force with inter atomic	
29-L26	Cohesive energy - cohesive energy of ionic solids Application to	
	sodium	
30-L27	Chloride crystal - evaluation of Madelung constant for sodium	
	chloride	
31-L28	Introduction - General Properties of Superconductors	
32-L29	Effect of magnetic field -Meissner effect - effect of current -	
33-L30	Thermal properties –entropy - specific heat- energy gap - isotope	
	effect	
34- P3	Department Seminar	
35-L31	London equations - AC & DC Josephson effects Applications	
36-L32	Allotting portion for Internal Test-II	

	Internal Test II begins	
37- L33	Type–I and Type–II Superconductors - Explanation for the	
	Occurrence of Super Conductivity	
38- IT-II	Internal Test-II	
39-L34	BCS theory- Application of Superconductors High Tc	
	superconductors	
40-L35	-Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Nanomaterials - synthesis and classification	
42- L37	Techniques used in synthesis of nanomaterials	
43- L38	Chemical vapour deposition	
44- P4	College level meeting/ function	
45-L39	Sol-gel technique-electro deposition method-Charecteristics	
46-L40	Problem Solving	
47-L41	Properties and applications of Nanomaterials	
48-L42	fullerence, graphine and carbon nanotubes	
49-L43	Problem Solving	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Revision	
52- L46	Problem Solving	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on30.11.2016	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	

CO9	
Experimental Learning	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Solid State Physics	
Course Code	GMPH5C	
Class	III year (2017-2018)	
Semester	ODD	
Staff Name	R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

UNIT-I: CRYSTAL LATTICES

Introduction-seven classes of crystals - Bravais lattice in three dimensions - crystal structure - Simple cubic, Face centered cubic, Body centered cubic and Hexagonal close packed structure -Sodium Chrloride, Zinc Blende and Diamond Structures.

Miller Indices and crystal planes - procedure for finding Miller Indices -Interplanar spacing - Diffraction of X-Rays - Bragg's Law - reciprocal lattices reciprocal lattice to SCC, BCC and FCC lattices. (13L)

UNIT-II: TYPES OF MAGNETIC MATERIALS

Introduction -classical theory of Diamagnetism - Langevin's theory of Paramagnetism - Weiss Theory of Para magnetism - Ferromagnetism -Explanation of Heisenberg's internal field and quantum theory of ferromagnetism – Domain theory of ferromagnetism - Anti ferromagnetism ferrites – Fundamental Definitions of Dielectrics - Different types of Electric Polarizations- electronic, ionic, orientation and space charge Polarizations -Dielectric Loss - Internal Field -Clausius – Mosotti Relation(12L) 4 Hrs

UNIT-III: BONDING IN SOLIDS

Types of bonds in crystals - Ionic, covalent, Metallic, Vander waal's and Hydrogen Bonding - Bond energy of sodium chloride molecule - Comparison between ionic and covalent solids - variation of inter atomic force with inter atomic spacing -cohesive energy - cohesive energy of ionic solids - application to sodium chloride crystal - evaluation of Madelung constant for sodium chloride. (11L)

UNIT-IV: SUPER CONDUCTIVITY

Introduction - General Properties of Superconductors - effect of magnetic field -Meissner effect - effect of current - Thermal properties-entropy- specific heat- energy gap - isotope effect - London equations - AC & DC Josephson effects - applications - Type–I and Type–II Superconductors - Explanation for the Occurrence of Super Conductivity - BCS theory - Application of Superconductors High Tc superconductors. (14L)

UNIT-V: NANOTECHNOLOGY

Nanomaterials-synthesis and classification —techniques used in synthesis of Nanomaterials -chemical vapour deposition-sol-gel technique-electro deposition method-ball milling method- charecterisation - properties and applications of nanomaterials- fullerence, graphine and carbon nanotubes (10L)

Books for Study

1. Solid State Physics - P.K.Palanisamy - SCITECH Publications pvt Ltd.Chennai

2. Nano-essentials and understanding - Pradeep.T.Mc-Graw-Hill Ltd.

Books for reference

1. Introduction to Solid State Physics - Kittel - Wiley and Sons, New Delhi

- 2. Material Science and Engineering V. Raghavan PHI
- 3. Introduction to Solids -Azaroff TMH
- 4. Material Science M.Arumugam Anuradha Publishers
- 5. Solid State Physics H.C.Gupta -Vikas publishing house pvt.Ltd.
- 6. Principles of Nanoscience and technology Shah M.A.Ahmed, Narosha publishing house pvt.Ltd.

PAPER XVI: MAJOR

Hour	Class Schedule	
allotment		
	Even Semester Begin on16.06 2017	

1-L1	Introduction-seven classes of crystals	
2-L2	Bravais lattice in three dimensions	
3- L3	Crystal structure - Simple cubic, Face centered cubic	
4-L4	Body centered cubic and Hexagonal close packed structure	
5-L5		
6-L6	Sodium Chrloride, Zinc Blende and Diamond StructuresMiller Indices and crystal planes	
7-L7		
8- P1	Procedure for finding Miller Indices Problem solving	
9- L8	Inter planar spacing - Diffraction of X-Rays	
10- L9	Bragg's Law - reciprocal lattices	
10 L) 11-L10	Reciprocal lattice to SCC, BCC and FCC lattices	
12-L11		
12-L11 13-L12	Introduction -classical theory of Diamagnetism	
	Langevin's theory of Paramagnetism	
14-L13	Weiss Theory of Para magnetism – Ferromagnetism	
15-L14	Allotting portion for Internal Test-I Internal Test I begins	
16-L15	Explanation of Heisenberg's internal field and quantum theory of	
10 115		
17-IT-1	ferromagnetism Internal Test-I	
18-L16	Do maintheory of ferromagnetism - Anti ferromagnetism - ferrites	
19-L17	-Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Fundamental Definitions of Dielectrics	
21- L19	Different types of Electric Polarizations	
22- P2	College level meeting/Cell function	
23-L20	Electronic, ionic, orientation and space charge Polarization	
24-L21	Dielectric Loss – Internal - Field Clausius – Mosotti Relation	
25-L22	Types of bonds in crystals - Ionic, covalent, Metallic, Vander waal's	
	and Hydrogen Bonding	
26-L23	Bond energy of sodium chloride molecule	
27-L24	Comparison between ionic and covalent solids	
28-L25	Variation of inter atomic force with inter atomic	
29-L26	Cohesive energy - cohesive energy of ionic solids Application to	
	sodium	
30-L27	Chloride crystal - evaluation of Madelung constant for sodium	
	chloride	
31-L28	Introduction - General Properties of Superconductors	
32-L29	Effect of magnetic field -Meissner effect - effect of current -	
33-L30	Thermal properties –entropy - specific heat- energy gap - isotope	
	effect	
34- P3	Department Seminar	
35-L31	London equations - AC & DC Josephson effects Applications	
36-L32	Allotting portion for Internal Test-II	

	Internal Test II begins	
37- L33	Type–I and Type–II Superconductors - Explanation for the	
	Occurrence of Super Conductivity	
38- IT-II	Internal Test-II	
39-L34	BCS theory- Application of Superconductors High Tc	
	superconductors	
40-L35	-Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Nanomaterials - synthesis and classification	
42- L37	Techniques used in synthesis of nanomaterials	
43- L38	Chemical vapour deposition	
44- P4	College level meeting/ function	
45-L39	Sol-gel technique-electro deposition method-Charecteristics	
46-L40	Problem Solving	
47-L41	Properties and applications of Nanomaterials	
48-L42	fullerence, graphine and carbon nanotubes	
49-L43	Problem Solving	
50-L44	- Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Revision	
52- L46	Problem Solving	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on06.11.2017	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	

CO9	
Experimental Learning	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Solid State Physics	
Course Code	JMPH52	
Class	III year (2018-2019)	
Semester	ODD	
Staff Name	R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

UNIT-I: CRYSTAL LATTICES

Introduction-seven classes of crystals - Bravais lattice in three dimensions - crystal structure - Simple cubic, Face centered cubic, Body centered cubic and Hexagonal close packed structure -Sodium Chrloride, Zinc Blende and Diamond Structures.

Miller Indices and crystal planes - procedure for finding Miller Indices -Interplanar spacing - Diffraction of X-Rays - Bragg's Law - reciprocal lattices reciprocal lattice to SCC, BCC and FCC lattices. (13L)

UNIT-II: TYPES OF MAGNETIC MATERIALS

Introduction -classical theory of Diamagnetism - Langevin's theory of Paramagnetism - Weiss Theory of Para magnetism - Ferromagnetism -Explanation of Heisenberg's internal field and quantum theory of ferromagnetism – Domain theory of ferromagnetism - Anti ferromagnetism ferrites – Fundamental Definitions of Dielectrics - Different types of Electric Polarizations- electronic, ionic, orientation and space charge Polarizations -Dielectric Loss - Internal Field -Clausius – Mosotti Relation(12L) 4 Hrs

UNIT-III: BONDING IN SOLIDS

Types of bonds in crystals - Ionic, covalent, Metallic, Vander waal's and Hydrogen Bonding - Bond energy of sodium chloride molecule - Comparison between ionic and covalent solids - variation of inter atomic force with inter atomic spacing -cohesive energy - cohesive energy of ionic solids - application to sodium chloride crystal - evaluation of Madelung constant for sodium chloride. (11L)

UNIT-IV: SUPER CONDUCTIVITY

Introduction - General Properties of Superconductors - effect of magnetic field -Meissner effect - effect of current - Thermal properties-entropy- specific heat- energy gap - isotope effect - London equations - AC & DC Josephson effects - applications - Type–I and Type–II Superconductors - Explanation for the Occurrence of Super Conductivity - BCS theory - Application of Superconductors High Tc superconductors. (14L)

UNIT-V: NANOTECHNOLOGY

Nanomaterials-synthesis and classification —techniques used in synthesis of Nanomaterials -chemical vapour deposition-sol-gel technique-electro deposition method-ball milling method- charecterisation - properties and applications of nanomaterials- fullerence, graphine and carbon nanotubes (10L)

Books for Study

1. Solid State Physics - P.K.Palanisamy - SCITECH Publications pvt Ltd.Chennai

2. Nano-essentials and understanding - Pradeep.T.Mc-Graw-Hill Ltd.

Books for reference

1. Introduction to Solid State Physics - Kittel - Wiley and Sons, New Delhi

- 2. Material Science and Engineering V. Raghavan PHI
- 3. Introduction to Solids -Azaroff TMH
- 4. Material Science M.Arumugam Anuradha Publishers
- 5. Solid State Physics H.C.Gupta -Vikas publishing house pvt.Ltd.
- 6. Principles of Nanoscience and technology Shah M.A.Ahmed, Narosha publishing house pvt.Ltd.

PAPER XVI: MAJOR

Hour	Class Schedule	
allotment		
	Even Semester Begin on18.06.2018	

1-L1	Introduction-seven classes of crystals	
2-L2	Bravais lattice in three dimensions	
3- L3	Crystal structure - Simple cubic, Face centered cubic	
4-L4	Body centered cubic and Hexagonal close packed structure	
5-L5		
6-L6	Sodium Chrloride, Zinc Blende and Diamond StructuresMiller Indices and crystal planes	
7-L7		
8- P1	Procedure for finding Miller Indices Problem solving	
9- L8	Inter planar spacing - Diffraction of X-Rays	
10- L9	Bragg's Law - reciprocal lattices	
10 L) 11-L10	Reciprocal lattice to SCC, BCC and FCC lattices	
11 L10 12-L11		
12-L11 13-L12	Introduction -classical theory of Diamagnetism	
	Langevin's theory of Paramagnetism	
14-L13	Weiss Theory of Para magnetism – Ferromagnetism	
15-L14	Allotting portion for Internal Test-I Internal Test I begins	
16-L15	Explanation of Heisenberg's internal field and quantum theory of	
10 115		
17-IT-1	ferromagnetism Internal Test-I	
18-L16	Do maintheory of ferromagnetism - Anti ferromagnetism - ferrites	
19-L17	-Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Fundamental Definitions of Dielectrics	
21- L19	Different types of Electric Polarizations	
22- P2	College level meeting/Cell function	
23-L20	Electronic, ionic, orientation and space charge Polarization	
24-L21	Dielectric Loss – Internal - Field Clausius – Mosotti Relation	
25-L22	Types of bonds in crystals - Ionic, covalent, Metallic, Vander waal's	
	and Hydrogen Bonding	
26-L23	Bond energy of sodium chloride molecule	
27-L24	Comparison between ionic and covalent solids	
28-L25	Variation of inter atomic force with inter atomic	
29-L26	Cohesive energy - cohesive energy of ionic solids Application to	
	sodium	
30-L27	Chloride crystal - evaluation of Madelung constant for sodium	
	chloride	
31-L28	Introduction - General Properties of Superconductors	
32-L29	Effect of magnetic field -Meissner effect - effect of current -	
33-L30	Thermal properties –entropy - specific heat- energy gap - isotope	
22 200	effect	
34- P3	Department Seminar	
35-L31	London equations - AC & DC Josephson effects Applications	
36-L32	Allotting portion for Internal Test-II	
50 L32		

	Internal Test II begins	
37- L33	Type–I and Type–II Superconductors - Explanation for the	
	Occurrence of Super Conductivity	
38- IT-II	Internal Test-II	
39-L34	BCS theory- Application of Superconductors High Tc	
	superconductors	
40-L35	-Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Nanomaterials - synthesis and classification	
42- L37	Techniques used in synthesis of nanomaterials	
43- L38	Chemical vapour deposition	
44- P4	College level meeting/ function	
45-L39	Sol-gel technique-electro deposition method-Charecteristics	
46-L40	Problem Solving	
47-L41	Properties and applications of Nanomaterials	
48-L42	fullerence, graphine and carbon nanotubes	
49-L43	Problem Solving	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Revision	
52- L46	Problem Solving	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.11.2018	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	

CO9	
Experimental Learning	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Solid State Physics
Course Code	SMPH64
Class	III year (2019-2020)
Semester	Even
Staff Name	R.Nithya Agnes
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

Syllabus

UNIT-I: CRYSTAL LATTICES

Introduction-seven classes of crystals - Bravais lattice in three dimensions - crystal structure - Simple cubic, Face centered cubic, Body centered cubic and Hexagonal close packed structure -Sodium Chrloride, Zinc Blende and Diamond Structures.

Miller Indices and crystal planes - procedure for finding Miller Indices -Interplanar spacing - Diffraction of X-Rays - Bragg's Law - reciprocal lattices reciprocal lattice to SCC, BCC and FCC lattices. (13L)

UNIT-II: TYPES OF MAGNETIC MATERIALS

Introduction -classical theory of Diamagnetism - Langevin's theory of Paramagnetism - Weiss Theory of Para magnetism - Ferromagnetism -Explanation of Heisenberg's internal field and quantum theory of ferromagnetism – Domain theory of ferromagnetism - Anti ferromagnetism ferrites – Fundamental Definitions of Dielectrics - Different types of Electric Polarizations- electronic, ionic, orientation and space charge Polarizations -Dielectric Loss - Internal Field -Clausius – Mosotti Relation(12L) 4 Hrs

UNIT-III: BONDING IN SOLIDS

Types of bonds in crystals - Ionic, covalent, Metallic, Vander waal's and Hydrogen Bonding - Bond energy of sodium chloride molecule - Comparison between ionic and covalent solids - variation of inter atomic force with inter atomic spacing -cohesive energy - cohesive energy of ionic solids - application to sodium chloride crystal - evaluation of Madelung constant for sodium chloride. (11L)

UNIT-IV: SUPER CONDUCTIVITY

Introduction - General Properties of Superconductors - effect of magnetic field -Meissner effect - effect of current - Thermal properties-entropy- specific heat- energy gap - isotope effect - London equations - AC & DC Josephson effects - applications - Type–I and Type–II Superconductors - Explanation for the Occurrence of Super Conductivity - BCS theory - Application of Superconductors High Tc superconductors. (14L)

UNIT-V: NANOTECHNOLOGY

Nanomaterials-synthesis and classification —techniques used in synthesis of Nanomaterials -chemical vapour deposition-sol-gel technique-electro deposition method-ball milling method- charecterisation - properties and applications of nanomaterials- fullerence, graphine and carbon nanotubes (10L)

Books for Study

1. Solid State Physics - P.K.Palanisamy - SCITECH Publications pvt Ltd.Chennai

2. Nano-essentials and understanding - Pradeep.T.Mc-Graw-Hill Ltd.

Books for reference

1. Introduction to Solid State Physics - Kittel - Wiley and Sons, New Delhi

- 2. Material Science and Engineering V. Raghavan PHI
- 3. Introduction to Solids -Azaroff TMH
- 4. Material Science M.Arumugam Anuradha Publishers
- 5. Solid State Physics H.C.Gupta -Vikas publishing house pvt.Ltd.
- 6. Principles of Nanoscience and technology Shah M.A.Ahmed,Narosha publishing house pvt.Ltd.

PAPER XVI: MAJOR

Hour	Class Schedule	
allotment		
	Even Semester Begin on02.12.2019	

1-L1	Introduction-seven classes of crystals	
2-L2	Bravais lattice in three dimensions	
3- L3	Crystal structure - Simple cubic, Face centered cubic	
4-L4	Body centered cubic and Hexagonal close packed structure	
5-L5	Sodium Chrloride, Zinc Blende and Diamond Structures	
6-L6	Miller Indices and crystal planes	
7-L7		
8- P1	Procedure for finding Miller Indices Problem solving	
9- L8	Inter planar spacing - Diffraction of X-Rays	
10- L9	Bragg's Law - reciprocal lattices	
10 L) 11-L10	Reciprocal lattice to SCC, BCC and FCC lattices	
12-L11		
12-L11 13-L12	Introduction -classical theory of Diamagnetism	
	Langevin's theory of Paramagnetism	
14-L13	Weiss Theory of Para magnetism – Ferromagnetism	
15-L14	Allotting portion for Internal Test-I Internal Test I begins	
16-L15	Explanation of Heisenberg's internal field and quantum theory of	
10 115		
17-IT-1	ferromagnetism Internal Test-I	
18-L16	Do maintheory of ferromagnetism - Anti ferromagnetism - ferrites	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Fundamental Definitions of Dielectrics	
21- L19	Different types of Electric Polarizations	
22- P2	College level meeting/Cell function	
23-L20	Electronic, ionic, orientation and space charge Polarization	
24-L21	Dielectric Loss – Internal - Field Clausius – Mosotti Relation	
25-L22	Types of bonds in crystals - Ionic, covalent, Metallic, Vander waal's	
	and Hydrogen Bonding	
26-L23	Bond energy of sodium chloride molecule	
27-L24	Comparison between ionic and covalent solids	
28-L25	Variation of inter atomic force with inter atomic	
29-L26	Cohesive energy - cohesive energy of ionic solids Application to	
	sodium	
30-L27	Chloride crystal - evaluation of Madelung constant for sodium	
	chloride	
31-L28	Introduction - General Properties of Superconductors	
32-L29	Effect of magnetic field -Meissner effect - effect of current -	
33-L30	Thermal properties –entropy - specific heat- energy gap - isotope	
	effect	
34- P3	Department Seminar	
35-L31	London equations - AC & DC Josephson effects Applications	
36-L32	Allotting portion for Internal Test-II	

	Internal Test II begins	
37- L33	Type–I and Type–II Superconductors - Explanation for the	
	Occurrence of Super Conductivity	
38- IT-II	Internal Test-II	
39-L34	BCS theory- Application of Superconductors High Tc	
	superconductors	
40-L35	-Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Nanomaterials - synthesis and classification	
42- L37	Techniques used in synthesis of nanomaterials	
43- L38	Chemical vapour deposition	
44- P4	College level meeting/ function	
45-L39	Sol-gel technique-electro deposition method-Charecteristics	
46-L40	Problem Solving	
47-L41	Properties and applications of Nanomaterials	
48-L42	fullerence, graphine and carbon nanotubes	
49-L43	Problem Solving	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Revision	
52- L46	Problem Solving	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 27.04.2020	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	

CO9	
Experimental Learning	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Spectroscopy
Course Code	GMPH62
Class	III year (2014-2015)
Semester	EVEN
Staff Name	R. Nithya Agnes
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

Syllabus

Spectroscopy

UNIT I: MICROWAVE SPECTROSCOPY

Rotation of molecules – Classification of molecules – Rotation spectra of diatomic molecules – Intensities of spectral lines – Effect of isotopic substitution – Non-rigid rotator – Spectrum of a non-rigid rotator –Polyatomic molecules – Symmetric top molecules – Asymmetric top molecules – Techniques and Instrumentation – Chemical analysis by microwave spectroscopy. (14L)

UNIT II: INFRARED SPECTROSCOPY

UNIT III : RAMAN SPECTROSCOPY

Raman effect-discovery – Quantum theory of Raman effect – Classical

theory of Raman Effect -Pure rotational Raman spectra- Linear molecules -

Raman spectrum of symmetric top molecules - Vibrational Raman spectra – Rule of mutual exclusion – Overtone and combinational vibrations - Rotational fine structure – Polarization of light and the Raman Effect - Structure determination from IR and Raman spectroscopy. (13L)

UNIT IV: ELECTRONIC SPECTROSCOPY

Born - Oppenheimer approximation – vibrational coarse structure-Progressions – Frank-Condon principle – Dissociation energy and Dissociation

products – Rotational fine structure -Electronic vibration transitions - Fortrat diagram - Predissociation – Diatomic molecules. (11L)

UNIT V : INSTRUMENTATION

Instrumentation and techniques in Infrared spectroscopy –Sources – Monochromators – Sample cells – Detectors – Single beam Infra red spectrometer – Double beam Infra red spectrometer (10L)

Book For Study

1.Fundamentals Of Molecular Spectroscopy - Colin N Banwell Elaine- M Mccash

Fifth Edition

Book For Reference

1.Molecular structure and spectroscopy - G. Aruldhas, PHI Learning Pvt. Ltd, India.

2.Hand book of Analytical Instruments -R.S. Khandpur, Tata MC Grow Hill Ltd.

3.Spectroscopy -G.R. Chatwal and S.K. Anand, Himalaya publishing House, New

Delhi.

Hour allotment	Class Schedule	
	Even Semester Begin on03.12.2014	
1-L1	Rotation of molecules – Classification of molecules	
2-L2	Rotation spectra of diatomic molecules	
3- L3	Intensities of spectral lines – Effect of isotopic substitution	
4-L4	Non-rigid rotator	

5-L5	Spectrum of a non-rigid rotator	
6-L6	Polyatomic molecules	
7-L7	Symmetric top molecules	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	Asymmetric top molecules	
10- L9	Problem solving	
11-L10	Techniques and Instrumentation	
12-L11	Chemical analysis by microwave spectroscopy	
13-L12	Introduction to IR Spectroscopy	
14-L13	I.R. spectroscopy – Vibrating diatomic molecules	
15-L14	- Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	revision	
17-IT-1	Internal Test-I	
18-L16	Problem Solving	
19-L17	Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal	
20-L18	Simple Harmonic Oscillator	
20 E10 21- L19	An harmonic oscillator	
21 E17 22- P2	College level meeting/Cell function	
23-L20	Diatomic vibrating rotator	
24-L21	IR spectrum of carbon monoxide	
25-L22	Interaction of rotations and vibrations	
26-L23	Vibration of polyatomic molecules	
27-L24	Analysis by IR techniques.	
28-L25	Raman effect-discovery – Quantum theory of Raman effect	
29-L26	Quantum theory of Raman effect	
30-L27	Classicaltheory of Raman Effect –Pure rotational Raman spectra-	
50 127	Linear molecules	
31-L28	Raman spectrum of symmetric top molecules ,Vibrational Raman spectra	
32-L29	Rule of mutual exclusion – Overtone and combinational vibrations -	
	Rotational fine structure	
33-L30	Polarization of light and the Raman Effect -	
22 200	romization of light and the Naman Effect -	
34- P3	Department Seminar	
35-L31	Structure determination from IR and Raman spectroscopy.	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	revision	
38- IT-II	Internal Test-II	
39-L34	Born - Oppenheimer approximation – vibrational coarse structure	
40-L35	-Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	

41-L36	Progressions – Frank-Condon principle	
42- L37	Dissociation energy and Dissociation	
	products – Rotational fine structure -	
43- L38	Electronic vibration transitions - Fortrat	
	diagram	
44- P4	College level meeting/ function	
45-L39	Predissociation – Diatomic molecules	
46-L40	Instrumentation and techniques in Infrared spectroscopy	
47-L41	Sources – Monochromators	
48-L42	Sample cells – Detectors	
49-L43	Single beam Infra red spectrometer – Double beam Infra red	
17 210	spectrometer (10L)	
50-L44	- Allotting portion for Internal Test-III	
30-L44	Internal Test III begins	
51 L45	Problem Solving	
52- L46	Revision	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on23.04.2015	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	

EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Spectroscopy
Course Code	GMPH62
Class	III year (2015-2016)
Semester	EVEN
Staff Name	R. Nithya Agnes
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

Syllabus

Spectroscopy

UNIT I: MICROWAVE SPECTROSCOPY

Rotation of molecules – Classification of molecules – Rotation spectra of diatomic molecules – Intensities of spectral lines – Effect of isotopic substitution – Non-rigid rotator – Spectrum of a non-rigid rotator –Polyatomic molecules – Symmetric top molecules – Asymmetric top molecules – Techniques and Instrumentation – Chemical analysis by microwave spectroscopy. (14L)

UNIT II: INFRARED SPECTROSCOPY

UNIT III : RAMAN SPECTROSCOPY

Raman effect-discovery – Quantum theory of Raman effect – Classical

theory of Raman Effect -Pure rotational Raman spectra- Linear molecules -

Raman spectrum of symmetric top molecules - Vibrational Raman spectra – Rule of mutual exclusion – Overtone and combinational vibrations - Rotational fine structure – Polarization of light and the Raman Effect - Structure determination from IR and Raman spectroscopy. (13L)

UNIT IV: ELECTRONIC SPECTROSCOPY

Born - Oppenheimer approximation – vibrational coarse structure-Progressions – Frank-Condon principle – Dissociation energy and Dissociation

products – Rotational fine structure -Electronic vibration transitions - Fortrat diagram - Predissociation – Diatomic molecules. (11L)

UNIT V : INSTRUMENTATION

Instrumentation and techniques in Infrared spectroscopy –Sources – Monochromators – Sample cells – Detectors – Single beam Infra red spectrometer – Double beam Infra red spectrometer (10L)

Book For Study

1.Fundamentals Of Molecular Spectroscopy - Colin N Banwell Elaine- M Mccash

Fifth Edition

Book For Reference

1.Molecular structure and spectroscopy - G. Aruldhas, PHI Learning Pvt. Ltd, India.

2.Hand book of Analytical Instruments -R.S. Khandpur, Tata MC Grow Hill Ltd.

3.Spectroscopy -G.R. Chatwal and S.K. Anand, Himalaya publishing House, New

Delhi.

Hour allotment	Class Schedule
	Even Semester Begin on 02.12.2015
1-L1	Rotation of molecules – Classification of molecules
2-L2	Rotation spectra of diatomic molecules
3- L3	Intensities of spectral lines – Effect of isotopic substitution
4-L4	Non-rigid rotator

5-L5	Spectrum of a non-rigid rotator
6-L6	Polyatomic molecules
7-L7	Symmetric top molecules
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	Asymmetric top molecules
10- L9	Problem solving
10 L) 11-L10	Techniques and Instrumentation
12-L11	Chemical analysis by microwave spectroscopy
13-L12	Introduction to IR Spectroscopy
14-L13	I.R. spectroscopy – Vibrating diatomic molecules
15-L14	
	Internal Test I begins
16-L15	revision
17-IT-1	Internal Test-I
18-L16	Problem Solving
19-L17	Test Paper distribution and result analysis
20 I 10	Entering Internal Test-I Marks into University portal
20-L18	Simple Harmonic Oscillator
21-L19	An harmonic oscillator
22- P2	College level meeting/Cell function
23-L20	Diatomic vibrating rotator
24-L21	IR spectrum of carbon monoxide
25-L22	Interaction of rotations and vibrations
26-L23	Vibration of polyatomic molecules
27-L24	Analysis by IR techniques.
28-L25	Raman effect-discovery – Quantum theory of Raman effect
29-L26	Quantum theory of Raman effect
30-L27	Classicaltheory of Raman Effect –Pure rotational Raman spectra-
	Linear molecules
31-L28	Raman spectrum of symmetric top molecules ,Vibrational Raman
	spectra
32-L29	Rule of mutual exclusion – Overtone and combinational vibrations -
	Rotational fine structure
33-L30	Polarization of light and the Raman Effect -
34- P3	Department Seminar
35-L31	Structure determination from IR and Raman spectroscopy.
36-L32	Allotting portion for Internal Test-II
A-	Internal Test II begins
37-L33	revision
38- IT-II	Internal Test-II
39-L34	Born - Oppenheimer approximation – vibrational coarse structure
40-L35	-Test Paper distribution and result analysis Entering Internal Test II Marks into University portal
	Entering Internal Test-II Marks into University portal

41-L36	Progressions – Frank-Condon principle	
42- L37	Dissociation energy and Dissociation	
	products – Rotational fine structure -	
43- L38	Electronic vibration transitions - Fortrat	
	diagram	
44- P4	College level meeting/ function	
45-L39	Predissociation – Diatomic molecules	
46-L40	Instrumentation and techniques in Infrared spectroscopy	
47-L41	Sources – Monochromators	
48-L42	Sample cells – Detectors	
49-L43	Single beam Infra red spectrometer – Double beam Infra red	
	spectrometer (10L)	
50-L44	- Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Problem Solving	
52- L46	Revision	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	recuback of the Course, analysis and report preparation	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	

EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Spectroscopy
Course Code	GMPH62
Class	III year (2016-2017)
Semester	EVEN
Staff Name	R. Nithya Agnes
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

Syllabus

Spectroscopy

UNIT I: MICROWAVE SPECTROSCOPY

Rotation of molecules – Classification of molecules – Rotation spectra of diatomic molecules – Intensities of spectral lines – Effect of isotopic substitution – Non-rigid rotator – Spectrum of a non-rigid rotator –Polyatomic molecules – Symmetric top molecules – Asymmetric top molecules – Techniques and Instrumentation – Chemical analysis by microwave spectroscopy. (14L)

UNIT II: INFRARED SPECTROSCOPY

UNIT III : RAMAN SPECTROSCOPY

Raman effect-discovery – Quantum theory of Raman effect – Classical

theory of Raman Effect -Pure rotational Raman spectra- Linear molecules -

Raman spectrum of symmetric top molecules - Vibrational Raman spectra – Rule of mutual exclusion – Overtone and combinational vibrations - Rotational fine structure – Polarization of light and the Raman Effect - Structure determination from IR and Raman spectroscopy. (13L)

UNIT IV: ELECTRONIC SPECTROSCOPY

Born - Oppenheimer approximation – vibrational coarse structure-Progressions – Frank-Condon principle – Dissociation energy and Dissociation

products – Rotational fine structure -Electronic vibration transitions - Fortrat diagram - Predissociation – Diatomic molecules. (11L)

UNIT V : INSTRUMENTATION

Instrumentation and techniques in Infrared spectroscopy –Sources – Monochromators – Sample cells – Detectors – Single beam Infra red spectrometer – Double beam Infra red spectrometer (10L)

Book For Study

1.Fundamentals Of Molecular Spectroscopy - Colin N Banwell Elaine- M Mccash

Fifth Edition

Book For Reference

1.Molecular structure and spectroscopy - G. Aruldhas, PHI Learning Pvt. Ltd, India.

2.Hand book of Analytical Instruments -R.S. Khandpur, Tata MC Grow Hill Ltd.

3.Spectroscopy -G.R. Chatwal and S.K. Anand, Himalaya publishing House, New

Delhi.

Hour allotment	Class Schedule
	Even Semester Begin on 01.12.2016
1-L1	Rotation of molecules – Classification of molecules
2-L2	Rotation spectra of diatomic molecules
3- L3	Intensities of spectral lines – Effect of isotopic substitution
4-L4	Non-rigid rotator

5-L5	Spectrum of a non-rigid rotator
6-L6	Polyatomic molecules
7-L7	Symmetric top molecules
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	Asymmetric top molecules
10- L9	Problem solving
11-L10	Techniques and Instrumentation
12-L11	Chemical analysis by microwave spectroscopy
13-L12	Introduction to IR Spectroscopy
14-L13	I.R. spectroscopy – Vibrating diatomic molecules
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	revision
17-IT-1 18-L16	Internal Test-I Problem Solving
18-L10 19-L17	-Test Paper distribution and result analysis
17 117	Entering Internal Test-I Marks into University portal
20-L18	Simple Harmonic Oscillator
21- L19	An harmonic oscillator
22- P2	College level meeting/Cell function
23-L20	Diatomic vibrating rotator
24-L21	IR spectrum of carbon monoxide
25-L22	Interaction of rotations and vibrations
26-L23	Vibration of polyatomic molecules
27-L24	Analysis by IR techniques.
28-L25	Raman effect-discovery – Quantum theory of Raman effect
29-L26	Quantum theory of Raman effect
30-L27	Classicaltheory of Raman Effect –Pure rotational Raman spectra-
	Linear molecules
31-L28	Raman spectrum of symmetric top molecules ,Vibrational Raman
	spectra
32-L29	Rule of mutual exclusion – Overtone and combinational vibrations -
	Rotational fine structure
33-L30	Polarization of light and the Raman Effect -
	Totalization of light and the Raman Effect
34- P3	Department Seminar
35-L31	Structure determination from IR and Raman spectroscopy.
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	revision
38- IT-II	Internal Test-II
39-L34	Born - Oppenheimer approximation – vibrational coarse structure
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal

41-L36	Progressions – Frank-Condon principle	
42- L37	Dissociation energy and Dissociation	
	products – Rotational fine structure -	
43- L38	Electronic vibration transitions - Fortrat	
	diagram	
44- P4	College level meeting/ function	
45-L39	Predissociation – Diatomic molecules	
46-L40	Instrumentation and techniques in Infrared spectroscopy	
47-L41	Sources – Monochromators	
48-L42	Sample cells – Detectors	
49-L43	Single beam Infra red spectrometer – Double beam Infra red	
47 L43		
50 1 44	spectrometer (10L)	
50-L44	Allotting portion for Internal Test-III	
51 7 45	Internal Test III begins	
51 L45	Problem Solving	
52- L46	Revision	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 21.04.2017	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	

EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Spectroscopy	
Course Code	GMPH62	
Class	III year (2016-2017)	
Semester	EVEN	
Staff Name	R. Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

Spectroscopy

UNIT I: MICROWAVE SPECTROSCOPY

Rotation of molecules – Classification of molecules – Rotation spectra of diatomic molecules – Intensities of spectral lines – Effect of isotopic substitution – Non-rigid rotator – Spectrum of a non-rigid rotator –Polyatomic molecules – Symmetric top molecules – Asymmetric top molecules – Techniques and Instrumentation – Chemical analysis by microwave spectroscopy. (14L)

UNIT II: INFRARED SPECTROSCOPY

UNIT III : RAMAN SPECTROSCOPY

Raman effect-discovery – Quantum theory of Raman effect – Classical

theory of Raman Effect -Pure rotational Raman spectra- Linear molecules -

Raman spectrum of symmetric top molecules - Vibrational Raman spectra – Rule of mutual exclusion – Overtone and combinational vibrations - Rotational fine structure – Polarization of light and the Raman Effect - Structure determination from IR and Raman spectroscopy. (13L)

UNIT IV: ELECTRONIC SPECTROSCOPY

Born - Oppenheimer approximation – vibrational coarse structure-Progressions – Frank-Condon principle – Dissociation energy and Dissociation

products – Rotational fine structure -Electronic vibration transitions - Fortrat diagram - Predissociation – Diatomic molecules. (11L)

UNIT V : INSTRUMENTATION

Instrumentation and techniques in Infrared spectroscopy –Sources – Monochromators – Sample cells – Detectors – Single beam Infra red spectrometer – Double beam Infra red spectrometer (10L)

Book For Study

1.Fundamentals Of Molecular Spectroscopy - Colin N Banwell Elaine- M Mccash

Fifth Edition

Book For Reference

1.Molecular structure and spectroscopy - G. Aruldhas, PHI Learning Pvt. Ltd, India.

2.Hand book of Analytical Instruments -R.S. Khandpur, Tata MC Grow Hill Ltd.

3.Spectroscopy -G.R. Chatwal and S.K. Anand, Himalaya publishing House, New

Delhi.

Hour allotment	Class Schedule	
	Even Semester Begin on 07.12.2017	
1-L1	Rotation of molecules – Classification of molecules	
2-L2	Rotation spectra of diatomic molecules	
3- L3	Intensities of spectral lines – Effect of isotopic substitution	
4-L4	Non-rigid rotator	

5-L5	Spectrum of a non-rigid rotator	
6-L6	Polyatomic molecules	
7-L7	Symmetric top molecules	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	Asymmetric top molecules	
10- L9	Problem solving	
11-L10	Techniques and Instrumentation	
12-L11	Chemical analysis by microwave spectroscopy	
13-L12	Introduction to IR Spectroscopy	
14-L13	I.R. spectroscopy – Vibrating diatomic molecules	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	revision	
17-IT-1 18-L16	Internal Test-I Problem Solving	
18-L10 19-L17	-Test Paper distribution and result analysis	
17 117	Entering Internal Test-I Marks into University portal	
20-L18	Simple Harmonic Oscillator	
21- L19	An harmonic oscillator	
22- P2	College level meeting/Cell function	
23-L20	Diatomic vibrating rotator	
24-L21	IR spectrum of carbon monoxide	
25-L22	Interaction of rotations and vibrations	
26-L23	Vibration of polyatomic molecules	
27-L24	Analysis by IR techniques.	
28-L25	Raman effect-discovery – Quantum theory of Raman effect	
29-L26	Quantum theory of Raman effect	
30-L27	Classicaltheory of Raman Effect –Pure rotational Raman spectra-	
	Linear molecules	
31-L28	Raman spectrum of symmetric top molecules ,Vibrational Raman	
	spectra	
32-L29	Rule of mutual exclusion – Overtone and combinational vibrations -	
	Rotational fine structure	
33-L30	Polarization of light and the Raman Effect -	
34- P3	Department Seminar	
35-L31	Structure determination from IR and Raman spectroscopy.	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	revision	
38- IT-II	Internal Test-II	
39-L34	Born - Oppenheimer approximation – vibrational coarse structure	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	

41-L36	Progressions – Frank-Condon principle	
42- L37	Dissociation energy and Dissociation	
	products – Rotational fine structure -	
43- L38	Electronic vibration transitions - Fortrat	
	diagram	
44- P4	College level meeting/ function	
45-L39	Predissociation – Diatomic molecules	
46-L40	Instrumentation and techniques in Infrared spectroscopy	
47-L41	Sources – Monochromators	
48-L42	Sample cells – Detectors	
49-L43	Single beam Infra red spectrometer – Double beam Infra red	
	spectrometer (10L)	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Problem Solving	
52- L46	Revision	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	discussion Feedback of the Course, analysis and report preparation	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	

EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Spectroscopy	
Course Code	JMPH5A	
Class	III (year)	
Semester	Odd	
Staff Name	R. Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

Spectroscopy

UNIT I: MICROWAVE SPECTROSCOPY

Rotation of molecules – Classification of molecules – Rotation spectra of diatomic molecules – Intensities of spectral lines – Effect of isotopic substitution – Non-rigid rotator – Spectrum of a non-rigid rotator –Polyatomic molecules – Symmetric top molecules – Asymmetric top molecules – Techniques and Instrumentation – Chemical analysis by microwave spectroscopy. (14L)

UNIT II: INFRARED SPECTROSCOPY

UNIT III : RAMAN SPECTROSCOPY

Raman effect-discovery – Quantum theory of Raman effect – Classical

theory of Raman Effect -Pure rotational Raman spectra- Linear molecules -

Raman spectrum of symmetric top molecules - Vibrational Raman spectra – Rule of mutual exclusion – Overtone and combinational vibrations - Rotational fine structure – Polarization of light and the Raman Effect - Structure determination from IR and Raman spectroscopy. (13L)

UNIT IV: ELECTRONIC SPECTROSCOPY

Born - Oppenheimer approximation – vibrational coarse structure-Progressions – Frank-Condon principle – Dissociation energy and Dissociation

products – Rotational fine structure -Electronic vibration transitions - Fortrat diagram - Predissociation – Diatomic molecules. (11L)

UNIT V : INSTRUMENTATION

Instrumentation and techniques in Infrared spectroscopy –Sources – Monochromators – Sample cells – Detectors – Single beam Infra red spectrometer – Double beam Infra red spectrometer (10L)

Book For Study

1.Fundamentals Of Molecular Spectroscopy - Colin N Banwell Elaine- M Mccash

Fifth Edition

Book For Reference

1.Molecular structure and spectroscopy - G. Aruldhas, PHI Learning Pvt. Ltd, India.

2.Hand book of Analytical Instruments -R.S. Khandpur, Tata MC Grow Hill Ltd.

3.Spectroscopy -G.R. Chatwal and S.K. Anand, Himalaya publishing House, New

Delhi.

Hour allotment	Class Schedule	
	Odd Semester Begin on 18.06.2018	
1-L1	Rotation of molecules – Classification of molecules	
2-L2	Rotation spectra of diatomic molecules	
3- L3	Intensities of spectral lines – Effect of isotopic substitution	
4-L4	Non-rigid rotator	

5-L5	Spectrum of a non-rigid rotator	
6-L6	Polyatomic molecules	
7-L7	Symmetric top molecules	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	Asymmetric top molecules	
10- L9	Problem solving	
11-L10	Techniques and Instrumentation	
12-L11	Chemical analysis by microwave spectroscopy	
13-L12	Introduction to IR Spectroscopy	
14-L13	I.R. spectroscopy – Vibrating diatomic molecules	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	revision	
17-IT-1	Internal Test-I	
18-L16	Problem Solving	
19-L17	Test Paper distribution and result analysis	
20-L18	Entering Internal Test-I Marks into University portal	
20-L18 21- L19	Simple Harmonic Oscillator	
21- L19 22- P2	An harmonic oscillator	
22- F2 23-L20	College level meeting/Cell function	
23-L20 24-L21	Diatomic vibrating rotator	
24-L21 25-L22	IR spectrum of carbon monoxide	
23-L22 26-L23	Interaction of rotations and vibrations	
	Vibration of polyatomic molecules	
27-L24	Analysis by IR techniques.	
28-L25	Raman effect-discovery – Quantum theory of Raman effect	
29-L26	Quantum theory of Raman effect	
30-L27	Classicaltheory of Raman Effect –Pure rotational Raman spectra-	
21.1.20	Linear molecules	
31-L28	Raman spectrum of symmetric top molecules ,Vibrational Raman	
22.1.20	spectra	
32-L29	Rule of mutual exclusion – Overtone and combinational vibrations -	
	Rotational fine structure	
33-L30	Polarization of light and the Raman Effect -	
34- P3	Department Seminar	
35-L31	Structure determination from IR and Raman spectroscopy.	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	revision	
38- IT-II	Internal Test-II	
39-L34	Born - Oppenheimer approximation – vibrational coarse structure	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	

41-L36	Progressions – Frank-Condon principle	
42- L37	Dissociation energy and Dissociation	
	products – Rotational fine structure -	
43- L38	Electronic vibration transitions - Fortrat	
	diagram	
44- P4	College level meeting/ function	
45-L39	Predissociation – Diatomic molecules	
46-L40	Instrumentation and techniques in Infrared spectroscopy	
47-L41	Sources – Monochromators	
48-L42	Sample cells – Detectors	
49-L43	Single beam Infra red spectrometer – Double beam Infra red	
	spectrometer (10L)	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Problem Solving	
52- L46	Revision	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
1		
	discussion	
60-L50	discussion Feedback of the Course, analysis and report preparation	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	

EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Spectroscopy	
Course Code	SMPH5B	
Class	III (year)	
Semester	Odd	
Staff Name	R. Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

Spectroscopy

UNIT I: MICROWAVE SPECTROSCOPY

Rotation of molecules – Classification of molecules – Rotation spectra of diatomic molecules – Intensities of spectral lines – Effect of isotopic substitution – Non-rigid rotator – Spectrum of a non-rigid rotator –Polyatomic molecules – Symmetric top molecules – Asymmetric top molecules – Techniques and Instrumentation – Chemical analysis by microwave spectroscopy. (14L)

UNIT II: INFRARED SPECTROSCOPY

UNIT III : RAMAN SPECTROSCOPY

Raman effect-discovery – Quantum theory of Raman effect – Classical

theory of Raman Effect -Pure rotational Raman spectra- Linear molecules -

Raman spectrum of symmetric top molecules - Vibrational Raman spectra – Rule of mutual exclusion – Overtone and combinational vibrations - Rotational fine structure – Polarization of light and the Raman Effect - Structure determination from IR and Raman spectroscopy. (13L)

UNIT IV: ELECTRONIC SPECTROSCOPY

Born - Oppenheimer approximation – vibrational coarse structure-Progressions – Frank-Condon principle – Dissociation energy and Dissociation

products – Rotational fine structure -Electronic vibration transitions - Fortrat diagram - Predissociation – Diatomic molecules. (11L)

UNIT V : INSTRUMENTATION

Instrumentation and techniques in Infrared spectroscopy –Sources – Monochromators – Sample cells – Detectors – Single beam Infra red spectrometer – Double beam Infra red spectrometer (10L)

Book For Study

1.Fundamentals Of Molecular Spectroscopy - Colin N Banwell Elaine- M Mccash

Fifth Edition

Book For Reference

1.Molecular structure and spectroscopy - G. Aruldhas, PHI Learning Pvt. Ltd, India.

2.Hand book of Analytical Instruments -R.S. Khandpur, Tata MC Grow Hill Ltd.

3.Spectroscopy -G.R. Chatwal and S.K. Anand, Himalaya publishing House, New

Delhi.

Hour allotment	Class Schedule	
anotment		
	Odd Semester Begin on17.06.2019	
1-L1	Rotation of molecules – Classification of molecules	
2-L2	Rotation spectra of diatomic molecules	
3- L3	Intensities of spectral lines – Effect of isotopic	
	substitution	
4-L4	Non-rigid rotator	

5-L5	Spectrum of a non-rigid rotator	
6-L6	Polyatomic molecules	
7-L7	Symmetric top molecules	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	Asymmetric top molecules	
10- L9	Problem solving	
11-L10	Techniques and Instrumentation	
12-L11	Chemical analysis by microwave spectroscopy	
13-L12	Introduction to IR Spectroscopy	
14-L13	I.R. spectroscopy – Vibrating diatomic molecules	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	revision	
17-IT-1	Internal Test-I	
18-L16	Problem Solving	
19-L17	Test Paper distribution and result analysis	
20-L18	Entering Internal Test-I Marks into University portal	
20-L18 21- L19	Simple Harmonic Oscillator	
21- L19 22- P2	An harmonic oscillator	
22- F2 23-L20	College level meeting/Cell function	
23-L20 24-L21	Diatomic vibrating rotator	
24-L21 25-L22	IR spectrum of carbon monoxide	
23-L22 26-L23	Interaction of rotations and vibrations	
	Vibration of polyatomic molecules	
27-L24	Analysis by IR techniques.	
28-L25	Raman effect-discovery – Quantum theory of Raman effect	
29-L26	Quantum theory of Raman effect	
30-L27	Classicaltheory of Raman Effect –Pure rotational Raman spectra-	
21.1.20	Linear molecules	
31-L28	Raman spectrum of symmetric top molecules ,Vibrational Raman	
22.1.20	spectra	
32-L29	Rule of mutual exclusion – Overtone and combinational vibrations -	
	Rotational fine structure	
33-L30	Polarization of light and the Raman Effect -	
34- P3	Department Seminar	
35-L31	Structure determination from IR and Raman spectroscopy.	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	revision	
38- IT-II	Internal Test-II	
39-L34	Born - Oppenheimer approximation – vibrational coarse structure	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	

41-L36	Progressions – Frank-Condon principle	
42- L37	Dissociation energy and Dissociation	
	products – Rotational fine structure -	
43- L38	Electronic vibration transitions - Fortrat	
	diagram	
44- P4	College level meeting/ function	
45-L39	Predissociation – Diatomic molecules	
46-L40	Instrumentation and techniques in Infrared spectroscopy	
47-L41	Sources – Monochromators	
48-L42	Sample cells – Detectors	
49-L43	Single beam Infra red spectrometer – Double beam Infra red	
	spectrometer (10L)	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Problem Solving	
52- L46	Revision	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	discussion Feedback of the Course, analysis and report preparation Last Working day on30.10.2019	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	

EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Statistical Mechanics	
Course Code	GMPH6A	
Class	III year (2014-2015)	
Semester	Even	
Staff Name	Mr. A. Arul Gnanam	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

Syllabus

STATISTICAL MECHANICS

(Major Elective Paper)

Unit I

Statistical basis- probability- principle of equal a priori probability -microstate and macro state- thermodynamic probability -constrains on a system -static and dynamic systems -most probable state (equilibrium state) -concept of a cell in a compartment -ensemble and average properties

Unit II

Degrees of freedom -position space -momentum space- phase space- the mu- space and gamma space- applications -fundamental postulates of statistical mechanics –density of quantum

states of enrgy of a particle-statistical ensembles- comparison of ensembles- theories based on

statistical mechanics -entropy and probability- Boltzmann's canonical distribution lawapplications

of Boltzmann's canonical distribution law-

Unit III

The law of equipartion of energy- statistical interpretation of second law of

thermodynamics- partition function and its relation with thermodynamic quantities -entropy of

an ideal gas- Gibbs paradox

Unit IV

Three kinds of particles -M.B statistics applicable to ideal gas -Maxwell Boltzmann energy distribution law - applications of M.B distribution law -mean rms and most probable speeds-

Maxwell's distribution law of velocities-experimental verification Maxwellian distribution of molecular speeds

Unit V

Need of quantum statistics -development of quantum statistics- Bose Einstein distribution law- photon gas- Plank's radiation law -Fermi Dirac distribution law-free electrons in metal:electron gas= Fermi level and Fermi energy –EF for electrons in a metal-comparison of the three statistics -difference between classical and quantum statistics Reference Book: Heat thermodynamics and statistical physics: Brij Lal N.Subramanium P.S Hemne S.Chand publications Unit-1 Chapter 9.1-9.3 ,9.7,9.8, 9.10-9.12 9.14-9.15 Unit-2 Chapter 10.1-10.5 10.6-10.11, 10.14-10.17 Unit- 3Chapter 10.18-10.21

Unit-

Hour	Class Schedule	
allotment		
	Even Semester Begin on 03.12.2014	
1-L1	Statistical basis- probability	
2-L2	- principle of equal a priori probability	
3- L3	microstate and macrostate	
4-L4	- thermodynamic probability	
5-L5	constrains on a system	
6-L6	static and dynamic systems	
7-L7	mostprobable state (equilibrium state)	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	concept of a cell in a compartment	
10- L9	ensemble and averageproperties	
11-L10	Unit II	
	Degrees of freedom	
12-L11	position space -momentum space	
13-L12	mu- space and gamma space	

14-L13	applications -fundamental postulates of statistical mechanics	
15-L14	density of quantum	
10 11	density of quantum	
16-L15	states of enrgy of a particle-statistical ensembles	
17- L16	comparison of ensembles- theories based on	
18- L17	statistical mechanics -entropy and probability	
19- L18	- Boltzmann's canonical distribution lawapplications	
20- L19	Boltzmann's canonical distribution law	
21- L20	Allotting portion for Internal Test-I	
	Internal Test I begins	
22- L21	The law of equipartion of energy	
23- IT-1	Internal Test-I	
24- L22	- statistical interpretation	
25-L23	statistical interpretation of second law of thermodynamics	
26- L24	Test Paper distribution and result analysis	
27 1 25	Entering Internal Test-I Marks into University portal	
27-L25	partition function	
28- L26 29- L27	its relation with thermodynamic quantities	
30- P2	entropy of an ideal gas	
30- P2 31-L28	College level meeting/Cell function - Gibbs paradox	
31-L28 32-L29	Practical Explanation	
32-L29 33-L30	Three kinds of particles	
34- L31	M.B statistics applicable to ideal gas	
35-L32	Problems Explanation	
36- L33	Practical Work	
37- L34	Maxwell Boltzmann Explanation	
38-L35	Maxwell's distribution law of velocities	
39- L36	experimental verification Maxwellian distribution of molecular speeds	
40- L37	Need of quantum statistics	
41- L38	development of quantum statistics	
42-P3	Department Seminar	
43- L39	Bose Einstein distribution law	
44- L40	- photon gas- Plank's radiation law	
45- L41	Fermi Dirac distribution law	
46- L42		
47- L43	Allotting portion for Internal Test-II	
40 T 44	Internal Test II begins	
48- L44	Fermi Dirac distribution law	
49-IT-II	Internal Test-II	
50-L45	free electrons in metal	
51- L46	Test Paper distribution and result analysis	
52- L47	Entering Internal Test-II Marks into University portal electron gas= Fermi level	
52- L47 53- L48	Fermi energy	
JJ- L40	i chui cheigy	

54- L49	EF for electrons in a metal	
55- L50	comparison of the three statistics	
56- L51	difference between classical and quantum statistics	
57- L52	Statistics and Explanation	
58- L53	Practical Work	
59-P4	College level meeting/ function	
60- L54	Problems Solution	
61- L55	Problems	
62- L56	Fermi Energy Calculation	
63- L57	Bose Einstein distribution law	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins	
65- L59	Bose Einstein Law Explanation	
66- L60	Theory Verification	
67-IT-III	Internal Test-III	
68- L61	Revision	
69- L62	Revision Test	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
71-MT	Model Test	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.04.2015	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	

IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Statistical Mechanics	
Course Code	GMPH6A	
Class	III year (2015-2016)	
Semester	Even	
Staff Name	Mr. A. Arul Gnanam	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

· · ·

Syllabus

STATISTICAL MECHANICS

(Major Elective Paper)

Unit I

Statistical basis- probability- principle of equal a priori probability -microstate and macro state- thermodynamic probability -constrains on a system -static and dynamic systems -most probable state (equilibrium state) -concept of a cell in a compartment -ensemble and average properties

Unit II

Degrees of freedom -position space -momentum space- phase space- the mu- space and gamma space- applications -fundamental postulates of statistical mechanics –density of quantum

states of enrgy of a particle-statistical ensembles- comparison of ensembles- theories based on

statistical mechanics -entropy and probability- Boltzmann's canonical distribution lawapplications

of Boltzmann's canonical distribution law-

Unit III

The law of equipartion of energy- statistical interpretation of second law of

thermodynamics- partition function and its relation with thermodynamic quantities -entropy of

an ideal gas- Gibbs paradox

Unit IV

Three kinds of particles -M.B statistics applicable to ideal gas -Maxwell Boltzmann energy distribution law - applications of M.B distribution law -mean rms and most probable

speeds-

Maxwell's distribution law of velocities-experimental verification Maxwellian distribution of molecular speeds

Unit V

Need of quantum statistics -development of quantum statistics- Bose Einstein distribution law- photon gas- Plank's radiation law -Fermi Dirac distribution law-free electrons in metal:electron gas= Fermi level and Fermi energy –EF for electrons in a metal-comparison of the three statistics -difference between classical and quantum statistics Reference Book: Heat thermodynamics and statistical physics: Brij Lal N.Subramanium P.S Hemne S.Chand publications Unit-1 Chapter 9.1-9.3, 9.7,9.8, 9.10-9.12 9.14-9.15 Unit-2 Chapter 10.1-10.5 10.6-10.11, 10.14-10.17 Unit- 3Chapter 10.18-10.21

Unit-

Hour	Class Schedule	
allotment		
	Even Semester Begin on 02.12.2015	
1-L1	Statistical basis- probability	
2-L2	- principle of equal a priori probability	
3- L3	microstate and macrostate	
4-L4	- thermodynamic probability	
5-L5	constrains on a system	
6-L6	static and dynamic systems	
7-L7	mostprobable state (equilibrium state)	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	concept of a cell in a compartment	
10- L9	ensemble and averageproperties	
11-L10	Unit II	
	Degrees of freedom	
12-L11	position space -momentum space	
13-L12	mu- space and gamma space	

14-L13	applications -fundamental postulates of statistical mechanics	
14-L15 15-L14	density of quantum	
1J-L14	density of quantum	
16-L15	states of enrgy of a particle-statistical ensembles	
10-L15 17- L16	comparison of ensembles- theories based on	
1, 210		
18- L17	statistical mechanics -entropy and probability	
19- L18	- Boltzmann's canonical distribution lawapplications	
20- L19	Boltzmann's canonical distribution law	
21- L20	Allotting portion for Internal Test-I	
	Internal Test I begins	
22- L21	The law of equipartion of energy	
23- IT-1	Internal Test-I	
24- L22	- statistical interpretation	
25- L23	statistical interpretation of second law of thermodynamics	
26- L24	Test Paper distribution and result analysis	
07.105	Entering Internal Test-I Marks into University portal	
27-L25	partition function	
28- L26	its relation with thermodynamic quantities	
29- L27	entropy of an ideal gas	
<u>30- P2</u>	College level meeting/Cell function	
31-L28	- Gibbs paradox	
32-L29	Practical Explanation	
33-L30 34- L31	Three kinds of particles	
	M.B statistics applicable to ideal gas	
35- L32 36- L33	Problems Explanation Practical Work	
30- L33 37- L34	Maxwell Boltzmann Explanation	
37-L34 38-L35	Maxwell's distribution law of velocities	
39-L35	experimental verification Maxwellian distribution of molecular speeds	
JJ- LJU	experimental vermeation waxweman distribution officie data speeds	
40- L37	Need of quantum statistics	
41- L38	development of quantum statistics	
42-P3	Department Seminar	
43- L39	Bose Einstein distribution law	
44- L40	- photon gas- Plank's radiation law	
45- L41	Fermi Dirac distribution law	
46- L42		
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins	
48- L44	Fermi Dirac distribution law	
49-IT-II	Internal Test-II	
50-L45	free electrons in metal	
51- L46	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	electron gas= Fermi level	
53- L48	Fermi energy	

54- L49	EF for electrons in a metal	
55- L50	comparison of the three statistics	
56- L51	difference between classical and quantum statistics	
57- L52	Statistics and Explanation	
58- L53	Practical Work	
59-P4	College level meeting/ function	
60- L54	Problems Solution	
61- L55	Problems	
62- L56	Fermi Energy Calculation	
63- L57	Bose Einstein distribution law	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins	
65- L59	Bose Einstein Law Explanation	
66- L60	Theory Verification	
67-IT-III	Internal Test-III	
68- L61	Revision	
69- L62	Revision Test	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
71-MT	Model Test	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 22.04.2016	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	

IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Statistical Mechanics
Course Code	GMPH6A
Class	III year (2016-2017)
Semester	Even
Staff Name	Mr. A. Arul Gnanam
Credits	5
L. Hours /P. Hours	5 / WK
Total 75 Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)	

Course Objectives

· · ·

Syllabus

STATISTICAL MECHANICS

(Major Elective Paper)

Unit I

Statistical basis- probability- principle of equal a priori probability -microstate and macro state- thermodynamic probability -constrains on a system -static and dynamic systems -most probable state (equilibrium state) -concept of a cell in a compartment -ensemble and average properties

Unit II

Degrees of freedom -position space -momentum space- phase space- the mu- space and gamma space- applications -fundamental postulates of statistical mechanics –density of quantum

states of enrgy of a particle-statistical ensembles- comparison of ensembles- theories based on

statistical mechanics -entropy and probability- Boltzmann's canonical distribution lawapplications

of Boltzmann's canonical distribution law-

Unit III

The law of equipartion of energy- statistical interpretation of second law of

thermodynamics- partition function and its relation with thermodynamic quantities -entropy of

an ideal gas- Gibbs paradox

Unit IV

Three kinds of particles -M.B statistics applicable to ideal gas -Maxwell Boltzmann energy distribution law - applications of M.B distribution law -mean rms and most probable

speeds-

Maxwell's distribution law of velocities-experimental verification Maxwellian distribution of molecular speeds

Unit V

Need of quantum statistics -development of quantum statistics- Bose Einstein distribution law- photon gas- Plank's radiation law -Fermi Dirac distribution law-free electrons in metal:electron gas= Fermi level and Fermi energy –EF for electrons in a metal-comparison of the three statistics -difference between classical and quantum statistics Reference Book: Heat thermodynamics and statistical physics: Brij Lal N.Subramanium P.S Hemne S.Chand publications Unit-1 Chapter 9.1-9.3, 9.7,9.8, 9.10-9.12 9.14-9.15 Unit-2 Chapter 10.1-10.5 10.6-10.11, 10.14-10.17 Unit- 3Chapter 10.18-10.21

Unit-

Hour	Class Schedule
allotment	
	Even Semester Begin on 01.12.2016
1-L1	Statistical basis- probability
2-L2	- principle of equal a priori probability
3- L3	microstate and macrostate
4-L4	- thermodynamic probability
5-L5	constrains on a system
6-L6	static and dynamic systems
7-L7	mostprobable state (equilibrium state)
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	concept of a cell in a compartment
10- L9	ensemble and averageproperties
11-L10	Unit II
	Degrees of freedom
12-L11	position space -momentum space
13-L12	mu- space and gamma space

14-L13	applications -fundamental postulates of statistical mechanics
15-L14	density of quantum
10 11	density of quantum
16-L15	states of enrgy of a particle-statistical ensembles
17- L16	comparison of ensembles- theories based on
18- L17	statistical mechanics -entropy and probability
19- L18	- Boltzmann's canonical distribution lawapplications
20- L19	Boltzmann's canonical distribution law
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins
22- L21	The law of equipartion of energy
23- IT-1	Internal Test-I
24- L22	- statistical interpretation
25- L23	statistical interpretation of second law of thermodynamics
26- L24	Test Paper distribution and result analysis
27 1 25	Entering Internal Test-I Marks into University portal
27-L25	partition function
28- L26 29- L27	its relation with thermodynamic quantities
30- P2	entropy of an ideal gas
30- P2 31-L28	College level meeting/Cell function - Gibbs paradox
31-L28 32-L29	Practical Explanation
32-L29 33-L30	Three kinds of particles
34- L31	M.B statistics applicable to ideal gas
35-L32	Problems Explanation
36- L33	Practical Work
37- L34	Maxwell Boltzmann Explanation
38-L35	Maxwell's distribution law of velocities
39- L36	experimental verification Maxwellian distribution of molecular speeds
40- L37	Need of quantum statistics
41- L38	development of quantum statistics
42-P3	Department Seminar
43- L39	Bose Einstein distribution law
44- L40	- photon gas- Plank's radiation law
45- L41	Fermi Dirac distribution law
46- L42	
47- L43	Allotting portion for Internal Test-II
10 T 11	Internal Test II begins
48- L44	Fermi Dirac distribution law
49-IT-II	Internal Test-II
50-L45	free electrons in metal
51- L46	Test Paper distribution and result analysis
52- L47	Entering Internal Test-II Marks into University portal
52- L47 53- L48	electron gas= Fermi level Fermi energy
JJ- L40	генш спегду

54- L49	EF for electrons in a metal
55- L50	comparison of the three statistics
56- L51	difference between classical and quantum statistics
57- L52	Statistics and Explanation
58- L53	Practical Work
59-P4	College level meeting/ function
60- L54	Problems Solution
61- L55	Problems
62- L56	Fermi Energy Calculation
63- L57	Bose Einstein distribution law
64- L58	- Allotting portion for Internal Test-III
	Internal Test III begins
65- L59	Bose Einstein Law Explanation
66- L60	Theory Verification
67-IT-III	Internal Test-III
68- L61	Revision
69- L62	Revision Test
70- L63	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
71-MT	Model Test
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 21.04.2017

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	

IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Statistical Mechanics
Course Code	GMPH6A
Class	III year (2017-2018)
Semester	Even
Staff Name	Mr. A. Arul Gnanam
Credits	5
L. Hours /P. Hours	5 / WK
Total 75 Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)	

Course Objectives

· · ·

Syllabus

STATISTICAL MECHANICS

(Major Elective Paper)

Unit I

Statistical basis- probability- principle of equal a priori probability -microstate and macro state- thermodynamic probability -constrains on a system -static and dynamic systems -most probable state (equilibrium state) -concept of a cell in a compartment -ensemble and average properties

Unit II

Degrees of freedom -position space -momentum space- phase space- the mu- space and gamma space- applications -fundamental postulates of statistical mechanics –density of quantum

states of enrgy of a particle-statistical ensembles- comparison of ensembles- theories based on

statistical mechanics -entropy and probability- Boltzmann's canonical distribution lawapplications

of Boltzmann's canonical distribution law-

Unit III

The law of equipartion of energy- statistical interpretation of second law of

thermodynamics- partition function and its relation with thermodynamic quantities -entropy of

an ideal gas- Gibbs paradox

Unit IV

Three kinds of particles -M.B statistics applicable to ideal gas -Maxwell Boltzmann energy distribution law - applications of M.B distribution law -mean rms and most probable speeds-

Maxwell's distribution law of velocities-experimental verification Maxwellian distribution of molecular speeds

Unit V

Need of quantum statistics -development of quantum statistics- Bose Einstein distribution law- photon gas- Plank's radiation law -Fermi Dirac distribution law-free electrons in metal:electron gas= Fermi level and Fermi energy –EF for electrons in a metal-comparison of the three statistics -difference between classical and quantum statistics Reference Book: Heat thermodynamics and statistical physics: Brij Lal N.Subramanium P.S Hemne S.Chand publications Unit-1 Chapter 9.1-9.3, 9.7,9.8, 9.10-9.12 9.14-9.15 Unit-2 Chapter 10.1-10.5 10.6-10.11, 10.14-10.17 Unit- 3Chapter 10.18-10.21

Unit-

Hour	Class Schedule
allotment	
	Even Semester Begin on 07.12.2017
1-L1	Statistical basis- probability
2-L2	- principle of equal a priori probability
3- L3	microstate and macrostate
4-L4	- thermodynamic probability
5-L5	constrains on a system
6-L6	static and dynamic systems
7-L7	mostprobable state (equilibrium state)
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	concept of a cell in a compartment
10- L9	ensemble and averageproperties
11-L10	Unit II
	Degrees of freedom
12-L11	position space -momentum space
13-L12	mu- space and gamma space

14-L13	applications -fundamental postulates of statistical mechanics
15-L14	density of quantum
10 11	density of quantum
16-L15	states of enrgy of a particle-statistical ensembles
17- L16	comparison of ensembles- theories based on
18- L17	statistical mechanics -entropy and probability
19- L18	- Boltzmann's canonical distribution lawapplications
20- L19	Boltzmann's canonical distribution law
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins
22- L21	The law of equipartion of energy
23- IT-1	Internal Test-I
24- L22	- statistical interpretation
25- L23	statistical interpretation of second law of thermodynamics
26- L24	Test Paper distribution and result analysis
27 1 25	Entering Internal Test-I Marks into University portal
27-L25	partition function
28- L26	its relation with thermodynamic quantities
29- L27	entropy of an ideal gas
30- P2 31-L28	College level meeting/Cell function
31-L28 32-L29	- Gibbs paradox Practical Explanation
32-L29 33-L30	Three kinds of particles
34- L31	M.B statistics applicable to ideal gas
35- L32	Problems Explanation
36- L32	Practical Work
37-L34	Maxwell Boltzmann Explanation
38-L35	Maxwell's distribution law of velocities
39- L36	experimental verification Maxwellian distribution of molecular speeds
40- L37	Need of quantum statistics
41- L38	development of quantum statistics
42-P3	Department Seminar
43- L39	Bose Einstein distribution law
44- L40	- photon gas- Plank's radiation law
45- L41	Fermi Dirac distribution law
46- L42	
47- L43	Allotting portion for Internal Test-II
	Internal Test II begins
48- L44	Fermi Dirac distribution law
49-IT-II	Internal Test-II
50-L45	free electrons in metal
51- L46	Test Paper distribution and result analysis
50 T 47	Entering Internal Test-II Marks into University portal
52- L47	electron gas= Fermi level
53- L48	Fermi energy

54- L49	EF for electrons in a metal
55- L50	comparison of the three statistics
56- L51	difference between classical and quantum statistics
57- L52	Statistics and Explanation
58- L53	Practical Work
59-P4	College level meeting/ function
60- L54	Problems Solution
61- L55	Problems
62- L56	Fermi Energy Calculation
63- L57	Bose Einstein distribution law
64- L58	Allotting portion for Internal Test-III
	Internal Test III begins
65- L59	Bose Einstein Law Explanation
66- L60	Theory Verification
67-IT-III	Internal Test-III
68- L61	Revision
69- L62	Revision Test
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
71-MT	Model Test
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 23.04.2018

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	

IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Thermal physics
Course Code	GMPH22
Class	I year (2015-2018)
Semester	Even
Staff Name	Mrs.D.Priscilla Koilpillai
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

Syllabus

Thermal Physics

Unit I. KINETIC THEORY OF GASES: Concept of heat and temperature –ideal and perfect gas – kinetic theory of gases – Expression for a pressure of a gas – interpretation of temperature – Gas laws – Gas equation – Avogadro's hypothesis – Graham's law of diffusion of gases – Maxwell's law of equi-partition of energy – atomicity of gases – Maxwell's law of distribution of velocity – experimental verification – mean free path – problems in all topics

Unit II. TRANSPORT PHEONOMENA : Transport of momentum - Transport of energy gases at high pressure- Tr of st ansport of matter – behavior of sure – Vander Waals equation ate – critical constants – experimental determination – Porous plug experiment – J-K effect – relation between temperatures - problems in all topics.

Unit III. THERMODYNAMICS I : Thermodynamic system – thermal equilibrium and concept of temperature – heat and work as path function – comparison – first law of thermodynamics – applications – isothermal process – adiabatic process – isochoric process – isobaric process – gas equation during adiabatic process – work done during isothermal and adiabatic processes – slopes of isothermal and adiabatic processes - problems in all topics.

Unit IV. THERMODYNAMICS II: Reversible and irreversible processes – second law of thermodynamics – Carnot's engine – refrigerator – Carnot's theorem – Thermodynamic scale of temperature - Clapeyron latent heat equation – entropy – second law of thermodynamics – change in entropy in a Carnot's cycle – change in entropy in an irreversible process – third law of thermodynamics – temperature-entropy diagram entropy of a perfect gas - problems in all topics.

Unit V. THERMODYNAMICS III: Maxwell's thermodynamic relations – Helmholtz function – Gibb's function – enthalpy – Maxwell's relations from the above functions – equilibrium between liquid and its vapour – first order phase transition – second order phase transition – TdS equations – deduction of Clapeyron latent heat equation – relation between specific heat capacities for a perfect and Vander Waals gas – derivation of Clausius latent heat equation - problems in all topics.

Book for study:

1. Heat and Thermodynamics – Brijlal and Subramanium – S.Chand and company Ltd.

Book for reference:

1.Physics - Robert Resnick, David Halliday, Jearl Walker Wiley and Sons Inc., Sixth Edition

Hour	Class Schedule
allotment	
	Even Semester Begin on 02.12.2015
1-L1	Unit I. KINETIC THEORY OF GASES
2-L2	Concept of heat and temperature
3- L3	ideal and perfect gas – kinetic theory of gases
4-L4	Expression for a pressure of a gas – interpretation of temperature
5-L5	Gas laws – Gas equation
6-L6	Avogadro's hypothesis – Graham's law of diffusion of gases
7-L7	Maxwell's law of equi-partition of energy – atomicity of gases
8- P1	Maxwell's law of distribution of velocity – experimental verification

9- L8	mean free path -problems in all topics
10- L9	Unit II. TRANSPORT PHEONOMENA
11-L10	Transport of momentum - Transport of energy gases at high pressure
12-L11	Vander Waals equation ate – critical constants
13-L12	experimental determination – Porous plug experiment
14-L13	J-K effect – relation between temperatures
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	problems in all topics.
17-IT-1	Internal Test-I
18-L16	Unit III. THERMODYNAMICS I
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Thermodynamic system – thermal equilibrium and concept of temperature
21- L19	heat and work as path function
22- P2	College level meeting/Cell function
23-L20	comparison – first law of thermodynamics – applications – isothermal
	process
24-L21	adiabatic process – isochoric process – isobaric process – gas equation
	during adiabatic process
25-L22	work done during isothermal and adiabatic processes
26-L23	slopes of isothermal and adiabatic processes
27-L24	problems in all topics.
28-L25	Unit IV. THERMODYNAMICS II
29-L26	Reversible and irreversible processes – second law of thermodynamics
30-L27	Carnot's engine – refrigerator – Carnot's theorem
31-L28	Thermodynamic scale of temperature
32-L29	Clapeyron latent heat equation
33-L30	entropy – second law of thermodynamics
34- P3	Department Seminar
35-L31	change in entropy in a Carnot's cycle
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	change in entropy in an irreversible process
38- IT-II	Internal Test-II
39-L34	third law of thermodynamics
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	temperature- entropy diagram
42- L37	entropy of a perfect gas
43- L38	problems in all topics.
44- P4	College level meeting/ function
45-L39	Unit V. THERMODYNAMICS III
46-L40	Maxwell's thermodynamic relations – Helmholtz function – Gibb's function
47-L41	enthalpy – Maxwell's relations from the above functions equilibrium
40 7 17	between liquid and its vapour
48-L42	first order phase transition – second order phase transition

49-L43	TdS equations
50-L44	- Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	deduction of Clapeyron latent heat equation
52- L46	relation between specific heat capacities for a perfect and Vander Waals gas
	derivation of Clausius latent heat equation
53-IT-III	Internal Test-III
54-L47	problems in all topics.
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 22.04.2016

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO1	
CO3	
CO4	
C05	
CO6	
C07	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

Blended Learning

: using PPT, video, library resources, ICT techniques, Elearning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Thermal physics
Course Code	GMPH22
Class	I year (2015-2018)
Semester	Even
Staff Name	Mrs.D.Priscilla Koilpillai
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

Syllabus

Thermal Physics

Unit I. KINETIC THEORY OF GASES: Concept of heat and temperature –ideal and perfect gas – kinetic theory of gases – Expression for a pressure of a gas – interpretation of temperature – Gas laws – Gas equation – Avogadro's hypothesis – Graham's law of diffusion of gases – Maxwell's law of equi-partition of energy – atomicity of gases – Maxwell's law of distribution of velocity – experimental verification – mean free path – problems in all topics

Unit II. TRANSPORT PHEONOMENA : Transport of momentum - Transport of energy gases at high pressure- Tr of st ansport of matter – behavior of sure – Vander Waals equation ate – critical constants – experimental determination – Porous plug experiment – J-K effect – relation between temperatures - problems in all topics.

Unit III. THERMODYNAMICS I : Thermodynamic system – thermal equilibrium and concept of temperature – heat and work as path function – comparison – first law of thermodynamics – applications – isothermal process – adiabatic process – isochoric process – isobaric process – gas equation during adiabatic process – work done during isothermal and adiabatic processes – slopes of isothermal and adiabatic processes - problems in all topics.

Unit IV. THERMODYNAMICS II: Reversible and irreversible processes – second law of thermodynamics – Carnot's engine – refrigerator – Carnot's theorem – Thermodynamic scale of temperature - Clapeyron latent heat equation – entropy – second law of thermodynamics – change in entropy in a Carnot's cycle – change in entropy in an irreversible process – third law of thermodynamics – temperature-entropy diagram entropy of a perfect gas - problems in all topics.

Unit V. THERMODYNAMICS III: Maxwell's thermodynamic relations – Helmholtz function – Gibb's function – enthalpy – Maxwell's relations from the above functions – equilibrium between liquid and its vapour – first order phase transition – second order phase transition – TdS equations – deduction of Clapeyron latent heat equation – relation between specific heat capacities for a perfect and Vander Waals gas – derivation of Clausius latent heat equation - problems in all topics.

Book for study:

1. Heat and Thermodynamics – Brijlal and Subramanium – S.Chand and company Ltd.

Book for reference:

1.Physics - Robert Resnick, David Halliday, Jearl Walker Wiley and Sons Inc., Sixth Edition

Hour	Class Schedule
allotment	
	Even Semester Begin on 02.12.2015
1-L1	Unit I. KINETIC THEORY OF GASES
2-L2	Concept of heat and temperature
3- L3	ideal and perfect gas – kinetic theory of gases
4-L4	Expression for a pressure of a gas – interpretation of temperature
5-L5	Gas laws – Gas equation
6-L6	Avogadro's hypothesis – Graham's law of diffusion of gases
7-L7	Maxwell's law of equi-partition of energy – atomicity of gases
8- P1	Maxwell's law of distribution of velocity – experimental verification

9- L8	mean free path -problems in all topics
10- L9	Unit II. TRANSPORT PHEONOMENA
11-L10	Transport of momentum - Transport of energy gases at high pressure
12-L11	Vander Waals equation ate – critical constants
13-L12	experimental determination – Porous plug experiment
14-L13	J-K effect – relation between temperatures
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	problems in all topics.
17-IT-1	Internal Test-I
18-L16	Unit III. THERMODYNAMICS I
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Thermodynamic system – thermal equilibrium and concept of temperature
21- L19	heat and work as path function
22- P2	College level meeting/Cell function
23-L20	comparison – first law of thermodynamics – applications – isothermal
	process
24-L21	adiabatic process – isochoric process – isobaric process – gas equation
	during adiabatic process
25-L22	work done during isothermal and adiabatic processes
26-L23	slopes of isothermal and adiabatic processes
27-L24	problems in all topics.
28-L25	Unit IV. THERMODYNAMICS II
29-L26	Reversible and irreversible processes – second law of thermodynamics
30-L27	Carnot's engine – refrigerator – Carnot's theorem
31-L28	Thermodynamic scale of temperature
32-L29	Clapeyron latent heat equation
33-L30	entropy – second law of thermodynamics
34- P3	Department Seminar
35-L31	change in entropy in a Carnot's cycle
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	change in entropy in an irreversible process
38- IT-II	Internal Test-II
39-L34	third law of thermodynamics
40-L35	-Test Paper distribution and result analysis
41 1 2 4	Entering Internal Test-II Marks into University portal
41-L36	temperature- entropy diagram
42-L37	entropy of a perfect gas
43- L38	problems in all topics.
44- P4	College level meeting/ function
45-L39	Unit V. THERMODYNAMICS III
46-L40	Maxwell's thermodynamic relations – Helmholtz function – Gibb's function
47-L41	enthalpy – Maxwell's relations from the above functions equilibrium
40 T 40	between liquid and its vapour
48-L42	first order phase transition – second order phase transition

49-L43	TdS equations	
50-L44	- Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	deduction of Clapeyron latent heat equation	
52- L46	relation between specific heat capacities for a perfect and Vander Waals gas	
	derivation of Clausius latent heat equation	
53-IT-III	Internal Test-III	
54-L47	problems in all topics.	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 22.04.2016	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO1	
CO3	
CO4	
C05	
CO6	
C07	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

Blended Learning

: using PPT, video, library resources, ICT techniques, Elearning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Thermal physics	
Course Code	JMPH22	
Class	I year (2016-2019)	
Semester	Even	
Staff Name	Mrs.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

Thermal Physics

Unit I. KINETIC THEORY OF GASES: Concept of heat and temperature –ideal and perfect gas – kinetic theory of gases – Expression for a pressure of a gas – interpretation of temperature – Gas laws – Gas equation – Avogadro's hypothesis – Graham's law of diffusion of gases – Maxwell's law of equi-partition of energy – atomicity of gases – Maxwell's law of distribution of velocity – experimental verification – mean free path – problems in all topics

Unit II. TRANSPORT PHEONOMENA : Transport of momentum - Transport of energy gases at high pressure- Tr of st ansport of matter – behavior of sure – Vander Waals equation ate – critical constants – experimental determination – Porous plug experiment – J-K effect – relation between temperatures - problems in all topics.

Unit III. THERMODYNAMICS I : Thermodynamic system – thermal equilibrium and concept of temperature – heat and work as path function – comparison – first law of thermodynamics – applications – isothermal process – adiabatic process – isochoric process – isobaric process – gas equation during adiabatic process – work done during isothermal and adiabatic processes – slopes of isothermal and adiabatic processes - problems in all topics.

Unit IV. THERMODYNAMICS II: Reversible and irreversible processes – second law of thermodynamics – Carnot's engine – refrigerator – Carnot's theorem – Thermodynamic scale of temperature - Clapeyron latent heat equation – entropy – second law of thermodynamics – change in entropy in a Carnot's cycle – change in entropy in an irreversible process – third law of thermodynamics – temperature-entropy diagram entropy of a perfect gas - problems in all topics.

Unit V. THERMODYNAMICS III: Maxwell's thermodynamic relations – Helmholtz function – Gibb's function – enthalpy – Maxwell's relations from the above functions – equilibrium between liquid and its vapour – first order phase transition – second order phase transition – TdS equations – deduction of Clapeyron latent heat equation – relation between specific heat capacities for a perfect and Vander Waals gas – derivation of Clausius latent heat equation - problems in all topics.

Book for study:

1. Heat and Thermodynamics – Brijlal and Subramanium – S.Chand and company Ltd.

Book for reference:

1.Physics - Robert Resnick, David Halliday, Jearl Walker Wiley and Sons Inc., Sixth Edition

Hour	Class Schedule	
allotment		
	Even Semester Begin on 01.12.2016	
1-L1	Unit I. KINETIC THEORY OF GASES	
2-L2	Concept of heat and temperature	
3- L3	ideal and perfect gas – kinetic theory of gases	
4-L4	Expression for a pressure of a gas – interpretation of temperature	
5-L5	Gas laws – Gas equation	
6-L6	Avogadro's hypothesis – Graham's law of diffusion of gases	
7-L7	Maxwell's law of equi-partition of energy – atomicity of gases	
8- P1	Maxwell's law of distribution of velocity – experimental verification	

9- L8	mean free path -problems in all topics
10- L9	Unit II. TRANSPORT PHEONOMENA
11-L10	Transport of momentum - Transport of energy gases at high pressure
12-L11	Vander Waals equation ate – critical constants
13-L12	experimental determination – Porous plug experiment
14-L13	J-K effect – relation between temperatures
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	problems in all topics.
17-IT-1	Internal Test-I
18-L16	Unit III. THERMODYNAMICS I
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Thermodynamic system – thermal equilibrium and concept of temperature
21- L19	heat and work as path function
22- P2	College level meeting/Cell function
23-L20	comparison – first law of thermodynamics – applications – isothermal
	process
24-L21	adiabatic process – isochoric process – isobaric process – gas equation
	during adiabatic process
25-L22	work done during isothermal and adiabatic processes
26-L23	slopes of isothermal and adiabatic processes
27-L24	problems in all topics.
28-L25	Unit IV. THERMODYNAMICS II
29-L26	Reversible and irreversible processes – second law of thermodynamics
30-L27	Carnot's engine – refrigerator – Carnot's theorem
31-L28	Thermodynamic scale of temperature
32-L29	Clapeyron latent heat equation
33-L30	entropy – second law of thermodynamics
34- P3	Department Seminar
35-L31	change in entropy in a Carnot's cycle
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	change in entropy in an irreversible process
38- IT-II	Internal Test-II
39-L34	third law of thermodynamics
40-L35	Test Paper distribution and result analysis
11 7 6 -	Entering Internal Test-II Marks into University portal
41-L36	temperature- entropy diagram
42- L37	entropy of a perfect gas
43- L38	problems in all topics.
44- P4	College level meeting/ function
45-L39	Unit V. THERMODYNAMICS III
46-L40	Maxwell's thermodynamic relations – Helmholtz function – Gibb's function
47-L41	enthalpy – Maxwell's relations from the above functions equilibrium
40 I 42	between liquid and its vapour
48-L42	first order phase transition – second order phase transition

49-L43	TdS equations	
50-L44	- Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	deduction of Clapeyron latent heat equation	
52- L46	relation between specific heat capacities for a perfect and Vander Waals gas	
	derivation of Clausius latent heat equation	
53-IT-III	Internal Test-III	
54-L47	problems in all topics.	
55-L48	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 21.04.2017	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO1	
CO3	
CO4	
C05	
CO6	
C07	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

Blended Learning

: using PPT, video, library resources, ICT techniques, Elearning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Thermal physics	
Course Code	SMPH22	
Class	I year (2017-2020)	
Semester	Even	
Staff Name	Mr.A.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

Thermal Physics

Unit I. KINETIC THEORY OF GASES: Concept of heat and temperature –ideal and perfect gas – kinetic theory of gases – Expression for a pressure of a gas – interpretation of temperature – Gas laws – Gas equation – Avogadro's hypothesis – Graham's law of diffusion of gases – Maxwell's law of equi-partition of energy – atomicity of gases – Maxwell's law of distribution of velocity – experimental verification – mean free path – problems in all topics

Unit II. TRANSPORT PHEONOMENA : Transport of momentum - Transport of energy gases at high pressure- Tr of st ansport of matter – behavior of sure – Vander Waals equation ate – critical constants – experimental determination – Porous plug experiment – J-K effect – relation between temperatures - problems in all topics.

Unit III. THERMODYNAMICS I : Thermodynamic system – thermal equilibrium and concept of temperature – heat and work as path function – comparison – first law of thermodynamics – applications – isothermal process – adiabatic process – isochoric process – isobaric process – gas equation during adiabatic process – work done during isothermal and adiabatic processes – slopes of isothermal and adiabatic processes - problems in all topics.

Unit IV. THERMODYNAMICS II: Reversible and irreversible processes – second law of thermodynamics – Carnot's engine – refrigerator – Carnot's theorem – Thermodynamic scale of temperature - Clapeyron latent heat equation – entropy – second law of thermodynamics – change in entropy in a Carnot's cycle – change in entropy in an irreversible process – third law of thermodynamics – temperature-entropy diagram entropy of a perfect gas - problems in all topics.

Unit V. THERMODYNAMICS III: Maxwell's thermodynamic relations – Helmholtz function – Gibb's function – enthalpy – Maxwell's relations from the above functions – equilibrium between liquid and its vapour – first order phase transition – second order phase transition – TdS equations – deduction of Clapeyron latent heat equation – relation between specific heat capacities for a perfect and Vander Waals gas – derivation of Clausius latent heat equation - problems in all topics.

Book for study:

1. Heat and Thermodynamics – Brijlal and Subramanium – S.Chand and company Ltd.

Book for reference:

1.Physics - Robert Resnick, David Halliday, Jearl Walker Wiley and Sons Inc., Sixth Edition

Hour	Class Schedule
allotment	
	Even Semester Begin on 07.12.2017
1-L1	Unit I. KINETIC THEORY OF GASES
2-L2	Concept of heat and temperature
3- L3	ideal and perfect gas – kinetic theory of gases
4-L4	Expression for a pressure of a gas – interpretation of temperature
5-L5	Gas laws – Gas equation
6-L6	Avogadro's hypothesis – Graham's law of diffusion of gases
7-L7	Maxwell's law of equi-partition of energy – atomicity of gases
8- P1	Maxwell's law of distribution of velocity – experimental verification

9- L8	mean free path -problems in all topics
10- L9	Unit II. TRANSPORT PHEONOMENA
11-L10	Transport of momentum - Transport of energy gases at high pressure
12-L11	Vander Waals equation ate – critical constants
13-L12	experimental determination – Porous plug experiment
14-L13	J-K effect – relation between temperatures
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	problems in all topics.
17-IT-1	Internal Test-I
18-L16	Unit III. THERMODYNAMICS I
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Thermodynamic system – thermal equilibrium and concept of temperature
21- L19	heat and work as path function
22- P2	College level meeting/Cell function
23-L20	comparison – first law of thermodynamics – applications – isothermal
	process
24-L21	adiabatic process – isochoric process – isobaric process – gas equation
	during adiabatic process
25-L22	work done during isothermal and adiabatic processes
26-L23	slopes of isothermal and adiabatic processes
27-L24	problems in all topics.
28-L25	Unit IV. THERMODYNAMICS II
29-L26	Reversible and irreversible processes – second law of thermodynamics
30-L27	Carnot's engine – refrigerator – Carnot's theorem
31-L28	Thermodynamic scale of temperature
32-L29	Clapeyron latent heat equation
33-L30	entropy – second law of thermodynamics
34- P3	Department Seminar
35-L31	change in entropy in a Carnot's cycle
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	change in entropy in an irreversible process
38- IT-II	Internal Test-II
39-L34	third law of thermodynamics
40-L35	Test Paper distribution and result analysis
44 7 6 5	Entering Internal Test-II Marks into University portal
41-L36	temperature- entropy diagram
42- L37	entropy of a perfect gas
43- L38	problems in all topics.
44- P4	College level meeting/ function
45-L39	Unit V. THERMODYNAMICS III
46-L40	Maxwell's thermodynamic relations – Helmholtz function – Gibb's function
47-L41	enthalpy – Maxwell's relations from the above functions equilibrium
40 T 40	between liquid and its vapour
48-L42	first order phase transition – second order phase transition

49-L43	TdS equations	
50-L44	- Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	deduction of Clapeyron latent heat equation	
52- L46	relation between specific heat capacities for a perfect and Vander Waals gas	
	derivation of Clausius latent heat equation	
53-IT-III	Internal Test-III	
54-L47	problems in all topics.	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.04.2018	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO1	
CO3	
CO4	
C05	
CO6	
C07	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

Blended Learning

: using PPT, video, library resources, ICT techniques, Elearning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Thermal physics	
Course Code	SMPH22	
Class	I year (2018-2021)	
Semester	Even	
Staff Name	Mr.A.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

Thermal Physics

Unit I. KINETIC THEORY OF GASES: Concept of heat and temperature –ideal and perfect gas – kinetic theory of gases – Expression for a pressure of a gas – interpretation of temperature – Gas laws – Gas equation – Avogadro's hypothesis – Graham's law of diffusion of gases – Maxwell's law of equi-partition of energy – atomicity of gases – Maxwell's law of distribution of velocity – experimental verification – mean free path – problems in all topics

Unit II. TRANSPORT PHEONOMENA : Transport of momentum - Transport of energy gases at high pressure- Tr of st ansport of matter – behavior of sure – Vander Waals equation ate – critical constants – experimental determination – Porous plug experiment – J-K effect – relation between temperatures - problems in all topics.

Unit III. THERMODYNAMICS I : Thermodynamic system – thermal equilibrium and concept of temperature – heat and work as path function – comparison – first law of thermodynamics – applications – isothermal process – adiabatic process – isochoric process – isobaric process – gas equation during adiabatic process – work done during isothermal and adiabatic processes – slopes of isothermal and adiabatic processes - problems in all topics.

Unit IV. THERMODYNAMICS II: Reversible and irreversible processes – second law of thermodynamics – Carnot's engine – refrigerator – Carnot's theorem – Thermodynamic scale of temperature - Clapeyron latent heat equation – entropy – second law of thermodynamics – change in entropy in a Carnot's cycle – change in entropy in an irreversible process – third law of thermodynamics – temperature-entropy diagram entropy of a perfect gas - problems in all topics.

Unit V. THERMODYNAMICS III: Maxwell's thermodynamic relations – Helmholtz function – Gibb's function – enthalpy – Maxwell's relations from the above functions – equilibrium between liquid and its vapour – first order phase transition – second order phase transition – TdS equations – deduction of Clapeyron latent heat equation – relation between specific heat capacities for a perfect and Vander Waals gas – derivation of Clausius latent heat equation - problems in all topics.

Book for study:

1. Heat and Thermodynamics – Brijlal and Subramanium – S.Chand and company Ltd.

Book for reference:

1.Physics - Robert Resnick, David Halliday, Jearl Walker Wiley and Sons Inc., Sixth Edition

Hour	Class Schedule	
allotment		
	Even Semester Begin on 03.12.2018	
1-L1	Unit I. KINETIC THEORY OF GASES	
2-L2	Concept of heat and temperature	
3- L3	ideal and perfect gas – kinetic theory of gases	
4-L4	Expression for a pressure of a gas – interpretation of temperature	
5-L5	Gas laws – Gas equation	
6-L6	Avogadro's hypothesis – Graham's law of diffusion of gases	
7-L7	Maxwell's law of equi-partition of energy – atomicity of gases	
8- P1	Maxwell's law of distribution of velocity – experimental verification	

9- L8	mean free path -problems in all topics
10- L9	Unit II. TRANSPORT PHEONOMENA
11-L10	Transport of momentum - Transport of energy gases at high pressure
12-L11	Vander Waals equation ate – critical constants
13-L12	experimental determination – Porous plug experiment
14-L13	J-K effect – relation between temperatures
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	problems in all topics.
17-IT-1	Internal Test-I
18-L16	Unit III. THERMODYNAMICS I
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Thermodynamic system – thermal equilibrium and concept of temperature
21- L19	heat and work as path function
22- P2	College level meeting/Cell function
23-L20	comparison – first law of thermodynamics – applications – isothermal
	process
24-L21	adiabatic process – isochoric process – isobaric process – gas equation
-	during adiabatic process
25-L22	work done during isothermal and adiabatic processes
26-L23	slopes of isothermal and adiabatic processes
27-L24	problems in all topics.
28-L25	Unit IV. THERMODYNAMICS II
29-L26	Reversible and irreversible processes – second law of thermodynamics
30-L27	Carnot's engine – refrigerator – Carnot's theorem
31-L28	Thermodynamic scale of temperature
32-L29	Clapeyron latent heat equation
33-L30	entropy – second law of thermodynamics
34- P3	Department Seminar
35-L31	change in entropy in a Carnot's cycle
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	change in entropy in an irreversible process
38- IT-II	Internal Test-II
39-L34	third law of thermodynamics
40-L35	-Test Paper distribution and result analysis
41 1 2 4	Entering Internal Test-II Marks into University portal
41-L36	temperature- entropy diagram
42-L37	entropy of a perfect gas
43- L38	problems in all topics.
44- P4	College level meeting/ function
45-L39	Unit V. THERMODYNAMICS III
46-L40	Maxwell's thermodynamic relations – Helmholtz function – Gibb's function
47-L41	enthalpy – Maxwell's relations from the above functions equilibrium
40 T 40	between liquid and its vapour
48-L42	first order phase transition – second order phase transition

49-L43	TdS equations	
50-L44	- Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	deduction of Clapeyron latent heat equation	
52- L46	relation between specific heat capacities for a perfect and Vander Waals gas	
	derivation of Clausius latent heat equation	
53-IT-III	Internal Test-III	
54-L47	problems in all topics.	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.04.2019	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO1	
CO3	
CO4	
C05	
CO6	
C07	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

Blended Learning

: using PPT, video, library resources, ICT techniques, Elearning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Thermal physics	
Course Code	SMPH22	
Class	I year (2019-2022)	
Semester	Even	
Staff Name	Mrs.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

Syllabus

Thermal Physics

Unit I. KINETIC THEORY OF GASES: Concept of heat and temperature –ideal and perfect gas – kinetic theory of gases – Expression for a pressure of a gas – interpretation of temperature – Gas laws – Gas equation – Avogadro's hypothesis – Graham's law of diffusion of gases – Maxwell's law of equi-partition of energy – atomicity of gases – Maxwell's law of distribution of velocity – experimental verification – mean free path – problems in all topics

Unit II. TRANSPORT PHEONOMENA : Transport of momentum - Transport of energy gases at high pressure- Tr of st ansport of matter – behavior of sure – Vander Waals equation ate – critical constants – experimental determination – Porous plug experiment – J-K effect – relation between temperatures - problems in all topics.

Unit III. THERMODYNAMICS I : Thermodynamic system – thermal equilibrium and concept of temperature – heat and work as path function – comparison – first law of thermodynamics – applications – isothermal process – adiabatic process – isochoric process – isobaric process – gas equation during adiabatic process – work done during isothermal and adiabatic processes – slopes of isothermal and adiabatic processes - problems in all topics.

Unit IV. THERMODYNAMICS II: Reversible and irreversible processes – second law of thermodynamics – Carnot's engine – refrigerator – Carnot's theorem – Thermodynamic scale of temperature - Clapeyron latent heat equation – entropy – second law of thermodynamics – change in entropy in a Carnot's cycle – change in entropy in an irreversible process – third law of thermodynamics – temperature-entropy diagram entropy of a perfect gas - problems in all topics.

Unit V. THERMODYNAMICS III: Maxwell's thermodynamic relations – Helmholtz function – Gibb's function – enthalpy – Maxwell's relations from the above functions – equilibrium between liquid and its vapour – first order phase transition – second order phase transition – TdS equations – deduction of Clapeyron latent heat equation – relation between specific heat capacities for a perfect and Vander Waals gas – derivation of Clausius latent heat equation - problems in all topics.

Book for study:

1. Heat and Thermodynamics – Brijlal and Subramanium – S.Chand and company Ltd.

Book for reference:

1.Physics - Robert Resnick, David Halliday, Jearl Walker Wiley and Sons Inc., Sixth Edition

Hour	Class Schedule	
allotment		
	Even Semester Begin on 02.12.2019	
1-L1	Unit I. KINETIC THEORY OF GASES	
2-L2	Concept of heat and temperature	
3- L3	ideal and perfect gas – kinetic theory of gases	
4-L4	Expression for a pressure of a gas – interpretation of temperature	
5-L5	Gas laws – Gas equation	
6-L6	Avogadro's hypothesis – Graham's law of diffusion of gases	
7-L7	Maxwell's law of equi-partition of energy – atomicity of gases	
8- P1	Maxwell's law of distribution of velocity – experimental verification	

9- L8	mean free path -problems in all topics
10- L9	Unit II. TRANSPORT PHEONOMENA
11-L10	Transport of momentum - Transport of energy gases at high pressure
12-L11	Vander Waals equation ate – critical constants
13-L12	experimental determination – Porous plug experiment
14-L13	J-K effect – relation between temperatures
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	problems in all topics.
17-IT-1	Internal Test-I
18-L16	Unit III. THERMODYNAMICS I
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Thermodynamic system – thermal equilibrium and concept of temperature
21- L19	heat and work as path function
22- P2	College level meeting/Cell function
23-L20	comparison – first law of thermodynamics – applications – isothermal
	process
24-L21	adiabatic process – isochoric process – isobaric process – gas equation
-	during adiabatic process
25-L22	work done during isothermal and adiabatic processes
26-L23	slopes of isothermal and adiabatic processes
27-L24	problems in all topics.
28-L25	Unit IV. THERMODYNAMICS II
29-L26	Reversible and irreversible processes – second law of thermodynamics
30-L27	Carnot's engine – refrigerator – Carnot's theorem
31-L28	Thermodynamic scale of temperature
32-L29	Clapeyron latent heat equation
33-L30	entropy – second law of thermodynamics
34- P3	Department Seminar
35-L31	change in entropy in a Carnot's cycle
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	change in entropy in an irreversible process
38- IT-II	Internal Test-II
39-L34	third law of thermodynamics
40-L35	Test Paper distribution and result analysis
11 7 6 -	Entering Internal Test-II Marks into University portal
41-L36	temperature- entropy diagram
42- L37	entropy of a perfect gas
43- L38	problems in all topics.
44- P4	College level meeting/ function
45-L39	Unit V. THERMODYNAMICS III
46-L40	Maxwell's thermodynamic relations – Helmholtz function – Gibb's function
47-L41	enthalpy – Maxwell's relations from the above functions equilibrium
40 T 40	between liquid and its vapour
48-L42	first order phase transition – second order phase transition

49-L43	TdS equations
50-L44	- Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	deduction of Clapeyron latent heat equation
52- L46	relation between specific heat capacities for a perfect and Vander Waals gas
	derivation of Clausius latent heat equation
53-IT-III	Internal Test-III
54-L47	problems in all topics.
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 27.04.2020

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO1	
CO3	
CO4	
C05	
CO6	
C07	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

Blended Learning

: using PPT, video, library resources, ICT techniques, Elearning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics		
Course Name	Allied Physics I		
Course Code	JAPH11		
Class	I year (2016-2019)		
Semester	Odd		
Staff Name	D r. D. Arul Asir Abraham		
Credits	4		
L. Hours /P. Hours	4 / WK		
Total 60Hrs/Sem			
Internal Test-3 Hrs			
Model Test-3 Hrs			
Dept. Meetings-2 Hrs			
College Meetings-2 Hrs			
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)			

Course Objectives

- > For To understand the property of Elasticity and its applications.
- ➢ For to know about the property of viscosity.
- > For to study the property of sound and thermodynamics.
- \triangleright

Syllabus

ALLIED PHYSICS – I

Unit I : Elasticity and bending moment

Hooke's law – Elastic moduli – Relation between elastic constants – Work done in stretching a wire – Expression for bending moment - uniform bending- Experiment to determine Young's modulus using pin and microscope-Twisting couple of a wire – Expression for couple per unit twist – Work done in twisting – Experimental determination of rigidity modulus of a wire using Torsion pendulum with theory

Unit II: Surface tension and Viscosity

Surface tension – Definition – Examples – Molecular interpretation – Expression for excess of pressure inside a synclastic and anticlastic surface-Application to spherical and cylindrical drops and bubbles

Viscosity: Coefficient of viscosity – Rate of flow of liquid in a capillary tube (Poisueuille's formula) – Analogy between liquid flow and current flow – Stokes' formula for highly viscous liquids (Dimension method) – Experimental determination of viscosity of highly viscous liquid (stokes' method)

Unit III: Sound

Simple harmonic motion – Free, damped ,forced vibrations and resonance – Composition of two SHMs along a straight line and in perpendicular direction – Melde's string experiment – Determination of frequency of tuning fork transverse mode)

Unit IV : Thermal physics : Mean free path- Expression for mean free path (Zero order approximation) – Transport phenomena – Expression for viscosity and thermal conductivity – Conduction in solids – coefficient of thermal conductivity – Lee's disc method to determine thermal conductivity of a bad conductor – Wiedmann – Franz's law – Convection : Newton's

Page 8 of 17

law of cooling – Experimental verification – Radiation : Black body radiation – Distribution of energy in black body spectrum – Important features.

Unit V: Optics

Interference: Condition for interference-Air wedge-determination of thickness of a thin wire by air wedge

Diffraction: Fresnel & Fraunhofer diffraction-Plane diffraction grating- theory and experiment to determine wavelength (normal incidence)

Polarization: Double refraction- half wave and quarter wave plate – Production and detection of plane, elliptically and circularly polarized light.

Books for study

- 1. Optics Brijlal & Subramanian
- 2. Properties of matter R.Murugesan
- 3. Heat & Thermodynamics D.S.Mathur

Reference Books

1.Heat and thermodynamics - Brijlal & Subramanian, S Chand & Co., New Delhi

2.Fundamentals of Optics by Jenkins A Francis and White E Harvey, McGRaw Hill Inc., New Delhi, 1976.

3. Elements of Properties of Matter by Mathur D S, Shyamlal Charitable Trust, New Delhi,

Hour	Class Schedule			
allotment				
	Odd Semester Begin on 16.06.2016			
1-L1	Unit I : Elasticity and bending moment			
2-L2	Hooke's law – Elastic moduli			
3- L3	Relation between elastic constants			
4-L4	Work done in stretching a wire			
5-L5	Expression for bending moment - uniform bending			
6-L6	Experiment to determine Young's modulus using pin and microscope-			
	Twisting couple of a wire			
7-L7	Expression for couple per unit twist – Work done in twisting			
8- P1	Welcoming of First year and Inauguration of Physics Association			
9- L8	Experimental determination of rigidity modulus of a wire using Torsion			
	pendulum with theory			
10- L9	Unit II: Surface tension and Viscosity			
11-L10	Surface tension – Definition – Examples			
12-L11	Molecular interpretation			
13-L12	Application to spherical and cylindrical drops and bubbles			
14-L13	Viscosity: Coefficient of viscosity – Rate of flow of liquid in a capillary tube			
	(Poisueuille's formula)			
15-L14	Allotting portion for Internal Test-I			
	Internal Test I begins			
16-L15	Analogy between liquid flow and current flow			
17-IT-1	Internal Test-I			
18-L16	Stokes' formula for highly viscous liquids (Dimension method) -			
	Experimental determination of viscosity of highly viscous liquid (stokes'			
	method)			
19-L17	Test Paper distribution and result analysis			
	Entering Internal Test-I Marks into University portal			
20-L18	Unit III: Sound			
21- L19	Simple harmonic motion – Free, damped ,forced vibrations and resonance			
22- P2	College level meeting/Cell function			
23-L20	Composition of two SHMs along a straight line and in perpendicular			
	direction			
24-L21	Melde's string experiment			
25-L22	Determination of frequency of tuning fork			
	Unit IV : Thermal physics			

26-L23	Mean free path- Expression for mean free path
20-L23 27-L24	Transport phenomena – Expression for viscosity and thermal conductivity
27-L24 28-L25	Conduction in solids – coefficient of thermal conductivity
28-L25 29-L26	Lee's disc method to determine thermal conductivity of a bad conductor
29-L20 30-L27	Wiedmann – Franz's law – Convection : Newton's
30-L27 31-L28	
31-L28 32-L29	Unit V: Optics
32-L29 33-L30	Interference: Condition for interference
	Air wedge
34- P3	Department Seminar
35-L31	determination of thickness of a thin wire by air wedge
36-L32	Allotting portion for Internal Test-II
27 1 22	Internal Test II begins
37- L33	Diffraction: Fresnel diffraction
38- IT-II	Internal Test-II
39-L34	Fraunhofer diffraction
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Plane diffraction grating
42- L37	theory and experiment to determine wavelength (normal incidence)
43- L38	Polarization: Double refraction
44- P4	College level meeting/ function
45-L39	half wave and quarter wave plate
46-L40	Production and detection of plane, elliptically and circularly polarized light.
47-L41	Expression for excess of pressure inside a synclastic and anticlastic surface
48-L42	Expression for viscosity and thermal conductivity
49-L43	uniform bending
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Expression for bending moment
52- L46	Problem solving
53-IT-III	Internal Test-III
54-L47	Problem solving
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 30.11.2016

Learning Outcomes	COs of t	he cou	rse " <cours< th=""><th>se name>"</th><th></th><th></th><th></th></cours<>	se name>"			
CO1	Studied	the	various	properties	of	physics	especially

	elasticity, viscosity, sound conducted.	and	thermodynamics	.test	were
CO2					
CO3					
CO4					
CO5					
CO6					
CO7					
CO8					
CO9					
Experimental					
Learning					
EL1	Also related practicals wer	e demo	onstrated		
EL2					
EL3					
EL4					
Integrated Activity					
IA1	Students did project using	this co	ncepts.		
IA2					

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics		
Course Name	Communication Electronics		
Course Code	JMPH5C		
Class	III year (2018-2019)		
Semester	Odd		
Staff Name	Dr.D.Arul Asir Abraham		
Credits	4		
L. Hours /P. Hours	4 / WK		
Total 60Hrs/Sem			
Internal Test-3 Hrs			
Model Test-3 Hrs			
Dept. Meetings-2 Hrs			
College Meetings-2 Hrs			
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)			

Course Objectives

Students to study the different concepts of modulation and their various types.

- ۶
- \triangleright
- \triangleright

Syllabus

UNIT I: AMPLITUDE MODULATION AND TRANSMISSION Introduction – amplitude Modulation – AM envelop – AM frequency spectrum and bandwidth – Phasor representation of AM with carrier – coefficient of modulation or percentage modulation or modulation index – degrees of modulation – AM power distribution – AM Current relation and efficiency - modulation by complex information signal doubleside band suppressed carrier AM - single side band suppressed carrier AM – Vestigal side band amplitude modulation – AM modulator circuits – emitter modulations or low power AM – collector modulator or medium and high power AM modulator - AM transmitters – Broadcast AM transmitters – Low level of AM transmitter – High level AM transmitter. (15L) UNIT II: AMPLITUDE MODULATION -RECEPTION Comparison of AM system – Quadrature amplitude modulation – principles of AM detection – AM receivers – receiver parameters – Tuned radio frequency (TRF) receiver or straight receiver – principles of superhetrodyne –double frequency conversion AM receiver. (11L)

Page 20 of 54

UNIT III:ANGLE MODULATION – TRANSMISSION Introduction – Frequency modulation – Phase modulation – Phase deviation and modulation index – Multitone modulation – Transmission band width of FM – conversion of PM to FM or frequency modulator – conversion of FM to PM / phase modulators – commercial broadcast FM – phasor representation of an FM and PM – average power of an AM/FM wave – generation of FM – direct method of FM generation – reactance tube modulator – indirect method of FM wave generation – FM transmitters – indirect method – Comparison of AM and FM. (13L)

UNIT IV:FM RECEPTION FM detectors – Balanced slope detector – Foster seely discriminator – ratio detector – FM super heterodyne receiver – FM noise suppression – threshold extension by FMFB technique. (11L)

UNIT – V: DIGITAL MODULATION TECHNIQUES Introduction – BFSK – Binary phase shift keying – Quadrature PSK – Differential PSK – Performance comparison of digital modulation schemes - M ary FSK – correlative coding – Duobinary encoding. (10L)

Book For Study 1.Principles Of Communication Engineering-Dr. K.S. Srinivasan, Second Edition : 2010.

Book For Reference 1.Electronic communication systems – George Kennedy & Bernard Davis, Tata Mcgraw Hills, 4th edition, 2008 2.Electronic communication Systems – Blake, Joseph J. Adams ki, Sun Yifeng, Delamer publication, 2nd edition, 2012 (Rupa Publication, India). 3.Fundamentals of Electrical engineering – Wayone tomasi

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2018
1-L1	UNIT I: AMPLITUDE MODULATION AND TRANSMISSION
2-L2	amplitude Modulation – AM envelop – AM frequency spectrum and bandwidth
3- L3	Phasor representation of AM with carrier
4-L4	coefficient of modulation or percentage modulation or modulation index
5-L5	– degrees of modulation – AM power distribution -
6-L6	AM Current relation and efficiency - modulation by complex information signal
7-L7	doubleside band suppressed carrier AM
8- P1	single side band suppressed carrier AM
9- L8	Vestigal side band amplitude modulation
10- L9	AM modulator circuits – emitter modulations or low power AM
11-L10	collector modulator or medium and high power AM modulator
12-L11	AM transmitters – Broadcast AM transmitters
13-L12	Low level of AM transmitter – High level AM transmitter
14-L13	Welcoming of First year and Inauguration of MathematicsAssociation
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	UNIT II: AMPLITUDE MODULATION -RECEPTION
17-IT-1	Internal Test-I
18-L16	Comparison of AM system – Quadrature amplitude modulation
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	principles of AM detection – AM receivers – receiver parameters
21- L19	Tuned radio frequency (TRF) receiver or straight receiver
22- P2	College level meeting/Cell function
23-L20	principles of superhetrodyne
24-L21	double frequency conversion AM receiver
25-L22	UNIT III:ANGLE MODULATION – TRANSMISSION
26-L23	Frequency modulation – Phase modulation
27-L24	Phase deviation and modulation index
28-L25	Multitone modulation
29-L26	Transmission band width of FM
30-L27	conversion of PM to FM or frequency modulator
31-L28	conversion of FM to PM / phase modulators
32-L29	commercial broadcast FM
33-L30	average power of an AM/FM wave
34- P3	Department Seminar
35-L31	generation of FM – direct method of FM generation
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	reactance tube modulator
38- IT-II	Internal Test-II
39-L34	indirect method of FM wave generation – FM transmitters

40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Comparison of AM and FM.
42- L37	UNIT IV:FM RECEPTION FM
43- L38	detectors – Balanced slope detector
44- P4	College level meeting/ function
45-L39	Foster seely discriminator – ratio detector
46-L40	FM super heterodyne receiver – FM noise suppression
47-L41	threshold extension by FMFB technique
48-L42	UNIT – V: DIGITAL MODULATION TECHNIQUES
49-L43	BFSK – Binary phase shift keying
50-L44	Quadrature PSK – Differential PSK
	Internal Test III begins
51 L45	correlative coding – Duobinary encoding
52- L46	Performance comparison of digital modulation schemes M ary FSK
53-IT-III	Internal Test-III
54-L47	correlative coding – Duobinary encoding
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.11.2018

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	Students got more knowledge in modulation and demodulation techniques.
CO2	teeningues.
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	Students construct circuits usin the concepts.
EL3	
EL4	

Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Allied Physics I	
Course Code	GAPH11	
Class	I year (2015-2018)	
Semester	Odd	
Staff Name	M r. D. Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- Students to understand the property of Elasticity, Viscosity, sound.
- ۶

Syllabus

ALLIED PHYSICS – I

Unit I : Elasticity and bending moment

Hooke's law – Elastic moduli – Relation between elastic constants – Work done in stretching a wire – Expression for bending moment - uniform bending- Experiment to determine Young's modulus using pin and microscope-Twisting couple of a wire – Expression for couple per unit twist – Work done in twisting – Experimental determination of rigidity modulus of a wire using Torsion pendulum with theory

Unit II: Surface tension and Viscosity

Surface tension – Definition – Examples – Molecular interpretation – Expression for excess of pressure inside a synclastic and anticlastic surface-Application to spherical and cylindrical drops and bubbles

Viscosity: Coefficient of viscosity – Rate of flow of liquid in a capillary tube (Poisueuille's formula) – Analogy between liquid flow and current flow – Stokes' formula for highly viscous liquids (Dimension method) – Experimental determination of viscosity of highly viscous liquid (stokes' method)

Unit III: Sound

Simple harmonic motion – Free, damped ,forced vibrations and resonance – Composition of two SHMs along a straight line and in perpendicular direction – Melde's string experiment – Determination of frequency of tuning fork transverse mode)

Unit IV : Thermal physics : Mean free path- Expression for mean free path (Zero order approximation) – Transport phenomena – Expression for viscosity and thermal conductivity – Conduction in solids – coefficient of thermal conductivity – Lee's disc method to determine thermal conductivity of a bad conductor – Wiedmann – Franz's law – Convection : Newton's

Page 8 of 17

law of cooling – Experimental verification – Radiation : Black body radiation – Distribution of energy in black body spectrum – Important features.

Unit V: Optics

Interference: Condition for interference-Air wedge-determination of thickness of a thin wire by air wedge

Diffraction: Fresnel & Fraunhofer diffraction-Plane diffraction grating- theory and experiment to determine wavelength (normal incidence)

Polarization: Double refraction- half wave and quarter wave plate – Production and detection of plane, elliptically and circularly polarized light.

Books for study

- 1. Optics Brijlal & Subramanian
- 2. Properties of matter R.Murugesan
- 3. Heat & Thermodynamics D.S.Mathur

Reference Books

1.Heat and thermodynamics - Brijlal & Subramanian, S Chand & Co., New Delhi

2.Fundamentals of Optics by Jenkins A Francis and White E Harvey, McGRaw Hill Inc., New Delhi, 1976.

3. Elements of Properties of Matter by Mathur D S, Shyamlal Charitable Trust, New Delhi,

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2015	
1-L1	Unit I : Elasticity and bending moment	
2-L2	Hooke's law – Elastic moduli	
3- L3	Relation between elastic constants	
4-L4	Work done in stretching a wire	
5-L5	Expression for bending moment - uniform bending	
6-L6	Experiment to determine Young's modulus using pin and microscope-	
	Twisting couple of a wire	
7-L7	Expression for couple per unit twist – Work done in twisting	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Experimental determination of rigidity modulus of a wire using Torsion	
	pendulum with theory	
10- L9	Unit II: Surface tension and Viscosity	
11-L10	Surface tension – Definition – Examples	
12-L11	Molecular interpretation	
13-L12	Application to spherical and cylindrical drops and bubbles	
14-L13	Viscosity: Coefficient of viscosity – Rate of flow of liquid in a capillary tube	
	(Poisueuille's formula)	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	Analogy between liquid flow and current flow	
17-IT-1	Internal Test-I	
18-L16	Stokes' formula for highly viscous liquids (Dimension method) –	
	Experimental determination of viscosity of highly viscous liquid (stokes'	
	method)	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Unit III: Sound	
21- L19	Simple harmonic motion – Free, damped ,forced vibrations and resonance	
22- P2	College level meeting/Cell function	
23-L20	Composition of two SHMs along a straight line and in perpendicular	
247.21	direction	
24-L21	Melde's string experiment	
25-L22	Determination of frequency of tuning fork	
	Unit IV : Thermal physics	

26-L23	Moon free noth Expression for mean free noth	
	Mean free path- Expression for mean free path	
27-L24 28-L25	Transport phenomena – Expression for viscosity and thermal conductivity	
	Conduction in solids – coefficient of thermal conductivity	
29-L26	Lee's disc method to determine thermal conductivity of a bad conductor	
30-L27	Wiedmann – Franz's law – Convection : Newton's	
31-L28	Unit V: Optics	
32-L29	Interference: Condition for interference	
33-L30	Air wedge	
34- P3	Department Seminar	
35-L31	determination of thickness of a thin wire by air wedge	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Diffraction: Fresnel diffraction	
38- IT-II	Internal Test-II	
39-L34	Fraunhofer diffraction	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Plane diffraction grating	
42- L37	theory and experiment to determine wavelength (normal incidence)	
43- L38	Polarization: Double refraction	
44- P4	College level meeting/ function	
45-L39	half wave and quarter wave plate	
46-L40	Production and detection of plane, elliptically and circularly polarized light.	
47-L41	Expression for excess of pressure inside a synclastic and anticlastic surface	
48-L42	Expression for viscosity and thermal conductivity	
49-L43	uniform bending	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Expression for bending moment	
52- L46	Problem solving	
53-IT-III	Internal Test-III	
54-L47	Problem solving	
55-L48	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
00-LJ0	Last Working day on 29.10.2015	
	Last WORKing Uay 011 27.10.2013	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	Students got more knowledge in various properties of matters

CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	The related practical were demonstrated
	The related practical were demonstrated
EL3	The Tenned practical were demonstrated
EL3 EL4	
EL4	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Communication Electronics	
Course Code	SEPH5C	
Class	III year (2019-2020)	
Semester	Odd	
Staff Name	Dr.D.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

> Students to understand the various modulation techniques.

- **A A**
- \succ

Syllabus

UNIT I: AMPLITUDE MODULATION AND TRANSMISSION Introduction – amplitude Modulation – AM envelop – AM frequency spectrum and bandwidth – Phasor representation of AM with carrier – coefficient of modulation or percentage modulation or modulation index – degrees of modulation – AM power distribution – AM Current relation and efficiency - modulation by complex information signal doubleside band suppressed carrier AM - single side band suppressed carrier AM – Vestigal side band amplitude modulation – AM modulator circuits – emitter modulations or low power AM – collector modulator or medium and high power AM modulator - AM transmitters – Broadcast AM transmitters – Low level of AM transmitter – High level AM transmitter. (15L) UNIT II: AMPLITUDE MODULATION -RECEPTION Comparison of AM system – Quadrature amplitude modulation – principles of AM detection – AM receivers – receiver parameters – Tuned radio frequency (TRF) receiver or straight receiver – principles of superhetrodyne –double frequency conversion AM receiver. (11L)

Page 20 of 54

UNIT III:ANGLE MODULATION – TRANSMISSION Introduction – Frequency modulation – Phase modulation – Phase deviation and modulation index – Multitone modulation – Transmission band width of FM – conversion of PM to FM or frequency modulator – conversion of FM to PM / phase modulators – commercial broadcast FM – phasor representation of an FM and PM – average power of an AM/FM wave – generation of FM – direct method of FM generation – reactance tube modulator – indirect method of FM wave generation – FM transmitters – indirect method – Comparison of AM and FM. (13L)

UNIT IV:FM RECEPTION FM detectors – Balanced slope detector – Foster seely discriminator – ratio detector – FM super heterodyne receiver – FM noise suppression – threshold extension by FMFB technique. (11L)

UNIT – V: DIGITAL MODULATION TECHNIQUES Introduction – BFSK – Binary phase shift keying – Quadrature PSK – Differential PSK – Performance comparison of digital modulation schemes - M ary FSK – correlative coding – Duobinary encoding. (10L)

Book For Study 1.Principles Of Communication Engineering-Dr. K.S. Srinivasan, Second Edition : 2010.

Book For Reference 1.Electronic communication systems – George Kennedy & Bernard Davis, Tata Mcgraw Hills, 4th edition, 2008 2.Electronic communication Systems – Blake, Joseph J. Adams ki, Sun Yifeng, Delamer publication, 2nd edition, 2012 (Rupa Publication, India). 3.Fundamentals of Electrical engineering – Wayone tomasi

Hour	Class Schedule
allotment	
	Odd Semester Begin on 17.06.2019
1-L1	UNIT I: AMPLITUDE MODULATION AND TRANSMISSION
2-L2	amplitude Modulation – AM envelop – AM frequency spectrum and bandwidth
3- L3	Phasor representation of AM with carrier
4-L4	coefficient of modulation or percentage modulation or modulation index
5-L5	– degrees of modulation – AM power distribution -
6-L6	AM Current relation and efficiency - modulation by complex information signal
7-L7	doubleside band suppressed carrier AM
8- P1	single side band suppressed carrier AM
9- L8	Vestigal side band amplitude modulation
10- L9	AM modulator circuits – emitter modulations or low power AM
11-L10	collector modulator or medium and high power AM modulator
12-L11	AM transmitters – Broadcast AM transmitters
13-L12	Low level of AM transmitter – High level AM transmitter
14-L13	Welcoming of First year and Inauguration of MathematicsAssociation
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	UNIT II: AMPLITUDE MODULATION -RECEPTION
17-IT-1	Internal Test-I
18-L16	Comparison of AM system – Quadrature amplitude modulation
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	principles of AM detection – AM receivers – receiver parameters
21- L19	Tuned radio frequency (TRF) receiver or straight receiver
22- P2	College level meeting/Cell function
23-L20	principles of superhetrodyne
24-L21	double frequency conversion AM receiver
25-L22	UNIT III:ANGLE MODULATION – TRANSMISSION
26-L23	Frequency modulation – Phase modulation
27-L24	Phase deviation and modulation index
28-L25	Multitone modulation
29-L26	Transmission band width of FM
30-L27	conversion of PM to FM or frequency modulator
31-L28	conversion of FM to PM / phase modulators
32-L29	commercial broadcast FM
33-L30	average power of an AM/FM wave
34- P3	Department Seminar
35-L31	generation of FM – direct method of FM generation
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	reactance tube modulator
38- IT-II	Internal Test-II
39-L34	indirect method of FM wave generation – FM transmitters

40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Comparison of AM and FM.
42- L37	UNIT IV:FM RECEPTION FM
43- L38	detectors – Balanced slope detector
44- P4	College level meeting/ function
45-L39	Foster seely discriminator – ratio detector
46-L40	FM super heterodyne receiver – FM noise suppression
47-L41	threshold extension by FMFB technique
48-L42	UNIT – V: DIGITAL MODULATION TECHNIQUES
49-L43	BFSK – Binary phase shift keying
50-L44	Quadrature PSK – Differential PSK
	Internal Test III begins
51 L45	correlative coding – Duobinary encoding
52- L46	Performance comparison of digital modulation schemes M ary FSK
53-IT-III	Internal Test-III
54-L47	correlative coding – Duobinary encoding
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on30.10.2019

Learning Outcomes	COs of the course " <course name="">"</course>
C01	Students understood the modulation applications.
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	Students did project related this modulation.
EL3	
EL4	
Integrated Activity	

IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics			
Course Name	Allied Physics I			
Course Code	GAPH11			
Class	I year (2014-2017)			
Semester	Odd			
Staff Name	M r. D. Arul Asir Abraham			
Credits	4			
L. Hours /P. Hours	4 / WK			
Total 60Hrs/Sem				
Internal Test-3 Hrs				
Model Test-3 Hrs				
Dept. Meetings-2 Hrs				
College Meetings-2 Hrs				
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)				

Course Objectives

- > Students to understand the various properties of matters.
- AAA

Syllabus

ALLIED PHYSICS – I

Unit I : Elasticity and bending moment

Hooke's law – Elastic moduli – Relation between elastic constants – Work done in stretching a wire – Expression for bending moment - uniform bending- Experiment to determine Young's modulus using pin and microscope-Twisting couple of a wire – Expression for couple per unit twist – Work done in twisting – Experimental determination of rigidity modulus of a wire using Torsion pendulum with theory

Unit II: Surface tension and Viscosity

Surface tension – Definition – Examples – Molecular interpretation – Expression for excess of pressure inside a synclastic and anticlastic surface-Application to spherical and cylindrical drops and bubbles

Viscosity: Coefficient of viscosity – Rate of flow of liquid in a capillary tube (Poisueuille's formula) – Analogy between liquid flow and current flow – Stokes' formula for highly viscous liquids (Dimension method) – Experimental determination of viscosity of highly viscous liquid (stokes' method)

Unit III: Sound

Simple harmonic motion – Free, damped ,forced vibrations and resonance – Composition of two SHMs along a straight line and in perpendicular direction – Melde's string experiment – Determination of frequency of tuning fork transverse mode)

Unit IV : Thermal physics : Mean free path- Expression for mean free path (Zero order approximation) – Transport phenomena – Expression for viscosity and thermal conductivity – Conduction in solids – coefficient of thermal conductivity – Lee's disc method to determine thermal conductivity of a bad conductor – Wiedmann – Franz's law – Convection : Newton's

Page 8 of 17

law of cooling – Experimental verification – Radiation : Black body radiation – Distribution of energy in black body spectrum – Important features.

Unit V: Optics

Interference: Condition for interference-Air wedge-determination of thickness of a thin wire by air wedge

Diffraction: Fresnel & Fraunhofer diffraction-Plane diffraction grating- theory and experiment to determine wavelength (normal incidence)

Polarization: Double refraction- half wave and quarter wave plate – Production and detection of plane, elliptically and circularly polarized light.

Books for study

- 1. Optics Brijlal & Subramanian
- 2. Properties of matter R.Murugesan
- 3. Heat & Thermodynamics D.S.Mathur

Reference Books

1.Heat and thermodynamics - Brijlal & Subramanian, S Chand & Co., New Delhi

2.Fundamentals of Optics by Jenkins A Francis and White E Harvey, McGRaw Hill Inc., New Delhi, 1976.

3. Elements of Properties of Matter by Mathur D S, Shyamlal Charitable Trust, New Delhi,

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2014
1-L1	Unit I : Elasticity and bending moment
2-L2	Hooke's law – Elastic moduli
3- L3	Relation between elastic constants
4-L4	Work done in stretching a wire
5-L5	Expression for bending moment - uniform bending
6-L6	Experiment to determine Young's modulus using pin and microscope-
	Twisting couple of a wire
7-L7	Expression for couple per unit twist – Work done in twisting
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Experimental determination of rigidity modulus of a wire using Torsion
	pendulum with theory
10- L9	Unit II: Surface tension and Viscosity
11-L10	Surface tension – Definition – Examples
12-L11	Molecular interpretation
13-L12	Application to spherical and cylindrical drops and bubbles
14-L13	Viscosity: Coefficient of viscosity – Rate of flow of liquid in a capillary tube
	(Poisueuille's formula)
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Analogy between liquid flow and current flow
17-IT-1	Internal Test-I
18-L16	Stokes' formula for highly viscous liquids (Dimension method) -
	Experimental determination of viscosity of highly viscous liquid (stokes'
	method)
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Unit III: Sound
21- L19	Simple harmonic motion – Free, damped ,forced vibrations and resonance
22- P2	College level meeting/Cell function
23-L20	Composition of two SHMs along a straight line and in perpendicular
	direction
24-L21	Melde's string experiment
25-L22	Determination of frequency of tuning fork
	Unit IV : Thermal physics

26-L23	Maan free noth Expression for mean free noth
	Mean free path- Expression for mean free path
27-L24 28-L25	Transport phenomena – Expression for viscosity and thermal conductivity
	Conduction in solids – coefficient of thermal conductivity
29-L26	Lee's disc method to determine thermal conductivity of a bad conductor
30-L27	Wiedmann – Franz's law – Convection : Newton's
31-L28	Unit V: Optics
32-L29	Interference: Condition for interference
33-L30	Air wedge
34- P3	Department Seminar
35-L31	determination of thickness of a thin wire by air wedge
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Diffraction: Fresnel diffraction
38- IT-II	Internal Test-II
39-L34	Fraunhofer diffraction
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Plane diffraction grating
42- L37	theory and experiment to determine wavelength (normal incidence)
43- L38	Polarization: Double refraction
44- P4	College level meeting/ function
45-L39	half wave and quarter wave plate
46-L40	Production and detection of plane, elliptically and circularly polarized light.
47-L41	Expression for excess of pressure inside a synclastic and anticlastic surface
48-L42	Expression for viscosity and thermal conductivity
49-L43	uniform bending
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Expression for bending moment
52- L46	Problem solving
53-IT-III	Internal Test-III
54-L47	Problem solving
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 31.10.2014

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	Students got more knowledge in various properties of matters in

	physics.
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	Related experiments were demonstrated.
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Energy Physics	
Course Code	GNPH3B	
Class	II year (2014-2015)	
Semester	Odd	
Staff Name	Dr.D.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	2 / WK	
Total 30Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 20 Hrs (5 units; 5×4=20; 4Hrs /unit)		

Course Objectives

- > Students to understand the various energy and its applications.
- ۶

Syllabus

ENERGY PHYSICS

(Major Elective Paper)

Unit I

Conventional Energy Sources: World's reserve of commercial energy sources and their availability - various forms of energy - renewable and conventional energy systems - comparison

- coal, oil and natural gas - availability - statistical details - applications - merits and demerits. Nuclear energy – merits and demerits

Unit II

Non-Conventional Energy Sources: Renewable energy sources - solar energy - nature of solar radiation - components - solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water desalination - photovoltaic generation basics - merits and demerits of solar energy.

Unit III

Biomass energy: Biomass energy - classification - photosynthesis - biomass conversion process - gobar gas plants - wood gasification - ethanol from wood - advantages and

disadvantages of biomass as energy source Unit IV

Geothermal energy - wind energy - ocean thermal energy conversion (OTEC) - energy from waves and tides (Basic ideas, nature, applications, merits and demerits of these). Unit V

Impacts of Conventional Energy: Energy crisis and possible solutions - energy options for the developing countries - energy storage and hydrogen as a fuel(basics) - impact due to conventional energy sources – Thermal, Hydel, Nuclear - global warming- ecological damage -

Nuclear pollution (leaks, accidents, nuclear waste disposal).

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2014
1-L1	Unit I:Conventional Energy Sources: World's reserve of commercial energy
	sources and their availability
2-L2	various forms of energy
3- P1	Welcoming of First year and Inauguration of MathematicsAssociation
4-L3	renewable and conventional energy systems - comparison- coal, oil and natural
	gas
5-L4	Allotting portion for Internal Test-I
	Internal Test I begins
6-IT-I	Internal Test-I
7-L5	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
8-L6	availability - statistical details - applications - merits and demerits
9-L7	Nuclear energy – merits and demerits
	Unit II
	Non-Conventional Energy Sources: Renewable energy sources - solar energy -
	nature of solar radiation - components
10-P2	College level meeting/Cell function
11-L8	solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water
	desalination - photovoltaic generation basics - merits and demerits of solar
	energy.
12-L9	Unit III Biomass energy: Biomass energy - classification - photosynthesis -
	biomass conversion process - gobar gas plants - wood gasification - ethanol
	from wood
13-P3	Department Seminar
14-L10	advantages and disadvantages of biomass as energy source
15-L11	Unit IV Geothermal energy - wind energy - ocean thermal energy conversion
	(OTEC) – energy from waves and tides (Basic ideas, nature, applications, merits
	and demerits of these).
16-L12	Allotting portion for Internal Test-II
	Internal Test II begins
17-IT-1	Internal Test-II

18-L13	-Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
19-L14	Unit V Impacts of Conventional Energy: Energy crisis and possible solutions -
	energy options for the developing countries - energy storage and hydrogen as a
	fuel(basics) - impact due to conventional energy source
20- P2	College level meeting/ function
21-L15	Thermal, Hydel, Nuclear - global warming- ecological damage
22-L16	Nuclear pollution (leaks, accidents, nuclear waste disposal).
23- L17	Allotting portion for Internal Test-III
	Internal Test III begins
24- IT-III	Internal Test-III
25-L18	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
26-MT	Model Test
27-MT	Model Test
28-MT	Model Test
29-L19	Model test paper distribution and previous year university question paper
	discussion
30-L20	Feedback of the Course, analysis and report preparation
	Last Working day on 31.10.2014

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	Studente get knowledge in energy sources
	Students got knowledge in energy sources.
CO2	
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	Energy related project were done
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

Blended Learning

: using PPT, video, library resources, ICT techniques, Elearning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Energy Physics	
Course Code	SMPH6B	
Class	III year (2019–2020)	
Semester	Even	
Staff Name	Dr.D.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- Students to understand about the energy sources
- \triangleright
- \triangleright

Syllabus

ENERGY PHYSICS (Major Elective Paper)

Unit I

Conventional Energy Sources: World's reserve of commercial energy sources and their availability - various forms of energy - renewable and conventional energy systems - comparison

- coal, oil and natural gas - availability - statistical details - applications - merits and demerits. Nuclear energy – merits and demerits

Unit II

Non-Conventional Energy Sources: Renewable energy sources - solar energy - nature of solar radiation - components - solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water desalination - photovoltaic generation basics - merits and demerits of solar energy.

Unit III

Biomass energy: Biomass energy - classification - photosynthesis - biomass conversion process - gobar gas plants - wood gasification - ethanol from wood - advantages and disadvantages of biomass as energy source

Unit IV

Geothermal energy - wind energy - ocean thermal energy conversion (OTEC) - energy from waves and tides (Basic ideas, nature, applications, merits and demerits of these).

Unit V

Impacts of Conventional Energy: Energy crisis and possible solutions - energy options for the developing countries - energy storage and hydrogen as a fuel(basics) - impact due to conventional energy sources – Thermal, Hydel, Nuclear - global warming- ecological damage -

Nuclear pollution (leaks, accidents, nuclear waste disposal).

Text Books:

1. Solar Energy by G.D. Rai, Ed. V, 1995.

2. Solar energy by S.P. Sukhatme, Tata McGraw-Hill Publishing Company, Ed. II, 1997. Reference Books:

1 Non Conventional Energy Sources, G.D. Rai, 4th Edition, 1997.

2 Energy Technology by S. Rao and Dr. B.B. Parulekar 2nd Edition, 1997.

3 Power Plant technology by A.K. Wahil 1993

4 Renewable Energy: Power for a sustainable Future by Godfery Boyle, Alden Oess Ltd., Oxford, 1996.

5 Energy models for 2000 and beyond by Jyoti Parikh, Tata McGraw Hill Publishing Company, New Delhi, 1997.

Hour	Class Schedule
allotment	
	Even Semester Begin on 02.12.2019
1-L1	World's reserve of commercial energy sources and their availability
2-L2	various forms of energy
3- L3	renewable and conventional energy systems
4-L4	Class Test
5-L5	Comparison - coal, oil and natural gas
6-L6	availability - statistical details
7-L7	applications
8- P1	Welcoming of First year and Inauguration of Mathematics Association
9- L8	merits and demerits
10- L9	Class Test
11-L10	Nuclear energy
12-L11	merits and demerits

13-L12	Renewable energy sources
14-L13	nature of solar radiation
15-L14	- Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	components - solar heaters
17-IT-1	Internal Test-I
18-L16	crop dryers - space cooling
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Class Test
21- L19	Solar cookers
22- P2	College level meeting/Cell function
23-L20	water desalination
24-L21	photovoltaic generation basics
25-L22	merits and demerits of solar energy
26-L23	Class Test
27-L24	Biomass energy
28-L25	classification – photosynthesis
29-L26	biomass conversion process
30-L27	Class Test
31-L28	gobar gas plants - wood gasification
32-L29	ethanol from wood
33-L30	advantages and disadvantages of biomass as energy source
34- P3	Department Seminar
35-L31	Class Test
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Geothermal energy
38- IT-II	Internal Test-II
39-L34	wind energy
40-L35	-Test Paper distribution and result analysis
11.7.9.4	Entering Internal Test-II Marks into University portal
41-L36	ocean thermal energy conversion (OTEC)
42-L37	Class Test
43- L38	Energy from waves and tides
44- P4	College level meeting/ function
45-L39	Basic ideas, nature, applications, merits and demerits of these
46-L40	Class Test
47-L41	Energy crisis and possible solutions
48-L42	energy options for the developing countries
49-L43	energy storage and hydrogen as a fuel(basics)
50-L44	- Allotting portion for Internal Test-III
51 T 45	Internal Test III begins
51 L45 52- L46	impact due to conventional energy sources
	Thermal, Hydel, Nuclear - global warming- ecological damage
53-IT-III	Internal Test-III
54-L47	Nuclear pollution (leaks, accidents, nuclear waste disposal).
55-L48	Test Paper distribution and result analysis

	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 27.04.2020

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	Students got more knowledge in Energy sources.
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	Related experiment were demonstrated lab.
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Energy Physics	
Course Code	JMPH6B	
Class	III year (2018 – 2019)	
Semester	Even	
Staff Name	Dr.D.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > Students to understand the various energy sources and its applications.
- \triangleright
- \triangleright
- \triangleright

Syllabus

ENERGY PHYSICS (Major Elective Paper)

Unit I

Conventional Energy Sources: World's reserve of commercial energy sources and their availability - various forms of energy - renewable and conventional energy systems - comparison

- coal, oil and natural gas - availability - statistical details - applications - merits and demerits. Nuclear energy – merits and demerits

Unit II

Non-Conventional Energy Sources: Renewable energy sources - solar energy - nature of solar radiation - components - solar heaters - crop dryers - space cooling - solar ponds, solar cookers - water desalination - photovoltaic generation basics - merits and demerits of solar energy.

Unit III

Biomass energy: Biomass energy - classification - photosynthesis - biomass conversion process - gobar gas plants - wood gasification - ethanol from wood - advantages and disadvantages of biomass as energy source

Unit IV

Geothermal energy - wind energy - ocean thermal energy conversion (OTEC) - energy from waves and tides (Basic ideas, nature, applications, merits and demerits of these).

Unit V

Impacts of Conventional Energy: Energy crisis and possible solutions - energy options for the developing countries - energy storage and hydrogen as a fuel(basics) - impact due to conventional energy sources – Thermal, Hydel, Nuclear - global warming- ecological damage -

Nuclear pollution (leaks, accidents, nuclear waste disposal).

Text Books:

1. Solar Energy by G.D. Rai, Ed. V, 1995.

2. Solar energy by S.P. Sukhatme, Tata McGraw-Hill Publishing Company, Ed. II, 1997. Reference Books:

1 Non Conventional Energy Sources, G.D. Rai, 4th Edition, 1997.

2 Energy Technology by S. Rao and Dr. B.B. Parulekar 2nd Edition, 1997.

3 Power Plant technology by A.K. Wahil 1993

4 Renewable Energy: Power for a sustainable Future by Godfery Boyle, Alden Oess Ltd., Oxford, 1996.

5 Energy models for 2000 and beyond by Jyoti Parikh, Tata McGraw Hill Publishing Company, New Delhi, 1997.

Hour	Class Schedule
allotment	
	Even Semester Begin on 03.12.2018
1-L1	World's reserve of commercial energy sources and their availability
2-L2	various forms of energy
3- L3	renewable and conventional energy systems
4-L4	Class Test
5-L5	Comparison - coal, oil and natural gas
6-L6	availability - statistical details
7-L7	applications
8- P1	Welcoming of First year and Inauguration of Mathematics Association
9- L8	merits and demerits
10- L9	Class Test
11-L10	Nuclear energy
12-L11	merits and demerits

13-L12	Renewable energy sources
14-L13	nature of solar radiation
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	components - solar heaters
17-IT-1	Internal Test-I
18-L16	crop dryers - space cooling
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Class Test
21- L19	Solar cookers
22- P2	College level meeting/Cell function
23-L20	water desalination
24-L21	photovoltaic generation basics
25-L22	merits and demerits of solar energy
26-L23	Class Test
20-L23 27-L24	Biomass energy
27-L24 28-L25	classification – photosynthesis
28-L25 29-L26	biomass conversion process
30-L27	Class Test
31-L28	gobar gas plants - wood gasification
31-L28 32-L29	ethanol from wood
33-L30	advantages and disadvantages of biomass as energy source
33-L30 34- P3	Department Seminar
35-L31	Class Test
36-L32	Allotting portion for Internal Test-II
50 152	Internal Test II begins
37- L33	Geothermal energy
38- IT-II	Internal Test-II
39-L34	wind energy
40-L35	-Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	ocean thermal energy conversion (OTEC)
42- L37	Class Test
43- L38	Energy from waves and tides
44- P4	College level meeting/ function
45-L39	Basic ideas, nature, applications, merits and demerits of these
46-L40	Class Test
47-L41	Energy crisis and possible solutions
48-L42	energy options for the developing countries
49-L43	energy storage and hydrogen as a fuel(basics)
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	impact due to conventional energy sources
52- L46	Thermal, Hydel, Nuclear - global warming- ecological damage
53-IT-III	Internal Test-III
54-L47	Nuclear pollution (leaks, accidents, nuclear waste disposal).
55-L48	- Test Paper distribution and result analysis

	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.04.2019

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	Students studied the energy and its applications
CO3	
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	Related energy project was done by students.
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Maintenance Of Electrical Appliances	
Course Code	SSPH3A	
Class	II year (2019-2020)	
Semester	Odd	
Staff Name	Dr.D.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours 4 / WK		
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > Student to understand the concepts of electrical appliances
- \triangleright
- \triangleright

Syllabus

MAINTAINANCE OF ELECTRICAL EQUIPMENT (Skilled Based Subject)

Unit-I,

Network Analysis: Direct Current and Alternating Current, power, Ohms law,kircoff law resistances, capacitances, combination in series, parallel - problems

Unit-II

Two Port Networks: Resistance, impedence and reactances, Impedance Parameters, Admittance Parameters, Hybrid Parameters, Inverse Hybrid Parameters,

Unit-III

Elecrical bulb, choke, starter, tube light wiring, cfl functioning, LED lighting , staircase switch, domestic wiring, fuse, ELCB,(Earth leak circuit breaker), circuit breaker(MCB),

Unit-IV

Transformers, Electric iron, fan, mixie, grinder, refrigerator, circuit diagram and working Two Port Networks: Resistance, impedence and reactances, Impedance Parameters, Admittance Parameters, Hybrid Parameters, Inverse Hybrid Parameters,

Unit-III

Elecrical bulb, choke, starter, tube light wiring, cfl functioning, LED lighting, staircase switch, domestic wiring, fuse, ELCB,(Earth leak circuit breaker), circuit breaker(MCB),

Unit-IV

Transformers, Electric iron, fan, mixie , grinder, refrigerator, circuit diagram and working

Unit-V

Soldering and Desoldering Techniques : Grove board, bread board, printed circuit board, wave soldering

Reference Books.:

1. Circuits and Networks by A. Sudhakar and Shyam Mohan 2. Instrumentation Repair and Maintenance by R.G. Gupta 3. Basic Electronics and Linear Circuits by Bhargava & Kulshreshtha (TTTI) 4. Integrated Electronics by Millman and Halkias 5. Instrumentation Cooper 6. Internet

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 17.06.2019	
1-L1	Network Analysis: Direct Current and Alternating Current,	
2-L2	power, Ohms law,	
3- L3	Kircoff law	
4-L4	resistances,	
5-L5	Capacitances	
6-L6	combination in series,	
7-L7	Parallel	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	

9- L8	- problems
10- L9	Problems for solving
11-L10	Revision for unit-I
12-L11	Unit-II introduction
13-L12	Two Port Networks:
13 L12 14-L13	: Resistance
15-L14	
	Internal Test I begins
16-L15	Revision
17-IT-1	Internal Test-I
18-L16	, impedence and
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	reactances,
21- L19	Impedance Parameters,
22- P2	College level meeting/Cell function
23-L20	Admittance Parameters,
24-L21	Hybrid Parameters,
25-L22	Inverse Hybrid Parameters,
26-L23	Solving for problems
27-L24	Revision
28-L25	Class test
29-L26	Unit-III Introduction
30-L27	choke, starter,
31-L28	tube light wiring, cfl functioning, LED lighting , staircase switch, domestic wiring,
32-L29	fuse,
33-L30	ELCB,(Earth leak circuit breaker),
34- P3	Department Seminar
35-L31	circuit breaker(MCB),
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Revision
38- IT-II	Internal Test-II
39-L34	Unil-IV Introduction
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Transformers, Electric iron, fan, mixie, iagram
42- L37	grinder, refrigerator, circuit diagram and working
43- L38	Soldering and Desoldering Techniques :
44- P4	College level meeting/ function
45-L39	: Grove board, bread board,
46-L40	printed circuit board,
46-L40	printed circuit board,

47-L41	wave soldering
48-L42	Problems
49-L43	Solving for problems
50-L44	- Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Revision
52- L46	Class test
53-IT-III	Internal Test-III
54-L47	Revision
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working 30.10.2019

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	Students got knowledge in the electrical appliances
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	Some servicing done by Students
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

Blended Learning

: using PPT, video, library resources, ICT techniques, Elearning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Maintanance of electronic appliances	
Course Code	SSPH4A	
Class	II year (2019-2020)	
Semester	Even	
Staff Name	Dr.D.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > Students to understand the concept of various electrical appliances
- >

Syllabus

MAINTANANCE OF ELECTRONIC EQUIPMENTS

UNIT-I: ELECTRONIC COMPONENTS

Study of electronic components - resistors - types - characteristics - colour coding – wattage rating-potential divider arrangement-capacitors - type - characteristics --working voltage-star and delta connection of resistors and capacitors -soldering and desoldering techniques-Groove board,bread board and printed circuit board (11L)

UNIT-II: MEASURING INSTRUMENTS

Practical uses of Multimeter (analog and digital) - CRO - Block Diagram - measurement of voltage, frequency and phase - waveforms and Lissajoue's

figures- Digital Storage Oscilloscopes-LCD display for instruments -A/F and R/F oscillators. (10L)

UNIT-III: TRANSDUCERS

Classification of transducers-basic requirements/characteristics of Transducers-active and passive transducers, resistive (Potentiometer -Theory, temperature compensation & applications), Capacitive (variable air gap type), Inductive (LVDT) & piezoelectric transducers.

Measurement of temperature (RTD, semiconductor IC sensors)-Light

transducers (photo resistors & photovoltaic cells). (13L)

UNIT-IV: COMMUNICATION DEVICES

Basic concepts of radio transmitter and receiver - TV antennas-resonance antennas and their characteristics - Dipole antenna - Folded dipole - Yagi antenna - Yagi antenna design - Dish antenna - DTH system - Mobile communication system- MODEM.

Telephone systems-cellular Telephone systems-mobile phone-principle of operation-integrated services-digital networks(ISDN) (15L)

UNIT-V: Photography

Introduction to cameras-parts of camera and accessories—lens shutterapertureflash photography-filters-battery-tele and wide angle lens Digital formats data transfer to computer ISO speed resolution(11L)

Digital formats-data transfer to computer-ISO speed-resolution(11L)

Hour	Class Schedule
allotment	
	Even Semester Begin on02.12.2019
1-L1	UNIT-I: ELECTRONIC COMPONENTS
	Study of electronic components
2-L2	star and delta connection of resistors
3- L3	wattage rating-potential divider arrangement
4-L4	capacitors - type -characteristicsworking voltage
5-L5	resistors - types - characteristics - colour coding
6-L6	soldering and desoldering techniques
7-L7	Groove board, bread board
8- P1	Welcoming of First year and Inauguration of Mathematics Association
9- L8	Practical uses of Multimeter (analog and digital)
10- L9	measurement of voltage, frequency and phase
11-L10	waveforms and Lissajoue's figures
12-L11	CRO - Block Diagram
13-L12	Digital Storage Oscilloscopes
14-L13	LCD display for instruments
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins

16-L15	A/F and R/F oscillators
17-IT-1	Internal Test-I
18-L16	printed circuit board
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Classification of transducers
21- L19	active and passive transducers, resistive (Potentiometer-Theory,
	temperature compensation & applications
22- P2	College level meeting/Cell function
23-L20	Capacitive (variable air gap type),
24-L21	Inductive (LVDT) & piezoelectric transducers.
25-L22	Measurement of temperature (RTD, semiconductor IC sensors)
26-L23	Light transducers
27-L24	Basic concepts of radio transmitter and receiver
28-L25	TV antennas
29-L26	Dipole antenna - Folded dipole
30-L27	Yagi antenna
31-L28	Dish antenna
32-L29	Mobile communication system
33-L30	MODEM.
34- P3	Department Seminar
35-L31	Telephone systems
36-L32	
	Internal Test II begins
37- L33	cellular Telephone systems
38- IT-II	Internal Test-II
39-L34	mobile phone-principle of operation
40-L35	Test Paper distribution and result analysis
11 1 0 6	Entering Internal Test-II Marks into University portal
41-L36	integrated services
42- L37	digital networks(ISDN)
43- L38	Yagi antenna design
44- P4	College level meeting/ function
45-L39	resonance antennas and their characteristics
46-L40	basic requirements/characteristics of Transducers
47-L41	DTH system
48-L42	(photo resistors & photovoltaic cells).
49-L43	Class test
50-L44	Allotting portion for Internal Test-III
51 T 45	Internal Test III begins
51 L45	UNIT-V: Photography
50 5 1 1	Introduction to cameras-parts of camera and accessories
52- L46	lens shutteraperture
53-IT-III	Internal Test-III

54-L47	flash photography-filters-battery
55-L48	- Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	tele and wide angle lens Digital formats-data transfer to computer-
	ISO speed-resolution
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on27.04.2020

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	Students got more knowledge in electrical appliances and servicing
CO4	
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	Related equipment faults was identified by student
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Maintenance Of Electrical Equipment	
Course Code	JSPH3A	
Class	II year (2017-2018)	
Semester	Odd	
Staff Name		
	Dr.D.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- Students to understand the concepts of various electrical equipments
- \triangleright
- \triangleright

Syllabus

MAINTAINANCE OF ELECTRICAL EQUIPMENT (Skilled Based Subject)

Unit-I,

Network Analysis: Direct Current and Alternating Current, power, Ohms law,kircoff law resistances, capacitances, combination in series, parallel - problems

Unit-II

Two Port Networks: Resistance, impedence and reactances, Impedance Parameters, Admittance Parameters, Hybrid Parameters, Inverse Hybrid Parameters,

Unit-III

Elecrical bulb, choke, starter, tube light wiring, cfl functioning, LED lighting , staircase switch, domestic wiring, fuse, ELCB,(Earth leak circuit breaker), circuit breaker(MCB),

Unit-IV

Transformers, Electric iron, fan, mixie, grinder, refrigerator, circuit diagram and working Two Port Networks: Resistance, impedence and reactances, Impedance Parameters, Admittance Parameters, Hybrid Parameters, Inverse Hybrid Parameters,

Unit-III

Elecrical bulb, choke, starter, tube light wiring, cfl functioning, LED lighting, staircase switch, domestic wiring, fuse, ELCB,(Earth leak circuit breaker), circuit breaker(MCB),

Unit-IV

Transformers, Electric iron, fan, mixie , grinder, refrigerator, circuit diagram and working

Unit-V

Soldering and Desoldering Techniques : Grove board, bread board, printed circuit board, wave soldering

Reference Books.:

1. Circuits and Networks by A. Sudhakar and Shyam Mohan 2. Instrumentation Repair and Maintenance by R.G. Gupta 3. Basic Electronics and Linear Circuits by Bhargava & Kulshreshtha (TTTI) 4. Integrated Electronics by Millman and Halkias 5. Instrumentation Cooper 6. Internet

Hour allotment	Class Schedule
	Odd Semester Begin on 16.06.2017
1-L1	Network Analysis: Direct Current and Alternating Current,
2-L2	power, Ohms law,
3- L3	Kircoff law
4-L4	resistances,
5-L5	Capacitances
6-L6	combination in series,

7-L7	Parallel
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation
9- L8	- problems
10- L9	Problems for solving
11-L10	Revision for unit-I
12-L11	Unit-II introduction
13-L12	Two Port Networks:
14-L13	: Resistance
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Revision
17-IT-1	Internal Test-I
18-L16	, impedence and
19-L17	-Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	reactances,
21- L19	Impedance Parameters,
22- P2	College level meeting/Cell function
23-L20	Admittance Parameters,
24-L21	Hybrid Parameters,
25-L22	Inverse Hybrid Parameters,
26-L23	Solving for problems
27-L24	Revision
28-L25	Class test
29-L26	Unit-III Introduction
30-L27	choke, starter,
31-L28	tube light wiring, cfl functioning, LED lighting, staircase switch, domestic
	wiring,
32-L29	fuse,
33-L30	ELCB,(Earth leak circuit breaker),
34- P3	Department Seminar
35-L31	circuit breaker(MCB),
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Revision
38- IT-II	Internal Test-II
39-L34	Unil-IV Introduction
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Transformers, Electric iron, fan, mixie, iagram
42- L37	grinder, refrigerator, circuit diagram and working
43- L38	Soldering and Desoldering Techniques :
44- P4	College level meeting/ function
45-L39	: Grove board, bread board,

46-L40	printed circuit board,	
47-L41	wave soldering	
48-L42	Problems	
49-L43	Solving for problems	
50-L44	- Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Revision	
52- L46	Class test	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working 06.11.2017	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	Students got more knowledge i electrical equipments.
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	Some equipment servicing were done by Students
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.
HOD Signature	Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Mechanics And Relativity	
Course Code	GMPH21	
Class	I year (2015-2018)	
Semester	EVEN	
Staff Name	Dr.D.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- Students to understand the Mechanics concepts and relativity in physics

Syllabus

MECHANICS AND RELATIVITY UNIT-I: VECTORS Vector analysis - components of a vector - gradient of a scalar point function-divergence and curl of vector point function- angular momentum as a vector-product of two vectors - work as a scalar product of two vectors - line, surface and volume integrals - Gauss divergence, Stokes and Greens theorem

UNIT-II: CONSERVATION LAWS Laws of conservation of energy, linear momentum and angular momentum - work energy theorem - work done by gravitational force - work done by spring force - potential energy - conservative and non conservative forces - potential energy curve - centre of mass - Two body problem and reduced mass - central field motion - motion of planets in elliptical orbits - proof of Kepler's second and third laws - Rocket motion - systems of varying mass - multistage rocket.

UNIT-III: DYNAMICS OF RIGID BODIES Translational and rotational motion - Angular momentum and angular impulse - moment of inertia and radius of gyration - moment of inertia of a thin circular ring, solid sphere, solid cylinder. Torque - Rotational Kinetic energy - parallel axis and perpendicular axis theorem - Newton's second law for rotation - work, rotational Kinetic

energy and expression for power during rotation - Kinetic energy of rolling - Acceleration of a uniform body, rolling down an inclined plane. Precessional motion – Gyrostat

UNIT-IV: HYDROSTATICS AND HYDRODYNAMICS Pressure and thrust - Thrust on a plane surface immersed in a liquid - centre of pressure - centre of pressure on a rectangular lamina, a triangular lamina. Laws of floation - determination of meta centric height of a ship - steady and streamline flow - equation of continuity - energy of a fluid - Bernoulli's theorem – proof - pitot's tube and venturimeter

UNIT-V: RELATIVITY

Introduction - Reference frames-inertial frames - the ether hypothesis - Michelson morley experiment - Postulates of special theory of relativity - Lorentz transformation equations -Lorentz Fitzgerald contraction - time dilation - Relativistic addition of velocities - velocity addition theorem - simultaneity - Relativistic mass - Relativistic momentum - mass energy equivalence. Relation between total energy, rest mass energy and momentum. Accelerated frames and Gravity - general theory of relativity (basics) - gravity waves.

Hour	Class Schedule	
allotment		
	Even Semester Begin on 2.12.2015	
1-L1	MECHANICS AND RELATIVITY UNIT-I:Introduction	
2-L2	VECTORS Vector analysis gradient of a scalar point function	
3- L3	components of a vector	
4-L4	gradient of a scalar point function	
5-L5	angular momentum as a vector-product of two vectors	
6-L6	work as a scalar product of two vectors - line, surface and volume integrals	
7-L7	Gauss divergence, Stokes and Greens theorem	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	Laws of conservation of energy, linear momentum and angular momentum	
10- L9	linear momentum and angular momentum	
11-L10	work energy theorem	
12-L11	work done by gravitational force - work done by spring force	
13-L12	proof of Kepler's second and third laws	
14-L13	Two body problem and reduced mass - central field motion - motion of planets in	
	elliptical orbits	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	conservative and non conservative forces - potential energy curve - centre of mass	
17-IT-1	Internal Test-I	
18-L16	work done by gravitational force - work done by spring force - potential energy	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	work energy theorem	
21- L19	Translational and rotational motion	
22- P2	College level meeting/Cell function	
23-L20	moment of inertia and radius of gyration	
24-L21	Angular momentum and angular impulse	

25-L22	moment of inertia of a thin circular ring, solid sphere	
26-L23	Torque- Rotational Kinetic energy	
27-L24	Kinetic energy of rolling	
27 L24 28-L25	Gyrostat	
29-L25 29-L26	moment of inertia of a solid cylinder	
30-L27	parallel axis and perpendicular axis theorem	
31-L28	Newton's second law for rotation - work, rotational	
31-L28 32-L29	Kinetic energy and expression for power during rotation	
33-L30	Acceleration of a uniform body, rolling down an inclined plane.	
33-L30 34- P3	Department Seminar	
35-L31	Precessional motion	
36-L32		
30 132	Internal Test II begins	
37- L33	Pressure and thrust - Thrust on a plane surface immersed in a liquid	
38- IT-II	Internal Test-II	
39-L34	centre of pressure	
40-L35	-Test Paper distribution and result analysis	
10 200	Entering Internal Test-II Marks into University portal	
41-L36	centre of pressure on a rectangular lamina, a triangular lamina	
42- L37	Laws of floation - determination of meta centric height of a ship	
43- L38	steady and streamline flow - equation of continuity - energy of a fluid	
44- P4	College level meeting/ function	
45-L39	Bernoulli's theorem – proof - pitot's tube and venturimeter	
46-L40	Introduction - Reference frames-inertial frames	
47-L41	the ether hypothesis - Michelson morley experiment	
48-L42	Postulates of special theory of relativity - Lorentz transformation equations	
49-L43	Lorentz Fitzgerald contraction - time dilation - Relativistic addition of velocities	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	velocity addition theorem - simultaneity - Relativistic mass – Relativistic	
	momentum - mass energy equivalence	
52- L46	Relation between total energy, rest mass energy and momentum	
53-IT-III	Internal Test-III	
54-L47	Accelerated frames and Gravity - general theory of relativity (basics) - gravity waves.	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 22.04.2016	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	Students got knowledge in mechanics and relativity
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Mechanics And Relativity	
Course Code	GMPH21	
Class	I year (2014-2017)	
Semester	EVEN	
Staff Name	Dr.D.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- Students to understand the concepts of mechanics and relativity
- \checkmark
- \triangleright

Syllabus

MECHANICS AND RELATIVITY UNIT-I: VECTORS Vector analysis - components of a vector - gradient of a scalar point function-divergence and curl of vector point function- angular momentum as a vector-product of two vectors - work as a scalar product of two vectors - line, surface and volume integrals - Gauss divergence, Stokes and Greens theorem

UNIT-II: CONSERVATION LAWS Laws of conservation of energy, linear momentum and angular momentum - work energy theorem - work done by gravitational force - work done by spring force - potential energy - conservative and non conservative forces - potential energy curve - centre of mass - Two body problem and reduced mass - central field motion - motion of planets in elliptical orbits - proof of Kepler's second and third laws - Rocket motion - systems of varying mass - multistage rocket.

UNIT-III: DYNAMICS OF RIGID BODIES Translational and rotational motion - Angular momentum and angular impulse - moment of inertia and radius of gyration - moment of inertia of a thin circular ring, solid sphere, solid cylinder. Torque - Rotational Kinetic energy - parallel axis and perpendicular axis theorem - Newton's second law for rotation - work, rotational Kinetic

energy and expression for power during rotation - Kinetic energy of rolling - Acceleration of a uniform body, rolling down an inclined plane. Precessional motion – Gyrostat

UNIT-IV: HYDROSTATICS AND HYDRODYNAMICS Pressure and thrust - Thrust on a plane surface immersed in a liquid - centre of pressure - centre of pressure on a rectangular lamina, a triangular lamina. Laws of floation - determination of meta centric height of a ship - steady and streamline flow - equation of continuity - energy of a fluid - Bernoulli's theorem – proof - pitot's tube and venturimeter

UNIT-V: RELATIVITY

Introduction - Reference frames-inertial frames - the ether hypothesis - Michelson morley experiment - Postulates of special theory of relativity - Lorentz transformation equations -Lorentz Fitzgerald contraction - time dilation - Relativistic addition of velocities - velocity addition theorem - simultaneity - Relativistic mass - Relativistic momentum - mass energy equivalence. Relation between total energy, rest mass energy and momentum. Accelerated frames and Gravity - general theory of relativity (basics) - gravity waves.

Hour	Class Schedule	
allotment		
	Even Semester Begin on 3.12.2014	
1-L1	MECHANICS AND RELATIVITY UNIT-I:Introduction	
2-L2	VECTORS Vector analysis gradient of a scalar point function	
3- L3	components of a vector	
4-L4	gradient of a scalar point function	
5-L5	angular momentum as a vector-product of two vectors	
6-L6	work as a scalar product of two vectors - line, surface and volume integrals	
7-L7	Gauss divergence, Stokes and Greens theorem	
8- P1	Welcoming of First year and Inauguration of MathematicsAssociation	
9- L8	Laws of conservation of energy, linear momentum and angular momentum	
10- L9	linear momentum and angular momentum	
11-L10	work energy theorem	
12-L11	work done by gravitational force - work done by spring force	
13-L12	proof of Kepler's second and third laws	
14-L13	Two body problem and reduced mass - central field motion - motion of planets in	
	elliptical orbits	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	conservative and non conservative forces - potential energy curve - centre of mass	
17-IT-1	Internal Test-I	
18-L16	work done by gravitational force - work done by spring force - potential energy	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	work energy theorem	
21- L19	Translational and rotational motion	
22- P2	College level meeting/Cell function	
23-L20	moment of inertia and radius of gyration	
24-L21	Angular momentum and angular impulse	

25-L22	moment of inertia of a thin circular ring, solid sphere	
26-L23	Torque- Rotational Kinetic energy	
20 L23	Kinetic energy of rolling	
28-L25	Gyrostat	
20 L25 29-L26	moment of inertia of a solid cylinder	
30-L27	parallel axis and perpendicular axis theorem	
30 L27 31-L28	Newton's second law for rotation - work, rotational	
31-L20 32-L29	Kinetic energy and expression for power during rotation	
33-L30	Acceleration of a uniform body, rolling down an inclined plane.	
33-L30 34- P3	Department Seminar	
35-L31	Precessional motion	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Pressure and thrust - Thrust on a plane surface immersed in a liquid	
38- IT-II	Internal Test-II	
39-L34	centre of pressure	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	centre of pressure on a rectangular lamina, a triangular lamina	
42- L37	Laws of floation - determination of meta centric height of a ship	
43- L38	steady and streamline flow - equation of continuity - energy of a fluid	
44- P4	College level meeting/ function	
45-L39	Bernoulli's theorem – proof - pitot's tube and venturimeter	
46-L40	Introduction - Reference frames-inertial frames	
47-L41	the ether hypothesis - Michelson morley experiment	
48-L42	Postulates of special theory of relativity - Lorentz transformation equations	
49-L43	Lorentz Fitzgerald contraction - time dilation - Relativistic addition of velocities	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	velocity addition theorem - simultaneity - Relativistic mass – Relativistic	
	momentum - mass energy equivalence	
52- L46	Relation between total energy, rest mass energy and momentum	
53-IT-III	Internal Test-III	
54-L47	Accelerated frames and Gravity - general theory of relativity (basics) - gravity waves.	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.04.2015	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	Mechanics theoremes were proved
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	Students applied the concepts in various fields
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Properties Of Matter	
Course Code	SMPH12	
Class	I year (2017-2018)	
Semester	Odd	
Staff Name	Dr.D.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- To understand the various properties of matters
- \triangleright

Syllabus

Paper I Properties of Matter and Oscillations

Unit I. ELASTICITY: - Modulus of elasticity- Poisson's ratio- Relation between elastic constants and Poisson's ratio- Twisting couple on a cylinder -Energy stored in a twisted wire- - Torsional pendulum (with and without weights)- Bending of beams- Bending moment- Cantilever loading- -Non-uniform and uniform bending of a beam

Bending of beams- Bending moment- Cantilever loading- -Non-uniform and uniform bending of a beam

UnitII.Viscosity and low pressure : - Newton's law- Poiseuilles flow- Stoke's fall-Rotation viscometer- Ostwald viscometer- Meyer's formula for viscosity of gas-Rankine's method- Effect of temperature and pressure on viscosity- Vacuum pump-Rotary oil pump-Mercury diffusion pump- Knudsen Gauge. Unit III. SURFACE TENSION: - Molecular interpretation- surface energy- Pressure difference across a curved surface- Excess pressure in liquid drops and air bubbles-Molecular forces- Shape of liquid meniscus in capillary tube-Angle of contact- Capillary rise and energy consideration- Jaeger's method.

OSCILLATIONS Unit IV. Simple Harmonic Motion: Simple Harmonic Oscillator, Motion of simple and compound pendulum , loaded spring, Energy in simple harmonic motion. Superposition principle: (i) collinear SHM of same frequency, Standing wave on a stretched string (both ends fixed).. (ii) SHM of same frequency but perpendicular to each other and (iii) Lissajous figures .

Unit V. Damped Harmonic Motion: Equation of motion, Dead beat motion, Critically damped system, Lightly damped system: relaxation time, logarithmic decrement, quality factor. Forced Oscillations: Equation of motion, complete solution, Steady state solution, Resonance, Sharpness of resonance, Quality factor. Wave Motion: One dimensional plane wave; Classical wave equation;;

Books for study 1. Properties of Matter - Brijlal & Subramaniam. 2. Properties of Matter - D.S. Mathur 3. Properties of Matter - Murugesan 4. Waves & Oscillations - Brijlal & Subramaniam 5. Satya Prakash and Akash Saluja- oscillations and waves-pragati prakashan (2002) Books for Reference

1. Physics, Robert Resnick, David Halliday, Jearl Walker Wiley and Sons Inc., Sixth Edition. 2. Waves and Oscillations, Berkeley Physics Course, Vol. 3. F. S. Crawford, Tata McGraw Hill 3. H.R Gulati- fundamental of general properties of matter-R.Chand and co- fifth edition (1977) 4. N.k Bajaj- The physics of waves and oscillations-Tata McGraw-Hill (1988)

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.06.2017
1-L1	Unit I. ELASTICITY
2-L2	Modulus of elasticity- Poisson's ratio
3- L3	Relation between elastic constants and Poisson's ratio- Twisting couple on a
	cylinder
4-L4	Energy stored in a twisted wire Torsional pendulum (with and without
	weights)
5-L5	Torsional pendulum (with and without weights)- Bending of beams-
	Bending moment- Cantilever loading-
6-L6	Bending of beams- Bending moment- Cantilever loadingNon-uniform and
	uniform bending of a beam
	Ŭ

7-L7	UnitII.Viscosity and low pressure
8- P1	Welcoming of First year and Inauguration of physics Association
9- L8	Newton's law- Poiseuilles flow- Stoke's fall
10- L9	Rotation viscometer- Ostwald viscometer- Meyer's formula for viscosity of
	gas-Rankine's method- Effect of temperature and pressure on viscosity
11-L10	Vacuum pump- Rotary oil pump-Mercury diffusion pump- Knudsen
	Gauge.
12-L11	Unit III. SURFACE TENSION
13-L12	- Molecular interpretation- surface energy- Pressure difference across a
	curved surface
14-L13	Excess pressure in liquid drops and air bubbles-Molecular forces- Shape of
15 1 1 4	liquid meniscus in capillary tube
15-L14	Allotting portion for Internal Test-I
16 1 15	Internal Test I begins
16-L15	Angle of contact- Capillary rise and energy consideration- Jaeger's method.
17-IT-1	Internal Test-I
17-11-1 18-L16	Unit IV- OSCILLATIONS Simple Harmonic Motion
18-L10 19-L17	-Test Paper distribution and result analysis
19-L17	Entering Internal Test-I Marks into University portal
20-L18	, Motion of simple and compound pendulum , loaded spring,.:
20 L10 21- L19	. Superposition principle: (i) collinear SHM of same frequency but
21 217	perpendicular to each other.
22- P2	College level meeting/Cell function
23-L20	, Energy in simple harmonic motion. Superposition principle
24-L21	Lissajous figures
25-L22	Simple Harmonic Oscillator
26-L23	(i) collinear SHM of same frequency
27-L24	Unit V. Damped Harmonic Motion
28-L25	Equation of motion
29-L26	Dead beat motion
30-L27	Critically damped system,
31-L28	relaxation time, logarithmic decrement
32-L29	Problem solving
33-L30	relaxation time, logarithmic decrement
34- P3	Department Seminar
35-L31	logarithmic decrement,
36-L32	Allotting portion for Internal Test-II
27 1 22	Internal Test II begins
37- L33 38- IT-II	quality factor. Forced Oscillations Internal Test-II
39-L34 40-L35	Problem solvingTest Paper distribution and result analysis
40-L33	Entering Internal Test-II Marks into University portal
41-L36	Equation of motion, complete solution
41-L30 42- L37	Dead beat motion
42- L37 43- L38	, Energy in simple harmonic motion. Superposition principle
15 150	, Energy in simple normetic metron, superposition principle

44- P4	College level meeting/ function	
45-L39	Energy in simple harmonic motion. Superposition principle	
46-L40	Superposition principle	
47-L41	Sharpness of resonance	
48-L42	Quality factor. Wave Motion	
49-L43	Wave Motion: One dimensional plane wave	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Classical wave equation	
52- L46	Problem solving	
53-IT-III	Internal Test-III	
54-L47	Energy in simple harmonic motion	
55-L48	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 06.11.2017	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	Students got more knowledge in properties of matters
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	Some experiments were demonstrated
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.
HOD Signature	Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Properties Of Matter	
Course Code	SMPH12	
Class	I year (2018-2019)	
Semester	Odd	
Staff Name	Dr.D.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > Students to understand the properties of matters and oscillations
- \land
- \triangleright

Syllabus

Paper I Properties of Matter and Oscillations

Unit I. ELASTICITY: - Modulus of elasticity- Poisson's ratio- Relation between elastic constants and Poisson's ratio- Twisting couple on a cylinder -Energy stored in a twisted wire- - Torsional pendulum (with and without weights)- Bending of beams- Bending moment- Cantilever loading- -Non-uniform and uniform bending of a beam

Bending of beams- Bending moment- Cantilever loading- -Non-uniform and uniform bending of a beam

UnitII.Viscosity and low pressure : - Newton's law- Poiseuilles flow- Stoke's fall-Rotation viscometer- Ostwald viscometer- Meyer's formula for viscosity of gas-Rankine's method- Effect of temperature and pressure on viscosity- Vacuum pump-Rotary oil pump-Mercury diffusion pump- Knudsen Gauge. Unit III. SURFACE TENSION: - Molecular interpretation- surface energy- Pressure difference across a curved surface- Excess pressure in liquid drops and air bubbles-Molecular forces- Shape of liquid meniscus in capillary tube-Angle of contact- Capillary rise and energy consideration- Jaeger's method.

OSCILLATIONS Unit IV. Simple Harmonic Motion: Simple Harmonic Oscillator, Motion of simple and compound pendulum , loaded spring, Energy in simple harmonic motion. Superposition principle: (i) collinear SHM of same frequency, Standing wave on a stretched string (both ends fixed).. (ii) SHM of same frequency but perpendicular to each other and (iii) Lissajous figures .

Unit V. Damped Harmonic Motion: Equation of motion, Dead beat motion, Critically damped system, Lightly damped system: relaxation time, logarithmic decrement, quality factor. Forced Oscillations: Equation of motion, complete solution, Steady state solution, Resonance, Sharpness of resonance, Quality factor. Wave Motion: One dimensional plane wave; Classical wave equation;;

Books for study 1. Properties of Matter - Brijlal & Subramaniam. 2. Properties of Matter - D.S. Mathur 3. Properties of Matter - Murugesan 4. Waves & Oscillations - Brijlal & Subramaniam 5. Satya Prakash and Akash Saluja- oscillations and waves-pragati prakashan (2002) Books for Reference

1. Physics, Robert Resnick, David Halliday, Jearl Walker Wiley and Sons Inc., Sixth Edition. 2. Waves and Oscillations, Berkeley Physics Course, Vol. 3. F. S. Crawford, Tata McGraw Hill 3. H.R Gulati- fundamental of general properties of matter-R.Chand and co- fifth edition (1977) 4. N.k Bajaj- The physics of waves and oscillations-Tata McGraw-Hill (1988)

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2018	
1-L1	Unit I. ELASTICITY	
2-L2	Modulus of elasticity- Poisson's ratio	
3- L3	Relation between elastic constants and Poisson's ratio- Twisting couple on a	
	cylinder	
4-L4	Energy stored in a twisted wire Torsional pendulum (with and without	
	weights)	
5-L5	Torsional pendulum (with and without weights)- Bending of beams-	
	Bending moment- Cantilever loading-	
6-L6	Bending of beams- Bending moment- Cantilever loadingNon-uniform and	
	uniform bending of a beam	
	Ŭ	

7-L7	UnitII.Viscosity and low pressure	
8- P1	Welcoming of First year and Inauguration of physics Association	
9- L8	Newton's law- Poiseuilles flow- Stoke's fall	
10- L9	Rotation viscometer- Ostwald viscometer- Meyer's formula for viscosity of	
	gas-Rankine's method- Effect of temperature and pressure on viscosity	
11-L10	Vacuum pump- Rotary oil pump-Mercury diffusion pump- Knudsen	
	Gauge.	
12-L11	Unit III. SURFACE TENSION	
13-L12	- Molecular interpretation- surface energy- Pressure difference across a	
14-L13	curved surface	
14-L15	Excess pressure in liquid drops and air bubbles-Molecular forces- Shape of liquid meniscus in capillary tube	
15-L14	Allotting portion for Internal Test-I	
1J-L14	Internal Test I begins	
16-L15	Angle of contact- Capillary rise and energy consideration- Jaeger's method.	
10 215	ingle of contact Cupillary fise and chergy consideration bacger s method.	
17-IT-1	Internal Test-I	
18-L16	Unit IV- OSCILLATIONS Simple Harmonic Motion	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	, Motion of simple and compound pendulum , loaded spring,.:	
21- L19	. Superposition principle: (i) collinear SHM of same frequency but	
	perpendicular to each other.	
22- P2	College level meeting/Cell function	
23-L20 24-L21	, Energy in simple harmonic motion. Superposition principle	
24-L21 25-L22	Lissajous figures	
26-L23	Simple Harmonic Oscillator (i) collinear SHM of same frequency	
20-L23	Unit V. Damped Harmonic Motion	
28-L25	Equation of motion	
29-L26	Dead beat motion	
30-L27	Critically damped system,	
31-L28	relaxation time, logarithmic decrement	
32-L29	Problem solving	
33-L30	relaxation time, logarithmic decrement	
34- P3	Department Seminar	
35-L31	logarithmic decrement,	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	quality factor. Forced Oscillations	
38- IT-II	Internal Test-II	
39-L34	Problem solving	
40-L35	-Test Paper distribution and result analysis	
A1 1 2 C	Entering Internal Test-II Marks into University portal	
41-L36	Equation of motion, complete solution	
42-L37	Dead beat motion	
43- L38	, Energy in simple harmonic motion. Superposition principle	

44- P4	College level meeting/ function	
45-L39	Energy in simple harmonic motion. Superposition principle	
46-L40	Superposition principle	
47-L41	Sharpness of resonance	
48-L42	Quality factor. Wave Motion	
49-L43	Wave Motion: One dimensional plane wave	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Classical wave equation	
52- L46	Problem solving	
53-IT-III	Internal Test-III	
54-L47	Energy in simple harmonic motion	
55-L48	- Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.11.2018	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	Students got more knowledge in properties of matters and its
	applications
CO5	
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	Some experiments were demonstrated
EL4	
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.
HOD Signature	Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Thermal physics	
Course Code	SMPH22	
Class	I year (2017-2020)	
Semester	Even	
Staff Name	Dr.D.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- Students to understand the properties of thermal physics and thermodynamics
- \succ

Syllabus

Thermal Physics

Unit I. KINETIC THEORY OF GASES: Concept of heat and temperature –ideal and perfect gas – kinetic theory of gases – Expression for a pressure of a gas – interpretation of temperature – Gas laws – Gas equation – Avogadro's hypothesis – Graham's law of diffusion of gases – Maxwell's law of equi-partition of energy – atomicity of gases – Maxwell's law of distribution of velocity – experimental verification – mean free path – problems in all topics

Unit II. TRANSPORT PHEONOMENA : Transport of momentum - Transport of energy gases at high pressure- Tr of st ansport of matter – behavior of sure – Vander Waals equation ate – critical constants – experimental determination – Porous plug experiment – J-K effect – relation between temperatures - problems in all topics.

Unit III. THERMODYNAMICS I : Thermodynamic system – thermal equilibrium and concept of temperature – heat and work as path function – comparison – first law of thermodynamics – applications – isothermal process – adiabatic process – isochoric process – isobaric process – gas equation during adiabatic process – work done during isothermal and adiabatic processes – slopes of isothermal and adiabatic processes - problems in all topics.

Unit IV. THERMODYNAMICS II: Reversible and irreversible processes – second law of thermodynamics – Carnot's engine – refrigerator – Carnot's theorem – Thermodynamic scale of temperature - Clapeyron latent heat equation – entropy – second law of thermodynamics – change in entropy in a Carnot's cycle – change in entropy in an irreversible process – third law of thermodynamics – temperature-entropy diagram entropy of a perfect gas - problems in all topics.

Unit V. THERMODYNAMICS III: Maxwell's thermodynamic relations – Helmholtz function – Gibb's function – enthalpy – Maxwell's relations from the above functions – equilibrium between liquid and its vapour – first order phase transition – second order phase transition – TdS equations – deduction of Clapeyron latent heat equation – relation between specific heat capacities for a perfect and Vander Waals gas – derivation of Clausius latent heat equation - problems in all topics.

Book for study:

1. Heat and Thermodynamics – Brijlal and Subramanium – S.Chand and company Ltd.

Book for reference:

1.Physics - Robert Resnick, David Halliday, Jearl Walker Wiley and Sons Inc., Sixth Edition

Hour	Class Schedule	
allotment		
	Even Semester Begin on 07.12.2017	
1-L1	Unit I. KINETIC THEORY OF GASES	
2-L2	Concept of heat and temperature	
3- L3	ideal and perfect gas – kinetic theory of gases	
4-L4	Expression for a pressure of a gas – interpretation of temperature	
5-L5	Gas laws – Gas equation	
6-L6	Avogadro's hypothesis – Graham's law of diffusion of gases	
7-L7	Maxwell's law of equi-partition of energy – atomicity of gases	
8- P1	Maxwell's law of distribution of velocity – experimental verification	

9- L8	mean free path -problems in all topics
10- L9	Unit II. TRANSPORT PHEONOMENA
11-L10	Transport of momentum - Transport of energy gases at high pressure
12-L11	Vander Waals equation ate – critical constants
13-L12	experimental determination – Porous plug experiment
14-L13	J-K effect – relation between temperatures
15-L14	Allotting portion for Internal Test-I
-	Internal Test I begins
16-L15	problems in all topics.
17-IT-1	Internal Test-I
18-L16	Unit III. THERMODYNAMICS I
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Thermodynamic system – thermal equilibrium and concept of temperature
21- L19	heat and work as path function
22- P2	College level meeting/Cell function
23-L20	comparison – first law of thermodynamics – applications – isothermal
	process
24-L21	adiabatic process – isochoric process – isobaric process – gas equation
	during adiabatic process
25-L22	work done during isothermal and adiabatic processes
26-L23	slopes of isothermal and adiabatic processes
27-L24	problems in all topics.
28-L25	Unit IV. THERMODYNAMICS II
29-L26	Reversible and irreversible processes – second law of thermodynamics
30-L27	Carnot's engine – refrigerator – Carnot's theorem
31-L28	Thermodynamic scale of temperature
32-L29	Clapeyron latent heat equation
33-L30	entropy – second law of thermodynamics
34- P3	Department Seminar
35-L31	change in entropy in a Carnot's cycle
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	change in entropy in an irreversible process
38- IT-II	Internal Test-II
39-L34	third law of thermodynamics
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	temperature- entropy diagram
42- L37	entropy of a perfect gas
43- L38	problems in all topics.
44- P4	College level meeting/ function
45-L39	Unit V. THERMODYNAMICS III
46-L40	Maxwell's thermodynamic relations – Helmholtz function – Gibb's function
47-L41	enthalpy – Maxwell's relations from the above functions equilibrium
10 T 12	between liquid and its vapour
48-L42	first order phase transition – second order phase transition

49-L43	TdS equations	
50-L44	- Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	deduction of Clapeyron latent heat equation	
52- L46	relation between specific heat capacities for a perfect and Vander Waals gas	
	derivation of Clausius latent heat equation	
53-IT-III	Internal Test-III	
54-L47	problems in all topics.	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.04.2018	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO3	
CO4	
CO5	Students studied the thermal proprties
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	Some experiments were demonstrated
EL3	
EL4	
Integrated Activity	
IA1	
IA2	

Blended Learning

: using PPT, video, library resources, ICT techniques, Elearning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Thermal physics	
Course Code	SMPH22	
Class	I year (2018-2021)	
Semester	Even	
Staff Name	Dr.D.Arul Asir Abraham	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > To study the properties of kinetic theory of gases and thermodynamics
- \triangleright
- \triangleright

Syllabus

Thermal Physics

Unit I. KINETIC THEORY OF GASES: Concept of heat and temperature –ideal and perfect gas – kinetic theory of gases – Expression for a pressure of a gas – interpretation of temperature – Gas laws – Gas equation – Avogadro's hypothesis – Graham's law of diffusion of gases – Maxwell's law of equi-partition of energy – atomicity of gases – Maxwell's law of distribution of velocity – experimental verification – mean free path – problems in all topics

Unit II. TRANSPORT PHEONOMENA : Transport of momentum - Transport of energy gases at high pressure- Tr of st ansport of matter – behavior of sure – Vander Waals equation ate – critical constants – experimental determination – Porous plug experiment – J-K effect – relation between temperatures - problems in all topics.

Unit III. THERMODYNAMICS I : Thermodynamic system – thermal equilibrium and concept of temperature – heat and work as path function – comparison – first law of thermodynamics – applications – isothermal process – adiabatic process – isochoric process – isobaric process – gas equation during adiabatic process – work done during isothermal and adiabatic processes – slopes of isothermal and adiabatic processes - problems in all topics.

Unit IV. THERMODYNAMICS II: Reversible and irreversible processes – second law of thermodynamics – Carnot's engine – refrigerator – Carnot's theorem – Thermodynamic scale of temperature - Clapeyron latent heat equation – entropy – second law of thermodynamics – change in entropy in a Carnot's cycle – change in entropy in an irreversible process – third law of thermodynamics – temperature-entropy diagram entropy of a perfect gas - problems in all topics.

Unit V. THERMODYNAMICS III: Maxwell's thermodynamic relations – Helmholtz function – Gibb's function – enthalpy – Maxwell's relations from the above functions – equilibrium between liquid and its vapour – first order phase transition – second order phase transition – TdS equations – deduction of Clapeyron latent heat equation – relation between specific heat capacities for a perfect and Vander Waals gas – derivation of Clausius latent heat equation - problems in all topics.

Book for study:

1. Heat and Thermodynamics – Brijlal and Subramanium – S.Chand and company Ltd.

Book for reference:

1.Physics - Robert Resnick, David Halliday, Jearl Walker Wiley and Sons Inc., Sixth Edition

Hour	Class Schedule	
allotment		
	Even Semester Begin on 03.12.2018	
1-L1	Unit I. KINETIC THEORY OF GASES	
2-L2	Concept of heat and temperature	
3- L3	ideal and perfect gas – kinetic theory of gases	
4-L4	Expression for a pressure of a gas – interpretation of temperature	
5-L5	Gas laws – Gas equation	
6-L6	Avogadro's hypothesis – Graham's law of diffusion of gases	
7-L7	Maxwell's law of equi-partition of energy – atomicity of gases	
8- P1	Maxwell's law of distribution of velocity – experimental verification	

9- L8	mean free path -problems in all topics
10- L9	Unit II. TRANSPORT PHEONOMENA
11-L10	Transport of momentum - Transport of energy gases at high pressure
12-L11	Vander Waals equation ate – critical constants
13-L12	experimental determination – Porous plug experiment
14-L13	J-K effect – relation between temperatures
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	problems in all topics.
17-IT-1	Internal Test-I
18-L16	Unit III. THERMODYNAMICS I
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Thermodynamic system – thermal equilibrium and concept of temperature
21- L19	heat and work as path function
22- P2	College level meeting/Cell function
23-L20	comparison – first law of thermodynamics – applications – isothermal
	process
24-L21	adiabatic process – isochoric process – isobaric process – gas equation
	during adiabatic process
25-L22	work done during isothermal and adiabatic processes
26-L23	slopes of isothermal and adiabatic processes
27-L24	problems in all topics.
28-L25	Unit IV. THERMODYNAMICS II
29-L26	Reversible and irreversible processes – second law of thermodynamics
30-L27	Carnot's engine – refrigerator – Carnot's theorem
31-L28	Thermodynamic scale of temperature
32-L29	Clapeyron latent heat equation
33-L30	entropy – second law of thermodynamics
34- P3	Department Seminar
35-L31	change in entropy in a Carnot's cycle
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	change in entropy in an irreversible process
38- IT-II	Internal Test-II
39-L34	third law of thermodynamics
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	temperature- entropy diagram
42- L37	entropy of a perfect gas
43- L38	problems in all topics.
44- P4	College level meeting/ function
45-L39	Unit V. THERMODYNAMICS III
46-L40	Maxwell's thermodynamic relations – Helmholtz function – Gibb's function
47-L41	enthalpy – Maxwell's relations from the above functions equilibrium
10 - 12	between liquid and its vapour
48-L42	first order phase transition – second order phase transition

49-L43	TdS equations	
50-L44	- Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	deduction of Clapeyron latent heat equation	
52- L46	relation between specific heat capacities for a perfect and Vander Waals gas	
	derivation of Clausius latent heat equation	
53-IT-III	Internal Test-III	
54-L47	problems in all topics.	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.04.2019	

Learning Outcomes	COs of the course " <course name="">"</course>
CO1	
CO2	
CO2	
CO4	
CO5	Students studied and got more knowledge in Thermodynamics
CO6	
CO7	
CO8	
CO9	
Experimental	
Learning	
EL1	
EL2	
EL3	Related experiments were demonstrated
EL4	
Integrated Activity	
IA1	
IA2	

Blended Learning

: using PPT, video, library resources, ICT techniques, Elearning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Basic Electronics	
Course Code	GMPH52	
Class	III year (2014 – 2015)	
Semester	Odd	
Staff Name	Dr. M. Daniel Sweetlin	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- Student knows about semiconductor
- > Student learns about the principles of electronics components
- > Student develops skills in circuit analysis
- > Student applies the knowledge to design of electronic devices

Syllabus

BASIC ELECTRONICS

Unit I

Linear Circuits and Semiconductors: Voltage source – Constant Voltage source – Constantcurrent source – Conversion of voltage source into current source – Maximum power transfertheorem- Thevenin's theorem – Norton's theorem - Semiconductor – bonds in semiconductors –Commonly used semiconductors – effect of temperature in semiconductors – intrinsic and extrinsic semiconductors – P and N type semiconductors.

Unit II Diodes and Transistors: PN junction diode – diode characteristics – Zener diode – Zener asvoltage regulator - transistor – transistor action – three modes of connection – common emittercharacteristics – transistor biasing methods – stability factor –CE amplifier.

Unit III

Oscillators and Modulation: Feedback – principles – gain – advantage –sinusoidal oscillators –tank circuit – Colpitts's Oscillator – Hartley Oscillator – Wien's Oscillator – modulation – AM –modulation index – analysis – modulator – FM – Demodulation

Unit IV

FET and Electronic Instruments: FET – working – importance – Difference between FET and transistor – FET as amplifier – output characteristic – important terms – expression for draincurrent – advantages – FET parameters – UJT – equivalent circuit – Characteristic – advantages– applications – Multimeter – applications – merits and demerits – CRO and its applications.

Unit V

Operational amplifier: Op amp – Schematic symbol – output voltage – AC analysis – band width– slew rate – frequency response – op amp with negative feedback – applications – invertingamplifier – input and output – impedance of inverting amplifier – Non inverting amplifier – voltage follower – summing amplifier – adder – subtracter – integrator – differentiator – comparator

Book for Study: Principles of Electronics - .K.Mehta and Rohit Mehta, S.Chand and Company ltd. New edition Electronic principles – Malvino Ed 6

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2014	
1-L1	Voltage source – Constant Voltage source	
2-L2	Constant current source – Conversion of voltage source into current source	
3- L3	Maximum power transfer theorem – Thevenin 's theorem	
4-L4	Problems solved	
5-L5	Norton 's theorem - Semiconductor	
6-L6	Problems solved	
7-L7	bonds in semiconductors – Commonly used semiconductors	
8- P1	Welcoming of First year and Inauguration of PhysicsAssociation	
9- L8	effect of temperature in semiconductors	
10- L9	intrinsic and extrinsic semiconductors	
11-L10	P and N type semiconductors	
12-L11	PN junction diode – diode characteristics	
13-L12	Zener diode – Zener as voltage regulator	
14-L13	transistor – transistor action	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	three modes of connection – common emitter	
17-IT-1	Internal Test-I	
18-L16	characteristics – transistor biasing methods	
19-L17	Test Paper distribution and result analysis	

	Entering Internal Test-I Marks into University portal	
20-L18	stability factor –CE amplifier	
21- L19	Feedback – principles	
22- P2	College level meeting/Cell function	
23-L20	gain – advantage –sinusoidal oscillators	
24-L21	tank circuit – Colpitt's Oscillator	
25-L22	Hartley Oscillator	
26-L23	Wien's Oscillator	
27-L24	modulation – AM – modulation index	
28-L25	analysis – modulator – FM – Demodulation	
29-L26	FET – working – importance	
30-L27	Difference between FET and transistor – FET as amplifier	
31-L28	FET as amplifier – output characteristic – important terms	
32-L29	expression for draincurrent – advantages	
33-L30	FET parameters – UJT	
34- P3	Department Seminar	
35-L31	UJT equivalent circuit – Characteristic – advantages – applications	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Multimeter – applications – merits and demerits	
38- IT-II	Internal Test-II	
39-L34	CRO and its applications	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Op amp – Schematic symbol	
42- L37	output voltage – AC analysis	
43- L38	band width – slew rate	
44- P4	College level meeting/ function	
45-L39	frequency response – op amp with negative feedback	
46-L40	applications – inverting amplifier	
47-L41	input and output – impedance of inverting amplifier	
48-L42	Non inverting amplifier	
49-L43	Application of op amps	
50-L44	Allotting portion for Internal Test-III	
50 E 11	Internal Test III begins	
51 L45	voltage follower – summing amplifier	
52- L46	adder – subtracter	
53-IT-III	Internal Test-III	
54-L47	integrator – differentiator – comparator	
55-L48	Test Paper distribution and result analysis	
-		
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	

59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 31.10.2014	

Learning Outcomes	COs of the course Basic Electronics
	At the completion the student should be able to
CO1	Explain the properties of semiconductor
CO2	Draw electrical circuits
CO3	Design and working principles of diodes, transistors etc.
CO4	Analyse and simplify simple electrical networks
CO5	Identifies electronic components
CO6	Study the waveform using CRO
CO7	Develop simple amplifier
CO8	Develop oscillator circuit
Experimental	
Learning	
EL1	Measures voltage and current using multimeter
EL2	Measures frequency using CRO
EL3	Handles bread board
EL4	Identifies defects in electronic components
Integrated Activity	
IA1	
IA2	

# Blended Learning	: Using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: Use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: Special care taken, motivate the advanced learner to support the slow learner to study to attend the remedial classes.
# Extension activity	: Motivate students to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Basic Electronics	
Course Code	GMPH52	
Class	III year (2015 – 2016)	
Semester	Odd	
Staff Name	Dr. M. Daniel Sweetlin	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- Student knows about semiconductor
- > Student learns about the principles of electronics components
- > Student develops skills in circuit analysis
- > Student applies the knowledge to design of electronic devices

Syllabus

BASIC ELECTRONICS

Unit I

Linear Circuits and Semiconductors: Voltage source – Constant Voltage source – Constantcurrent source – Conversion of voltage source into current source – Maximum power transfertheorem- Thevenin's theorem – Norton's theorem - Semiconductor – bonds in semiconductors –Commonly used semiconductors – effect of temperature in semiconductors – intrinsic and extrinsic semiconductors – P and N type semiconductors.

Unit II Diodes and Transistors: PN junction diode – diode characteristics – Zener diode – Zener asvoltage regulator - transistor – transistor action – three modes of connection – common emittercharacteristics – transistor biasing methods – stability factor –CE amplifier.

Unit III

Oscillators and Modulation: Feedback – principles – gain – advantage –sinusoidal oscillators –tank circuit – Colpitts's Oscillator – Hartley Oscillator – Wien's Oscillator – modulation – AM –modulation index – analysis – modulator – FM – Demodulation

Unit IV

FET and Electronic Instruments: FET – working – importance – Difference between FET and transistor – FET as amplifier – output characteristic – important terms – expression for draincurrent – advantages – FET parameters – UJT – equivalent circuit – Characteristic – advantages– applications – Multimeter – applications – merits and demerits – CRO and its applications.

Unit V

Operational amplifier: Op amp – Schematic symbol – output voltage – AC analysis – band width– slew rate – frequency response – op amp with negative feedback – applications – invertingamplifier – input and output – impedance of inverting amplifier – Non inverting amplifier – voltage follower – summing amplifier – adder – subtracter – integrator – differentiator – comparator

Book for Study: Principles of Electronics - .K.Mehta and Rohit Mehta, S.Chand and Company ltd. New edition Electronic principles – Malvino Ed 6

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2014	
1-L1	Voltage source – Constant Voltage source	
2-L2	Constant current source – Conversion of voltage source into current source	
3- L3	Maximum power transfer theorem – Thevenin 's theorem	
4-L4	Problems solved	
5-L5	Norton 's theorem - Semiconductor	
6-L6	Problems solved	
7-L7	bonds in semiconductors – Commonly used semiconductors	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	effect of temperature in semiconductors	
10- L9	intrinsic and extrinsic semiconductors	
11-L10	P and N type semiconductors	
12-L11	PN junction diode – diode characteristics	
13-L12	Zener diode – Zener as voltage regulator	
14-L13	transistor – transistor action	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	three modes of connection – common emitter	
17-IT-1	Internal Test-I	
18-L16	characteristics – transistor biasing methods	
19-L17	Test Paper distribution and result analysis	

	Entering Internal Test-I Marks into University portal
20-L18	stability factor –CE amplifier
21- L19	Feedback – principles
22- P2	College level meeting/Cell function
23-L20	gain – advantage –sinusoidal oscillators
24-L21	tank circuit – Colpitt's Oscillator
25-L22	Hartley Oscillator
26-L23	Wien's Oscillator
27-L24	modulation – AM – modulation index
28-L25	analysis – modulator – FM – Demodulation
29-L26	FET – working – importance
30-L27	Difference between FET and transistor – FET as amplifier
31-L28	FET as amplifier – output characteristic – important terms
32-L29	expression for draincurrent – advantages
33-L30	FET parameters – UJT
34- P3	Department Seminar
35-L31	UJT equivalent circuit – Characteristic – advantages – applications
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Multimeter – applications – merits and demerits
38- IT-II	Internal Test-II
39-L34	CRO and its applications
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Op amp – Schematic symbol
42- L37	output voltage – AC analysis
43- L38	band width – slew rate
44- P4	College level meeting/ function
45-L39	frequency response – op amp with negative feedback
46-L40	applications – inverting amplifier
47-L41	input and output – impedance of inverting amplifier
48-L42	Non inverting amplifier
49-L43	Application of op amps
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	voltage follower – summing amplifier
52- L46	adder – subtracter
53-IT-III	Internal Test-III
54-L47	integrator – differentiator – comparator
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test

59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 31.10.2014

Learning Outcomes	COs of the course Basic Electronics
	At the completion the student should be able to
	At the completion the student should be able to
CO1	Explain the properties of semiconductor
CO2	Draw electrical circuits
CO3	Design and working principles of diodes, transistors etc.
CO4	Analyse and simplify simple electrical networks
CO5	Identifies electronic components
CO6	Study the waveform using CRO
CO7	Develop simple amplifier
CO8	Develop oscillator circuit
Experimental	
Learning	
EL1	Measures voltage and current using multimeter
EL2	Measures frequency using CRO
EL3	Handles bread board
EL4	Identifies defects in electronic components
Integrated Activity	
IA1	
IA2	

# Blended Learning	: Using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: Use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: Special care taken, motivate the advanced learner to support the slow learner to study to attend the remedial classes.
# Extension activity	: Motivate students to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics		
Course Name	Basic Electronics		
Course Code	GMPH52		
Class	III year (2016 – 2017)		
Semester	Odd		
Staff Name	Dr. M. Daniel Sweetlin		
Credits	4		
L. Hours /P. Hours	4 / WK		
Total 60Hrs/Sem			
Internal Test-3 Hrs			
Model Test-3 Hrs			
Dept. Meetings-2 Hrs			
College Meetings-2 Hrs			
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)			

Course Objectives

- Student knows about semiconductor
- > Student learns about the principles of electronics components
- > Student develops skills in circuit analysis
- > Student applies the knowledge to design of electronic devices

Syllabus

BASIC ELECTRONICS

Unit I

Linear Circuits and Semiconductors: Voltage source – Constant Voltage source – Constantcurrent source – Conversion of voltage source into current source – Maximum power transfertheorem- Thevenin's theorem – Norton's theorem - Semiconductor – bonds in semiconductors –Commonly used semiconductors – effect of temperature in semiconductors – intrinsic and extrinsic semiconductors – P and N type semiconductors.

Unit II Diodes and Transistors: PN junction diode – diode characteristics – Zener diode – Zener asvoltage regulator - transistor – transistor action – three modes of connection – common emittercharacteristics – transistor biasing methods – stability factor –CE amplifier.

Unit III

Oscillators and Modulation: Feedback – principles – gain – advantage –sinusoidal oscillators –tank circuit – Colpitts's Oscillator – Hartley Oscillator – Wien's Oscillator – modulation – AM –modulation index – analysis – modulator – FM – Demodulation

Unit IV

FET and Electronic Instruments: FET – working – importance – Difference between FET and transistor – FET as amplifier – output characteristic – important terms – expression for draincurrent – advantages – FET parameters – UJT – equivalent circuit – Characteristic – advantages– applications – Multimeter – applications – merits and demerits – CRO and its applications.

Unit V

Operational amplifier: Op amp – Schematic symbol – output voltage – AC analysis – band width– slew rate – frequency response – op amp with negative feedback – applications – invertingamplifier – input and output – impedance of inverting amplifier – Non inverting amplifier – voltage follower – summing amplifier – adder – subtracter – integrator – differentiator – comparator

Book for Study: Principles of Electronics - .K.Mehta and Rohit Mehta, S.Chand and Company ltd. New edition Electronic principles – Malvino Ed 6

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 16.06.2016	
1-L1	Voltage source – Constant Voltage source	
2-L2	Constant current source – Conversion of voltage source into current source	
3- L3	Maximum power transfer theorem – Thevenin 's theorem	
4-L4	Problems solved	
5-L5	Norton 's theorem - Semiconductor	
6-L6	Problems solved	
7-L7	bonds in semiconductors – Commonly used semiconductors	
8- P1	Welcoming of First year and Inauguration of PhysicsAssociation	
9- L8	effect of temperature in semiconductors	
10- L9	intrinsic and extrinsic semiconductors	
11-L10	P and N type semiconductors	
12-L11	PN junction diode – diode characteristics	
13-L12	Zener diode – Zener as voltage regulator	
14-L13	transistor – transistor action	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	three modes of connection – common emitter	
17-IT-1	Internal Test-I	
18-L16	characteristics – transistor biasing methods	
19-L17	Test Paper distribution and result analysis	

	Entering Internal Test-I Marks into University portal
20-L18	stability factor –CE amplifier
21- L19	Feedback – principles
22- P2	College level meeting/Cell function
23-L20	gain – advantage –sinusoidal oscillators
24-L21	tank circuit – Colpitt's Oscillator
25-L22	Hartley Oscillator
26-L23	Wien's Oscillator
27-L24	modulation – AM – modulation index
28-L25	analysis – modulator – FM – Demodulation
29-L26	FET – working – importance
30-L27	Difference between FET and transistor – FET as amplifier
31-L28	FET as amplifier – output characteristic – important terms
32-L29	expression for draincurrent – advantages
33-L30	FET parameters – UJT
34- P3	Department Seminar
35-L31	UJT equivalent circuit – Characteristic – advantages – applications
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Multimeter – applications – merits and demerits
38- IT-II	Internal Test-II
39-L34	CRO and its applications
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Op amp – Schematic symbol
42- L37	output voltage – AC analysis
43- L38	band width – slew rate
44- P4	College level meeting/ function
45-L39	frequency response – op amp with negative feedback
46-L40	applications – inverting amplifier
47-L41	input and output – impedance of inverting amplifier
48-L42	Non inverting amplifier
49-L43	Application of op amps
50-L44	Allotting portion for Internal Test-III
30-L++	Internal Test III begins
51 L45	voltage follower – summing amplifier
51 L 15	adder – subtracter
53-IT-III	Internal Test-III
54-L47	integrator – differentiator – comparator
55-L48	Test Paper distribution and result analysis
JJ L-10	
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test

59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 30.11.2016	

Learning Outcomes	COs of the course Basic Electronics
	At the completion the student should be able to
C01	Explain the properties of semiconductor
CO2	
CO3	Design and working principles of diodes, transistors etc.
CO4	Analyse and simplify simple electrical networks
CO5	Identifies electronic components
CO6	Study the waveform using CRO
CO7	Develop simple amplifier
CO8	Develop oscillator circuit
Experimental	
Learning	
EL1	Measures voltage and current using multimeter
EL2	1 7 8
EL3	Handles bread board
EL4	Identifies defects in electronic components
Integrated Activity	
IA1	
IA2	

# Blended Learning	: Using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: Use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: Special care taken, motivate the advanced learner to support the slow learner to study to attend the remedial classes.
# Extension activity	: Motivate students to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Basic Electronics	
Course Code	GMPH52	
Class	III year (2017 – 2018)	
Semester	Odd	
Staff Name	Dr. M. Daniel Sweetlin	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- Student knows about semiconductor
- > Student learns about the principles of electronics components
- > Student develops skills in circuit analysis
- > Student applies the knowledge to design of electronic devices

Syllabus

BASIC ELECTRONICS

Unit I

Linear Circuits and Semiconductors: Voltage source – Constant Voltage source – Constantcurrent source – Conversion of voltage source into current source – Maximum power transfertheorem- Thevenin's theorem – Norton's theorem - Semiconductor – bonds in semiconductors –Commonly used semiconductors – effect of temperature in semiconductors – intrinsic and extrinsic semiconductors – P and N type semiconductors.

Unit II Diodes and Transistors: PN junction diode – diode characteristics – Zener diode – Zener asvoltage regulator - transistor – transistor action – three modes of connection – common emittercharacteristics – transistor biasing methods – stability factor –CE amplifier.

Unit III

Oscillators and Modulation: Feedback – principles – gain – advantage –sinusoidal oscillators –tank circuit – Colpitts's Oscillator – Hartley Oscillator – Wien's Oscillator – modulation – AM –modulation index – analysis – modulator – FM – Demodulation

Unit IV

FET and Electronic Instruments: FET – working – importance – Difference between FET and transistor – FET as amplifier – output characteristic – important terms – expression for draincurrent – advantages – FET parameters – UJT – equivalent circuit – Characteristic – advantages– applications – Multimeter – applications – merits and demerits – CRO and its applications.

Unit V

Operational amplifier: Op amp – Schematic symbol – output voltage – AC analysis – band width– slew rate – frequency response – op amp with negative feedback – applications – invertingamplifier – input and output – impedance of inverting amplifier – Non inverting amplifier – voltage follower – summing amplifier – adder – subtracter – integrator – differentiator – comparator

Book for Study: Principles of Electronics - .K.Mehta and Rohit Mehta, S.Chand and Company ltd. New edition Electronic principles – Malvino Ed 6

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 16.06.2017	
1-L1	Voltage source – Constant Voltage source	
2-L2	Constant current source - Conversion of voltage source into current source	
3- L3	Maximum power transfer theorem – Thevenin 's theorem	
4-L4	Problems solved	
5-L5	Norton 's theorem - Semiconductor	
6-L6	Problems solved	
7-L7	bonds in semiconductors – Commonly used semiconductors	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	effect of temperature in semiconductors	
10- L9	intrinsic and extrinsic semiconductors	
11-L10	P and N type semiconductors	
12-L11	PN junction diode – diode characteristics	
13-L12	Zener diode – Zener as voltage regulator	
14-L13	transistor – transistor action	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	three modes of connection – common emitter	
17-IT-1	Internal Test-I	
18-L16	characteristics – transistor biasing methods	
19-L17	Test Paper distribution and result analysis	

	Entering Internal Test-I Marks into University portal	
20-L18	stability factor –CE amplifier	
21- L19	Feedback – principles	
22- P2	College level meeting/Cell function	
23-L20	gain – advantage –sinusoidal oscillators	
24-L21	tank circuit – Colpitt's Oscillator	
25-L22	Hartley Oscillator	
26-L23	Wien's Oscillator	
27-L24	modulation – AM – modulation index	
28-L25	analysis – modulator – FM – Demodulation	
29-L26	FET – working – importance	
30-L27	Difference between FET and transistor – FET as amplifier	
31-L28	FET as amplifier – output characteristic – important terms	
32-L29	expression for draincurrent – advantages	
33-L30	FET parameters – UJT	
34- P3	Department Seminar	
35-L31	UJT equivalent circuit – Characteristic – advantages – applications	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Multimeter – applications – merits and demerits	
38- IT-II	Internal Test-II	
39-L34	CRO and its applications	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Op amp – Schematic symbol	
42- L37	output voltage – AC analysis	
43- L38	band width – slew rate	
44- P4	College level meeting/ function	
45-L39	frequency response – op amp with negative feedback	
46-L40	applications – inverting amplifier	
47-L41	input and output – impedance of inverting amplifier	
48-L42	Non inverting amplifier	
49-L43	Application of op amps	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	voltage follower – summing amplifier	
52- L46	adder – subtracter	
53-IT-III	Internal Test-III	
54-L47	integrator – differentiator – comparator	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	

59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 06.11.2017

Learning Outcomes	COs of the course Basic Electronics
	At the completion the student should be able to
CO1	Explain the properties of semiconductor
CO2	Draw electrical circuits
CO3	Design and working principles of diodes, transistors etc.
CO4	Analyse and simplify simple electrical networks
CO5	Identifies electronic components
CO6	Study the waveform using CRO
CO7	Develop simple amplifier
CO8	Develop oscillator circuit
Experimental	
Learning	
EL1	Measures voltage and current using multimeter
EL2	Measures frequency using CRO
EL3	Handles bread board
EL4	Identifies defects in electronic components
Integrated Activity	
IA1	
IA2	

# Blended Learning	: Using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: Use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: Special care taken, motivate the advanced learner to support the slow learner to study to attend the remedial classes.
# Extension activity	: Motivate students to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Basic Electronics	
Course Code	GMPH52	
Class	III year (2018 – 2019)	
Semester	Odd	
Staff Name	Dr. M. Daniel Sweetlin	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- Student knows about semiconductor
- > Student learns about the principles of electronics components
- Student develops skills in circuit analysis
- > Student applies the knowledge to design of electronic devices

Syllabus

BASIC ELECTRONICS

Unit I

Linear Circuits and Semiconductors: Voltage source – Constant Voltage source – Constantcurrent source – Conversion of voltage source into current source – Maximum power transfertheorem- Thevenin's theorem – Norton's theorem - Semiconductor – bonds in semiconductors –Commonly used semiconductors – effect of temperature in semiconductors – intrinsic and extrinsic semiconductors – P and N type semiconductors.

Unit II Diodes and Transistors: PN junction diode – diode characteristics – Zener diode – Zener asvoltage regulator - transistor – transistor action – three modes of connection – common emittercharacteristics – transistor biasing methods – stability factor –CE amplifier.

Unit III

Oscillators and Modulation: Feedback – principles – gain – advantage –sinusoidal oscillators –tank circuit – Colpitts's Oscillator – Hartley Oscillator – Wien's Oscillator – modulation – AM –modulation index – analysis – modulator – FM – Demodulation

Unit IV

FET and Electronic Instruments: FET – working – importance – Difference between FET and transistor – FET as amplifier – output characteristic – important terms – expression for draincurrent – advantages – FET parameters – UJT – equivalent circuit – Characteristic – advantages– applications – Multimeter – applications – merits and demerits – CRO and its applications.

Unit V

Operational amplifier: Op amp – Schematic symbol – output voltage – AC analysis – band width– slew rate – frequency response – op amp with negative feedback – applications – invertingamplifier – input and output – impedance of inverting amplifier – Non inverting amplifier – voltage follower – summing amplifier – adder – subtracter – integrator – differentiator – comparator

Book for Study: Principles of Electronics - .K.Mehta and Rohit Mehta, S.Chand and Company ltd. New edition Electronic principles – Malvino Ed 6

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2018	
1-L1	Voltage source – Constant Voltage source	
2-L2	Constant current source – Conversion of voltage source into current source	
3- L3	Maximum power transfer theorem – Thevenin 's theorem	
4-L4	Problems solved	
5-L5	Norton 's theorem - Semiconductor	
6-L6	Problems solved	
7-L7	bonds in semiconductors – Commonly used semiconductors	
8- P1	Welcoming of First year and Inauguration of PhysicsAssociation	
9- L8	effect of temperature in semiconductors	
10- L9	intrinsic and extrinsic semiconductors	
11-L10	P and N type semiconductors	
12-L11	PN junction diode – diode characteristics	
13-L12	Zener diode – Zener as voltage regulator	
14-L13	transistor – transistor action	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	three modes of connection – common emitter	
17-IT-1	Internal Test-I	
18-L16	characteristics – transistor biasing methods	
19-L17	Test Paper distribution and result analysis	

	Entering Internal Test-I Marks into University portal	
20-L18	stability factor –CE amplifier	
21- L19	Feedback – principles	
22- P2	College level meeting/Cell function	
23-L20	gain – advantage –sinusoidal oscillators	
24-L21	tank circuit – Colpitt's Oscillator	
25-L22	Hartley Oscillator	
26-L23	Wien's Oscillator	
27-L24	modulation – AM – modulation index	
28-L25	analysis – modulator – FM – Demodulation	
29-L26	FET – working – importance	
30-L27	Difference between FET and transistor – FET as amplifier	
31-L28	FET as amplifier – output characteristic – important terms	
32-L29	expression for draincurrent – advantages	
33-L30	FET parameters – UJT	
34- P3	Department Seminar	
35-L31	UJT equivalent circuit – Characteristic – advantages – applications	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Multimeter – applications – merits and demerits	
38- IT-II	Internal Test-II	
39-L34	CRO and its applications	
40-L35	Test Paper distribution and result analysis	
-	Entering Internal Test-II Marks into University portal	
41-L36	Op amp – Schematic symbol	
42- L37	output voltage – AC analysis	
43- L38	band width – slew rate	
44- P4	College level meeting/ function	
45-L39	frequency response – op amp with negative feedback	
46-L40	applications – inverting amplifier	
47-L41	input and output – impedance of inverting amplifier	
48-L42	Non inverting amplifier	
49-L43	Application of op amps	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	voltage follower – summing amplifier	
52- L46	adder – subtracter	
53-IT-III	Internal Test-III	
54-L47	integrator – differentiator – comparator	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	

59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.11.2018

Learning Outcomes	COs of the course Basic Electronics
	At the completion the student should be able to
CO1	Explain the properties of semiconductor
CO2	Draw electrical circuits
CO3	Design and working principles of diodes, transistors etc.
CO4	Analyse and simplify simple electrical networks
CO5	Identifies electronic components
CO6	Study the waveform using CRO
CO7	Develop simple amplifier
CO8	Develop oscillator circuit
Experimental	
Learning	
EL1	Measures voltage and current using multimeter
EL2	Measures frequency using CRO
EL3	Handles bread board
EL4	Identifies defects in electronic components
Integrated Activity	
IA1	
IA2	

# Blended Learning	: Using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: Use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: Special care taken, motivate the advanced learner to support the slow learner to study to attend the remedial classes.
# Extension activity	: Motivate students to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Basic Electronics	
Course Code	GMPH52	
Class	III year (2019 – 2020)	
Semester	Odd	
Staff Name	Dr. M. Daniel Sweetlin	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- Student knows about semiconductor
- > Student learns about the principles of electronics components
- > Student develops skills in circuit analysis
- > Student applies the knowledge to design of electronic devices

Syllabus

BASIC ELECTRONICS

Unit I

Linear Circuits and Semiconductors: Voltage source – Constant Voltage source – Constantcurrent source – Conversion of voltage source into current source – Maximum power transfertheorem- Thevenin's theorem – Norton's theorem - Semiconductor – bonds in semiconductors –Commonly used semiconductors – effect of temperature in semiconductors – intrinsic and extrinsic semiconductors – P and N type semiconductors.

Unit II Diodes and Transistors: PN junction diode – diode characteristics – Zener diode – Zener asvoltage regulator - transistor – transistor action – three modes of connection – common emittercharacteristics – transistor biasing methods – stability factor –CE amplifier.

Unit III

Oscillators and Modulation: Feedback – principles – gain – advantage –sinusoidal oscillators –tank circuit – Colpitts's Oscillator – Hartley Oscillator – Wien's Oscillator – modulation – AM –modulation index – analysis – modulator – FM – Demodulation

Unit IV

FET and Electronic Instruments: FET – working – importance – Difference between FET and transistor – FET as amplifier – output characteristic – important terms – expression for draincurrent – advantages – FET parameters – UJT – equivalent circuit – Characteristic – advantages– applications – Multimeter – applications – merits and demerits – CRO and its applications.

Unit V

Operational amplifier: Op amp – Schematic symbol – output voltage – AC analysis – band width– slew rate – frequency response – op amp with negative feedback – applications – invertingamplifier – input and output – impedance of inverting amplifier – Non inverting amplifier – voltage follower – summing amplifier – adder – subtracter – integrator – differentiator – comparator

Book for Study: Principles of Electronics - .K.Mehta and Rohit Mehta, S.Chand and Company ltd. New edition Electronic principles – Malvino Ed 6

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 17.06.2019	
1-L1	Voltage source – Constant Voltage source	
2-L2	Constant current source – Conversion of voltage source into current source	
3- L3	Maximum power transfer theorem – Thevenin 's theorem	
4-L4	Problems solved	
5-L5	Norton 's theorem - Semiconductor	
6-L6	Problems solved	
7-L7	bonds in semiconductors – Commonly used semiconductors	
8- P1	Welcoming of First year and Inauguration of PhysicsAssociation	
9- L8	effect of temperature in semiconductors	
10- L9	intrinsic and extrinsic semiconductors	
11-L10	P and N type semiconductors	
12-L11	PN junction diode – diode characteristics	
13-L12	Zener diode – Zener as voltage regulator	
14-L13	transistor – transistor action	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins	
16-L15	three modes of connection – common emitter	
17-IT-1	Internal Test-I	
18-L16	characteristics – transistor biasing methods	
19-L17	Test Paper distribution and result analysis	

	Entering Internal Test-I Marks into University portal	
20-L18	stability factor –CE amplifier	
21- L19	Feedback – principles	
22- P2	College level meeting/Cell function	
23-L20	gain – advantage –sinusoidal oscillators	
24-L21	tank circuit – Colpitt's Oscillator	
25-L22	Hartley Oscillator	
26-L23	Wien's Oscillator	
27-L24	modulation – AM – modulation index	
28-L25	analysis – modulator – FM – Demodulation	
29-L26	FET – working – importance	
30-L27	Difference between FET and transistor – FET as amplifier	
31-L28	FET as amplifier – output characteristic – important terms	
32-L29	expression for draincurrent – advantages	
33-L30	FET parameters – UJT	
34- P3	Department Seminar	
35-L31	UJT equivalent circuit – Characteristic – advantages – applications	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins	
37- L33	Multimeter – applications – merits and demerits	
38- IT-II	Internal Test-II	
39-L34	CRO and its applications	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Op amp – Schematic symbol	
42- L37	output voltage – AC analysis	
43- L38	band width – slew rate	
44- P4	College level meeting/ function	
45-L39	frequency response – op amp with negative feedback	
46-L40	applications – inverting amplifier	
47-L41	input and output – impedance of inverting amplifier	
48-L42	Non inverting amplifier	
49-L43	Application of op amps	
50-L44	Allotting portion for Internal Test-III Internal Test III begins	
51 L45	voltage follower – summing amplifier	
52- L46	adder – subtracter	
53-IT-III	Internal Test-III	
54-L47	integrator – differentiator – comparator	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	

59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 30.10.2019

Learning Outcomes	COs of the course Basic Electronics
	At the completion the student should be able to
CO1	Explain the properties of semiconductor
CO2	Draw electrical circuits
CO3	Design and working principles of diodes, transistors etc.
CO4	Analyse and simplify simple electrical networks
CO5	Identifies electronic components
CO6	Study the waveform using CRO
CO7	Develop simple amplifier
CO8	Develop oscillator circuit
Experimental	
Learning	
EL1	Measures voltage and current using multimeter
EL2	Measures frequency using CRO
EL3	Handles bread board
EL4	Identifies defects in electronic components
Integrated Activity	
IA1	
IA2	

# Blended Learning	: Using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: Use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: Special care taken, motivate the advanced learner to support the slow learner to study to attend the remedial classes.
# Extension activity	: Motivate students to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Digital Electronics
Course Code	GMPH63
Class	III year (2012-2015)
Semester	Even
Staff Name	Dr. M. Daniel Sweetlin
Credits	5
L. Hours /P. Hours	5 / WK
Total 75 Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)	

Course Objectives

- > Student understands the principles of digital systems.
- Student learns about different number systems
- > Applies Boolean algebra for digital system design
- Simplifies circuits using Boolean algebra
- Simplifies circuits using K Map
- Designs simple digital circuits

Syllabus

SEMESTER-VI PAPER XII DIGITAL ELECTRONICS

Preamble: This course provides an understanding of Boolean algebra and digital circuits. The paper needs a basic knowledge in solid state electronics and thelearners are expected to gain knowledge to design electronic circuits

UNIT I: NUMBER SYSTEMS, BINARY ARITHMETIC AND CODES

Decimal, binary, octal and hexadecimal number systems and their interconversions-binary arithmetic-binary addition-subtraction-1's and 2'scomplements- BCD codes, ASCII code, Excess-3code, Gray code. (7L+5T)

UNIT II: BOOLEAN ALGEBRA AND LOGIC GATES

Boolean algebra-De Morgan's theorem –Positive logic and negative logicsystems-Basic logic gates, OR, AND, NOT (symbol, Boolean equation, truth table, circuit diagram and working)-NAND, NOR, EX-OR (symbol, Boolean equation, truth table only)-NAND and NOR as universal building blocks. (8L+6T)

UNIT III: ARITHMETIC CIRCUITS, FLIP-FLOPS ANDMULTIVIBRATORS

Half and full adders- Half and full subtractors-RS Flip-flop-clocked RSFlipflop, JK Flip-flop, JK master slave Flip-flop, D Flip-flop, T Flip-flop555 timer-Astable multivibrator, monostable multivibrator-Frequencydivider(11L+7T)

UNIT IV: KARNAUGH MAP AND COMBINATIONAL CIRCUIT APPLICATIONS

Karnaugh map - 2,3and 4 variables –simplification-SOP and POS form ofBoolean functions - Don't care conditions-Multiplexer, Demultiplexer, Encoder, Decoder, parity generator and checker. (10L+6T)

UNIT V: SHIFT REGISTERS AND COUNTERS

Types of registers- Serial in –Serial out-Serial in-Parallel out- Parallelin- Serial out- Parallel in- Parallel out-Asynchronous and Synchronous counters-Ring counter- Binary counter- Up- Down counter- Mod-5 counter- Mod-10counter (decade counter)-A/D and D/A converters(9L+6T)

Books for study

1.Digital principles and applications - Albert Paul Malvino& Donald P.Leach

Books for reference

1.Digital logic and computer design-Morris Mano-Prentice Hall of India, Pvt.Ltd.

2.GothmannW.H., Digital Electronics- Prentice Hall of India, Pvt.Ltd.

3.Metha V.K.Mehtha.R.Principles of electronics, S.Chand&Co.

4. Fundamentals of Digital Electronics and Microprocessors - Anokhsingh

Hour	Class Schedule	
allotment		
	Even Semester Begin on 03.12.2014	
1-L1	Analog verses Digital	
2-L2	Binary system for digital.	
3- L3	Decimal, binary numbersystems and interconversions	
4-L4	Octal, binary and hexadecimal number systemsand	
	interconversions	

5-L5	binary arithmetic-binary addition and subtraction
6-L6	1s complement subtraction
7-L7	2s complement subtraction
8- P1	Welcoming of First year and Inauguration of PhysicsAssociation
9- L8	BCD codes 8421 code
10- L9	Excess-3code, Gray code.
11-L10	ASCII code
12-L11	Boolean algebra
13-L12	De Morgan's theorem
14-L13	Positive logic and negative logic system
15-L14	Basic logic gates, OR, AND, NOT
16-L15	NAND and NOR as universal building blocks.
17- L16	Half and full adders
18- L17	Half and full subtractors
19- L18	RS Flip-flop-clocked RS Flipflop
20- L19	D Flip-flop, T Flip-flop
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins
22- L21	JK Flip-flop, JK master slave Flip-flop
23- IT-1	Internal Test-I
24- L22	Astable multivibrator
25- L23	monostable multivibrator
26- L24	Test Paper distribution and result analysis
27- L25	Entering Internal Test-I Marks into University portal
27- L23 28- L26	555 time
28- L20 29- L27	Frequency divider
29- L27 30- P2	Karnaugh map Simplification
30- P2 31-L28	College level meeting/Cell function
31-L20 32-L29	2,3 Variables K map
33-L30	4 Variables K map Don't Care Conditions
34- L31	SOP form of Boolean Function
35- L32	POS Form of Boolean Function
36- L33	Multiplexer
37-L34	Demultiplexer
38-L35	Encoder
39-L36	Decoder
40- L37	Parity Generator
41- L38	
	Parity checker
42-P3	Parity checker Department Seminar
42-P3 43- L39	Department Seminar Registers – shift registerst

45- L41	Serial in Parallel out	
46- L42	Parallel in Serial out	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins	
48- L44	Parallel in- Parallel out	
49-IT-II	Internal Test-II	
50-L45	Counters	
51- L46	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	Synchronouscounter	
53- L48	Asynchronous Counters	
54- L49	Mod-5 counter	
55- L50	Mod-10 Counter	
56- L51	decade counter	
57- L52	Ring counter	
58- L53	Up- Down counter	
59-P4	College level meeting/ function	
60- L54	D/A Converter	
61- L55	A/D Converter	
62- L56	AssignmentProblems	
63- L57	Revision	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins	
65- L59	Problems	
66- L60	Problems	
67-IT-III	Internal Test-III	
68- L61	Revision	
69- L62	RevisionTest	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
71-MT	Model Test	
72-MT	Model Test	
73-MT 74-L64	Model Test Model test paper distribution and previous year university question	
/ T =LU T	paper discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.4.2015	

Learning Outcomes	COs of the course Digital Electronics
C01	The students are able to
	Convert a decimal number into other number systems
CO2	Explain the difference between analogue and digital system
CO3	Explains the advantage of digital system
CO4	Simplifies the Boolean algebraic equations
CO5	Designs simple digital circuits
CO6	Designs counters
CO7	Designs multivibrators
CO8	Design a circuit using only NAND or NOR gates
Experimental	
Learning	
EL1	Constructs multivibrator
EL2	Measures the frequency of the vibrators
EL3	Constructs gate circuits and verify its operation
EL4	Constructs flip flops
Integrated Activity	
IA1	
IA2	

# Blended Learning	: Using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: Use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: Special care taken, motivate the advanced learner to support the slow learner to study and to attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Digital Electronics	
Course Code	GMPH63	
Class	III year (2015-2016)	
Semester	Even	
Staff Name	Dr. M. Daniel Sweetlin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > Student understands the principles of digital systems.
- Student learns about different number systems
- > Applies Boolean algebra for digital system design
- Simplifies circuits using Boolean algebra
- Simplifies circuits using K Map
- Designs simple digital circuits

Syllabus

SEMESTER-VI PAPER XII DIGITAL ELECTRONICS

Preamble: This course provides an understanding of Boolean algebra and digital circuits. The paper needs a basic knowledge in solid state electronics and thelearners are expected to gain knowledge to design electronic circuits

UNIT I: NUMBER SYSTEMS, BINARY ARITHMETIC AND CODES

Decimal, binary, octal and hexadecimal number systems and their interconversions-binary arithmetic-binary addition-subtraction-1's and 2'scomplements- BCD codes, ASCII code, Excess-3code, Gray code. (7L+5T)

UNIT II: BOOLEAN ALGEBRA AND LOGIC GATES

Boolean algebra-De Morgan's theorem –Positive logic and negative logicsystems-Basic logic gates, OR, AND, NOT (symbol, Boolean equation, truth table, circuit diagram and working)-NAND, NOR, EX-OR (symbol, Boolean equation, truth table only)-NAND and NOR as universal building blocks. (8L+6T)

UNIT III: ARITHMETIC CIRCUITS, FLIP-FLOPS ANDMULTIVIBRATORS

Half and full adders- Half and full subtractors-RS Flip-flop-clocked RSFlipflop, JK Flip-flop, JK master slave Flip-flop, D Flip-flop, T Flip-flop555 timer-Astable multivibrator, monostable multivibrator-Frequencydivider(11L+7T)

UNIT IV: KARNAUGH MAP AND COMBINATIONAL CIRCUIT APPLICATIONS

Karnaugh map - 2,3and 4 variables –simplification-SOP and POS form ofBoolean functions - Don't care conditions-Multiplexer, Demultiplexer, Encoder, Decoder, parity generator and checker. (10L+6T)

UNIT V: SHIFT REGISTERS AND COUNTERS

Types of registers- Serial in –Serial out-Serial in-Parallel out- Parallelin- Serial out- Parallel in- Parallel out-Asynchronous and Synchronous counters-Ring counter- Binary counter- Up- Down counter- Mod-5 counter- Mod-10counter (decade counter)-A/D and D/A converters(9L+6T)

Books for study

1.Digital principles and applications - Albert Paul Malvino& Donald P.Leach

Books for reference

1.Digital logic and computer design-Morris Mano-Prentice Hall of India, Pvt.Ltd.

2.GothmannW.H., Digital Electronics- Prentice Hall of India, Pvt.Ltd.

3.Metha V.K.Mehtha.R.Principles of electronics, S.Chand&Co.

4. Fundamentals of Digital Electronics and Microprocessors - Anokhsingh

Hour	Class Schedule	
allotment		
	Even Semester Begin on 02.12.2015	
1-L1	Analog verses Digital	
2-L2	Binary system for digital.	
3- L3	Decimal, binary number systems and interconversions	
4-L4	Octal, binary and hexadecimal number systems and	
	interconversions	

5-L5	binary arithmetic-binary addition and subtraction
6-L6	1s complement subtraction
7-L7	2s complement subtraction
8- P1	Welcoming of First year and Inauguration of PhysicsAssociation
9- L8	BCD codes 8421 code
10- L9	Excess-3code, Gray code.
11-L10	ASCII code
12-L11	Boolean algebra
13-L12	De Morgan's theorem
14-L13	Positive logic and negative logic system
15-L14	Basic logic gates, OR, AND, NOT
16-L15	NAND and NOR as universal building blocks.
17- L16	Half and full adders
18- L17	Half and full subtractors
19- L18	RS Flip-flop-clocked RS Flip flop
20- L19	D Flip-flop, T Flip-flop
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins
22- L21	JK Flip-flop, JK master slave Flip-flop
23- IT-1	Internal Test-I
24- L22	Astable multivibrator
25- L23	monostable multivibrator
26- L24	Test Paper distribution and result analysis
27- L25	Entering Internal Test-I Marks into University portal 555 time
27 L25 28- L26	Frequency divider
20 L20 29- L27	
30- P2	Karnaugh map Simplification College level meeting/Cell function
31-L28	2,3 Variables K map
32-L29	4 Variables K map
33-L30	Don't Care Conditions
34- L31	SOP form of Boolean Function
35- L32	POS Form of Boolean Function
36- L32	Multiplexer
37-L34	Demultiplexer
38-L35	Encoder
39-L36	Decoder
40- L37	Parity Generator
41- L38	Parity checker
41 L30	Department Seminar
43- L39	Registers – shift registerst
44- L40	Serial in Serial Out

45- L41	Serial in Parallel out	
46- L42	Parallel in Serial out	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins	
48- L44	Parallel in- Parallel out	
49-IT-II	Internal Test-II	
50-L45	Counters	
51- L46	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	Synchronous counter	
53- L48	Asynchronous Counters	
54- L49	Mod-5 counter	
55- L50	Mod-10 Counter	
56- L51	decade counter	
57- L52	Ring counter	
58- L53	Up- Down counter	
59-P4	College level meeting/ function	
60- L54	D/A Converter	
61- L55	A/D Converter	
62- L56	AssignmentProblems	
63- L57	Revision	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins	
65- L59	Problems	
66- L60	Problems	
67-IT-III	Internal Test-III	
68- L61	Revision	
69- L62	RevisionTest	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
71-MT	Model Test	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question	
75-L65	paper discussion Foodback of the Course, analysis and report proparation	
/J-L0J	Feedback of the Course, analysis and report preparationLast Working day on 22.4.2016	
	Last WURMIIG UAY UN 22.4.2010	

Learning Outcomes	COs of the course Digital Electronics
C01	The students are able to
	Convert a decimal number into other number systems
CO2	Explain the difference between analogue and digital system
CO3	Explains the advantage of digital system
CO4	Simplifies the Boolean algebraic equations
CO5	Designs simple digital circuits
CO6	Designs counters
CO7	Designs multivibrators
CO8	Design a circuit using only NAND or NOR gates
Experimental	
Learning	
EL1	Constructs multivibrator
EL2	Measures the frequency of the vibrators
EL3	Constructs gate circuits and verify its operation
EL4	Constructs flip flops
Integrated Activity	
IA1	
IA2	

# Blended Learning	: Using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: Use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: Special care taken, motivate the advanced learner to support the slow learner to study and to attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Digital Electronics	
Course Code	GMPH63	
Class	III year (2016-2017)	
Semester	Even	
Staff Name	Dr. M. Daniel Sweetlin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > Student understands the principles of digital systems.
- Student learns about different number systems
- > Applies Boolean algebra for digital system design
- Simplifies circuits using Boolean algebra
- Simplifies circuits using K Map
- Designs simple digital circuits

Syllabus

SEMESTER-VI PAPER XII DIGITAL ELECTRONICS

Preamble: This course provides an understanding of Boolean algebra and digital circuits. The paper needs a basic knowledge in solid state electronics and thelearners are expected to gain knowledge to design electronic circuits

UNIT I: NUMBER SYSTEMS, BINARY ARITHMETIC AND CODES

Decimal, binary, octal and hexadecimal number systems and their interconversions-binary arithmetic-binary addition-subtraction-1's and 2'scomplements- BCD codes, ASCII code, Excess-3code, Gray code. (7L+5T)

UNIT II: BOOLEAN ALGEBRA AND LOGIC GATES

Boolean algebra-De Morgan's theorem –Positive logic and negative logicsystems-Basic logic gates, OR, AND, NOT (symbol, Boolean equation, truth table, circuit diagram and working)-NAND, NOR, EX-OR (symbol, Boolean equation, truth table only)-NAND and NOR as universal building blocks. (8L+6T)

UNIT III: ARITHMETIC CIRCUITS, FLIP-FLOPS ANDMULTIVIBRATORS

Half and full adders- Half and full subtractors-RS Flip-flop-clocked RSFlipflop, JK Flip-flop, JK master slave Flip-flop, D Flip-flop, T Flip-flop555 timer-Astable multivibrator, monostable multivibrator-Frequencydivider(11L+7T)

UNIT IV: KARNAUGH MAP AND COMBINATIONAL CIRCUIT APPLICATIONS

Karnaugh map - 2,3and 4 variables –simplification-SOP and POS form ofBoolean functions - Don't care conditions-Multiplexer, Demultiplexer, Encoder, Decoder, parity generator and checker. (10L+6T)

UNIT V: SHIFT REGISTERS AND COUNTERS

Types of registers- Serial in –Serial out-Serial in-Parallel out- Parallelin- Serial out- Parallel in- Parallel out-Asynchronous and Synchronous counters-Ring counter- Binary counter- Up- Down counter- Mod-5 counter- Mod-10counter (decade counter)-A/D and D/A converters(9L+6T)

Books for study

1.Digital principles and applications - Albert Paul Malvino & Donald P.Leach

Books for reference

1.Digital logic and computer design-Morris Mano-Prentice Hall of India, Pvt.Ltd.

2.GothmannW.H., Digital Electronics- Prentice Hall of India, Pvt.Ltd.

3.Metha V.K.Mehtha.R.Principles of electronics, S.Chand &Co.

4. Fundamentals of Digital Electronics and Microprocessors - Anokh singh

Hour	Class Schedule	
allotment		
	Even Semester Begin on 01.12.2016	
1-L1	Analog verses Digital	
2-L2	Binary system for digital.	
3- L3	Decimal, binary number systems and interconversions	
4-L4	Octal, binary and hexadecimal number systems and	
	interconversions	

5-1.5binary arithmetic-binary addition and subtraction6-1.61s complement subtraction7-1.72s complement subtraction8-P1Welcoming of First year and Inauguration of PhysicsAssociation9-L8BCD codes 8421 code10-19Excess-3code, Gray code.11-L10ASCII code12-L11Boolean algebra13-L12De Morgan's theorem14-L13Positive logic and negative logic system15-L14Basic logic gates, OR, AND, NOT16-L15NAND and NOR as universal building blocks.17-L16Half and full subtractors18-L17Half and full subtractors19-L18RS Flip-flop-clocked RS Flip flop20-L19D Flip-flop, T Flip-flop21-L20Allotting portion for Internal Test-IInternal Test JInternal Test-I24-L22Astable multivibrator25-L23monostable multivibrator26-L24Test Paper distribution and result analysis27-L25S55 time28-L26Frequency divider29-L27Karnaugh map Simplification30-P2College level meeting/Cell function31-L282,3 Variables K map32-L294 Variables K map32-L30Don't Care Conditions34-L31SOP form of Boolean Function35-L34Demultiplexer37-L34Demultiplexer38-L35Encoder40-L37Parity Generator41-L38Parity Checker42-P3Department Seminar43-L39 <td< th=""><th></th><th></th></td<>		
7-L7 2s complement subtraction 8-P1 Welcoming of First year and Inauguration of PhysicsAssociation 9-L8 BCD codes 8421 code 10-L9 Excess-3code, Gray code. 11-L10 ASCII code 12-L11 Boolean algebra 13-L12 De Morgan's theorem 14-L13 Positive logic and negative logic system 15-L14 Basic logic gates, OR, AND, NOT 16-L15 NAND and NOR as universal building blocks. 17-L16 Half and full adders 18-L17 Half and full subtractors 19-L18 RS Flip-flop-clocked RS Flip flop 20-L19 D Flip-flop, T Flip-flop 21-L20 Allotting portion for Internal Test-I 10-L21 JK Flip-flop, JK master slave Flip-flop 22-L21 JK Flip-flop, JK master slave Flip-flop 23-TT-1 Internal Test-I 24-L22 Astable multivibrator 25-L23 monostable multivibrator 26-L24 Test Paper distribution and result analysis 27-L25 555 time 28-L26 Frequency divider 29-L27 Karanagh map Simplification	5-L5	binary arithmetic-binary addition and subtraction
8-P1 Welcoming of First year and Inauguration of PhysicsAssociation 9-L8 BCD codes 8421 code 10-L9 Excess-3code, Gray code. 11-L10 ASCII code 12-L11 Boolean algebra 13-L12 De Morgan's theorem 14-L13 Positive logic and negative logic system 15-L14 Basic logic gates, OR, AND, NOT 16-L15 NAND and NOR as universal building blocks. 17-L16 Half and full subtractors 19-L18 RS Flip-flop-clocked RS Flip flop 20-L19 D Flip-flop, T Flip-flop 21-L20 Allotting portion for Internal Test-1 Internal Test I begins 22-L21 JK Flip-flop, JK master slave Flip-flop 23- fT-1 Internal Test-I 24-L22 Astable multivibrator 25-L23 monostable multivibrator 26-L24 Test Paper distribution and result analysis 27-L25 555 time 28-L26 Frequency divider 29-L27 Karnaugh map Simplification 30-P2 College level meeting/Cell function 31-L28 2,3 Variables K map 32-L29 <td>6-L6</td> <td>1s complement subtraction</td>	6-L6	1s complement subtraction
9-1.8 BCD codes 8421 code 10-1.9 Excess-3code, Gray code. 111-1.10 ASCII code 12-L11 Boolean algebra 13-L12 De Morgan's theorem 14-L13 Positive logic and negative logic system 14-L14 Basic logic gates, OR, AND, NOT 16-L15 NAND and NOR as universal building blocks. 17-L16 Half and full adders 18-L17 Half and full subtractors 19-L18 RS Flip-flop-clocked RS Flip flop 20-L19 D Flip-flop, T Flip-flop 21-L20 Allotting portion for Internal Test-I 19-L18 K Flip-flop, JK master slave Flip-flop 23-IT-1 Internal Test I begins 24-L22 Astable multivibrator 25-L23 monostable multivibrator 26-L24 Test Paper distribution and result analysis 27-L25 555 time 28-L26 Frequency divider 29-L27 Karnaugh map Simplification 30-P2 College level meeting/Cell function 31-L28 2,3 Variables K map 32-L29 4 Variables K map 32-L30 Don't Care Con	7-L7	2s complement subtraction
10 L9 Excess-3code, Gray code, 11-L10 ASCII code 12-L11 Boolean algebra 13-L12 De Morgan's theorem 14-L13 Positive logic and negative logic system 15-L14 Basic logic gates, OR, AND, NOT 16-L15 NAND and NOR as universal building blocks. 17-L16 Half and full adders 18-L17 Half and full subtractors 19-L18 RS Flip-flop-clocked RS Flip flop 20-L19 D Flip-flop, T Flip-flop 21-L20 Allotting portion for Internal Test-I Internal Test J begins Internal Test-I 22-L21 JK Flip-flop, JK master slave Flip-flop 23-IT-1 Internal Test-I 24-L22 Astable multivibrator 25-L23 monostable multivibrator 26-L24 Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal 27-L25 555 time 28-L26 Frequency divider 29-L27 Karnaugh map Simplification 31-L28 2,3 Variables K map 32-L29 4 Variables K map 32-L29 <t< td=""><td></td><td>Welcoming of First year and Inauguration of PhysicsAssociation</td></t<>		Welcoming of First year and Inauguration of PhysicsAssociation
11-L10 ASCII code 12-L11 Boolean algebra 13-L12 De Morgan's theorem 14-L13 Positive logic and negative logic system 15-L14 Basic logic gates, OR, AND, NOT 16-L15 NAND and NOR as universal building blocks. 17-L16 Half and full adders 18-L17 Half and full subtractors 19-L18 RS Flip-flop-clocked RS Flip flop 20-L19 D Flip-flop, T Flip-flop 21-L20 Allotting portion for Internal Test-I Internal Test I begins 22-L21 JK Flip-flop, JK master slave Flip-flop 23-IT-1 Internal Test-I Internal Test-I Internal Test-I Jaste multivibrator 25-L23 monostable multivibrator 26-L24 Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal 27-L25 555 time 28-L26 Frequency divider 29-L27 Karnaugh map Simplification 30-P2 College level meeting/Cell function 31-L28 2,3 Variables K map	9- L8	BCD codes 8421 code
12-L11 Boolean algebra 13-L12 De Morgan's theorem 14-L13 Positive logic and negative logic system 15-L14 Basic logic gates, OR, AND, NOT 16-L15 NAND and NOR as universal building blocks. 17-L16 Half and full adders 18-L17 Half and full subtractors 19-L18 RS Flip-flop-clocked RS Flip flop 20-L19 D Flip-flop, T Flip-flop 21-L20 Allotting portion for Internal Test-I Internal Test I begins 22-L21 JK Flip-flop, JK master slave Flip-flop 23-IT-1 Internal Test-I Internal Test-I 24-L22 Astable multivibrator 25-L23 monostable multivibrator 26-L24 Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal 27-L25 555 time 28-L26 Frequency divider 29-L27 Karnaugh map Simplification 30-P2 College level meeting/Cell function 31-L38 2,3 Variables K map 33-L30 Don't Care Conditions 3	10- L9	Excess-3code, Gray code.
13-L12 De Morgan's theorem 14-L13 Positive logic and negative logic system 14-L13 Positive logic and negative logic system 15-L14 Basic logic gates, OR, AND, NOT 16-L15 NAND and NOR as universal building blocks. 17-L16 Half and full adders 18-L17 Half and full subtractors 19-L18 RS Flip-flop-clocked RS Flip flop 20-L19 D Flip-flop, T Flip-flop 21-L20 Allotting portion for Internal Test-I Internal Test I begins 22-L21 JK Flip-flop, JK master slave Flip-flop 23-IT-1 Internal Test-I 24-L22 Astable multivibrator 25-L23 monostable multivibrator 26-L24 Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal 27-L25 555 time 28-L26 Frequency divider 29-L27 Karnaugh map Simplification 30-P2 College level meeting/Cell function 31-L28 2,3 Variables K map 32-L29 4 Variables K map 33-L30 Don't Care Conditions 34-L31 SOP form of Boolean Function <td>11-L10</td> <td>ASCII code</td>	11-L10	ASCII code
14-L13 Positive logic and negative logic system 15-L14 Basic logic gates, OR, AND, NOT 16-L15 NAND and NOR as universal building blocks. 17-L16 Half and full adders 18-L17 Half and full subtractors 19-L18 RS Flip-flop-clocked RS Flip flop 20-L19 D Flip-flop, T Flip-flop 21-L20 Allotting portion for Internal Test-I Internal Test I begins 22-L21 JK Flip-flop, JK master slave Flip-flop 23-IT-1 Internal Test-I Onstable multivibrator 25-L23 monostable multivibrator 26-L24 Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal 27-L25 555 time 28-L26 Frequency divider 29-L27 Karnaugh map Simplification 30-P2 College level meeting/Cell function 31-L28 2,3 Variables K map 32-L29 4 Variables K map 33-L30 Don't Care Conditions 34-L31 SOP form of Boolean Function 35-L32 POS Form of Boolean Function 38-L35<	12-L11	Boolean algebra
15-L14 Basic logic gates, OR, AND, NOT 16-L15 NAND and NOR as universal building blocks. 17-L16 Half and full adders 18-L17 Half and full subtractors 19-L18 RS Flip-flop-clocked RS Flip flop 20-L19 D Flip-flop, T Flip-flop 21-L20 Allotting portion for Internal Test-I Internal Test I begins 22-L21 JK Flip-flop, JK master slave Flip-flop 23-TT-1 Internal Test-I 24-L22 Astable multivibrator 25-L23 monostable multivibrator 26-L24 Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal 27-L25 555 time 28-L26 Frequency divider 29-L27 Karnaugh map Simplification 30-P2 College level meeting/Cell function 31-L28 2,3 Variables K map 32-L29 4 Variables K map 33-L30 Don't Care Conditions 34-L31 SOP form of Boolean Function 35-L32 POS Form of Boolean Function 36-L33 Multiplexer	13-L12	De Morgan's theorem
16-L15 NAND and NOR as universal building blocks. 17-L16 Half and full adders 18-L17 Half and full subtractors 19-L18 RS Flip-flop-clocked RS Flip flop 20-L19 D Flip-flop, T Flip-flop 21-L20 Allotting portion for Internal Test-I Internal Test I begins 22-L21 JK Flip-flop, JK master slave Flip-flop 23-IT-1 Internal Test-I Internal Test-I Astable multivibrator 25-L23 monostable multivibrator 26-L24 Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal 27-L25 555 time 28-L26 Frequency divider 29-L27 Karnaugh map Simplification 30-P2 College level meeting/Cell function 31-L28 2,3 Variables K map 32-L29 4 Variables K map 33-L30 Don't Care Conditions 34-L31 SOP form of Boolean Function 35-L32 POS Form of Boolean Function 36-L33 Multiplexer	14-L13	Positive logic and negative logic system
17-116 Half and full adders 18-117 Half and full adders 18-117 Half and full subtractors 19-118 RS Flip-flop-clocked RS Flip flop 20-119 D Flip-flop, T Flip-flop 21-120 Allotting portion for Internal Test-I Internal Test I begins 22-121 JK Flip-flop, JK master slave Flip-flop 23-IT-1 Internal Test-I Astable multivibrator 25-123 monostable multivibrator 26-124 Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal 27-125 555 time 28-126 Frequency divider 29-127 Karnaugh map Simplification 30-P2 College level meeting/Cell function 31-128 2,3 Variables K map 32-129 4 Variables K map 32-129 4 Variables K map 3-	15-L14	Basic logic gates, OR, AND, NOT
18-L17 Half and full subtractors 19-L18 RS Flip-flop-clocked RS Flip flop 20-L19 D Flip-flop, T Flip-flop 21-L20 Allotting portion for Internal Test-I Internal Test I begins 22-L21 JK Flip-flop, JK master slave Flip-flop 23-IT-1 Internal Test-I 24-L22 Astable multivibrator 25-L23 monostable multivibrator 26-L24 Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal 27-L25 555 time 28-L26 Frequency divider 29-L27 Karnaugh map Simplification 30-P2 College level meeting/Cell function 31-L28 2,3 Variables K map 32-L29 4 Variables K map 33-L30 Don't Care Conditions 34-L31 SOP form of Boolean Function 35-L32 POS Form of Boolean Function 38-L35 Encoder 39-L36 Decoder 40-L37 Parity Generator 41-L38 Parity checker 42-P3 Department Seminar 43-L39 Reg	16-L15	NAND and NOR as universal building blocks.
19-L18 RS Flip-flop-clocked RS Flip flop 20-L19 D Flip-flop, T Flip-flop 21-L20 Allotting portion for Internal Test-I Internal Test I begins 22-L21 JK Flip-flop, JK master slave Flip-flop 23-TT-1 Internal Test-I 24-L22 Astable multivibrator 25-L23 monostable multivibrator 26-L24 Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal 27-L25 555 time 28-L26 Frequency divider 29-L27 Karnaugh map Simplification 30-P2 College level meeting/Cell function 31-L28 2,3 Variables K map 32-L29 4 Variables K map 33-L30 Don't Care Conditions 34-L31 SOP form of Boolean Function 35-L32 POS Form of Boolean Function 38-L35 Encoder 39-L36 Decoder 40-L37 Parity Generator 41-L38 Parity Generator 41-L38 Parity checker 42-P3 Department Seminar 43-L39 Registers –	17- L16	Half and full adders
20- L19 D Flip-flop, T Flip-flop 21- L20 Allotting portion for Internal Test-I Internal Test I begins 22- L21 JK Flip-flop, JK master slave Flip-flop 23- IT-1 Internal Test-I 24- L22 Astable multivibrator 25- L23 monostable multivibrator 26- L24 Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal 27- L25 555 time 28- L26 Frequency divider 29- L27 Karnaugh map Simplification 30- P2 College level meeting/Cell function 31-L28 2,3 Variables K map 32-L29 4 Variables K map 33-L30 Don't Care Conditions 34- L31 SOP form of Boolean Function 35- L32 POS Form of Boolean Function 36- L33 Multiplexer 38-L35 Encoder 39- L36 Decoder 40- L37 Parity Generator 41- L38 Parity checker 42-P3 Department Seminar 43- L39 Registers – shift registerst	18- L17	Half and full subtractors
20- L19 D Flip-flop, T Flip-flop 21- L20 Allotting portion for Internal Test-I Internal Test I begins 22- L21 JK Flip-flop, JK master slave Flip-flop 23- IT-1 Internal Test-I 24- L22 Astable multivibrator 25- L23 monostable multivibrator 26- L24 Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal 27- L25 555 time 28- L26 Frequency divider 29- L27 Karnaugh map Simplification 30- P2 College level meeting/Cell function 31-L28 2,3 Variables K map 32-L29 4 Variables K map 33-L30 Don't Care Conditions 34- L31 SOP form of Boolean Function 35- L32 POS Form of Boolean Function 36- L33 Multiplexer 38-L35 Encoder 39- L36 Decoder 40- L37 Parity Generator 41- L38 Parity checker 42-P3 Department Seminar 43- L39 Registers – shift registerst	19- L18	RS Flip-flop-clocked RS Flip flop
Internal Test I begins22- L21JK Flip-flop, JK master slave Flip-flop23- IT-1Internal Test-I24- L22Astable multivibrator25- L23monostable multivibrator26- L24Test Paper distribution and result analysisEntering Internal Test-I Marks into University portal27- L25555 time28- L26Frequency divider29- L27Karnaugh map Simplification30- P2College level meeting/Cell function31-L282,3 Variables K map32-L294 Variables K map32-L294 Variables K map33-L30Don't Care Conditions34- L31SOP form of Boolean Function35- L32POS Form of Boolean Function36- L33Multiplexer37- L34Demultiplexer38-L35Encoder39- L36Decoder40- L37Parity Generator41- L38Parity checker42-P3Department Seminar43- L39Registers – shift registerst	20- L19	
Internal Test I begins22- L21JK Flip-flop, JK master slave Flip-flop23- IT-1Internal Test-I24- L22Astable multivibrator25- L23monostable multivibrator26- L24Test Paper distribution and result analysisEntering Internal Test-I Marks into University portal27- L25555 time28- L26Frequency divider29- L27Karnaugh map Simplification30- P2College level meeting/Cell function31-L282,3 Variables K map32-L294 Variables K map33-L30Don't Care Conditions34- L31SOP form of Boolean Function35- L32POS Form of Boolean Function36- L33Multiplexer37- L34Demultiplexer38-L35Encoder39- L36Decoder40- L37Parity Generator41- L38Parity checker42-P3Department Seminar43- L39Registers – shift registerst	21- L20	Allotting portion for Internal Test-I
Internal Test-IInternal Test-I23- IT-1Internal Test-I24- L22Astable multivibrator25- L23monostable multivibrator26- L24Test Paper distribution and result analysisEntering Internal Test-I Marks into University portal27- L25555 time28- L26Frequency divider29- L27Karnaugh map Simplification30- P2College level meeting/Cell function31-L282,3 Variables K map32-L294 Variables K map33-L30Don't Care Conditions34- L31SOP form of Boolean Function35- L32POS Form of Boolean Function36- L33Multiplexer37- L34Demultiplexer39- L36Decoder40- L37Parity Generator41- L38Parity checker42-P3Department Seminar43- L39Registers – shift registerst		
24- L22Astable multivibrator25- L23monostable multivibrator26- L24Test Paper distribution and result analysis26- L24Test Paper distribution and result analysis27- L25555 time28- L26Frequency divider29- L27Karnaugh map Simplification30- P2College level meeting/Cell function31-L282,3 Variables K map32-L294 Variables K map33-L30Don't Care Conditions34- L31SOP form of Boolean Function35- L32POS Form of Boolean Function36- L33Multiplexer37- L34Demultiplexer39- L36Decoder40- L37Parity Generator41- L38Parity checker42-P3Department Seminar43- L39Registers – shift registerst	22- L21	JK Flip-flop, JK master slave Flip-flop
25- L23monostable multivibrator26- L24Test Paper distribution and result analysisEntering Internal Test-I Marks into University portal27- L25555 time28- L26Frequency divider29- L27Karnaugh map Simplification30- P2College level meeting/Cell function31-L282,3 Variables K map32-L294 Variables K map33-L30Don't Care Conditions34- L31SOP form of Boolean Function35- L32POS Form of Boolean Function36- L33Multiplexer37- L34Demultiplexer38-L35Encoder39- L36Decoder40- L37Parity Generator41- L38Parity checker42-P3Department Seminar43- L39Registers – shift registerst		Internal Test-I
26- L24Test Paper distribution and result analysis27- L25555 time28- L26Frequency divider29- L27Karnaugh map Simplification30- P2College level meeting/Cell function31-L282,3 Variables K map32-L294 Variables K map33-L30Don't Care Conditions34- L31SOP form of Boolean Function35- L32POS Form of Boolean Function36- L33Multiplexer37- L34Demultiplexer38-L35Encoder39- L36Decoder40- L37Parity Generator41- L38Parity checker43- L39Registers – shift registerst	24- L22	Astable multivibrator
Entering Internal Test-I Marks into University portal27- L25555 time28- L26Frequency divider29- L27Karnaugh map Simplification30- P2College level meeting/Cell function31-L282,3 Variables K map32-L294 Variables K map33-L30Don't Care Conditions34- L31SOP form of Boolean Function35- L32POS Form of Boolean Function36- L33Multiplexer37- L34Demultiplexer38-L35Encoder39- L36Decoder40- L37Parity Generator41- L38Parity checker42-P3Department Seminar43- L39Registers – shift registerst		
27-L25555 time28-L26Frequency divider29-L27Karnaugh map Simplification30-P2College level meeting/Cell function31-L282,3 Variables K map32-L294 Variables K map33-L30Don't Care Conditions34-L31SOP form of Boolean Function35-L32POS Form of Boolean Function36-L33Multiplexer37-L34Demultiplexer38-L35Encoder39-L36Decoder40-L37Parity Generator41-L38Parity checker43-L39Registers – shift registerst	26- L24	
28- L26Frequency divider29- L27Karnaugh map Simplification30- P2College level meeting/Cell function31-L282,3 Variables K map32-L294 Variables K map33-L30Don't Care Conditions34- L31SOP form of Boolean Function35- L32POS Form of Boolean Function36- L33Multiplexer37- L34Demultiplexer38-L35Encoder39- L36Decoder40- L37Parity Generator41- L38Parity checker43- L39Registers – shift registerst	27.1.25	
29- L27Karnaugh map Simplification30- P2College level meeting/Cell function31-L282,3 Variables K map32-L294 Variables K map33-L30Don't Care Conditions34- L31SOP form of Boolean Function35- L32POS Form of Boolean Function36- L33Multiplexer37- L34Demultiplexer38-L35Encoder39- L36Decoder40- L37Parity Generator41- L38Parity checker43- L39Registers – shift registerst		
30- P2College level meeting/Cell function31-L282,3 Variables K map32-L294 Variables K map33-L30Don't Care Conditions34- L31SOP form of Boolean Function35- L32POS Form of Boolean Function36- L33Multiplexer37- L34Demultiplexer39- L36Decoder40- L37Parity Generator41- L38Parity checker42-P3Department Seminar43- L39Registers – shift registerst		
31-L282,3 Variables K map32-L294 Variables K map33-L30Don't Care Conditions34- L31SOP form of Boolean Function35- L32POS Form of Boolean Function36- L33Multiplexer37- L34Demultiplexer38-L35Encoder39- L36Decoder40- L37Parity Generator41- L38Parity checker42-P3Department Seminar43- L39Registers – shift registerst		
32-L294 Variables K map33-L30Don't Care Conditions34-L31SOP form of Boolean Function35-L32POS Form of Boolean Function36-L33Multiplexer37-L34Demultiplexer38-L35Encoder39-L36Decoder40-L37Parity Generator41-L38Parity checker42-P3Department Seminar43-L39Registers – shift registerst		
33-L30Don't Care Conditions34-L31SOP form of Boolean Function35-L32POS Form of Boolean Function36-L33Multiplexer37-L34Demultiplexer38-L35Encoder39-L36Decoder40-L37Parity Generator41-L38Parity checker42-P3Department Seminar43-L39Registers – shift registerst		
34- L31SOP form of Boolean Function35- L32POS Form of Boolean Function36- L33Multiplexer37- L34Demultiplexer38-L35Encoder39- L36Decoder40- L37Parity Generator41- L38Parity checker42-P3Department Seminar43- L39Registers – shift registerst		▲
35- L32POS Form of Boolean Function36- L33Multiplexer37- L34Demultiplexer38-L35Encoder39- L36Decoder40- L37Parity Generator41- L38Parity checker42-P3Department Seminar43- L39Registers – shift registerst		
36- L33Multiplexer37- L34Demultiplexer38-L35Encoder39- L36Decoder40- L37Parity Generator41- L38Parity checker42-P3Department Seminar43- L39Registers – shift registerst		
37-L34Demultiplexer38-L35Encoder39-L36Decoder40-L37Parity Generator41-L38Parity checker42-P3Department Seminar43-L39Registers – shift registerst		
38-L35Encoder39- L36Decoder40- L37Parity Generator41- L38Parity checker42-P3Department Seminar43- L39Registers – shift registerst		
39- L36Decoder40- L37Parity Generator41- L38Parity checker42-P3Department Seminar43- L39Registers – shift registerst		L
40- L37Parity Generator41- L38Parity checker42-P3Department Seminar43- L39Registers – shift registerst		
41- L38Parity checker42-P3Department Seminar43- L39Registers – shift registerst		
42-P3Department Seminar43- L39Registers – shift registerst		
43-L39 Registers – shift registerst		
		·
44- L40 Serial in Serial Out		
	44- L40	Serial in Serial Out

45- L41	Serial in Parallel out
46- L42	Parallel in Serial out
47- L43	Allotting portion for Internal Test-II
	Internal Test II begins
48- L44	Parallel in- Parallel out
49-IT-II	Internal Test-II
50-L45	Counters
51- L46	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
52- L47	Synchronous counter
53- L48	Asynchronous Counters
54- L49	Mod-5 counter
55- L50	Mod-10 Counter
56- L51	decade counter
57- L52	Ring counter
58- L53	Up- Down counter
59-P4	College level meeting/ function
60- L54	D/A Converter
61- L55	A/D Converter
62- L56	AssignmentProblems
63- L57	Revision
64- L58	Allotting portion for Internal Test-III
	Internal Test III begins
65- L59	Problems
66- L60	Problems
67-IT-III	Internal Test-III
68- L61	Revision
69- L62	RevisionTest
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
71-MT	Model Test
72-MT	Model Test
73-MT 74-L64	Model TestModel test paper distribution and previous year university question
/4-L04	paper discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 21.4.2017

Learning Outcomes	COs of the course Digital Electronics
CO1	The students are able to
	Convert a decimal number into other number systems
CO2	Explain the difference between analogue and digital system
CO3	Explains the advantage of digital system
CO4	Simplifies the Boolean algebraic equations
CO5	Designs simple digital circuits
CO6	Designs counters
CO7	Designs multivibrators
CO8	Design a circuit using only NAND or NOR gates
Experimental	
Learning	
EL1	Constructs multivibrator
EL2	Measures the frequency of the vibrators
EL3	Constructs gate circuits and verify its operation
EL4	Constructs flip flops
Integrated Activity	
IA1	
IA2	

# Blended Learning	: Using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: Use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: Special care taken, motivate the advanced learner to support the slow learner to study and to attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Digital Electronics	
Course Code	GMPH63	
Class	III year (2017-2018)	
Semester	Even	
Staff Name	Dr. M. Daniel Sweetlin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > Student understands the principles of digital systems.
- Student learns about different number systems
- > Applies Boolean algebra for digital system design
- Simplifies circuits using Boolean algebra
- Simplifies circuits using K Map
- Designs simple digital circuits

Syllabus

SEMESTER-VI PAPER XII DIGITAL ELECTRONICS

Preamble: This course provides an understanding of Boolean algebra and digital circuits. The paper needs a basic knowledge in solid state electronics and thelearners are expected to gain knowledge to design electronic circuits

UNIT I: NUMBER SYSTEMS, BINARY ARITHMETIC AND CODES

Decimal, binary, octal and hexadecimal number systems and their interconversions-binary arithmetic-binary addition-subtraction-1's and 2'scomplements- BCD codes, ASCII code, Excess-3code, Gray code. (7L+5T)

UNIT II: BOOLEAN ALGEBRA AND LOGIC GATES

Boolean algebra-De Morgan's theorem –Positive logic and negative logicsystems-Basic logic gates, OR, AND, NOT (symbol, Boolean equation, truth table, circuit diagram and working)-NAND, NOR, EX-OR (symbol, Boolean equation, truth table only)-NAND and NOR as universal building blocks. (8L+6T)

UNIT III: ARITHMETIC CIRCUITS, FLIP-FLOPS ANDMULTIVIBRATORS

Half and full adders- Half and full subtractors-RS Flip-flop-clocked RSFlipflop, JK Flip-flop, JK master slave Flip-flop, D Flip-flop, T Flip-flop555 timer-Astable multivibrator, monostable multivibrator-Frequencydivider(11L+7T)

UNIT IV: KARNAUGH MAP AND COMBINATIONAL CIRCUIT APPLICATIONS

Karnaugh map - 2,3and 4 variables –simplification-SOP and POS form ofBoolean functions - Don't care conditions-Multiplexer, Demultiplexer, Encoder, Decoder, parity generator and checker. (10L+6T)

UNIT V: SHIFT REGISTERS AND COUNTERS

Types of registers- Serial in –Serial out-Serial in-Parallel out- Parallelin- Serial out- Parallel in- Parallel out-Asynchronous and Synchronous counters-Ring counter- Binary counter- Up- Down counter- Mod-5 counter- Mod-10counter (decade counter)-A/D and D/A converters(9L+6T)

Books for study

1.Digital principles and applications - Albert Paul Malvino& Donald P.Leach

Books for reference

1.Digital logic and computer design-Morris Mano-Prentice Hall of India, Pvt.Ltd.

2.GothmannW.H., Digital Electronics- Prentice Hall of India, Pvt.Ltd.

3.Metha V.K.Mehtha.R.Principles of electronics, S.Chand&Co.

4. Fundamentals of Digital Electronics and Microprocessors - Anokhsingh

Hour	Class Schedule		
allotment			
	Even Semester Begin on 03.12.2017		
1-L1	Analog verses Digital		
2-L2	Binary system for digital.		
3- L3	Decimal, binary number systems and interconversions		
4-L4	Octal, binary and hexadecimal number systems and		
	interconversions		

5-L5	binary arithmetic-binary addition and subtraction
6-L6	1s complement subtraction
7-L7	2s complement subtraction
8- P1	Welcoming of First year and Inauguration of PhysicsAssociation
9- L8	BCD codes 8421 code
10- L9	Excess-3code, Gray code.
11-L10	ASCII code
12-L11	Boolean algebra
13-L12	De Morgan's theorem
14-L13	Positive logic and negative logic system
15-L14	Basic logic gates, OR, AND, NOT
16-L15	NAND and NOR as universal building blocks.
17- L16	Half and full adders
18- L17	Half and full subtractors
19- L18	RS Flip-flop-clocked RS Flip flop
20- L19	D Flip-flop, T Flip-flop
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins
22- L21	JK Flip-flop, JK master slave Flip-flop
23- IT-1	Internal Test-I
24- L22	Astable multivibrator
25- L23	monostable multivibrator
26- L24	Test Paper distribution and result analysis
27 1 25	Entering Internal Test-I Marks into University portal
27- L25	555 time
28- L26	Frequency divider
29- L27	Karnaugh map Simplification
30- P2 31-L28	College level meeting/Cell function
	2,3 Variables K map
32-L29 33-L30	4 Variables K map
	Don't Care Conditions
34- L31	SOP form of Boolean Function
35- L32	POS Form of Boolean Function
36- L33	Multiplexer
37- L34	Demultiplexer
38-L35	Encoder
39- L36	Decoder
40- L37	Parity Generator
41- L38	Parity checker
42-P3	Department Seminar
43- L39	Registers – shift registerst
44- L40	Serial in Serial Out

45- L41	Serial in Parallel out
46- L42	Parallel in Serial out
47- L43	Allotting portion for Internal Test-II
	Internal Test II begins
48- L44	Parallel in- Parallel out
49-IT-II	Internal Test-II
50-L45	Counters
51- L46	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
52- L47	Synchronous counter
53- L48	Asynchronous Counters
54- L49	Mod-5 counter
55- L50	Mod-10 Counter
56- L51	decade counter
57- L52	Ring counter
58- L53	Up- Down counter
59-P4	College level meeting/ function
60- L54	D/A Converter
61- L55	A/D Converter
62- L56	AssignmentProblems
63- L57	Revision
64- L58	Allotting portion for Internal Test-III
	Internal Test III begins
65- L59	Problems
66- L60	Problems
67-IT-III	Internal Test-III
68- L61	Revision
69- L62	RevisionTest
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
71-MT	Model Test
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question
75 1 65	paper discussion
75-L65	Feedback of the Course, analysis and report preparationLast Working day on 23.4.2018
	Last working day on 23.4.2010

Learning Outcomes	COs of the course Digital Electronics
CO1	The students are able to
	Convert a decimal number into other number systems
CO2	Explain the difference between analogue and digital system
CO3	Explains the advantage of digital system
CO4	Simplifies the Boolean algebraic equations
CO5	Designs simple digital circuits
CO6	Designs counters
CO7	Designs multivibrators
CO8	Design a circuit using only NAND or NOR gates
Experimental	
Learning	
EL1	Constructs multivibrator
EL2	Measures the frequency of the vibrators
EL3	Constructs gate circuits and verify its operation
EL4	Constructs flip flops
Integrated Activity	
IA1	
IA2	

# Blended Learning	: Using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: Use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: Special care taken, motivate the advanced learner to support the slow learner to study and to attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Digital Electronics	
Course Code	GMPH63	
Class	III year (2018-2019)	
Semester	Even	
Staff Name	Dr. M. Daniel Sweetlin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > Student understands the principles of digital systems.
- Student learns about different number systems
- > Applies Boolean algebra for digital system design
- Simplifies circuits using Boolean algebra
- Simplifies circuits using K Map
- Designs simple digital circuits

Syllabus

SEMESTER-VI PAPER XII DIGITAL ELECTRONICS

Preamble: This course provides an understanding of Boolean algebra and digital circuits. The paper needs a basic knowledge in solid state electronics and thelearners are expected to gain knowledge to design electronic circuits

UNIT I: NUMBER SYSTEMS, BINARY ARITHMETIC AND CODES

Decimal, binary, octal and hexadecimal number systems and their interconversions-binary arithmetic-binary addition-subtraction-1's and 2'scomplements- BCD codes, ASCII code, Excess-3code, Gray code. (7L+5T)

UNIT II: BOOLEAN ALGEBRA AND LOGIC GATES

Boolean algebra-De Morgan's theorem –Positive logic and negative logicsystems-Basic logic gates, OR, AND, NOT (symbol, Boolean equation, truth table, circuit diagram and working)-NAND, NOR, EX-OR (symbol, Boolean equation, truth table only)-NAND and NOR as universal building blocks. (8L+6T)

UNIT III: ARITHMETIC CIRCUITS, FLIP-FLOPS ANDMULTIVIBRATORS

Half and full adders- Half and full subtractors-RS Flip-flop-clocked RSFlipflop, JK Flip-flop, JK master slave Flip-flop, D Flip-flop, T Flip-flop555 timer-Astable multivibrator, monostable multivibrator-Frequencydivider(11L+7T)

UNIT IV: KARNAUGH MAP AND COMBINATIONAL CIRCUIT APPLICATIONS

Karnaugh map - 2,3and 4 variables –simplification-SOP and POS form ofBoolean functions - Don't care conditions-Multiplexer, Demultiplexer, Encoder, Decoder, parity generator and checker. (10L+6T)

UNIT V: SHIFT REGISTERS AND COUNTERS

Types of registers- Serial in –Serial out-Serial in-Parallel out- Parallelin- Serial out- Parallel in- Parallel out-Asynchronous and Synchronous counters-Ring counter- Binary counter- Up- Down counter- Mod-5 counter- Mod-10counter (decade counter)-A/D and D/A converters(9L+6T)

Books for study

1.Digital principles and applications - Albert Paul Malvino & Donald P.Leach

Books for reference

1.Digital logic and computer design-Morris Mano-Prentice Hall of India, Pvt.Ltd.

2.GothmannW.H., Digital Electronics- Prentice Hall of India, Pvt.Ltd.

3.Metha V.K.Mehtha.R.Principles of electronics, S.Chand & Co.

4. Fundamentals of Digital Electronics and Microprocessors - Anokh singh

Hour	Class Schedule
allotment	
	Even Semester Begin on 03.12.2018
1-L1	Analog verses Digital
2-L2	Binary system for digital.
3- L3	Decimal, binary number systems and interconversions
4-L4	Octal, binary and hexadecimal number systems and
	interconversions

5-L5	binary arithmetic-binary addition and subtraction
6-L6	1s complement subtraction
7-L7	2s complement subtraction
8- P1	Welcoming of First year and Inauguration of PhysicsAssociation
9- L8	BCD codes 8421 code
10- L9	Excess-3code, Gray code.
11-L10	ASCII code
12-L11	Boolean algebra
13-L12	De Morgan's theorem
14-L13	Positive logic and negative logic system
15-L14	Basic logic gates, OR, AND, NOT
16-L15	NAND and NOR as universal building blocks.
17- L16	Half and full adders
18- L17	Half and full subtractors
19- L18	RS Flip-flop-clocked RS Flip flop
20- L19	D Flip-flop, T Flip-flop
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins
22- L21	JK Flip-flop, JK master slave Flip-flop
23- IT-1	Internal Test-I
24- L22	Astable multivibrator
25- L23	monostable multivibrator
26- L24	Test Paper distribution and result analysis
27 1 25	Entering Internal Test-I Marks into University portal
27- L25 28- L26	555 time
	Frequency divider
29- L27	Karnaugh map Simplification
30- P2 31-L28	College level meeting/Cell function
32-L29	2,3 Variables K map
32-L29 33-L30	4 Variables K map Don't Care Conditions
33-L30 34- L31	SOP form of Boolean Function
34- L31 35- L32	
35- L32 36- L33	POS Form of Boolean Function
30- L33 37- L34	Multiplexer
37-L34 38-L35	Demultiplexer Encoder
38-L33 39- L36	
40- L37	Decoder Derity Concreter
40- L37 41- L38	Parity Generator
41- L38 42-P3	Parity checker Department Seminar
42-P3 43- L39	Registers – shift registerst
43 L37 44- L40	Serial in Serial Out
11 110	

45- L41	Serial in Parallel out	
46- L42	Parallel in Serial out	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins	
48- L44	Parallel in- Parallel out	
49-IT-II	Internal Test-II	
50-L45	Counters	
51- L46	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	Synchronous counter	
53- L48	Asynchronous Counters	
54- L49	Mod-5 counter	
55- L50	Mod-10 Counter	
56- L51	decade counter	
57- L52	Ring counter	
58- L53	Up- Down counter	
59-P4	College level meeting/ function	
60- L54	D/A Converter	
61- L55	A/D Converter	
62- L56	AssignmentProblems	
63- L57	Revision	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins	
65- L59	Problems	
66- L60	Problems	
67-IT-III	Internal Test-III	
68- L61	Revision	
69- L62	RevisionTest	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
71-MT	Model Test	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question	
75-L65	paper discussion Eachback of the Course, analysis and report proparation	
/J-L0J	Feedback of the Course, analysis and report preparationLast Working day on 23.4.2019	
	Last WUIMIIg Uay VII 23.4.2017	

Learning Outcomes	COs of the course Digital Electronics
C01	The students are able to
	Convert a decimal number into other number systems
CO2	Explain the difference between analogue and digital system
CO3	Explains the advantage of digital system
CO4	Simplifies the Boolean algebraic equations
CO5	Designs simple digital circuits
CO6	Designs counters
CO7	Designs multivibrators
CO8	Design a circuit using only NAND or NOR gates
Experimental	
Learning	
EL1	Constructs multivibrator
EL2	Measures the frequency of the vibrators
EL3	Constructs gate circuits and verify its operation
EL4	Constructs flip flops
Integrated Activity	
IA1	
IA2	

# Blended Learning	: Using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: Use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: Special care taken, motivate the advanced learner to support the slow learner to study and to attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Digital Electronics	
Course Code	GMPH63	
Class	III year (2017-2020)	
Semester	Even	
Staff Name	Dr. M. Daniel Sweetlin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > Student understands the principles of digital systems.
- Student learns about different number systems
- > Applies Boolean algebra for digital system design
- Simplifies circuits using Boolean algebra
- Simplifies circuits using K Map
- Designs simple digital circuits

Syllabus

SEMESTER-VI PAPER XII DIGITAL ELECTRONICS

Preamble: This course provides an understanding of Boolean algebra and digital circuits. The paper needs a basic knowledge in solid state electronics and thelearners are expected to gain knowledge to design electronic circuits

UNIT I: NUMBER SYSTEMS, BINARY ARITHMETIC AND CODES

Decimal, binary, octal and hexadecimal number systems and their interconversions-binary arithmetic-binary addition-subtraction-1's and 2'scomplements- BCD codes, ASCII code, Excess-3code, Gray code. (7L+5T)

UNIT II: BOOLEAN ALGEBRA AND LOGIC GATES

Boolean algebra-De Morgan's theorem –Positive logic and negative logicsystems-Basic logic gates, OR, AND, NOT (symbol, Boolean equation, truth table, circuit diagram and working)-NAND, NOR, EX-OR (symbol, Boolean equation, truth table only)-NAND and NOR as universal building blocks. (8L+6T)

UNIT III: ARITHMETIC CIRCUITS, FLIP-FLOPS ANDMULTIVIBRATORS

Half and full adders- Half and full subtractors-RS Flip-flop-clocked RSFlipflop, JK Flip-flop, JK master slave Flip-flop, D Flip-flop, T Flip-flop555 timer-Astable multivibrator, monostable multivibrator-Frequencydivider(11L+7T)

UNIT IV: KARNAUGH MAP AND COMBINATIONAL CIRCUIT APPLICATIONS

Karnaugh map - 2,3and 4 variables –simplification-SOP and POS form ofBoolean functions - Don't care conditions-Multiplexer, Demultiplexer, Encoder, Decoder, parity generator and checker. (10L+6T)

UNIT V: SHIFT REGISTERS AND COUNTERS

Types of registers- Serial in –Serial out-Serial in-Parallel out- Parallelin- Serial out- Parallel in- Parallel out-Asynchronous and Synchronous counters-Ring counter- Binary counter- Up- Down counter- Mod-5 counter- Mod-10counter (decade counter)-A/D and D/A converters(9L+6T)

Books for study

1.Digital principles and applications - Albert Paul Malvino & Donald P.Leach

Books for reference

1.Digital logic and computer design-Morris Mano-Prentice Hall of India, Pvt.Ltd.

2.GothmannW.H., Digital Electronics- Prentice Hall of India, Pvt.Ltd.

3.Metha V.K.Mehtha.R.Principles of electronics, S.Chand &Co.

4. Fundamentals of Digital Electronics and Microprocessors - Anokh singh

Hour	Class Schedule
allotment	
	Even Semester Begin on 02.12.2019
1-L1	Analog verses Digital
2-L2	Binary system for digital.
3- L3	Decimal, binary number systems and interconversions
4-L4	Octal, binary and hexadecimal number systems and
	interconversions

5-L5	binary arithmetic-binary addition and subtraction
6-L6	1s complement subtraction
7-L7	2s complement subtraction
8- P1	Welcoming of First year and Inauguration of PhysicsAssociation
9- L8	BCD codes 8421 code
10- L9	Excess-3code, Gray code.
11-L10	ASCII code
12-L11	Boolean algebra
13-L12	De Morgan's theorem
14-L13	Positive logic and negative logic system
15-L14	Basic logic gates, OR, AND, NOT
16-L15	NAND and NOR as universal building blocks.
17- L16	Half and full adders
18- L17	Half and full subtractors
19- L18	RS Flip-flop-clocked RS Flip flop
20- L19	D Flip-flop, T Flip-flop
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins
22- L21	JK Flip-flop, JK master slave Flip-flop
23- IT-1	Internal Test-I
24- L22	Astable multivibrator
25- L23	monostable multivibrator
26- L24	Test Paper distribution and result analysis
27- L25	Entering Internal Test-I Marks into University portal 555 time
27- L25 28- L26	
28- L20 29- L27	Frequency divider
30- P2	Karnaugh map Simplification College level meeting/Cell function
31-L28	2,3 Variables K map
32-L29	4 Variables K map
33-L30	Don't Care Conditions
34- L31	SOP form of Boolean Function
35- L32	POS Form of Boolean Function
36- L33	Multiplexer
37- L34	Demultiplexer
38-L35	Encoder
39- L36	Decoder
40- L37	Parity Generator
41- L38	Parity checker
42-P3	Department Seminar
43- L39	Registers – shift registerst
44- L40	Serial in Serial Out

45- L41Serial in Parallel out46- L42Parallel in Serial out		
47- L43 Allotting portion for Internal Test-II		
Internal Test II begins		
48- L44 Parallel in- Parallel out		
49-IT-II Internal Test-II		
50-L45 Counters		
51- L46 Test Paper distribution and result analysis		
Entering Internal Test-II Marks into University	portal	
52- L47 Synchronous counter		
53- L48 Asynchronous Counters		
54- L49 Mod-5 counter		
55- L50 Mod-10 Counter		
56- L51 decade counter		
57- L52 Ring counter		
58- L53 Up- Down counter		
59-P4 College level meeting/ function		
60- L54 D/A Converter		
61- L55 A/D Converter		
62- L56 AssignmentProblems		
63- L57 Revision		
64- L58 Allotting portion for Internal Test-III		
Internal Test III begins		
65- L59 Problems		
66- L60 Problems		
67-IT-III Internal Test-III		
68- L61 Revision		
69- L62 RevisionTest		
70- L63Test Paper distribution and result analysis		
Entering Internal Test-III Marks into University	portal	
	Model Test begins	
71-MT Model Test		
72-MT Model Test 73-MT Model Test		
74-L64 Model test paper distribution and previous year univ	versity auestion	
paper discussion	and a question	
75-L65 Feedback of the Course, analysis and report preparation		
Last Working day on 27.4.2020		

Learning Outcomes	COs of the course Digital Electronics
C01	The students are able to
	Convert a decimal number into other number systems
CO2	Explain the difference between analogue and digital system
CO3	Explains the advantage of digital system
CO4	Simplifies the Boolean algebraic equations
CO5	Designs simple digital circuits
CO6	Designs counters
CO7	Designs multivibrators
CO8	Design a circuit using only NAND or NOR gates
Experimental	
Learning	
EL1	Constructs multivibrator
EL2	Measures the frequency of the vibrators
EL3	Constructs gate circuits and verify its operation
EL4	Constructs flip flops
Integrated Activity	
IA1	
IA2	

# Blended Learning	: Using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: Use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: Special care taken, motivate the advanced learner to support the slow learner to study and to attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2017-2018)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Electricity and Magnetism
Course Code	GMPH31
Class	II year (2017-2018)
Semester	Odd
Staff Name	Mrs. R. Nithya Agnes
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

- ➢ To learn electricity and magnetism
- > To understand electric Current
- ➢ How to apply Transient Current
- > To understand Alternating Current

Syllabus

ELECTRICITY AND MAGNETISM

Unit I

Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – electric potential – relation connecting electric potential and electric field – potential at a point due to a point charge – potential due to an electric dipole – capacity – capacitance of a spherical and cylindrical

Capacitor – energy of a charged capacitor – Loss of energy due to sharing of charges. Unit II

Chemical Effects of Electric Current: Faraday's Laws of Electrolysis – electrical Conductivity of an electrolyte – specific conductivity – Kohlrausch bridge – Thermoelectricity – $See beck\ effect-Peltier\ effect-Thomson\ effect-total\ e.m.f-thermodynamics\ of\ thermocouple$

- thermoelectric power diagram - its uses - applications.

Unit III

Transient Current: Growth and decay of current in a circuit containing resistance and inductance – Growth and decay of charge in a circuit containing resistance and capacitance – Determination of high resistance by leakage – Growth and decay of charge in a LCR circuit – condition for the discharge to be oscillatory – Frequency of Oscillation.

672

Unit IV

Alternating Current: j operator – properties – use of j operator in the study of A.C Circuit With R only – inductance only – capacitance only – LCR series and parallel circuits – power in an AC circuit – Wattless current – choke coil – construction and working of AC generator, 1 phase and 3 phase AC generator – distribution of 3 phase AC – star connection – delta Connection.

Unit V

Magnetic Properties of Materials: Magnetic induction – Magnetism – Relation between B, H and M – Magnetic susceptibility – Magnetic permeability – Relation between them – Electron theory of dia, para and ferromagnetism – Determination of susceptibility – Curie balance method – Moving coil Ballistic galvanometer – construction – theory – correction for damping in B.G – Measurement of Charge sensitiveness – absolute capacity of a condenser. Books for Study and reference:

1. Electricity and Magnetism - D.N. Vasudeva

2. Electricity and Magnetism - Brijlal and Subramanian

3. Electricity and Magnetism - R. Murugeshan

4. Electricity and Magnetism - K.K. Tewari

5.Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.06.2017
1-L1	Electrostatics: Coulomb's law – electric field – electric dipole – electric flux
2-L2	Coulomb's law – electric field – electric dipole – electric flux – electric potential
	relation connecting electric potential and electric field
3- L3	potential at a point due to a point
	charge – potential due to an electric dipole
4-L4	potential due to an electric dipole – capacity
5-L5	capacitance of a spherical and cylindrical
6-L6	capacitor – energy of a charged capacitor – Loss of energy due to sharing of
	charges
7-L7	Unit II Chemical Effects of Electric Current: Faraday's Laws of Electrolysis
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Electrical conductivity of an electrolyte
10- L9	specific conductivity – Kohlrausch bridge – Thermoelectricity –
11-L10	See beck effect – Peltier effect – Thomson effect
12-L11	thermoelectric power diagram – its uses – applications
13-L12	Unit III Transient Current: Growth and decay of current in a circuit

14-L13	Growth and decay of charge in a circuit containing resistance and capacitance
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins 31.07.2017
16-L15	Determination of high resistance by leakage
17-IT-1	Growth and decay of charge in a LCR circuit
1, 11 1	Internal Test-I
18-L16	condition for the discharge to be oscillatory – Frequency of Oscillation.
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Alternating Current: j operator – properties
21- L19	properties – use of j operator in the study of A.C Circuit
22- P2	College level meeting/Cell function
23-L20	inductance only – capacitance only – LCR series and parallel circuits – power in
	an AC circuit
24-L21	Wattless current – choke coil
25-L22	construction and working of AC generator, 1
26-L23	phase and 3 phase AC generator
27-L24	distribution of 3 phase AC
28-L25	star connection – delta connection.
29-L26	Magnetic Properties of Materials
30-L27	Magnetic induction – Magnetism
31-L28	Relation between B, H and M – Magnetic susceptibility
32-L29	Magnetic permeability
33-L30	Relation between them Electron theory of dia, para and ferromagnetism
34- P3	Department Seminar
35-L31	Determination of susceptibility
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins 30.08.2017
37- L33	Curie balance method
38- IT-II	Internal Test-II
39-L34	Moving coil Ballistic galvanometer
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Moving coil Ballistic galvanometer – construction
42- L37	theory – correction for
43- L38	correction for damping in B.G
44- P4	College level meeting/ function
45-L39	Measurement of Charge sensitiveness
46-L40	absolute capacity of a condenser
47-L41	Solving Problems
48-L42	Curie balance method explanation
49-L43	.Determination of susceptibility
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins 03.10.2016
51 L45	Practical explanation
52- L46	Measurement of Charge sensitiveness
53-IT-III	Internal Test-III
54-L47	Revision

55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 19.10.2017
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 06.11.2017

Learning Outcomes	COs of the course " <electricity and="" magnetism="">"</electricity>
CO1	The use of Coulomb's law and Gauss' law for the electrostatic force
CO2	The relationship between electrostatic field and electrostatic potential
CO3	The use of the Lorentz force law for the magnetic force
CO4	The use of Ampere's law to calculate magnetic fields
CO5	The use of Faraday's law in induction problems
CO6	The basic laws that underlie the properties of electric circuit elements
Experimental Learning	
EL1	The abstraction from forces to fields using the examples of the electric and magnetic fields, with some applications
EL2	The connection between conservative forces and potential energy
EL3	How charges move through electric circuits
EL4	The close connection between electricity and magnetism, leading to
	the discovery of electromagnetic waves.
EL5	the integral form of Maxwell's Equations
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics
Course Name	Electricity and Magnetism
Course Code	GMPH31
Class	II year (2018-2019)
Semester	Odd
Staff Name	Mrs. R. Nithya Agnes
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

- ➢ To learn electricity and magnetism
- > To understand electric Current
- ➢ How to apply Transient Current
- To understand Alternating Current

Syllabus

ELECTRICITY AND MAGNETISM

Unit I

Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – electric potential – relation connecting electric potential and electric field – potential at a point due to a point charge – potential due to an electric dipole – capacity – capacitance of a spherical and cylindrical

Capacitor – energy of a charged capacitor – Loss of energy due to sharing of charges. Unit II

Chemical Effects of Electric Current: Faraday's Laws of Electrolysis – electrical Conductivity of an electrolyte – specific conductivity – Kohlrausch bridge – Thermoelectricity – $See beck\ effect-Peltier\ effect-Thomson\ effect-total\ e.m.f-thermodynamics\ of\ thermocouple$

- thermoelectric power diagram - its uses - applications.

Unit III

Transient Current: Growth and decay of current in a circuit containing resistance and inductance – Growth and decay of charge in a circuit containing resistance and capacitance – Determination of high resistance by leakage – Growth and decay of charge in a LCR circuit – condition for the discharge to be oscillatory – Frequency of Oscillation.

672

Unit IV

Alternating Current: j operator – properties – use of j operator in the study of A.C Circuit With R only – inductance only – capacitance only – LCR series and parallel circuits – power in an AC circuit – Wattless current – choke coil – construction and working of AC generator, 1 phase and 3 phase AC generator – distribution of 3 phase AC – star connection – delta Connection.

Unit V

Magnetic Properties of Materials: Magnetic induction – Magnetism – Relation between B, H and M – Magnetic susceptibility – Magnetic permeability – Relation between them – Electron theory of dia, para and ferromagnetism – Determination of susceptibility – Curie balance method – Moving coil Ballistic galvanometer – construction – theory – correction for damping in B.G – Measurement of Charge sensitiveness – absolute capacity of a condenser. Books for Study and reference:

1. Electricity and Magnetism - D.N. Vasudeva

2. Electricity and Magnetism - Brijlal and Subramanian

3. Electricity and Magnetism - R. Murugeshan

4. Electricity and Magnetism - K.K. Tewari

5.Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2018
1-L1	Electrostatics: Coulomb's law – electric field – electric dipole – electric flux
2-L2	Coulomb's law – electric field – electric dipole – electric flux – electric potential
	relation connecting electric potential and electric field
3- L3	potential at a point due to a point
	charge – potential due to an electric dipole
4-L4	potential due to an electric dipole – capacity
5-L5	capacitance of a spherical and cylindrical
6-L6	capacitor – energy of a charged capacitor – Loss of energy due to sharing of
	charges
7-L7	Unit II Chemical Effects of Electric Current: Faraday's Laws of Electrolysis
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Electrical conductivity of an electrolyte
10- L9	specific conductivity – Kohlrausch bridge – Thermoelectricity –
11-L10	See beck effect – Peltier effect – Thomson effect
12-L11	thermoelectric power diagram – its uses – applications
13-L12	Unit III Transient Current: Growth and decay of current in a circuit

14-L13	Growth and decay of charge in a circuit containing resistance and capacitance
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins 30.07.2018
16-L15	Determination of high resistance by leakage
17-IT-1	Growth and decay of charge in a LCR circuit
1, 11 1	Internal Test-I
18-L16	condition for the discharge to be oscillatory – Frequency of Oscillation.
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Alternating Current: j operator – properties
21- L19	properties – use of j operator in the study of A.C Circuit
22- P2	College level meeting/Cell function
23-L20	inductance only – capacitance only – LCR series and parallel circuits – power in
	an AC circuit
24-L21	Wattless current – choke coil
25-L22	construction and working of AC generator, 1
26-L23	phase and 3 phase AC generator
27-L24	distribution of 3 phase AC
28-L25	star connection – delta connection.
29-L26	Magnetic Properties of Materials
30-L27	Magnetic induction – Magnetism
31-L28	Relation between B, H and M – Magnetic susceptibility
32-L29	Magnetic permeability
33-L30	Relation between them Electron theory of dia, para and ferromagnetism
34- P3	Department Seminar
35-L31	Determination of susceptibility
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins 03.09.2018
37- L33	Curie balance method
38- IT-II	Internal Test-II
39-L34	Moving coil Ballistic galvanometer
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Moving coil Ballistic galvanometer – construction
42- L37	theory – correction for
43- L38	correction for damping in B.G
44- P4	College level meeting/ function
45-L39	Measurement of Charge sensitiveness
46-L40	absolute capacity of a condenser
47-L41	Solving Problems
48-L42	Curie balance method explanation
49-L43	.Determination of susceptibility
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins 08.10.2018
51 L45	Practical explanation
52- L46	Measurement of Charge sensitiveness
53-IT-III	Internal Test-III
54-L47	Revision

55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 22.10.2018
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.11.2018

Learning Outcomes	COs of the course " <electricity and="" magnetism="">"</electricity>
CO1	The use of Coulomb's law and Gauss' law for the electrostatic force
CO2	The relationship between electrostatic field and electrostatic potential
CO3	The use of the Lorentz force law for the magnetic force
CO4	The use of Ampere's law to calculate magnetic fields
CO5	The use of Faraday's law in induction problems
CO6	The basic laws that underlie the properties of electric circuit
	elements
Experimental	
Learning	
EL1	The abstraction from forces to fields using the examples of the electric and magnetic fields, with some applications
EL2	The connection between conservative forces and potential energy
EL3	How charges move through electric circuits -
EL4	The close connection between electricity and magnetism, leading to
	the discovery of electromagnetic waves.
EL5	the integral form of Maxwell's Equations
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2019-2020)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Electricity and Magnetism	
Course Code	GMPH31	
Class	II year (2019-2020)	
Semester	Odd	
Staff Name	Mrs. R. Nithya Agnes	
Credits	4	
L. Hours /P. Hours 4 / WK		
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > To learn electricity and magnetism
- > To understand electric Current
- ➢ How to apply Transient Current
- > To understand Alternating Current

Syllabus

ELECTRICITY AND MAGNETISM

Unit I

Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – Electrostatics: Coulomb's law – electric field – electric dipole – electric flux – electric potential – relation connecting electric potential and electric field – potential at a point due to a point charge – potential due to an electric dipole – capacity – capacitance of a spherical and cylindrical

Capacitor – energy of a charged capacitor – Loss of energy due to sharing of charges. Unit II

Chemical Effects of Electric Current: Faraday's Laws of Electrolysis – electrical Conductivity of an electrolyte – specific conductivity – Kohlrausch bridge – Thermoelectricity – $See beck\ effect-Peltier\ effect-Thomson\ effect-total\ e.m.f-thermodynamics\ of\ thermocouple$

- thermoelectric power diagram - its uses - applications.

Unit III

Transient Current: Growth and decay of current in a circuit containing resistance and inductance – Growth and decay of charge in a circuit containing resistance and capacitance – Determination of high resistance by leakage – Growth and decay of charge in a LCR circuit – condition for the discharge to be oscillatory – Frequency of Oscillation.

672

Unit IV

Alternating Current: j operator – properties – use of j operator in the study of A.C Circuit With R only – inductance only – capacitance only – LCR series and parallel circuits – power in an AC circuit – Wattless current – choke coil – construction and working of AC generator, 1 phase and 3 phase AC generator – distribution of 3 phase AC – star connection – delta Connection.

Unit V

Magnetic Properties of Materials: Magnetic induction – Magnetism – Relation between B, H and M – Magnetic susceptibility – Magnetic permeability – Relation between them – Electron theory of dia, para and ferromagnetism – Determination of susceptibility – Curie balance method – Moving coil Ballistic galvanometer – construction – theory – correction for damping in B.G – Measurement of Charge sensitiveness – absolute capacity of a condenser. Books for Study and reference:

1. Electricity and Magnetism - D.N. Vasudeva

2. Electricity and Magnetism - Brijlal and Subramanian

3. Electricity and Magnetism - R. Murugeshan

4. Electricity and Magnetism - K.K. Tewari

5.Halliday Rhesnick walker Ed 6 Wiley

Hour	Class Schedule
allotment	
	Odd Semester Begin on 17.06.2019
1-L1	Electrostatics: Coulomb's law – electric field – electric dipole – electric flux
2-L2	Coulomb's law – electric field – electric dipole – electric flux – electric potential
	relation connecting electric potential and electric field
3- L3	potential at a point due to a point
	charge – potential due to an electric dipole
4-L4	potential due to an electric dipole – capacity
5-L5	capacitance of a spherical and cylindrical
6-L6	capacitor – energy of a charged capacitor – Loss of energy due to sharing of
	charges
7-L7	Unit II Chemical Effects of Electric Current: Faraday's Laws of Electrolysis
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Electrical conductivity of an electrolyte
10- L9	specific conductivity – Kohlrausch bridge – Thermoelectricity –
11-L10	See beck effect – Peltier effect – Thomson effect
12-L11	thermoelectric power diagram – its uses – applications
13-L12	Unit III Transient Current: Growth and decay of current in a circuit

14-L13	Growth and decay of charge in a circuit containing resistance and capacitance
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins 24.07.2019
16-L15	Determination of high resistance by leakage
17-IT-1	Growth and decay of charge in a LCR circuit
1, 11 1	Internal Test-I
18-L16	condition for the discharge to be oscillatory – Frequency of Oscillation.
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Alternating Current: j operator – properties
21- L19	properties – use of j operator in the study of A.C Circuit
22- P2	College level meeting/Cell function
23-L20	inductance only – capacitance only – LCR series and parallel circuits – power in
	an AC circuit
24-L21	Wattless current – choke coil
25-L22	construction and working of AC generator, 1
26-L23	phase and 3 phase AC generator
27-L24	distribution of 3 phase AC
28-L25	star connection – delta connection.
29-L26	Magnetic Properties of Materials
30-L27	Magnetic induction – Magnetism
31-L28	Relation between B, H and M – Magnetic susceptibility
32-L29	Magnetic permeability
33-L30	Relation between them Electron theory of dia, para and ferromagnetism
34- P3	Department Seminar
35-L31	Determination of susceptibility
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins 28.08.2019
37- L33	Curie balance method
38- IT-II	Internal Test-II
39-L34	Moving coil Ballistic galvanometer
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Moving coil Ballistic galvanometer – construction
42- L37	theory – correction for
43- L38	correction for damping in B.G
44- P4	College level meeting/ function
45-L39	Measurement of Charge sensitiveness
46-L40	absolute capacity of a condenser
47-L41	Solving Problems
48-L42	Curie balance method explanation
49-L43	.Determination of susceptibility
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins 27.09.2019
51 L45	Practical explanation
52- L46	Measurement of Charge sensitiveness
53-IT-III	Internal Test-III
54-L47	Revision

55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins 14.10.2019
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 30.11.2019

Learning Outcomes	COs of the course " <electricity and="" magnetism="">"</electricity>
CO1	The use of Coulomb's law and Gauss' law for the electrostatic force
CO2	The relationship between electrostatic field and electrostatic potential
CO3	The use of the Lorentz force law for the magnetic force
CO4	The use of Ampere's law to calculate magnetic fields
CO5	The use of Faraday's law in induction problems
CO6	The basic laws that underlie the properties of electric circuit
	elements
Experimental	
Learning	
EL1	The abstraction from forces to fields using the examples of the electric and magnetic fields, with some applications
EL2	The connection between conservative forces and potential energy
EL3	How charges move through electric circuits -
EL4	The close connection between electricity and magnetism, leading to
	the discovery of electromagnetic waves.
EL5	the integral form of Maxwell's Equations
Integrated Activity	
IA1	
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Computer Programming in C ++	
Course Code	GMPH41	
Class	II Year (2018-2019)	
Semester	Even	
Staff Name Dr. A.Arul Gnanam		
	Dr.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours 4 / WK		
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➢ To Learn about C++ Programme
- Objective of the course is to provide knowledge about the basics of Computer programming in C++ and to solve problems by writing programs. The paper does not need any special prerequisite and the learners are expected to come out with the ability to apply the computer language C++ to solve problems
- > To discuss about operators.
- ➤ To learn about programme goading.

Syllabus

COMPUTER PROGRAMMING IN C++

UNIT-I: WHAT IS C++

Introduction - tokens - keywords - identifiers and constants - declaration of variables - basic data types - user defined data types-derived data types - symbolic constants - operators in C++ -expressions and their type-hierarchy of arithmetic operators- scope resolution operator – declaring, initializing and modifying variables-special assignment operators - all control structures-structure of a simple C ++ program (11L)

UNIT-II: ARRAYS AND FUNCTIONS IN C++Introduction - one dimensional and two dimensional arrays-initialization of arrays-array of stringsFunctions-introduction-function with no argument and no return valuesfunction

with no argument but return value - function with argument and no return values- function with argument and return values- call by reference-return by reference- function prototyping - inline functions - local, -global and static variables- -function overloading - virtual functions-main function-math library functions. (13L)

UNIT-III: CLASSES AND OBJECTS

Introduction - specifying a class - defining member functions-C++ program with class - nesting of member functions - private member functions - objects as function arguments - arrays within a class-array of objects-static class membersfriend functions-constructors - parameterized constructors-multiple constructors constructors with default arguments - copy constructor. (15L)

UNIT-IV: OPERATOR OVERLOADING, INHERITANCE AND POINTERS

Introduction -defining operator overloading - overloading unary operators - binary operators.

Inheritance - single inheritance - multiple inheritance - multilevel inheritance - hybrid inheritance - hierarchial inheritance-virtual base class-abstract class Pointers- definition-declaration- arithmetic operations. (12L)

UNIT-V: MANAGING CONSOLE I/O OPERATIONS

Introduction - C++ stream - C++ stream classes - unformatted I/O Operations - formatted console I/O operations - working with files - classes for file steam operations - opening and closing a file - file pointers and their manipulations. (9L) **Books for study**

Books for study

1. Object oriented Programming with C++ - E.Balagurusamy, Tata Mc Graw-Hill publishing company Ltd. New Delhi

Books for reference

1. Programming with C++ - D.Ravichandran, Tata Mc Graw-Hill publishing company Ltd. New Delhi .

2. Object oriented Programming in C++-4 th Edn.Robert Lafore-Macmilan publishing company Ltd.

3. Fundamentals of Programming with C++ -Richardl.Halterman

Hour	Class Schedule
allotment	
	EVEN Semester 03.12.2018
1-L1	UNIT-I: WHAT IS C++
	Introduction - tokens - keywords - identifiers and constants -
2-L2	declaration of variables
3- L3	basic data types - user defined data types-derived data types – symbolic constants
4-L4	operators in C++ -expressions and their type-hierarchy of arithmetic
5-L5	operators- scope resolution operator

6-L6	declaring, initializing and modifying variables-special assignment operators
7-L7	all control structures-structure of a simple C ++ program
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	C++Introduction
10- L9	one dimensional and two dimensional arrays-initialization of arrays-array of
	strings Functions
11-L10	introduction-function with no argument and no return values function
	with no argument but return value
12-L11	function with argument and no return values
13-L12	function with argument and return values- call by reference-return by reference
14-L13	function prototyping - inline functions - local, -global and static variables
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins 18.01.2019
16-L15	function overloading - virtual functions-main function-math library functions.
17-IT-1	Internal Test-I
18-L16	Introduction - specifying a class
19-L17	defining member functions-C++ program with class
	Entering Internal Test-I Marks into University portal
20-L18	nesting of member functions
21- L19	private member functions - objects as function arguments
22- P2	arrays within a class-array of objects-static class members friend functions-
	constructors
23-L20	parameterized constructors-multiple constructors
24-L21	constructors with default arguments - copy constructor
25-L22	OPERATOR OVERLOADING, INHERITANCE AND POINTERS
	Introduction
26-L23	defining operator overloading
27-L24	overloading unary operators
28-L25	binary operators.
29-L26	Inheritance - single inheritance
30-L27	multiple inheritance
31-L28	hybrid inheritance
32-L29	hierarchial inheritance
33-L30	virtual base class-abstract class
34- P3	Department Seminar
35-L31	Revision
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins 25.02.2019
37- L33	hierarchical inheritance
38- IT-II	Internal Test-II
39-L34	Pointers- definition
40-L35	declaration- arithmetic operations
	Entering Internal Test-II Marks into University portal
41-L36	Working with Files: Introduction
42- L37	MANAGING CONSOLE I/O OPERATIONS Introduction
43- L38	C++ stream
44- P4	C++ stream classes -
45-L39	unformatted I/O Operations

167.40	
46-L40	formatted console I/O operations -
47-L41	Revision
48-L42	Revision Class
49-L43	File Modes
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins 22.03.2019
51 L45	File Pointers and their Manipulations
52- L46	Revision
53-IT-III	Internal Test-III
54-L47	working with files
55-L48	classes for file steam
	operations - opening and closing a file - file pointers and their manipulations
	Entering Internal Test-III Marks into University portal
	Model Test begins 08.04.2019
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.04.2019

Learning Outcomes	COs of the course " <computer ++="" c="" in="" programming="">"</computer>
CO1	Get insight knowledge about the language.
CO2	Get trained in writing small programs.
CO3	Capable of executes any programs and identifying errors in them
CO4	Design and implement C programs for any given problem
CO5	Work with existing programs and modify it as per the
	requirements.
CO6	
CO7	Identify the output of a C program without actually executing it
Experimental	
Learning	
EL1	Capable coding any problem.
EL2	Capable of identifying errors in a coding
EL3	Capable handling any project assigned by a company.
Integrated Activity	
IA1	Individual and Team Work: Function effectively on teams to
	accomplish a common goal
IA2	Communication: Communicate effectively with a range of audiences and prepare technical documents and make effective oral presentations

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2019-2020)

(Prepared by staff member handling the course)

Programme Name	B.Sc. Physics	
Course Name	Computer Programming in C ++	
Course Code	GMPH41	
Class	II Year (2019-2020)	
Semester	Even	
Staff Name	Dr. A.Arul Gnanam	
	Dr.R.Nithya Agnes	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➢ To Learn about C++ Programme
- Objective of the course is to provide knowledge about the basics of Computer programming in C++ and to solve problems by writing programs. The paper does not need any special prerequisite and the learners are expected to come out with the ability to apply the computer language C++ to solve problems
- > To discuss about operators.
- ➤ To learn about programme goading.

Syllabus

COMPUTER PROGRAMMING IN C++

UNIT-I: WHAT IS C++

Introduction - tokens - keywords - identifiers and constants - declaration of variables - basic data types - user defined data types-derived data types - symbolic constants - operators in C++ -expressions and their type-hierarchy of arithmetic operators- scope resolution operator – declaring, initializing and modifying variables-special assignment operators - all control structures-structure of a simple C ++ program (11L)

UNIT-II: ARRAYS AND FUNCTIONS IN C++Introduction - one dimensional and two dimensional arrays-initialization of arrays-array of stringsFunctions-introduction-function with no argument and no return values function

with no argument but return value - function with argument and no return values- function with argument and return values- call by reference-return by reference- function prototyping - inline functions - local, -global and static variables- -function overloading - virtual functions-main function-math library functions. (13L)

UNIT-III: CLASSES AND OBJECTS

Introduction - specifying a class - defining member functions-C++ program with class - nesting of member functions - private member functions - objects as function arguments - arrays within a class-array of objects-static class membersfriend functions-constructors - parameterized constructors-multiple constructors constructors with default arguments - copy constructor. (15L)

UNIT-IV: OPERATOR OVERLOADING, INHERITANCE AND POINTERS

Introduction -defining operator overloading - overloading unary operators binary operators.

Inheritance - single inheritance - multiple inheritance - multilevel inheritance - hybrid inheritance - hierarchial inheritance-virtual base class-abstract class Pointers- definition-declaration- arithmetic operations. (12L)

UNIT-V: MANAGING CONSOLE I/O OPERATIONS

Introduction - C++ stream - C++ stream classes - unformatted I/O Operations formatted console I/O operations - working with files - classes for file steam operations - opening and closing a file - file pointers and their manipulations. (9L)

Books for study

1. Object oriented Programming with C++ - E.Balagurusamy, Tata Mc Graw-Hill publishing company Ltd. New Delhi

Books for reference

1. Programming with C++ - D.Ravichandran, Tata Mc Graw-Hill publishing company Ltd. New Delhi .

2. Object oriented Programming in C++-4 th Edn.Robert Lafore-Macmilan publishing company Ltd.

3. Fundamentals of Programming with C++ -Richardl.Halterman

Hour	Class Schedule	
allotment		
	EVEN Semester 02.12.2019	
1-L1	UNIT-I: WHAT IS C++	
	Introduction - tokens - keywords - identifiers and constants -	
2-L2	declaration of variables	
3- L3	basic data types - user defined data types-derived data types - symbolic	
	constants	
4-L4	operators in C++ -expressions and their type-hierarchy of arithmetic	
5-L5	operators- scope resolution operator	
6-L6	declaring, initializing and modifying variables-special assignment operators	
7-L7	all control structures-structure of a simple C ++ program	

8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	C++Introduction
10- L9	one dimensional and two dimensional arrays-initialization of arrays-array of
	strings Functions
11-L10	introduction-function with no argument and no return values function
	with no argument but return value
12-L11	function with argument and no return values
13-L12	function with argument and return values- call by reference-return by reference
14-L13	function prototyping - inline functions - local, -global and static variables
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins 23.01.2020
16-L15	function overloading - virtual functions-main function-math library functions.
17-IT-1	Internal Test-I
18-L16	Introduction - specifying a class
19-L17	defining member functions-C++ program with class
	Entering Internal Test-I Marks into University portal
20-L18	nesting of member functions
21- L19	private member functions - objects as function arguments
22- P2	arrays within a class-array of objects-static class members friend functions-
	constructors
23-L20	parameterized constructors-multiple constructors
24-L21	constructors with default arguments - copy constructor
25-L22	OPERATOR OVERLOADING, INHERITANCE AND POINTERS
	Introduction
26-L23	defining operator overloading
27-L24	overloading unary operators
28-L25	binary operators.
29-L26	Inheritance - single inheritance
30-L27	multiple inheritance
31-L28	hybrid inheritance
32-L29	hierarchial inheritance
33-L30	virtual base class-abstract class
34- P3	Department Seminar
35-L31	Revision
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins 25.02.2020
37- L33	hierarchical inheritance
38- IT-II	Internal Test-II
39-L34	Pointers- definition
40-L35	declaration- arithmetic operations
	Entering Internal Test-II Marks into University portal
41-L36	Working with Files: Introduction
42- L37	MANAGING CONSOLE I/O OPERATIONS Introduction
43- L38	C++ stream
44- P4	C++ stream classes -
45-L39	unformatted I/O Operations
46-L40	formatted console I/O operations -
47-L41	Revision

48-L42	Revision Class
49-L43	File Modes
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins 22.03.2020
51 L45	File Pointers and their Manipulations
52- L46	Revision
53-IT-III	Internal Test-III
54-L47	working with files
55-L48	classes for file steam
	operations - opening and closing a file - file pointers and their manipulations
	Entering Internal Test-III Marks into University portal
	Model Test begins 08.04.2019
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.04.2020

Learning Outcomes	COs of the course " <computer ++="" c="" in="" programming="">"</computer>
C01	Get insight knowledge about the language.
CO2	Get trained in writing small programs.
CO3	Capable of executes any programs and identifying errors in them
CO4	Design and implement C programs for any given problem
CO5	Work with existing programs and modify it as per the
	requirements.
CO6	Identify the errors in a C program.
CO7	Identify the output of a C program without actually executing it
Experimental	
Learning	
EL1	Capable coding any problem.
EL2	Capable of identifying errors in a coding
EL3	Capable handling any project assigned by a company.
Integrated Activity	
IA1	Individual and Team Work: Function effectively on teams to
	accomplish a common goal
IA2	Communication: Communicate effectively with a range of
	audiences and prepare technical documents and make effective oral
	presentations

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Opto Electronics	
Course Code	HPHE12	
Class	I year (2014-2015)	
Semester	Odd	
Staff Name	Dr. J. Ruby Jemima	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To expose the students to the ideas of the optoelectronics and lasers
- > To study the fundamentals of Light wave
- > To acquire the knowledge of Integrated wave guides
- > To gain knowledge of about fiber optic communications
- > This course gives detailed knowledge of about Optic fiber wave guides
- > The applications of Laser and Holography are to be studied.

Syllabus

Unit-I

Light wave fundamentals: Electromagnetic waves- dispersion-pulse distortion-and information rate- polarization- reasonant cavities at plane boundary – critical angle reflections.

Unit-II

Integrated wave guides: Dielectric slab guide – modes in the symmetric slab guide – modes in the asymmetric slab wave guide – coupling to the wave guide – integrated optic network

Unit-III

Optic fiber wave guides: Step index fiber – graded index fiber – attenuation in fibers – modes in step index fiber – modes in graded index fiber pulse distortion and information rate in optic fibers – construction of optical fibers.

Unit-IV

Lasers: Emission and absorption of radiation – Einstein relations – absorption of radiation – population inversion – threshold conditions – laser losses – line shape functions – population inversion and pumping threshold conditions – laser modes – Axial modes – Transverse modes – classes of laser – doped insulator laser – semiconductor laser – gas lasers – liquid gas lasers- single mode operation – frequency stabilation – mode locking – active mode – passive mode locking- Q- switching methods

Unit-V

Holography: Wavefront reconstruction - linearity of hologralphic process – image formation of holographic process – Gabour hologram – limitations –Recording the hologram – minimum reference angle –holography of three dimensions – practical problems in holography – types of holograms – Fresnel – Fraunhofer- transmission –reflection – rainbow multiplex- embossed and thick holograms – application of holography – holography interferometry – holography computer memories.

Books for study:

- 1. Fiber Optic communications, Joseph C.Palais, Prentice Hall Publications (unit1-3)
- 2. Opto electronics, J. Wilson and J.F.B Hawkes, Prentice Hall Publications(unit-4)
- 3. Introduction to Fourier optics, Joseph W.Goodman, McGraw Hill/ person Education (unit-5)

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2014
1-L1	Light wave fundamentals: Electromagnetic waves -dispersion
2-L2	Pulse distortion
3- L3	Information rate
4-L4	Polarisation-reasonant cavities at plane boundary
5-L5	Critical angle reflections
6-L6	Integrated wave guides:Dielectric slab guide
7-L7	Modes in the symmetric slab guide
8- P1	Welcoming of First year and Inauguration of Mathematics Association

9- L8	Modes in the asymmetric slab wave guide
10- L9	Coupling to the wave guide
11-L10	Integrated optic network
12-L11	Optic fiber wave guides: Step index fiber
13-L12	Graded index fiber
14-L13	Attenuation in fibers
15-L14	Modes in step index fiber
16-L15	Modes in graded index fiber pulse distortion and information rate in optic fibers
17- L16	Construction of optical fibers
18- L17	Lasers : Emission and absorption of radiation
19- L18	Einstein relations
20- L19	Absorption of radiation
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins (30.07.2014)
22- L21	Population inversion
23- IT-1	Internal Test-I
24- L22	Threshold conditions
25- L23	Laser losses
26- L24	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
27- L25	Line shape functions
28- L26	Population inversion and pumping threshold conditions
29- L27	Laser modes
30- P2	College level meeting/Cell function
31-L28	Axial modes
32-L29	Transverse modes
33-L30	Classes of laser
34- L31	Doped insulator laser
35- L32	Semiconductor laser
36- L33	Gas lasers
37- L34	Liquid gas lasers
38-L35	Single mode operation
39- L36	Frequency stabilization
40- L37	Mode locking
41- L38	Active mode
42-P3	Department Seminar
43- L39	Passive mode locking-Q-switching methods
44- L40	Holography : Wavefront reconstruction
45- L41	Linearity of holographic process
46- L42	Image formation of holographic process
47- L43	Allotting portion for Internal Test-II
	Internal Test II begins (18.08.2014)
48- L44	Gabour hologram
49-IT-II	Internal Test-II
50-L45	Limitations
51- L46	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
52- L47	Recording the hologram

Minimum reference angle
Holography of three dimentions
Practical problems in holography
Types of holograms
Fresnel
Fraunhofer
College level meeting/ function
Transmission
Reflection
Rainbow multiplex
Embossed and thick holograms
Allotting portion for Internal Test-III
Internal Test III begins (15.09.2014)
Application of holography
Holography interferometry
Internal Test-III
Holography computer memories
Revision
Test Paper distribution and result analysis
Entering Internal Test-III Marks into University portal
Model Test (24.10.2014)
Model Test
Model Test
Model test paper distribution and previous year university question paper
discussion
Feedback of the Course, analysis and report preparation
Last Working day on 31.10.2014

Learning Outcomes	COs of the course "Opto Electronics "
CO1	To studied about the Electromagnetic wave dispersion
CO2	To discuss the application of Holography
CO3	To describe the coupling of the wave guide
CO4	To construct the practical problems in Holography
CO5	To learn the Rainbow Multiplex
CO6	To studied about the Reflection and Transmission
CO7	To deduce the threshold conditions
CO8	To define the Einstein relations
CO9	To know about the Optic fiber wave guides
Experimental	
Learning	
EL1	Fiber optic characterisation was studied in lab

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Classical Mechanics and relativity	
Course Code	HPHM11	
Class	I year (2014-2015)	
Semester	Odd	
Staff Name	E .Christy Jerin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs / Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- \blacktriangleright To study the mechanics of the particle. .
- ➤ To derive the Lagrange's equation.
- > To generalise the advantages of Variational principle formulation.
- > To derive the Virial theorem.
- \succ To study about the Euler's angle.
- > To expose the special theory of relativity.

Syllabus

UNIT I

FUNDAMENTAL PRINCIPLE and LAGRANGIAN FORMULATION:

Mechanics of the particle and a System of the Particles -Constraints. D'Alembert's principle. Lagrange's equation. Velocity dependence force Dissipation functions Application of Lagrange's formulation. Hamilton's principle Lagrange's equation from Hamilton's principle Advantages of Variational principle formulation

Unit II

Reduction of two body problems

Reduction of two body problems into one body and equivalent dimensional problems. Equation of motion of first integral Virial theorem Bertrand's theorem Kepler's problem Scattering in a central force field. Transformation of scattering problems to laboratory coordinates

UNIT III

Rigid body motion Independent coordinates of a rigid body.

Matrix transformation Euler's angle Coriolis force Angular momentum and kinetic energy Principle of least action Hamilton's equation from Variational principle. Small oscillations Normal coordinates Linear tri atomic molecule Forced vibrations

UNIT IV

Hamilton,s formulationCanonical transformation Generating function.

Poisson's brakets. Poisson braket formula tion for equations of motion. Hamilton's Jacobi theory. Harmonic oscillator Problems. Hamilton's characteristic function. Separation of variables Action angle variables.

UNIT V

Mechanics of small oscillations:

The special theory of relativity. Lorentz transformation. Four dimensional formulation. Relativistic elastic scattering. The Lagrangian and Hamiltonian of a relativistic particle.

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2014
1-L1	Mechanics of the particle.
2-L2	System of the Particles, Constraints.
3- L3	D'Alembert's principle.
4-L4	Lagrange's equation.
5-L5	Velocity dependence force
6-L6	Dissipation functions.
7-L7	Application of Lagrange's formulation.
8- P1	Welcoming of First year and Inauguration of Mathematics Association
9- L8	Hamilton's principle.
10- L9	Lagrange's equation from Hamilton's principle.
11-L10	Advantages of Variational principle formulation.
12-L11	Reduction of two body problems into one body and equivalent dimensional

	problems.
13-L12	Equation of motion of first integral.
13 L12 14-L13	Virial theorem.
14 L13 15-L14	Bertrand's theorem.
16-L15	Kepler's problem.
17- L16	Scattering in a central force field.
17- L10 18- L17	Scattering in a central force field. Transformation of scattering problems to laboratory coordinates.
19- L17 19- L18	Transformation of scattering problems to laboratory coordinates.
20- L19	Kepler's problem.
20- L19 21- L20	Allotting portion for Internal Test-I
21- L20	Internal Test I begins (30.07.2014)
22- L21	Rigid body motion.
22- L21 23- IT-1	Internal Test-I
23-11-1 24- L22	Independent coordinates of a rigid body.
24- L22 25- L23	Matrix transformation
25- L25 26- L24	Test Paper distribution and result analysis
20 124	Entering Internal Test-I Marks into University portal
27- L25	Matrix transformation.
27 L25 28- L26	Euler's angle
20 L20 29- L27	Euler's angle
30- P2	College level meeting/Cell function
31-L28	Coriolis force
32-L29	Coriolis force
33-L30	Angular momentum and kinetic energy
34- L31	Angular momentum and kinetic energy.
35- L32	Principle of least action
36- L33	Hamilton's equation from Variational principle.
37- L34	Small oscillations.
38-L35	Normal coordinates
39- L36	Linear tri atomic molecule
40- L37	Forced vibrations.
41- L38	Canonical transformation
42-P3	Department Seminar
43- L39	Generating function.
44- L40	Poisson's brakets.
45- L41	Poisson braket formulation for equations of motion.
46- L42	Hamilton's Jacobi theory.
47- L43	Allotting portion for Internal Test-II
	Internal Test II begins (18.08.2014)
48- L44	Harmonic oscillator Problems.
49-IT-II	Internal Test-II
50-L45	Hamilton's characteristic function.
51- L46	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
52- L47	Seperation of variables.
53- L48	Action angle variables.
54- L49	The special theory of relativity.
55- L50	The special theory of relativity.

56- L51	Lorentz transformation.
57- L52	Lorentz transformation.
58- L53	Four dimensional formulation.
59-P4	College level meeting/ function
60- L54	Relativistic elastic scattering.
61- L55	Relativistic elastic scattering
62- L56	The Lagrangian and Hamiltonian of a relativistic particle
63- L57	The Lagrangian and Hamiltonian of a relativistic particle
64- L58	Allotting portion for Internal Test-III
	Internal Test III begins (15.09.2014)
65- L59	Covariant formulation
66- L60	Covariant formulation
67-IT-III	Internal Test-III
67-IT-III 68- L61	Internal Test-III Action angle variables
68- L61	Action angle variables
68- L61 69- L62	Action angle variables Seperation of variables
68- L61 69- L62	Action angle variablesSeperation of variablesTest Paper distribution and result analysis
68- L61 69- L62 70- L63	Action angle variablesSeperation of variablesTest Paper distribution and result analysisEntering Internal Test-III Marks into University portal
68- L61 69- L62 70- L63 71-MT	Action angle variablesSeperation of variablesTest Paper distribution and result analysisEntering Internal Test-III Marks into University portalModel Test (24.102014)
68- L61 69- L62 70- L63 71-MT 72-MT	Action angle variablesSeperation of variablesTest Paper distribution and result analysisEntering Internal Test-III Marks into University portalModel Test (24.102014)Model Test
68- L61 69- L62 70- L63 71-MT 72-MT 73-MT	Action angle variablesSeperation of variablesTest Paper distribution and result analysisEntering Internal Test-III Marks into University portalModel Test (24.102014)Model TestModel Test
68- L61 69- L62 70- L63 71-MT 72-MT 73-MT	Action angle variablesSeperation of variablesTest Paper distribution and result analysisEntering Internal Test-III Marks into University portalModel Test (24.102014)Model TestModel TestModel TestModel Test
68- L61 69- L62 70- L63 71-MT 72-MT 73-MT 74-L64	Action angle variablesSeperation of variablesTest Paper distribution and result analysisEntering Internal Test-III Marks into University portalModel Test (24.102014)Model TestModel TestModel TestModel test paper distribution and previous year university question paper discussion

Learning Outcomes	COs of the course "Classical Mechanics and relativity"
C01	Explain the D'Alembert's principle.
CO2	Determine the scattering in a central force field.
CO3	Deduce Euler's equation.
CO4	Generalise the canonical transformation.
CO5	Determine the action angle variables.
CO6	Derive Euler angle.
CO7	Describe abut small oscillations.
CO8	Derive poisson bracket.
CO9	Describe Hamilton's Jacobi theory.

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Mathematical physics I	
Course Code	HPHM12	
Class	I year (2014-2015)	
Semester	Odd	
Staff Name	J. Ruby Jemima	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To acquire the knowledge about the vector analysis.
- > To identify the eigen value /eigen vector of the matrix. .
- > To study the differentiation and integration of matrices.
- \succ To derive the polynomials.
- > To calculate the laplace integral transform.
- \succ To explain the convolution theorm.
- > To calculate the Fourier integral transform.

Syllabus

UNIT I

Gauss

Gauss divergence theorem. Deduction from Gauss divergence theorem. Green's theorem in a plane. Classification of vector fields

UNIT II

Eigen values, Eigen vectors

Eigen values, Eigen vectors . Charecteristic equation of matrix. Cayley Hamilton theorem. Some Important theorems of eigen value and eigen vectors Diagonalisation of matrices Differentiation and integration of matrices. Power of matrices. Exponential of a matrix Matrices in physics

UNIT III

Bessel 's function

Bessel differential equation Bessel 's function of I kind Generating function Recurrence relations Laguarre's differential equation. Laguerie polynomial. Generating function Recurrence relations

UNIT IV

Fourier's transform

Introduction Fourier's transform(FT) Properities of FT-FT of a derivative Fourier sin and cosine transforms of derivatives FT of function of function of two or three variables Finite FT Simple applications of FT

UNIT V

Laplace Transform

Laplace Transform(LT) Properties of LT LT of derivation of a function L T of periodic functions Properties of inverse LT LT of derivation of a function L T of periodic functions Properties of inverse LT Convolution theorem Evaluation of inverse LT by convolution theorem Application of LT

Hour allotment	Class Schedule	
	Odd Semester Begin on 18.06.2014	
1-L1	Gauss divergence theorem.	
2-L2	Deduction from Gauss divergence theorem.	
3- L3	Green's theorem.	
4-L4	Green's theorem in a plane.	
5-L5	Classification of vector fields	

6-L6	Eigen values, Eigen vectors.	
7-L7	Charecteristic equation of matrix.	
8- P1	Welcoming of First year and Inauguration of Mathematics Association	
9- L8	Cayley Hamilton theorem.	
10- L9	Some Important theorems of eigen value and eigen vectors	
11-L10	Some important theorems of eigen value and eigen vectors.	
11 210	Diagonalisation of matrices	
13-L12	Differentiation and integration of matrices.	
14-L13	Power of matrices.	
15-L14	Exponential of a matrix	
16-L15	Matrices in physics	
17- L16	Bessel differential equation	
18- L17	Bessel 's function of I kind	
19- L18	Generating function	
20- L19	Recurrence relations	
21- L20	Allotting portion for Internal Test-I	
	Internal Test I begins (30.07.2014)	
22- L21	Recurrence Relations.	
23- IT-1	Internal Test-I	
24- L22	Laguarre's differential equation.	
25- L23		
26- L24	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
27- L25	Laguerie polynomial.	
28- L26	Generating function	
29- L27	Recurrence relations	
30- P2	College level meeting/Cell function	
31-L28	Recurrence relations	
32-L29	Recurrence relations.	
33-L30	Introduction	
34- L31	Fourier's transform(FT)	
35-L32	Properities of FT-FT of a derivative	
36- L33	Fourier sin and cosine transforms of derivatives	
37-L34	FT of function of function of two or three variables	
38-L35	Finite FT	
39-L36	Simple applications of FT	
40- L37	Laplace Transform(LT)	
41- L38	Properties of LT	
42-P3	Department Seminar LT of derivation of a function	
43- L39 44- L40		
44- L40 45- L41	L T of periodic functions Properties of inverse LT	
45- L41 46- L42	Convolution theorem	
40- L42 47- L43		
4/-L43	Allotting portion for Internal Test-II Internal Test II baging (18.08.2014)	
48- L44	Internal Test II begins (18.08.2014)Evaluation of inverse LT by convolution theorem	
70- L 44		
49-IT-II	Internal Test-II	

50-L45	Application of Lt	
51- L46	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	Laplace Transform(LT)	
53- L48	Properties of LT	
54- L49	LT of a function of a function	
55- L50	LT of periodic functions	
56- L51	Properties of inverse LT	
57- L52	Convolution theorem	
58- L53	Evaluation of inverse LT by convolution theorem	
59-P4	College level meeting/ function	
60- L54	Application of LT	
61- L55	Eigen values: Eigen Vector	
62- L56	Characteristic equation of matrix	
63- L57	Cayley Hamilton theorem	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins (15.09.2014)	
65- L59	Some important theorem	
66- L60	Diagonalisation of matrices	
67-IT-III	Internal Test-III	
68- L61	Differentiation and integration of matrices	
69- L62	Power of matrices	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
71-MT	Model Test (24.10.2014)	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 31.10.2014	

Learning OutcomesCOs of the course "Mathematical physics I"		
CO1	Explain the classification of vector field.	
CO2	Determine the eigen value and eigen vector of the characteristic	
	equation of matrix.	
CO3	Design the recurrence relation.	
CO4	Determine the fourier transform for a given function	
CO5	Explain about the convolution theorem.	
CO6	Explain the properities of fourier transform.	
CO7	Application of matrix in physics.	
CO8	Application of laplace transform.	
CO9	Application of fourier transform.	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Electronic device	
Course Code	HPHM13	
Class	I year (2014-2015)	
Semester	Odd	
Staff Name	C.Stella Rani	
Credits	4	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs / Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To understand different types of electronic devices and preparation of IC
- To discuss logical families in the digital electronics and study the counters and registers
- > To describe the application of operational amplifier in the different field
- > To study the various electronics instrumentation through basics of science

Syllabus

Electronic devices

UNIT I

Transistors:

JFET, BJT, MOSFET& MESFET- Structure-working- Derivations of the equations for I-V characteristics under different conditions- High frequency limits.

UNIT II

Photonic devices:

Eradicative and non radiative transitions- Optical absorption- Bulk and thin film-Photoconductive devices(LDR)- diode photodectors- soloar cell-(open circuit voltage and short circuit current, fill factor)- LED (high frequency limit- effect of surface and indirect combination current, operation of LED)- diode lasers(conditions for population inversion in active region, line confinement factor)- Optical gain and threshold current for lasing- Fabry-Perrot cavity length for lasing and the separation.

UNIT III

Memory devices:

Static and dynamic random access memories SRAM and DRAM- CMOS and NMOSnon volatile- NMOS- magnetic- optical and ferroelectric memories- charge cupled(CCD).

UNIT IV

Other electronic devices:

Electro optic- magneto optic and Acousto- Optic effects- material properties related to get these effects- Important Ferro electric, Liquid Crystal and Polymeric materials of these devices- Piezoelectric- Electrostrictive and MagnetostrictiveEfeects- Important exhibiting these properties and their applications in sensors and activated devices. Acoustic Delay lines-Piezoelectric resonators and filters- High frequency piezoelectric devices- Surface acoustic wave devices.

UNIT V

Microwave devices:

Tunnel diode- transfer electron devices- avalanche transit time devices-impatt diodesparametric devices.

BOOKS FOR STUDY

- 1. Semiconductor devices- Physics and technology, S.M. Sze, John Wiley& Sons, 1985.
- 2. Introduction to semiconductors devices, M.S. Tyagi, John Wiley and Sons, 1991.
- Measurement, Instrumentation and Experiment design in physics and eengineering, M. Sayer and A. Mansingh, Prentice Hall, India,2000.
- 4. Optical Electronics, AjoyGhatak and K. Thygarajan, Cambridge Univ. Press, 1989.

Hour allotment	Class Schedule	
	Odd Semester Begin on 18.06.2014	
1-L1	JFET, BJT	
2-L2	MOSFET& MESFET	
3- L3	Structure-working	
4-L4	Derivations of the equations for I-V characteristics under different conditions	
5-L5	High frequency limits.	
6-L6	Eradicative and non radiative transitions	
7-L7	Optical absorption	
8- P1	Welcoming of First year and Inauguration of Mathematics Association	
9- L8	Bulk and thin film	
10- L9	Photoconductive devices(LDR)	
11-L10	diode photodectors	
12-L11	soloar cell(open circuit voltage and short circuit current, fill factor)	
13-L12	LED (high frequency limit effect of surface and indirect combination current operation of LED)	
14-L13	diode lasers(conditions for population inversion in active region, line confinement factor)	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins (30.07.2014)	
16-L15	Optical gain and threshold current for lasing	
17-IT-1	Internal Test-I	
18-L16	Fabry- Perrot cavity length for lasing and the separation.	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Static and dynamic random access memories SRAM and DRAM	
20 L10 21- L19	CMOS and NMOS	
22- P2	College level meeting/Cell function	
23-L20	non volatile	
24-L21	NMOS	
25-L22	magnetic	
26-L23	optical and ferroelectric memories	
27-L24	chargecupled(CCD).	
28-L25	Electro optic	
29-L26	magneto optic and Acousto	
30-L27	Optic effects	
31-L28	material properties related to get these effects	
32-L29	Important Ferro electric	
33-L30	Liquid Crystal and Polymeric materials of these devices	
34- P3	Department Seminar	
35-L31	Piezoelectric	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (18.08.2014)	
37- L33	Electrostrictive and MagnetostrictiveEfeects- Important exhibiting these	
	properties and their applications in sensors and activated devices.	

38- IT-II	Internal Test-II	
39-L34	Acoustic Delay lines	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Piezoelectric resonators and filters	
42- L37	High frequency piezoelectric devices	
43- L38	Surface acoustic wave devices.	
44- P4	College level meeting/ function	
45-L39	Tunnel diode	
46-L40	transfer electron devices	
47-L41	avalanche transit time devices	
48-L42	impatt diodes	
49-L43	parametric devices.	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (15.09.2014)	
51 L45	Internal Test-III (24.10.2014)	
52- L46	Internal Test-III	
53-IT-III	Internal Test-III	
54-L47		
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 31.10.2014	

Learning Outcomes	COs of the course "Electronic device"
CO1	JFET, BJT
CO2	MOSFET& MESFET
CO3	NMOS
CO4	soloar cell(open circuit voltage and short circuit current, fill factor)
CO5	LED (high frequency limit effect of surface and indirect
	combination current operation of LED)
CO6	optical and ferroelectric memories
CO7	chargecupled(CCD).
CO8	transfer electron devices
CO9	avalanche transit time devices

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Communication Electronics	
Course Code	HPHE22	
Class	I year (2014-2015)	
Semester	Even	
Staff Name	J . RUBY JEMIMA	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To Knows the basic concepts of Communication Electronics
- > To Analyses the Synchronization of Communication Electronics
- To Describes the Propagation waves
- > To knows the Optical Communication
- ➤ To Derive the Kepler's law
- > To calculates some problems based on Communication Electronics

Syllabus

UNIT – I

Amplitude Modulation:

Modulation index for AM Frequency spectrum for AM Average power AM transmitter Single side band principles Frequency Modulation Frequency Spectrum FM transmitter Phase Modulation Pulse amplitude modulation Pulse code modulation Pulse Frequency modulation Pulse Time modulation

UNIT II

Synchronization :

Asynchronous Transmission Probability of bit Error in baseband transmission Matched Filter Optimum Terminal Filters Bit time recovery Digital carrier systems Carrier recovery circuits Differential phase shift keying[DPSK] Hard and soft decision decoders

UNIT III

Propagation of waves :

Ground waves Sky wave propagation The ionosphere Space wave troposphere scatter Propagation Extra terrestrial communication

UNIT IV

Optical communication:

Transmission in fiber Losses in fibers, Dispersion Light sources for optics Photo detectors Connectors and splices Fiber optic communication link

UNIT V

Kepler's Laws;

Keplers's I, II,III law Orbits, Geostationary orbits, power system Altitude control, satellite station keeping, Antenna look angels Limits of visibility, Transponders ,Uplink and down power budget calculation Digital carrier transmission

Hour	Class Schedule	
allotment		
	Even Semester Begin on 03.12.2014	
1-L1	Communication electronics and its objectives	
2-L2	Amplitude modulation and Modulation index of AM	
3- L3	Frequency Spectrum of AM	
4-L4	Average power and AM receiver	
5-L5	AM transmitter and single side band principles	
6-L6	Frequency Modulation and Frequency spectrum	
7-L7	Average power and FM transmitter	
8- P1	Welcoming of First year and Inauguration of Mathematics Association	
9- L8	Phase modulation	
10- L9	Pulse amplitude modulation	

11-L10	Pulse code modulation	
12-L11 13-L12	Pulse frequency modulation Pulse time modulation	
14-L13	Introduction to Synchronization	
15-L14	Asynchronous Transmission	
16-L15	Probability of bit Error in baseband transmission	
17-L16	Matched filter	
18-L17	Optimum Terminal Filters	
19- L18	Bit time recovery	
20- L19	Digital carrier systems	
21- L20	Allotting portion for Internal Test-I	
	Internal Test I begins (19.01.2015)	
22- L21	Recall the 1 st internal syllabus	
23- IT-1	Internal Test-I	
24- L22	Carrier recovery circuits	
25-L23	Differential Phase shift keying	
26- L24	Test Paper distribution and result analysis	
07.1.05	Entering Internal Test-I Marks into University portal	
27-L25	Hard and soft Decision decoders	
28- L26	Introduction to Propagation waves	
29- L27	Ground waves	
30- P2	College level meeting/Cell function	
31-L28	Sky wave Propagation	
32-L29	The ionosphere	
33-L30	Space wave troposphere scatter propagation	
34- L31	Extra terrestrial communication	
35- L32	Recall the Propagation waves	
36- L33	Introduction to Optical communication	
37-L34	Transmission in Fibers	
38-L35	Losses in fibers	
39- L36	Description of light sources for fiber optics	
40- L37	Photo Detectors	
41- L38	Connectors and splices	
42-P3	Department Seminar	
43- L39	Extra Tresstrial communication	
44- L40	Transission fibers	
45- L41	Fiber optic communication link	
46- L42	Carrier recovery units	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins (16.02.2015)	
48- L44	Recall the 2 nd Internal syllabus	
49-IT-II	Internal Test-II	
50-L45	Losses in Fibers	
51- L46	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	Fiber optic communication	
53- L48	Introduction to kepler's laws	
54- L49	Kepler's 1 st , 2 nd and rd law	

55- L50	Introduction to orbits and Geostationary orbits	
56- L51	Power systems	
57- L52	Altitude control	
58- L53	Satellite station keeping	
59-P4	College level meeting/ function	
60- L54	Antenna look angles	
61- L55	Limits of visibility	
62- L56	Transponders	
63- L57	Up link power budget calculation	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins (16.03.2015)	
65- L59	Down link power budget calculation	
66- L60	Recall 3 rd Internal syllabus	
67-IT-III	Internal Test-III	
68- L61	Digital Carrier transmission	
69- L62	Multiple Access methods	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
71-MT	Model Test (16.04.2015)	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 31.10.2018	

Learning Outcomes	COs of the course "Communication Electronics"
CO1	Define Communication Electronics and its objectives
CO2	Derive the pulse modulation and Pulse time modulation
CO3	Know the Concept of synchronization
CO4	Define the propagation waves
CO5	Describe the Optical Communication
CO6	Discriminate the kepler's law
CO7	Calculates the Error in baseband transmission
CO8	Evaluate the Fiber optics communication link
CO9 Know the pulse time modulation	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Mathematical physics II	
Course Code	HPHM21	
Class	I year (2014-2015)	
Semester	Even	
Staff Name	E .Christy Jerin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- \blacktriangleright To introduce the special type of matrices. .
- ➤ To derive Cayley hamilton theorem.
- ➤ To derive Cauchy's theorem.
- > To derive Taylor's theorem.
- > To study the Polynomials.
- > To import the knowledge of fourier transform.
- > To apply then laplace transform into the electrical circuits.

Syllabus

UNIT 1

Matrices:

Introduction – special types of matrices Transpose – Conjugate – transposed conjugate Symmetric and antisymmetric matrices Hermitian and skew Hermitian matrices Determinant – Adjoint Orthogonal and unitary matrices Orthogonal and unitary matrices Eigen values and eigen vectors of the matrix Characteristic equation of a matrix – Cayley Hamilton theorem

UNIT II

Complex variables:

Analytical functions – Cauchy Riemann Conditions Line integrals – Cauchy's theorem – Cauchy's integral formula Derivatives of analytical functions – Power series Taylor's theorem – Laurent's theorem Calculus of residues Evaluation of definite integrals of $\cos \Theta$ and $\sin \Theta$ Certain improper real integers.

UNIT III

Bessel function

Bessel function of first kind. Generating function Recurrence relations. Jn (x) as solution of Bessel differential equation. Expansion of Jn (x) where n is half and odd integer Integral representation Laguerre's differential equation and Laguerre polynomials Generating function Rodrigue's formula Recurrence relations Orthogonal property of lauguerre polynomials Associated laugurre polynomials

UNIT IV

Fourier transform

Introduction-Fourier transform Properities of fourier transform Fourier transform of a derivative Fourier sine and cosine transform of derivatives. Laplace transform (LT) Properities of LT LT of derivative and integral of a function LT of periodic function Inverse of LT Properities of inverse LT Application of LT to electrical circuits

UNIT V

Numerical Integration

Introduction –numerical integration. Trapezoidal rule Simpson's rule Solution of ordinary differential equations of first order. Euler's method. Modified Euler's method Taylor series method. Runge kutta method Approximate solution of algebraic and transcendental equations Newton raphson method Method of iteration Monte-carlo technique Simpson's rule Solution of ordinary differential equations of first order.

Hour	Class Schedule	
allotment		
	Even Semester Begin on 3.12.2014	
1-L1	Matrices: Introduction – special types of matrices	
2-L2	Transpose – Conjugate – transposed conjugate	
3- L3	Symmetric and antisymmetric matrices	
4-L4	Hermitian and skew Hermitian matrices	

5-L5	Determinant – Adjoint	
6-L6	Orthogonal and unitary matrices	
7-L7	Orthogonal and unitary matrices	
8- P1	Welcoming of First year and Inauguration of Mathematics Association	
9- L8	Eigen values and eigen vectors of the matrix	
10- L9	Characteristic equation of a matrix – Cayley Hamilton theorem	
11-L10	Complex variables: Analytical functions – Cauchy Riemann Conditions	
12-L11	Line integrals – Cauchy's theorem – Cauchy's integral formula	
13-L12	Derivatives of analytical functions – Power series	
14-L13	Taylor's theorem – Laurent's theorem	
15-L14	Calculus of residues.	
16-L15	Evaluation of definite integrals of $\cos \Theta$ and $\sin \Theta$	
17- L16	Certain improper real integers.	
18- L17	Bessel function of first kind.	
19- L18	Generating function.	
20- L19	Recurrence relations.	
21- L20	Allotting portion for Internal Test-I	
	Internal Test I begins (19.01.2015)	
22- L21	Jn (x) as solution of Bessel differential equation.	
23- IT-1	Internal Test-I	
24- L22	Expansion of Jn (x) where n is half and odd integer.	
25- L23	Integral representation	
26- L24	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
27- L25	Laguerre's differential equation and Laguerre polynomials	
28- L26	Generating function	
29- L27	Rodrigue's formula	
30- P2	College level meeting/Cell function	
31-L28	Recurrence relations.	
32-L29	Orthogonal property of lauguerre polynomials.	
33-L30	Associated laugurre polynomials.	
34- L31	Introduction-Fourier transform.	
35-L32	Properities of fourier transfom.	
36- L33	Fourier transform of a derivative.	
37-L34	Fourier sine and cosine transform of derivatives.	
38-L35	Laplace transform (LT)	
39-L36	Properities of LT	
40- L37 41- L38	LT of derivative and integral of a function	
41- L38 42-P3	LT of periodic function.	
42-P3 43- L39	Department Seminar Inverse of LT	
43- L39 44- L40	Properities of inverse LT	
44- L40 45- L41	Application of LT to electrical circuits	
45- L41 46- L42	Introduction –numerical integration.	
40- L42 47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins (16.02.2015)	
48- L44	Trapezoidal rule	
49-IT-II	Internal Test-II	
17 11 11		

50-L45	Simpson's rule	
51- L46	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	Solution of ordinary differential equations of first order.	
53- L48	Euler's method.	
54- L49	Modified Euler's method	
55- L50	Taylor series method.	
56- L51	Runge kutta method.	
57- L52	Approximate solution of algebraic and transcendental equations.	
58- L53	Newton raphson method.	
59-P4	College level meeting/ function	
60- L54	Method of iteration	
61- L55	Monte-carlo technique	
62- L56	Simpson's rule	
63- L57	Solution of ordinary differential equations of first order.	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins (16.03.2015)	
65- L59	Modified Euler's method	
66- L60	Runge kutta method.	
67-IT-III	Internal Test-III	
68- L61	Approximate solution of algebraic and transcendental equations	
69- L62	Monte-carlo technique	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
71-MT	Model Test (16.04.2015)	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.4.2015	

Learning Outcomes	COs of the course "Mathematical physics II"
CO1	Introduction about types of matrices.
CO2	Find the eigen value and eigen vectors of the matrix.
CO3	Derive the Cauchy's integral formula.
CO4	Derive the recurrence relations.
CO5	Study about the laplace transform.
CO6	Find roots of the equation using Newton raphson method.
CO7	Solve the differential equation using Euler's method.
CO8	Solve the numerical integration using sympson's rule.
CO9	Introduction of Monte-carlo method

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Solid State Physics	
Course Code	HPHM22	
Class	I year (2014-2015)	
Semester	Even	
Staff Name	C.Stella Rani	
Credits	4	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs / Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- To understand Bravis lattice
- To discuss Brillouine zone
- To explain Crystal binding and study
- ➤ To describe Dulong and petits law
- Explain types of super conductors
- > To Discuss about electronic devices

Syllabus

SOLID STATE PHYSICS

UNIT I:

CRYSTAL STRUCTURE AND DIFFRACTION

Recapitulation of basic concepts- crystal systems- Bravais Lattice- Miller indices-symmetry elements- symmetry groups- simple crystal structures (sodium chloride, cesium chloride, diamond and zincblende structures) Bragg's law- Laue equations- reciprocal lattice- Brillouine zones- atomic scattering factor- geometrical structure factor- experimental methods of structure analysis (the laue, rotating crystal and powder methods)

UNIT II:

CRYSTAL BINDING AND ELASTIC PROPERTIES OF SOLIDS

Crystal bindings: Ionic bond- covalent bond- molecular bond- Hydrogen bondmetallic bond-Vanderwaal's bond-Binding energy of crystals- polaron Elastic properties: Stress componentsdisplacement and strain components- elastic compliances and stiffness constants- relation between elastic compliances and stiffness constants -elastic constants for cubic isotropic crystals-elastic wavesexperimental determination of elastic constants

UNIT III:

LATTICE DYNAMICS AND THERMAL PROPERTIES

Lattice dynamics: Concept of phonons- momentum of phonons- normal and Umklapp processvibrations of one dimensional monoatomic and diatomic linear lattices- inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat- Dulong and Petit's law- Einstein theory and Debye's theory- Widemann Franz law

UNIT IV:

ELECTRONIC PROPERTIES OF SOLIDS

Free electron gas model in three dimensions: Density of states- Fermi energyEffect of temperature- heat capacity of electrons- experimental heat capacity of metalsthermal effective masselectrical conductivity and ohm's law- Hall effect- failure of the free electron gas Band theory of solidsperiodic potential and Bloch's theorem- KronigPenny model-wave equation of electron in a periodic potential- periodic, extended and reduced zone schemes of energy representation- number of orbitals in an energy bandclassification of metals, semi conductors and insulators- tight binding method and its applications to FC and BCC structures.

UNIT V:

SUPER CONDUCTIVITY

Experimental survey: Superconductivity and its occurrence- destruction of superconductivity by magnetic field- Meissner effect- Type I and II super conductorsentropy- free energy- heat capacityenergy gap- isotope effect Theoretical survey: Thermodynamics of the superconducting transition-London equation- coherence length- salient features of the BCS theory of super conductivity- flux quantization in a superconductivity ring- DC and AC Josephson effects

Books for Study and Reference

- 1. Introduction to Solid State Physics 7 The edition by Charles kittel
- 2. Solid State Physics by Neil W Ashroff and N.DavidMermin
- 3. Solid State Physics by S.L. Kakani and C. Hemarajani
- 4. Elementary Solid State Physics by M. Ali Omar

Even Semester Begin on3.12.2014 1-L1 Recapitulation of basic concepts 2-L2 Crystal systems, Bravais Lattice 3-L3 Miller indices 4-L4 Symmetry elements, Symmetry groups 5-L5 simple crystal structures (sodium chloride, cesium chloride, diamond and zincblende structures) 6-L6 Bragg's law,Laue equations 7-L7 reciprocal lattice,Brillouine zones 8-P1 Welcoming of First year and Inauguration of Mathematics Association 9-L8 atomic scattering factor, Geometrical structure factor 10-L9 Experimental methods of structure analysis (the laue, rotating crystal and powder methods) 11-L10 Crystal bindings: Ionic bond,covalent bond 12-L11 molecular bond,Hydrogenbondmetallic bond 13-L12 Vanderwaal's bond 14-L13 Binding energy of crystals 15-L14 Allotting portion for Internal Test-I Internal Test I begins (19.01.2015) 16-L15 polaron Elastic properties: Stress components 17-L71 Internal Test-I 18-L16 displacement and strain components 19-L17 Test Paper distribution and result analysis </th <th>Hour</th> <th>Class Schedule</th>	Hour	Class Schedule		
1-L1 Recapitulation of basic concepts 2-L2 Crystal systems, Bravais Lattice 3-L3 Miller indices 4-L4 Symmetry elements, Symmetry groups 5-L5 simple crystal structures (sodium chloride, cesium chloride, diamond and zincblende structures) 6-L6 Brags's law.Laue equations 7-L7 reciprocal lattice,Brillouine zones 8-P1 Welcoming of First year and Inauguration of Mathematics Association 9-L8 atomic scattering factor, Geometrical structure factor 10-L9 Experimental methods of structure analysis (the laue, rotating crystal and powder methods) 11-L10 Crystal bindings: lonic bond,covalent bond 12-L11 molecular bond,Hydrogenbondmetallic bond 13-L12 Vanderwaal's bond 14-L13 Binding energy of crystals 15-L14 Allotting portion for Internal Test-I 16-L15 polaron Elastic properties: Stress components 17-L71 Internal Test-I 18-L16 displacement and strain components 19-L17 Test Paper distribution and result analysis 21-L19 relation between elastic compliances and stiffness constants 21-L21 elastic costants for cubic isotrop	allotment			
2-1.2 Crystal systems, Bravais Lattice 3- L3 Miller indices 4-L4 Symmetry elements, Symmetry groups 5-L5 simple crystal structures (sodium chloride, cesium chloride, diamond and zincblende structures) 6-L6 Bragg's law,Laue equations 7-L7 reciprocal lattice,Brillouine zones 8-P1 Welcoming of First year and Inauguration of Mathematics Association 9-L8 atomic scattering factor, Geometrical structure factor 10-L9 Experimental methods of structure analysis (the laue, rotating crystal and powder methods) 11-L10 Crystal bindings: Ionic bond,covalent bond 12-L11 molecular bond,Hydrogenbondmetallic bond 13-L12 Vanderwal's bond 14-L13 Binding energy of crystals 15-L14 Allotting portion for Internal Test-I Internal Test I begins (19.01.2015) Internal Test-I 16-L15 polaron Elastic properties: Stress components 17-L71 Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal 20-L18 elastic compliances and stiffness constants 22-P2 College level meeting/Cell function 23-L20 elastic waves				
3- L3 Miller indices 4-L4 Symmetry elements, Symmetry groups 5-L5 simple crystal structures (sodium chloride, cesium chloride, diamond and zincblende structures) 6-L6 Bragg's law,Laue equations 7-L7 reciprocal lattice,Brillouine zones 8- P1 Welcoming of First year and Inauguration of Mathematics Association 9- L8 atomic scattering factor, Geometrical structure factor 10- L9 Experimental methods of structure analysis (the laue, rotating crystal and powder methods) 11-L10 Crystal bindings: Ionic bond,covalent bond 12-L11 molecular bond,Hydrogenbondmetallic bond 13-L12 Vanderwaal's bond 14-L13 Binding energy of crystals 15-L14 Allotting portion for Internal Test-I Internal Test I begins (19.01.2015) 16-L15 16-L15 polaron Elastic properties: Stress components 17-I7-I Internal Test-I 18-L16 displacement and strain components 19-L17 Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal 20-L18 elastic constants for cubic isotropic crystals 21-L19 relastic constants for cubic isotropi				
4-L4 Symmetry elements, Symmetry groups 5-L5 simple crystal structures (sodium chloride, cesium chloride, diamond and zincblende structures) 6-L6 Bragg's law,Laue equations 7-L7 reciprocal lattice,Brillouine zones 8-P1 Welcoming of First year and Inauguration of Mathematics Association 9-L8 atomic scattering factor, Geometrical structure factor 10-L9 Experimental methods of structure analysis (the laue, rotating crystal and powder methods) 11-L10 Crystal bindings: Ionic bond,covalent bond 12-L11 molecular bond,Hydrogenbondmetallic bond 13-L12 Vanderwaal's bond 14-L13 Binding energy of crystals 15-L14 Allotting portion for Internal Test-I Internal Test J begins (19.01.2015) Internal Test-I 14-L15 polaron Elastic properties: Stress components 17-T7-1 Internal Test-I Marks into University portal 20-L18 elastic compliances and stiffness constants 21-L19 relation between elastic compliances and stiffness constants 22-P2 College level meeting/Cell function 23-L20 elastic constants for cubic isotropic crystals 24-L21 elastic waves				
5-L5 simple crystal structures (sodium chloride, cesium chloride, diamond and zincblende structures) 6-L6 Bragg's law,Laue equations 7-L7 reciprocal lattice,Brillouine zones 8- P1 Welcoming of First year and Inauguration of Mathematics Association 9- L8 atomic scattering factor, Geometrical structure factor 10- L9 Experimental methods of structure analysis (the laue, rotating crystal and powder methods) 11-L10 Crystal bindings: Ionic bond,covalent bond 12-L11 molecular bond,Hydrogenbondmetallic bond 13-L12 Vanderwaal's bond 14-L13 Binding energy of crystals 15-L14 Allotting portion for Internal Test-I Internal Test J begins (19.01.2015) 16-L15 polaron Elastic properties: Stress components 17-T7-1 Internal Test-I 18-L16 displacement and strain components 19-L17 Test Paper distribution and result analysis 21-L19 relation between elastic compliances and stiffness constants 21-L20 elastic compliances and stiffness constants 22-P2 College level meeting/Cell function 23-L20 elastic scattering of neutrons by phonons 26-L23 Lat	3- L3	Miller indices		
structures) 6-L6 Bragy's law,Lau equations 7-L7 reciprocal lattice,Brillouine zones 8-P1 Welcoming of First year and Inauguration of Mathematics Association 9-L8 atomic scattering factor, Geometrical structure factor 10-L9 Experimental methods of structure analysis (the laue, rotating crystal and powder methods) 11-L10 Crystal bindings: Ionic bond,covalent bond 12-L11 molecular bond,Hydrogenbondmetallic bond 13-L12 Vanderwaal's bond 14-L13 Binding energy of crystals 15-L14 Allotting portion for Internal Test-I 14-L15 polaron Elastic properties: Stress components 17-I7-1 Internal Test-I 18-L16 displacement and strain components 19-L17 Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal 20-L18 elastic compliances and stiffness constants 21-L19 relation between elastic compliances and stiffness constants 22-P2 College level meeting/Cell function 23-L20 elastic constants for cubic isotropic crystals 24-L21 elastic constants	4-L4			
7-L7 reciprocal lattice, Brillouine zones 8- P1 Welcoming of First year and Inauguration of Mathematics Association 9- L8 atomic scattering factor, Geometrical structure factor 10- L9 Experimental methods of structure analysis (the laue, rotating crystal and powder methods) 11-L10 Crystal bindings: Ionic bond,covalent bond 12-L11 molecular bond,Hydrogenbondmetallic bond 13-L12 Vanderwaal's bond 14-L13 Binding energy of crystals 15-L14 Allotting portion for Internal Test-I Internal Test I begins (19.01.2015) 16-L15 polaron Elastic properties: Stress components 17-IT-1 Internal Test-I 18-L16 displacement and strain components 19-L17 Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal 20-L18 elastic compliances and stiffness constants 21-L19 relatic obstrue elastic compliances and stiffness constants 22-P2 College level meeting/Cell function 23-L20 elastic oncept of phonons 24-L21 elastic vaves 25-L22 experimental determination of elastic constants 27-L24 <td>5-L5</td> <td colspan="2"></td>	5-L5			
8- P1 Welcoming of First year and Inauguration of Mathematics Association 9- L8 atomic scattering factor, Geometrical structure factor 10- L9 Experimental methods of structure analysis (the laue, rotating crystal and powder methods) 11-L10 Crystal bindings: Ionic bond,covalent bond 12-L11 molecular bond,Hydrogenbondmetallic bond 13-L12 Vanderwaal's bond 14-L13 Binding energy of crystals 15-L14 Allotting portion for Internal Test-I Internal Test I begins (19.01.2015) 1 16-L15 polaron Elastic properties: Stress components 17-IT-I Internal Test-I 18-L16 displacement and strain components 19-L17 Test Paper distribution and result analysis Entering Internal Test-I Marks into University portal 20-L18 elastic compliances and stiffness constants 21-L19 relation between elastic compliances and stiffness 22-P2 College level meeting/Cell function 23-L20 elastic constants for cubic isotropic crystals 24-L21 elastic waves 25-L22 experimental determination of elastic constants 26-L23 Latttic dynamics: Concept of phonons <td>6-L6</td> <td>Bragg's law,Laue equations</td>	6-L6	Bragg's law,Laue equations		
9- L8 atomic scattering factor, Geometrical structure factor 10- L9 Experimental methods of structure analysis (the laue, rotating crystal and powder methods) 11-L10 Crystal bindings: Ionic bond,covalent bond 12-L11 molecular bond,Hydrogenbondmetallic bond 13-L12 Vanderwaal's bond 14-L13 Binding energy of crystals 15-L14 Allotting portion for Internal Test-I Internal Test I begins (19.01.2015) 16-L15 polaron Elastic properties: Stress components 17-IT-1 Internal Test-I 18-L16 displacement and strain components 19-L17 Test Paper distribution and result analysis 20-L18 elastic compliances and stiffness constants 21-L19 relation between elastic compliances and stiffness constants 22- P2 College level meeting/Cell function 23-L20 elastic constants for cubic isotropic crystals 24-L21 elastic dynamics: Concept of phonons 27-L24 momentum of phonons 28-L25 normal and Umklapp process 29-L26 vibrations of one dimensional monoatomic and diatomic linear lattices 30-L27 inelastic scattering of neutrons by phonons Thermal properties:	7-L7	reciprocal lattice,Brillouine zones		
9- L8 atomic scattering factor, Geometrical structure factor 10- L9 Experimental methods of structure analysis (the laue, rotating crystal and powder methods) 11-L10 Crystal bindings: Ionic bond,covalent bond 12-L11 molecular bond,Hydrogenbondmetallic bond 13-L12 Vanderwaal's bond 14-L13 Binding energy of crystals 15-L14 Allotting portion for Internal Test-I Internal Test I begins (19.01.2015) 16-L15 polaron Elastic properties: Stress components 17-IT-1 Internal Test-I 18-L16 displacement and strain components 19-L17 Test Paper distribution and result analysis 20-L18 elastic compliances and stiffness constants 21-L19 relation between elastic compliances and stiffness constants 22- P2 College level meeting/Cell function 23-L20 elastic constants for cubic isotropic crystals 24-L21 elastic dynamics: Concept of phonons 27-L24 momentum of phonons 28-L25 normal and Umklapp process 29-L26 vibrations of one dimensional monoatomic and diatomic linear lattices 30-L27 inelastic scattering of neutrons by phonons Thermal properties:	8- P1	Welcoming of First year and Inauguration of Mathematics Association		
methods)11-L10Crystal bindings: Ionic bond,covalent bond12-L11molecular bond,Hydrogenbondmetallic bond13-L12Vanderwaal's bond14-L13Binding energy of crystals15-L14Allotting portion for Internal Test-IInternal Test I begins (19.01.2015)16-L15polaron Elastic properties: Stress components17-IT-1Internal Test-I18-L16displacement and strain components19-L17Test Paper distribution and result analysisEntering Internal Test-I Marks into University portal20-L18elastic compliances and stiffness constants21-L19relation between elastic compliances and stiffness constants22-P2College level meeting/Cell function23-L20elastic waves25-L22experimental determination of elastic constants26-L23Lattice dynamics: Concept of phonons27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature	9- L8			
12-L11 molecular bond, Hydrogenbondmetallic bond 13-L12 Vanderwaal's bond 14-L13 Binding energy of crystals 15-L14 Allotting portion for Internal Test-I Internal Test I begins (19.01.2015) 16-L15 polaron Elastic properties: Stress components 17-IT-1 Internal Test-I 18-L16 displacement and strain components 19-L17 Test Paper distribution and result analysis 20-L18 elastic compliances and stiffness constants 21-L19 relation between elastic compliances and stiffness constants 22-P2 College level meeting/Cell function 23-L20 elastic constants for cubic isotropic crystals 24-L21 elastic waves 25-L22 experimental determination of elastic constants 26-L23 Lattice dynamics: Concept of phonons 27-L24 momentum of phonons 28-L25 normal and Umklapp process 29-L26 vibrations of one dimensional monoatomic and diatomic linear lattices inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat 31-L28 Dulong and Petit's law Einstein theory and Debye's theory,Widemann Franz law 32-L29 <td>10- L9</td> <td></td>	10- L9			
13-L12Vanderwaal's bond14-L13Binding energy of crystals15-L14Allotting portion for Internal Test-IInternal Test I begins (19.01.2015)16-L15polaron Elastic properties: Stress components17-IT-1Internal Test-I18-L16displacement and strain components19-L17Test Paper distribution and result analysis20-L18elastic compliances and stiffness constants21-L19relation between elastic compliances and stiffness constants22- P2College level meeting/Cell function23-L20elastic constants for cubic isotropic crystals24-L21elastic waves25-L22experimental determination of elastic constants27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory, Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature	11-L10	Crystal bindings: Ionic bond, covalent bond		
14-L13Binding energy of crystals15-L14Allotting portion for Internal Test-IInternal Test I begins (19.01.2015)16-L15polaron Elastic properties: Stress components17-IT-1Internal Test-I18-L16displacement and strain components19-L17Test Paper distribution and result analysis20-L18elastic compliances and stiffness constants21-L19relation between elastic compliances and stiffness constants22- P2College level meeting/Cell function23-L20elastic constants for cubic isotropic crystals24-L21elastic waves25-L22experimental determination of elastic constants26-L23Lattice dynamics: Concept of phonons27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory,Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature	12-L11	molecular bond,Hydrogenbondmetallic bond		
15-L14Allotting portion for Internal Test-IInternal Test I begins (19.01.2015)16-L15polaron Elastic properties: Stress components17-IT-1Internal Test-I18-L16displacement and strain components19-L17Test Paper distribution and result analysis20-L18elastic compliances and stiffness constants21- L19relation between elastic compliances and stiffness constants22- P2College level meeting/Cell function23-L20elastic constants for cubic isotropic crystals24-L21elastic waves25-L22experimental determination of elastic constants27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory, Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature	13-L12	Vanderwaal's bond		
15-L14Allotting portion for Internal Test-IInternal Test I begins (19.01.2015)16-L15polaron Elastic properties: Stress components17-IT-1Internal Test-I18-L16displacement and strain components19-L17Test Paper distribution and result analysis20-L18elastic compliances and stiffness constants21- L19relation between elastic compliances and stiffness constants22- P2College level meeting/Cell function23-L20elastic constants for cubic isotropic crystals24-L21elastic waves25-L22experimental determination of elastic constants27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory, Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature	14-L13	Binding energy of crystals		
Internal Test I begins (19.01.2015)16-L15polaron Elastic properties: Stress components17-IT-1Internal Test-I18-L16displacement and strain components19-L17Test Paper distribution and result analysis20-L18elastic compliances and stiffness constants21-L19relation between elastic compliances and stiffness constants22-P2College level meeting/Cell function23-L20elastic constants for cubic isotropic crystals24-L21elastic waves25-L22experimental determination of elastic constants26-L23Lattice dynamics: Concept of phonons27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory,Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature				
16-L15polaron Elastic properties: Stress components17-IT-1Internal Test-I18-L16displacement and strain components19-L17Test Paper distribution and result analysisEntering Internal Test-I Marks into University portal20-L18elastic compliances and stiffness constants21-L19relation between elastic compliances and stiffness constants22-P2College level meeting/Cell function23-L20elastic constants for cubic isotropic crystals24-L21elastic waves25-L22experimental determination of elastic constants26-L23Lattice dynamics: Concept of phonons27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory,Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature				
17-IT-1Internal Test-I18-L16displacement and strain components19-L17Test Paper distribution and result analysisEntering Internal Test-I Marks into University portal20-L18elastic compliances and stiffness constants21-L19relation between elastic compliances and stiffness constants22-P2College level meeting/Cell function23-L20elastic constants for cubic isotropic crystals24-L21elastic waves25-L22experimental determination of elastic constants26-L23Lattice dynamics: Concept of phonons27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory, Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature	16-L15			
18-L16displacement and strain components19-L17Test Paper distribution and result analysis20-L18Entering Internal Test-I Marks into University portal20-L18elastic compliances and stiffness constants21-L19relation between elastic compliances and stiffness constants22-P2College level meeting/Cell function23-L20elastic constants for cubic isotropic crystals24-L21elastic waves25-L22experimental determination of elastic constants26-L23Lattice dynamics: Concept of phonons27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory, Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature				
19-L17Test Paper distribution and result analysis20-L18Entering Internal Test-I Marks into University portal20-L18elastic compliances and stiffness constants21-L19relation between elastic compliances and stiffness constants22-P2College level meeting/Cell function23-L20elastic constants for cubic isotropic crystals24-L21elastic waves25-L22experimental determination of elastic constants26-L23Lattice dynamics: Concept of phonons27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory,Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature				
Entering Internal Test-I Marks into University portal20-L18elastic compliances and stiffness constants21-L19relation between elastic compliances and stiffness constants22-P2College level meeting/Cell function23-L20elastic constants for cubic isotropic crystals24-L21elastic waves25-L22experimental determination of elastic constants26-L23Lattice dynamics: Concept of phonons27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory, Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature				
20-L18elastic compliances and stiffness constants21-L19relation between elastic compliances and stiffness constants22-P2College level meeting/Cell function23-L20elastic constants for cubic isotropic crystals24-L21elastic waves25-L22experimental determination of elastic constants26-L23Lattice dynamics: Concept of phonons27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory,Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature				
21- L19relation between elastic compliances and stiffness constants22- P2College level meeting/Cell function23-L20elastic constants for cubic isotropic crystals24-L21elastic waves25-L22experimental determination of elastic constants26-L23Lattice dynamics: Concept of phonons27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory,Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature	20-L18			
22- P2College level meeting/Cell function23-L20elastic constants for cubic isotropic crystals24-L21elastic waves25-L22experimental determination of elastic constants26-L23Lattice dynamics: Concept of phonons27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory, Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature				
23-L20elastic constants for cubic isotropic crystals24-L21elastic waves25-L22experimental determination of elastic constants26-L23Lattice dynamics: Concept of phonons27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory, Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature				
24-L21elastic waves25-L22experimental determination of elastic constants26-L23Lattice dynamics: Concept of phonons27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory,Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature				
25-L22experimental determination of elastic constants26-L23Lattice dynamics: Concept of phonons27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory,Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature				
26-L23Lattice dynamics: Concept of phonons27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory,Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature				
27-L24momentum of phonons28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory,Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature				
28-L25normal and Umklapp process29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory,Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature				
29-L26vibrations of one dimensional monoatomic and diatomic linear lattices30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory,Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature				
30-L27inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat31-L28Dulong and Petit's law Einstein theory and Debye's theory,Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature	-			
heat31-L28Dulong and Petit's law Einstein theory and Debye's theory,Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature				
31-L28Dulong and Petit's law Einstein theory and Debye's theory, Widemann Franz law32-L29Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature	30 L27			
32-L29 Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature	31-L28			
		Free electron gas model in three dimensions: Density of states, Fermi energyEffect of		
	33-L30	heat capacity of electrons, experimental heat capacity of metalsthermal effective mass		

34- P3	electrical conductivity and ohm's law, Hall effect-	
35-L31	failure of the free electron gas Band theory of solids	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (16.02.2015)	
37- L33	periodic potential and Bloch's theorem, KronigPenny model	
38- IT-II	Internal Test-II	
39-L34	wave equation of electron in a periodic potential	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	periodic, extended and reduced zone schemes of energy representation	
42- L37	number of orbitals in an energy bandclassification of metals, semiconductors and	
	insulators	
43- L38	tight binding method and its applications to FC and BCC structures.	
44- P4	College level meeting/ function	
45-L39	Experimental survey: Superconductivity and its occurrence, destruction of	
46 1 40	superconductivity by magnetic field	
46-L40	Meissner effect, Type I and II super conductors entropy,	
47-L41	free energy,heat capacity ,energy gap, isotope effect	
48-L42	Theoretical survey: Thermodynamics of the superconducting transition	
49-L43	London equation, coherence length	
50-L44	Allotting portion for Internal Test-III	
51 T 45	Internal Test III begins (16.03.2015)	
51 L45	salient features of the BCS theory of super conductivity	
52- L46	flux quantization in a superconductivity ring,DC and AC Josephson effects	
53-IT-III	Internal Test-III	
54-L47		
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (16.04.2015)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.4.2015	

Learning Outcomes	COs of the course "Solid State Physics"
CO1	elastic waves
CO2	experimental determination of elastic constants
CO3	Lattice dynamics: Concept of phonons
CO4	elastic compliances and stiffness constants

CO5	relation between elastic compliances and stiffness constants		
CO6	tight binding method and its applications to FC and BCC structures.		
CO7	wave equation of electron in a periodic potential- periodic, extended and		
	reduced zone schemes of energy representation		
CO8	KronigPenny model		
CO9	number of orbitals in an energy bandclassification of metals,		
	semiconductors and insulators		

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics		
Course Name	Microprocessor and Microcontroller		
Course Code	HPHM23		
Class	I year (2014-2015)		
Semester	Even		
Staff Name	C.Stella Rani		
Credits	4		
L. Hours /P. Hours	5 / WK		
Total 75 Hrs / Sem			
Internal Test-3 Hrs			
Model Test-3 Hrs			
Dept. Meetings-2 Hrs			
College Meetings-2 Hrs			
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /	Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > The objective of this course is to become familiar with the architecture and the instruction set of an Intel microprocessor
- Assembly language programming will be studied as well as the design of various types of digital and analog interfaces
- Understand the architecture of 8085 and 8051

Syllabus

Microprocessor and Microcontroller

UNIT I

Evolution and Architecture of Microprocessors 8085& 8086

Evolution of microprocessors-computers and its classifications-INTEL 8085 microprocessor pin out configuration-Pins and their functions-Bus system-control and status signals-externally initiated signals including interrupts-architecture-ALU-Flags-Registers-INTEL 8086 microprocessor-Pins description, Operating modes, Pin description for minimum mode –Operation of 8086-Registers, flags, and interrupts of 8086

UNITII Instruction set of 8085 and assembly language programming

Software-Assembly language-Assembler, Assembler Directives-Instruction set of 8085: Data transfer instructions, Arithmetic instructions, Logical instructions, Branching instructions, Machine control instructions processor cycles- Instruction &machine cycle, Timing diagram& Instruction format – Timing diagram for memory read machine cycle & executing an instruction –addressing modes of 8085A –Assembly language programming using 8085A- Sequence, branching and loop programming – Subroutines and ISR

UNIT III

Peripheral interfacing Devices and techniques

Address space- Partitioning, interfacing – Memory and I/O ports: non programmable I/o port INTEL 8212, Programmable peripheral interface INTEL 8255, programmable interval timer INTEL 8253-Data transfers: Types of parallel and serial data transfer schemes – Direct memory Access controller INTEL 8257 – 8085A interrupt system : software & hardware interrupts – interfacing , working and programming of PIC 8259 with 8085

UNIT IV

Programming of 8086 and microcontroller 8051

8086 instructions- Data transfer and arithmetic instructions, addressing modes of INTEL 8086. INTEL 8051: Architecture –Hardware features, registers, I/O ports, External memory, counter and timers, serial I/O, Interrupts. 8051 programming: Instruction set, Addressing modes, Data transfer, logical, arithmetic operations, jump/call instructions, interrupt handler

UNIT V

Microprocessor system design and applications

Delays- Generation of square waves of pulses- interfacing of 7 – segment LED display – formation of codes for alphanumeric characters – sensors and transducers in physical instruments – Temperature measurements and control – frequency and resistance measurements – Digital clock – DC motor speed control – Traffic control system

BOOKS FOR STUDY

- 1. Microprocessor architecture, programming and applications with 8085, Ramesh S.Gaonkar, III Edition, Penram International publishing 1997
- 2. Fundamentals of microprocessor and microcomputers, B.Ram, V Edition, DhanpatRai publications (P) Ltd. New Delhi, 2003.
- 3. The 8051 Microcontroller Architecture, Programming & Applications, Kenneth J.Ayala, II Edition. Penram International, India, 1996.

BOOKS FOR REFERENCE

- 1. Microprocessor and its Applications, NagoorKani, RBA publications I edition, Chennai, 2004.
- 2. Microprocessors and interfacing Programming and hardware, Dougles. V.Hall, II edition ,MCGraw Hill, India,1999.
- 3. The 8051 microcontroller and embedded systems, Mohammed Ali Mazidi, Janice Gillispiemazidi, Pearson education, India,2001.

Hour	Class Schedule	
allotment		
	Even Semester Begin on 3.12.2014	
1-L1	Evolution of microprocessors, computers and its classifications	
2-L2	INTEL 8085 microprocessor pin out configuration, Pins and their functions	
3- L3	Bus system, control and status signals	
4-L4	externally initiated signals including interrupts, architecture	
5-L5	ALU, Flags	
6-L6	Registers, INTEL 8086 microprocessor	
7-L7	Pins description, Operating modes, Pin description for minimum mode	
8- P1	Welcoming of First year and Inauguration of Mathematics Association	
9- L8	Operation of 8086	
10- L9	Registers, flags and interrupts of 8086	
11-L10	Software, Assembly language	
12-L11	Assembler, Assembler Directives	
13-L12	Instruction set of 8085: Data transfer instructions, Arithmetic instructions	
14-L13	Logical instructions, Branching instructions	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins (19.01.2015)	
16-L15	Machine control instructions processor cycles	
17-IT-1	Internal Test-I	
18-L16	Instruction & machine cycle, Timing diagram & Instruction format	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Timing diagram for memory read machine cycle & executing an instruction	
21- L19	addressing modes of 8085A, Assembly language programming using 8085A	
22- P2	College level meeting/Cell function	
23-L20	Sequence, branching and loop programming, Subroutines and ISR	
24-L21	Address space, Partitioning, interfacing	
25-L22	Memory and I/O ports: non programmable I/o port INTEL 8212	
26-L23	Programmable peripheral interface INTEL 8255	
27-L24	programmable interval timer INTEL 8253	
28-L25	Data transfers: Types of parallel and serial data transfer schemes	
29-L26	Direct memory Access controller INTEL 8257	
30-L27	8085A interrupt system : software & hardware interrupts	
31-L28	interfacing, working and programming of PIC 8259 with 8085	

32-L29	8086 instructions, Data transfer and arithmetic instructions	
33-L30	Addressing modes of INTEL 8086, INTEL 8051: Architecture	
34- P3	Department Seminar	
35-L31	Hardware features, registers, I/O ports	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (16.02.2015)	
37- L33	External memory, counter and timers, serial I/O, Interrupts	
38- IT-II	Internal Test-II	
39-L34	8051 programming: Instruction set, Addresssing modes, Data transfer	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	logical, arithmetic operations	
42- L37	jump/call instructions, interrupt handler	
43- L38	Delays	
44- P4	College level meeting/ function	
45-L39	Generation of square waves of pulses- interfacing of 7	
46-L40	segment LED display	
47-L41	formation of codes for alphanumeric characters	
48-L42	sensors and transducers in physical instruments	
49-L43	Temperature measurements and control	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (16.03.2015)	
51 L45	frequency and resistance measurements, Digital clock	
52- L46	DC motor speed control, Traffic control system	
53-IT-III	Internal Test-III	
54-L47		
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (16.04.2015)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.4.2015	

Learning Outcomes	COs of the course "Microprocessor and Microcontroller"
CO1	Design and implement programs on 8086, ARM, PIC.
CO2	Design I/O circuit.
CO3	The program prepares students to successfully compete for employment
	in Electronics, Manufacturing and Embedded fields
CO4	Design Memory Interfacing circuits
CO5	Design and implement 8051 microcontroller based system
CO6	Describe the architecture and instruction set of ARM microcontroller

CO7	Understand and realize the Interfacing of memory & various I/O devices
	with 8085 microprocessor
CO8	Understand and classify the instruction set of 8085 microprocessor and
	distinguish the use of different instructions and apply it in assembly
	language programming
CO9	Understand the architecture and operation of Programmable Interface
	Devices and realize the programming & interfacing of it with 8085
	microprocessor
Experimental	
Learning	
EL1	Microprocessor kits and data acquisition cards
	DC Power Supplies
EL2	Microcontroller Programmer
EL3	Universal Programmer
EL4	Universal IC Tester
Integrated Activity	
IA1	The program prepares students to successfully compete for employment
	in Electronics, Manufacturing and Embedded fields
IA2	Design and implement 8051 microcontroller based system

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Quantum Mechanic I	
Course Code	HPHM31	
Class	I year (2014-2015)	
Semester	Odd	
Staff Name	E .Christy Jerin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To develop the schrodinger wave equation. .
- > To derive Ehrenfest theorem.
- > To find energy eigen value of square well potential.
- > To discuss the postulates of quantum mechanics.
- > To derive the energy eigen value of harmonic oscillator.
- > To discuss about scattering.
- > To find scattering cross section of rigid sphere.

Syllabus

UNIT 1

Development of wave equation Travelling harmonic waves

The one dimensional wave equation Interpretation of the wave function Normalization Probability current density Expectation values Ehrenfest's theorem Energy Eigen functions One dimensional square well potential

UNIT II

Interpretative postulates and energy eigen functions

Motion of a free wave packet in one dimension Discrete Eigen values(bound states) Linear Harmonic oscillator Spherically symmetric potential in three dimension

UNIT III

Dimensional square potential

One dimensional square potential barrier Scattering coefficients Collisions in three dimensions Scattering cross sections Asymmetric behavior Scattering by spherically symmetric potentials Scattering by a perfect rigid sphere Scattering by a square well potential

UNIT IV

Transformation theory

Transformation theory Transformation of Hamiltonian with U Transformation of Hamiltonian with V Dirac's bra and ket notation Equations of motion Matrix theory of the linear harmonic oscillator

UNIT V

Rotational angular momentum and unitary groups.

Proper rotation group Infinitesimal rotations. Spin of vector particle Commutation relation for the generators Choice of representation Angular momentum matric Combination of angular momentum states And tensor operations Clebsch gordan coefficients Combination of angular momentum states Spin of vector paricle Commutation relation for the generators Dirac's bra ket notation Equation of motion.

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2014	
1-L1	Development of wave equation	
2-L2	Travelling harmonic waves	
3- L3	The one dimensional wave equation	
4-L4	Interpretation of the wave function	
5-L5	Normalization	
6-L6	Probability current density	
7-L7	Expectation values	
8- P1	Welcoming of First year and Inauguration of Mathematics Association	

9- L8	Ehrenfest's theorem
10- L9	Energy Eigen functions
10 L) 11-L10	One dimensional square well potential
12-L11	Interpretative postulates and energy eigen functions
13-L12	Motion of a free wave packet in one dimension
13 L12 14-L13	Discrete Eigen values(bound states)
15-L14	Linear Harmonic oscillator
16-L15	Spherically symmetric potential in three dimension
17- L16	One dimensional square potential barrier
18- L17	Scattering coefficients
19- L18	Collisions in three dimensions
20- L19	Scattering cross sections
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins (30.07.2014)
22- L21	Asymmetric behaviour
23- IT-1	Internal Test-I
24- L22	Scattering by spherically symmetric potentials
25- L23	Scattering by a perfect rigid sphere
26- L24	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
27- L25	Scattering by a square well potential
28- L26	Scattering by a square well potential
29- L27	Transformation theory
30- P2	College level meeting/Cell function
31-L28	Transformation theory
32-L29	Transformation of Hamiltonian with U
33-L30	Transformation of Hamiltonian with U
34- L31	Transformation of Hamiltonian with V
35- L32	Transformation of Hamiltonian with V
36- L33	Dirac's bra and ket notation
37- L34	Dirac's bra and ket notation
38-L35	Equations of motion
39- L36	Equations of motion
40- L37	Matrix theory of the linear harmonic oscillator
41-L38	Matrix theory of the linear harmonic oscillator
42-P3	Department Seminar
43-L39	Rotational angular momentum and unitary groups.
44- L40	Rotational angular momentum and unitary groups.
45- L41	Proper rotation group.
46- L42 47- L43	Proper rotation group.
4/-L43	Allotting portion for Internal Test-II Internal Test II begins (18 08 2014)
48- L44	Internal Test II begins (18.08.2014) Infinitesimal rotations.
48- L44 49-IT-II	Internal Test-II
49-11-11 50-L45	Spin of vector particle.
51- L46	Test Paper distribution and result analysis
J1- L+0	Entering Internal Test-II Marks into University portal
52- L47	Commutation relation for the generators.
J2- L+/	

53- L48	Choice of representation.
54- L49	Angular momentum matrices.
55- L50	Angular momentum matrices.
56- L51	Combination of angular momentum states
57- L52	And tensor operations.
58- L53	Clebsch gordan coefficients.
59-P4	College level meeting/ function
60- L54	Clebsch gordan coefficients.
61- L55	Combination of angular momentum states
62- L56	Spin of vector paricle.
63- L57	
64- L58	Allotting portion for Internal Test-III
	Internal Test III begins (15.09.2014)
65- L59	Commutation relation for the generators
66- L60	Dirac's bra ket notation.
67-IT-III	Internal Test-III
68- L61	Equation of motion
69- L62	Equation of motion
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
71-MT	Model Test (24.10.2014)
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 31.10.2014

Learning Outcomes	COs of the course "Quantum Mechanic I"
CO1	Develop the wave equation.
CO2	Derive Ehrenfest theorem.
CO3	Derive eigen value of square well potential.
CO4	Derive the eigen value of harmonic oscillator.
CO5	Calculate the scattering cross section for square well potential
CO6	Derive the energy eigen value of harmonic oscillator using matrix
	theory.
CO7	Derive C.G coefficients.
CO8	Discuss about the choice of representation.
CO9	Discuss about the rotational groups

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Electromagnetic theory	
Course Code	HPHM22	
Class	I year (2014-2015)	
Semester	Even	
Staff Name	E. Christy jerin	
Credits	4	
L. Hours /P. Hours 4 / WK		
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > To expose the students to the ideas of fundamental laws.
- > To identify formulate and solve fields and electromagnetic wave propagation.
- > To study the importance of the Boundary conditions.
- > To derive the Reflection and transmission of the Electromagnetic wave.
- > To calculate the electric and magnetic dipole radiation.
- > To acquire the knowledge of Electromagnetic wave propagation.

Syllabus

UNIT I

Coulomb's Law-Derivation Gauss law in differential and Integral form.

Gauss law in differential and Integral form. Poisson's equation and Laplace's equation. Work done to move a point charge. Energy of a point charge and continuous charge distribution. Electric field in dielectric materials. Induced dipoles and polarizability. Connection between polarizability and susceptibility.

UNIT II

Lorentz force law.

Biot-Savart law and ampere law - Magnetic vector potential- Expansion of vector potential - Effect of a magnetic field on atomic orbits- Bound current and its physical interpretations- Ampere's law in magnetic material- Dia , para , Ferro Magnetism. Magnetic susceptibility and permeability in linear and non linear media

UNIT III

Electrodynamics Electromagnetic

Induction- Faraday law- Maxwell's equation differential and integral form. Boundary conditions on field vectors D,E,B and H Scalar and vector potential. Gauge transformations. Lorentz and coulomb gauge. Pointing vector and pointing theorem. Maxwell's stress tensor. Conservation of momentum.

UNIT IV

Wave equation

The wave equation for A and B-Mono chromatic plane waves Reflection and transmission at normal Incidence Reflection and transmission at oblique Incidence. EM waves in conductor wave guide. The coaxial transmission line.

UNIT V

Retarded Potential.

Lenard – wiechart potential. Electric dipole radiation. Magnetic dipole radiation. And derivation. Larmour formula definition. And derivation. Abraham Lorentz formula for the radiation reaction. Physical origin of radiation reaction

Hour	Class Schedule	
allotment		
	Even Semester Begin on 18.06.2014	
1-L1	Coulomb's Law-Derivation.	
2-L2	Gauss law in differential and Integral form.	
3- L3	Gauss law in differential and Integral form.	
4-L4	Poisson's equation and Laplace's equation.	
5-L5	Work done to move a point charge.	
6-L6	Energy of a point charge and continuous charge distribution.	
7-L7	Energy of a point charge and continuous charge distribution.	
8- P1	Welcoming of First year and Inauguration of Mathematics Association	
9- L8	Electric field in dielectric materials.	
10- L9	Induced dipoles and polarizability.	
11-L10	Connection between polarizability and susceptibility.	

12-L11	Connection between polarizability and susceptibility.
12-L11 13-L12	Lorentz force law.
13-L12 14-L13	Biot-Savart law
14-L13 15-L14	
13-L14	Allotting portion for Internal Test-I Internal Test I begins (30.07.2014)
16 1 15	
16-L15	Magnetic vector potential. Internal Test-I
17-IT-1	
18-L16	Effect of a magnetic field on atomic orbits.
19-L17	Test Paper distribution and result analysis
20 I 19	Entering Internal Test-I Marks into University portal
20-L18	Dia, para, Ferro Magnetism.
21- L19	Magnetic susceptibility and permeability.
22- P2	College level meeting/Cell function
23-L20	Maxwell's equation differential and integral form.
24-L21	Maxwell's equation differential and integral form.
25-L22	Boundary conditions on field vectors
26-L23	D,E,B and H
27-L24	Scalar and vector potential.
28-L25	Gauge transformations.
29-L26	Lorentz and coulomb gauge.
30-L27	Pointing vector and pointing theorem.
31-L28	Maxwell's stress tensor.
32-L29	Conservation of momentum.
33-L30	Mono chromatic plane waves
34- P3	Department Seminar
35-L31	Reflection and transmission at normal Incidence.
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins (18.08.2014)
37- L33	Reflection and transmission at oblique Incidence.
38- IT-II	Internal Test-II
39-L34	EM waves in conductor wave guide.
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	The coaxial transmission line.
42- L37	Retarded Potential.
43- L38	Lenard – wiechart potential.
44- P4	College level meeting/ function
45-L39	Electric dipole radiation.
46-L40	Magnetic dipole radiation.
47-L41	And derivation.
48-L42	Larmour formula definition.
49-L43	
	And derivation.
49-L43 50-L44	And derivation. Allotting portion for Internal Test-III
50-L44 51 L45	Allotting portion for Internal Test-IIIInternal Test III begins (15.09.2014)Abraham Lorentz formula for the radiation reaction.
50-L44	Allotting portion for Internal Test-IIIInternal Test III begins (15.09.2014)
50-L44 51 L45	Allotting portion for Internal Test-IIIInternal Test III begins (15.09.2014)Abraham Lorentz formula for the radiation reaction.

55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
56- MT	Model Test (24.10.2014)
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 31.10.2014

Learning Outcomes	COs of the course "Electromagnetic theory"	
CO1	Explain the fundamental laws governing electromagnetic fields.	
CO2	Determine the electromagnetic force exerted on charged particles,	
	current elements, working priniciple of various electric and EMT	
	conversion devices are based on this force.	
CO3	Design maxwell's equation and Boundary condition.	
CO4	Deduce the Reflection and Transmission wave equation	
CO5	Derive the Pointing Theorem.	
CO6	Design Larmour formula.	
CO7	Reduce the gauge transformation .	
CO8	Calculate magnetic vector potential	
CO9	To derive the basic laws.	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Statistical Mechanics	
Course Code	HPHM33	
Class	II year (2014-2015)	
Semester	odd	
Staff Name	RUBY JEMIMA	
Credits	4	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs / Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To import the knowledge about fundamentals of statistical mechanics.
- \succ To study about the Ensembles.
- > To derive the expression for Sackur Tetrode equation.
- ➢ To define Helmholtz free energy.
- > To analysis the Chemical equilibrium and saha ionisation formula.
- > To import the knowledge about phase transistion.
- > To describe the application of density matrices.

Syllabus

Statistical Mechanics

Unit I

Basic concepts

Phase space-phase-space diagram of an oscillator-Volume in phase space-Ensembles Microcanonical ensemble-Canonical ensemble-Grand canonical ensemble-Density of distribution in phase space-Liouvilles theorem-Postulate of equal a priori probabilitystatistical, mechanical and thermal equilibriums-connection between statistical and thermodynamical quantities. (11 L)

Unit II

M-B Distribution law

Microstates and macro states-Stirling's approximation-Thermodynamic probabilityGeneral statistical distribution law-Classical Maxwell-Boltzmann distribution law-Evaluation of constants in the Maxwell Boltzmann distribution law-Maxwell's law of distribution of velocitiesprinciple of equipartition of energy- Boltzmann entropy relation-Probability of magnetic moment distribution of independent atoms. (13 L)

Unit III

Quantum statistics

Postulatory foundations of quantum mechanics-Transition from classical statistical mechanics to quantum statistical mechanics-Indistinguishability and quantum statistics-Exchange symmetry of wave functions-Bose-Einstein Statistics-Fermi-Dirac statistics-Maxwell-Boltzmann statistics-Results of three statistics-Thermodynamic interpretation of the parameters α and β -Black body radiation and the Planck radiation law. (12 L)

Unit IV

Applications of quantum statistics

Specific heat of solids-Dulong and Petit law-Einstein theory of specific heat of solidsDebye theory of specific heat of solids-Criticism of Debye's theory-Ideal Bose Einstein GasEnergy and pressure of the Gas-Gas degeneracy-Bose-Einstein Condensation-Thermal properties of Bose Einstein Gas-Ideal Fermi Dirac gas- Energy and pressure of the Gas-Thermodynamics functions of degenerate Fermi-Dirac gas-Electron Gas. (14 L)

Unit V

Phase transitions

Phase transition-Phase transitions of first and second kind-critical exponent-Yang and Lee theory-Phase transitions of second kind: the Ising model-Braggs-Williams approximation-One dimensional Ising model. (10 L) Total

Hour allotment	Class Schedule	
	Odd Semester Begin on 18.06.2014	
1-L1	Classification of molecules based on moment of inertia	
2-L2	Rotational spectra of rigid and non-rigid diatomic molecules	
3- L3	Isotopic effect	
4-L4	Linear polyatomic molecule	
5-L5	Symmetric top molecule	
6-L6	Chemical analysis	
7-L7	Microwave spectrometer	
8- P1	Welcoming of First year and Inauguration of Mathematics Association	
9- L8	Vibrating diatomic and poly-21 atomic molecules	
10- L9	Simple harmonic oscillator	
11-L10	Anhormonicity	
12-L11	Hydrogen bonding	
13-L12	Fermi resonance	
14-L13	Rotation vibration spectra of polyatomic molecule	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins (30.07.2014)	
16-L15	Information from IR spectra	
17-IT-1	Internal Test-I	
18-L16	IR spectrometer	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	FTIR	
21- L19	Theory of Raman scattering	
22- P2	College level meeting/Cell function	
23-L20	Rotation vibration Raman spectra	
24-L21	Mutual exclusion principle	
25-L22	Raman spectrometer	
26-L23	Polarization of Raman scattered light	
27-L24	Structure determination using Raman spectrum	
28-L25	Phase transition	
29-L26	Reasonance Raman scattering	
30-L27	Magnetic properties of nuclei	
31-L28	Relaxation time	
32-L29	Chemical shift	
33-L30	Application to molecular structure	
34- P3	Department Seminar	
35-L31	Bloch equation	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (18.08.2014)	
37- L33	NMR instrumentation	
38- IT-II	Internal Test-II	
39-L34	NMR imaging	
40-L35	Test Paper distribution and result analysis	

	Entering Internal Test-II Marks into University portal	
41-L36	ESR theory and hyperfine structure ESR spectra of hydrogen atom and	
	anisotropic systems	
42- L37	Crystal defects and biological studies	
43- L38	ESR spectrometer	
44- P4	College level meeting/ function	
45-L39	Electron Energy Loss Spectroscopy EELS	
46-L40	Reflection	
47-L41	Absorption IR spectroscopy RAIRS	
48-L42	Surface Enhanced Raman Scattering SERS	
49-L43	Inelastic Helium Scattering	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (15.09.2014)	
51 L45	X Ray Photoelectron Spectroscopy XEPS	
52- L46		
53-IT-III	Internal Test-III	
54-L47		
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (24.10.2014)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 31.10.2014	

Learning Outcomes	COs of the course "Statistical Mechanics"
C01	Explain the ensembles.
CO2	Calculation of entrophy of ideal gas.
CO3	Derive Quantum Lioville's theorem.
CO4	Illustrate Identical particle.
CO5	Calculation of exponent from mean field theory.
CO6	Calculation of chemical equilibrium.
CO7	Derive the Saha ionisation formula.
CO8	Describe the mean field theory.
CO9	Explain about Iising model

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Quantum Mechanics II	
Course Code	HPHM41	
Class	I year (2014-2015)	
Semester	Even	
Staff Name	E.Christy Jerin	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➢ To introduce Pertubation theory
- \succ To derive the dirac equation
- > To explain orbital angular momentum
- > To explain transition probablity

Syllabus

UNIT I

Orbital angular momentum Eigen pairs

Orbital angular momentum Eigen pairs of L2 and Lz Properties of components of L and L 2 Matrix representation of L2 , Lz and L \pm spin state of an electron spin orbit coupling Addition of angular momenta

UNIT II

Time Independent Perturbation Theory

Introduction- Theory for non-degenerate case Application to non-degenerate levels Theory for degenerate levels First order Stark effect in Hydrogen atom

UNIT III

Time Dependent Perturbation Theory

Introduction Transition probability constant perturbation Harmonic perturbation adiabatic perturbation sudden approximation Semi classical theory of radiation calculation of Einstein coefficients

UNIT IV

Classical scattering cross section

Classical scattering cross section Centre of mass and laboratory co-ordinate systems Scattering amplitude Green's function approach Born approximation Partial wave analysis Scattering form a square well system

UNIT V

Klein – Gordon equation Dirac equation

Klein – Gordon equation Dirac equation for a free particle Spin of a Dirac particle Particle in a potential Relativistic particle in a box Relativistic hydrogen atom Electron in a field.

Hour	Class Schedule
allotment	
	Even Semester Begin on 3.12.2014
1-L1	Orbital angular momentum
2-L2	Eigen pairs of L2 and Lz
3- L3	Properties of components of L and L 2
4-L4	Matrix representation of L2, Lz and L±
5-L5	spin state of an electron
6-L6	spin orbit coupling
7-L7	Addition of angular momenta
8- P1	Welcoming of First year and Inauguration of Mathematics Association
9- L8	Time Independent Perturbation Theory: Introduction- Theory for non-degenerate case
10- L9	Application to non-degenerate levels
11-L10	Theory for degenerate levels
12-L11	First order Stark effect in Hydrogen atom
13-L12	Time Dependent Perturbation Theory: Introduction
14-L13	Transition probability
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins (19.01.2015)
16-L15	constant perturbation
17-IT-1	Internal Test-I
18-L16	Harmonic perturbation
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal

20 I 10	a dia hatia menterahatian
20-L18	adiabatic perturbation
21-L19	sudden approximation
22- P2	College level meeting/Cell function
23-L20	Semi classical theory of radiation
24-L21	calculation of Einstein coefficients
25-L22	Classical scattering cross section
26-L23	Centre of mass and laboratory co-ordinate systems
27-L24	Scattering amplitude
28-L25	Green's function approach
29-L26	Born approximation
30-L27	Partial wave analysis
31-L28	Scattering form a square well system
32-L29	Scattering form a square well system
33-L30	Klein – Gordon equation
34- P3	Department Seminar
35-L31	Klein – Gordon equation
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins (16.02.2015)
37- L33	Dirac equation for a free particle
38- IT-II	Internal Test-II
39-L34	Dirac equation for a free particle
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Spin of a Dirac particle
42- L37	Spin of a Dirac particle
43- L38	Particle in a potential
44- P4	College level meeting/ function
45-L39	Relativistic particle in a box
46-L40	Relativistic hydrogen atom
47-L41	Relativistic hydrogen atom
48-L42	Electron in a field
49-L43	Electron in a field
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins (16.03.2015)
51 L45	Electron in a field
52- L46	Electron in a field
53-IT-III	Internal Test-III
54-L47	
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
56- MT	Model Test (16.04.2015)
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.4.2015
	Lust working up on ascenavis

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-20150

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics
Course Name	Molecular spectroscopy
Course Code	HPHM42
Class	I year (2014-2015)
Semester	Even
Staff Name	E.Christy Jerin
Credits	5
L. Hours /P. Hours	5 / WK
Total 75 Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)	

Course Objectives

- > To develop the knowledge of molecular spectroscopy. .
- \succ To classify the molecules .
- > To discuss the isotope effect in rotational spectra.
- > To calculate the vibrational energy of the diatomic molecule.
- > To derive the Bloch equation.
- > To study about fortrait parabola.

Syllabus

UNIT I

Microwave spectroscopy :

Classification of molecules- Rotational spectra of rigid diatomic molecule - Isotopic effect in rotational spectra –Intensity of rotational lines –Non rigid rotator Linear polyatomic molecule Symmetric molecules Asymmetric molecules. Microwave spectrometer-Information derived from rotational spectra.

UNIT II

Infrared spectroscopy

Vibrational energy of a diatomic molecule-Selection rules- Vibrating diatomic molecule -Diatomic vibrating rotator - Assymetry of vibration -Vibration band- Rotational vibrational spectra of polyatomic- molecule Linear molecules -Symmetric top molecules - Information derived from vibrational spectra

UNIT III

RAMAN SPECTROSCOPY

Theory of raman scattering- Classical theory- Quantum theory- Rotational raman spectra- Linear molecules Symmetric top molecules- Vibrational raman spectra- Raman spectrometer- Hyper raman effect- Classical treatment of hyper raman effect-Stimulated raman effect- Inverse raman scattering- CARS-PARS -Multi photon process

UNIT IV

ELECTRONIC SPECTROSCOPY

Vibrational coarse structure - Vibrational analysis of band system -Deslandres table Progression and sequences- Franck Condon principle -Rotational fine structure of electronic vibrational spectra -The fortrat parabola -Dissociation –PreDissociation- Photoelectron spectroscopy- Principle- instrumentation

UNIT V

NMR,ESR AND NQR:NMR

NMR-Magnetic properities of nuclei- resonance conditions – relaxation process -Bloch equations- Chemical shift –NMR instrumentations,ESR- Principle - ESR spectrometer-Hyperfine structure- ESR spectrum of hydrogen atom-ESR spectra of free radicals in solution .NQR -The Quadrapole nucleus- principle- Transistions for axially symmetric systems -transitions for non axially symmetric systems- NQR instrumentations.

Hour	Class Schedule
allotment	
	Even Semester Begin on 3.12.2014
1-L1	Classification of molecules.
2-L2	Rotational spectra of rigid diatomic molecule.
3- L3	Isotopic effect in rotational spectra.
4-L4	Linear polyatomic molecule.

5-L5	Symmetric molecules.
6-L6	Asymmetric molecules.
7-L7	Microwave spectrometer.
8- P1	Welcoming of First year and Inauguration of Mathematics Association
9- L8	Information derived from rotational spectra.
10- L9	Vibrational energy of a diatomic molecule.
11-L10	Selection rules.
12-L11	Vibrating diatomic molecule.
13-L12	Diatomic vibrating rotator.
14-L13	Assymetry of vibration, Vibration band.
15-L14	Rotational vibratioal spectra of poyatomic molecule.
16-L15	Linear molecules.
17- L16	Symmetric top molecules
18- L17	Information derived from vibrational spectra.
19- L18	Theory of raman scattering.
20- L19	Classical theory.
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins (19.01.2015)
22- L21	Quantum theory.
23- IT-1	Internal Test-I
24- L22	Rotational raman spectra.
25- L23	Linear molecules.
26- L24	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
27- L25	Symmetric top molecules.
28- L26	Vibrational raman spectra.
29- L27	Raman spectrometer.
30- P2	College level meeting/Cell function
31-L28	Hyper raman effect.
32-L29	Classical treatment of hyper raman effect.
33-L30	Stimulated raman effect.
34- L31	Inverse raman scattering.
35-L32	CARS,PARS
36-L33	Multi photon process.
37-L34	Vibrational ocarse structure.
38-L35	Vibrational analysis of band system.
39-L36	Deslandres table.
40- L37	Progression and sequences.
41-L38	Franck Condon principle.
42-P3 43- L39	Department Seminar Rotational fine structure of electronic vibrational spectra.
43- L39 44- L40	1
44- L40 45- L41	The fortrat parabola. Dissociation
43- L41 46- L42	Predissociation.
40- L42 47- L43	Allotting portion for Internal Test-II
+/-L43	Internal Test II begins (16.02.2015)
48- L44	Photoelectron spectroscopy.
48- L44 49-IT-II	Internal Test-II
+7-11-11	

50-L45	Principle- instrumentation.
51- L46	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
52- L47	NMR-Magnetic properities of nuclei.
53- L48	Bloch equations.
54- L49	Chemical shift
55- L50	ESR
56- L51	Principle of ESR spectrometer.
57- L52	ESR spectrum of hydrogen atom.
58- L53	Resonance conditions.
59-P4	College level meeting/ function
60- L54	NQR-The Quadrapole nucleus.
61- L55	Transistions for axially symmetric systems.
62- L56	NQR instrumentations.
63- L57	Relaxation process.
64- L58	Allotting portion for Internal Test-III
	Internal Test III begins (16.03.2015)
65- L59	ESR spectra of free radicals in solution.
66- L60	NQR Instrmentations.
67-IT-III	Internal Test-III
68- L61	NMR Instrumentations.
69- L62	Chemical shift
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
71-MT	Model Test (16.04.2015)
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 23.4.2015

Learning Outcomes	COs of the course "Molecular spectroscopy"
C01	Study about the different type of molecule.
CO2	Discuss the isotope effect
CO3	Derive the raman effect on linear, symmetriv top molecule.
CO4	Explain franck- condon principle.
CO5	Derive resonance condition.
CO6	Explain chemical shift.
CO7	Explain the principle of ESR
CO8	Explain the principle of NQR
CO9	Derive Bloch equation.

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2014-2015)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Nuclear and Particle Physics	
Course Code	HPHM43	
Class	II year (2014-2015)	
Semester	Even	
Staff Name	C.Stella Rani	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➤ .To understand about the nuclear forces in the deutron
- \succ To study the nuclear decays
- > To understand the nuclear models
- > To learn about the nuclear reactions

Syllabus

Nuclear and Particle Physics

Preamble:

This course imparts knowledge about the elementary particles, nuclear structure, nuclear reactions with the help of various nuclear models.

UnitI

Nuclear Forces

Ground and excited states of deuteron – magnetic dipole and electric quadrupole moments of deuteron – n-p scattering at low energies – shape independent effective range theory of np scattering – pp scattering at low energies – exchange forces –meson theory of nuclear force.

Unit II

NuclearDecays

Gamow's theory of alpha decay – lineand Continuous spectrum of β decay-Fermi theory of beta decay – Fermi and Gamow-Teller selection rules – parity violation – Gamma decay – multipole transitions in nuclei – selection rules – internal conversion – nuclear isomerism.

Unit III

Nuclear Model

Liquid drop model – Weizsackers mass formula – nuclear stability – Bohr Wheeler theory of nuclear fission -magic numbers -evidence for magic numbers – shell model – spin orbit coupling – angular momenta and parities of nuclear ground states – magnetic moments - Schmidt line – collective model.

Unit IV

Nuclear Reactions

Types of nuclear reactions – Q-equation – solution of the equation – compound nuclear theory – reciprocity theorem – nuclear cross section – resonance scattering– Breit –Wigner dispersion formula – nuclear chain reaction – four factor formula.

Unit V

Elementary Particles

Classification of elementary particles- fundamental interactions conservations laws – CPT theorem - SU(3) multiplet – meson octet – baryon octet and baryon decouplet – Gellmann-Okubo mass formula - Quark theory.

Books For Study:

- 1. Nuclear Physics, D. C. Tayal, Himalaya Publications
- 2. . 2. Elements of Nuclear Physics, M. C. Pandia and R. P. S. YadavKedarnath.

Books For Reference:

- 1. Concepts of Nuclear Physics, Bernard L Cohen, Tata McGraw-Hill
- 2. Nuclear Physics an Introduction, S. B. Patel, Wiley Eastern Ltd.
- 3. Nuclear Physics, R. R. Roy and B. P. Nigam, New Age International Ltd.

Hour	Class Schedule
allotment	
	Even Semester Begin on 03.12.2014
1-L1	Ground and excited states of deuteron
2-L2	magnetic dipole and electric quadrupole moments of deuteron
3- L3	n-p scattering at low energies
4-L4	shape independent effective range theory of np scattering
5-L5	pp scattering at low energies
6-L6	exchange forces
7-L7	meson theory of nuclear force.
8- P1	Welcoming of First year and Inauguration of Mathematics Association
9- L8	Gamow's theory of alpha decay
10- L9	lineand Continuous spectrum of β decay
11-L10	Fermi theory of beta decay
12-L11	Fermi and Gamow-Teller selection rules
13-L12	parity violation
14-L13	Gamma decay
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins (19.01.2015)
16-L15	multipole transitions in nuclei
17-IT-1	Internal Test-I
18-L16	selection rules
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	internal conversion
21- L19	nuclear isomerism.
22- P2	College level meeting/Cell function
23-L20	Liquid drop model
24-L21	Weizsackers mass formula
25-L22	nuclear stability
26-L23	Bohr Wheeler theory of nuclear fission

	Last Working day on 23.04.2015
60-L50	Feedback of the Course, analysis and report preparation
	discussion
59- L49	Model test paper distribution and previous year university question paper
58-MT	Model Test
57-MT	Model Test
56- MT	Model Test (16.04.2015)
22 110	Entering Internal Test-III Marks into University portal
55-L48	Test Paper distribution and result analysis
54-L47	
53-IT-III	Internal Test-III
52- L46	Commune Skubb India Commune, Quark moory.
51 L45	Gellmann-Okubo mass formula, Quark theory.
	Internal Test III begins (16.03.2015)
50-L44	Allotting portion for Internal Test-III
49-L43	meson octet – baryon octet and baryon decouplet
48-L42	CPT theorem , SU(3) multiplet
47-L41	fundamental interactions conservations laws
45-L39 46-L40	Classification of elementary particles
44- F4 45-L39	Wigner dispersion formula nuclear chain reaction , four factor formula.
43- L38 44- P4	College level meeting/ function
42- L37 43- L38	reciprocity theorem , nuclear cross section resonance scattering Breit
41-L30 42- L37	compound nuclear theory
41-L36	solution of the equation
+0-LJJ	Entering Internal Test-II Marks into University portal
40-L35	Test Paper distribution and result analysis
38-11-11 39-L34	Q-equation
37-L33 38- IT-II	Internal Test-II
37- L33	Types of nuclear reactions
30-L32	Internal Test II begins (16.02.2015)
35-L31 36-L32	Allotting portion for Internal Test-II
	Department Seminar collective model.
33-L30 34- P3	
32-L29	magnetic moments Schmidt line
31-L28	angular momenta and parities of nuclear ground states
30-L27	spin orbit coupling
29-L26	shell model
28-L25	evidence for magic numbers

Learning Outcomes	COs of the course "Nuclear and Particle Physics"	
CO1	Fermi theory of Beta decay	
CO2	Solution of the equation	
CO3	Magnetic dipole and electric quadrupole moments of deuteron	
CO4	Fermi and gamow teller selection rules	
CO5	Gamma decay	
CO6	Multipole transistions in nuclei	
CO7	Compound nuclear theory	
CO8	Baryon octet and baryon decouplet	
CO9	Gellmann – Okubo mass formula	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-learning resources, Google classroom, study tour, etc.,	
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.	
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.	
# Extension activity	: Motivate student to take classes for school students.	

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics		
Course Name	Opto Electronics		
Course Code	HPHE12		
Class	I year (2015-2016)		
Semester	Odd		
Staff Name	Dr. J. Ruby Jemima		
Credits	5		
L. Hours /P. Hours	5 / WK		
Total 75 Hrs/Sem			
Internal Test-3 Hrs			
Model Test-3 Hrs			
Dept. Meetings-2 Hrs			
College Meetings-2 Hrs			
Remaining 65Hrs (5 units; 5×13=65; 13Hrs /unit)			

Course Objectives

- > To expose the students to the ideas of the optoelectronics and lasers
- > To study the fundamentals of Light wave
- > To acquire the knowledge of Integrated wave guides
- > To gain knowledge of about fiber optic communications
- > This course gives detailed knowledge of about Optic fiber wave guides
- > The applications of Laser and Holography are to be studied.

Syllabus

Unit-I

Light wave fundamentals

Electromagnetic waves- dispersion-pulse distortion-and information ratepolarization- reasonant cavities at plane boundary – critical angle reflections.

Unit-II

Integrated wave guides:

Dielectric slab guide – modes in the symmetric slab guide – modes in the asymmetric slab wave guide – coupling to the wave guide – integrated optic network

Unit-III

Optic fiber wave guides:

Step index fiber – graded index fiber – attenuation in fibers – modes in step index fiber – modes in graded index fiber pulse distortion and information rate in optic fibers – construction of optical fibers.

Unit-IV

Lasers:

Emission and absorption of radiation – Einstein relations – absorption of radiation – population inversion – threshold conditions – laser losses – line shape functions – population inversion and pumping threshold conditions – laser modes – Axial modes – Transverse modes – classes of laser – doped insulator laser – semiconductor laser – gas lasers – liquid gas lasers- single mode operation – frequency stabilation – mode locking – active mode – passive mode locking- Q- switching methods

Unit-V

Holography:

Wavefront reconstruction - linearity of hologralphic process – image formation of holographic process – Gabour hologram – limitations –Recording the hologram – minimum reference angle –holography of three dimensions – practical problems in holography – types of holograms – Fresnel – Fraunhofer- transmission –reflection – rainbow multiplex-embossed and thick holograms – application of holography – holography interferometry – holography computer memories.

Books for study:

- 4. Fiber Optic communications, Joseph C.Palais, Prentice Hall Publications (unit1-3)
- 5. Opto electronics, J. Wilson and J.F.B Hawkes, Prentice Hall Publications(unit-4)
- 6. Introduction to Fourier optics, Joseph W.Goodman, McGraw Hill/ person Education (unit-5)

Reference Books:

- 1. Photonics Optical Electronics in Modern Communications, Ammon Yariv and Pochi Yeh, Oxford University Press
- 2. Optical Fibers and Fiber Optic communiation systems, Subir Kumar Sarkar, S. Chand& Co
- 3. Introduction to Fiber Optics, Ajay Ghatak and K. Thiagarajan, Tata McGraw Hill

Hour	Class Schedule	
allotment	Odd Samastan Bagin on 18 06 2015	
1 T 1	Odd Semester Begin on 18.06.2015	
1-L1	Light wave fundamentals: Electromagnetic waves -dispersion	
2-L2	Pulse distortion	
3- L3	Information rate	
4-L4	Polarisation-reasonant cavities at plane boundary	
5-L5	Critical angle reflections	
6-L6	Integrated wave guides:Dielectric slab guide	
7-L7	Modes in the symmetric slab guide	
8- P1	Welcoming of First year and Inauguration of Phycs Association	
9- L8	Modes in the asymmetric slab wave guide	
10- L9	Coupling to the wave guide	
11-L10	Integrated optic network	
12-L11	Optic fiber wave guides: Step index fiber	
13-L12	Graded index fiber	
14-L13	Attenuation in fibers	
15-L14	Modes in step index fiber	
16-L15	Modes in graded index fiber pulse distortion and information rate in optic fibers	
17- L16	Construction of optical fibers	
18- L17	Lasers : Emission and absorption of radiation	
19- L18	Einstein relations	
20- L19	Absorption of radiation	
21- L20	Allotting portion for Internal Test-I	
	Internal Test I begins (20.07.2015)	
22- L21	Population inversion	
23- IT-1	Internal Test-I	
24- L22	Threshold conditions	
25- L23	Laser losses	
26- L24	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
27- L25	Line shape functions	
28- L26	Population inversion and pumping threshold conditions	
29- L27	Laser modes	
30- P2	College level meeting/Cell function	
31-L28	Axial modes	
32-L29	Transverse modes	
33-L30	Classes of laser	

34- L31	Doped insulator laser
35- L32	Semiconductor laser
36- L33	Gas lasers
37-L34	Liquid gas lasers
38-L35	Single mode operation
39- L36	Frequency stabilization
40- L37	Mode locking
41- L38	Active mode
42-P3	Department Seminar
43- L39	Passive mode locking-Q-switching methods
44- L40	Holography : Wavefront reconstruction
45- L41	Linearity of holographic process
46- L42	Image formation of holographic process
47- L43	Allotting portion for Internal Test-II
	Internal Test II begins (31.08.2015)
48- L44	Gabour hologram
49-IT-II	Internal Test-II
50-L45	Limitations
51- L46	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
52- L47	Recording the hologram
53- L48	Minimum reference angle
54- L49	Holography of three dimentions
55- L50	Practical problems in holography
56- L51	Types of holograms
57- L52	Fresnel
58- L53	Fraunhofer
59-P4	College level meeting/ function
60- L54	Transmission
61- L55	Reflection
62- L56	Rainbow multiplex
63- L57	Embossed and thick holograms
64- L58	Allotting portion for Internal Test-III
	Internal Test III begins (05.10.2015)
65- L59	Application of holography
66- L60	Holography interferometry
67-IT-III	Internal Test-III
68- L61	Holography computer memories
69- L62	Revision
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
71-MT	Model Test (16.10.2015)
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 29.10.2015

Learning Outcomes	COs of the course "Opto Electronics"
CO1	To studied about the Electromagnetic wave dispersion
CO2	To discuss the application of Holography
CO3	To describe the coupling of the wave guide
CO4	To construct the practical problems in Holography
CO5	To learn the Rainbow Multiplex
CO6	To studied about the Reflection and Transmission
C07	To deduce the threshold conditions
CO8	To define the Einstein relations
CO9	To know about the Optic fiber wave guides
Experimental	
Learning	
EL1	Fiber optic characterisation was studied in lab

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Classical Mechanics and relativity	
Course Code	HPHM11	
Class	I year (2015-2016)	
Semester	Odd	
Staff Name	E .Christy Jerin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs / Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- \blacktriangleright To study the mechanics of the particle. .
- ➢ To derive the Lagrange's equation.
- > To generalise the advantages of Variational principle formulation.
- > To derive the Virial theorem.
- > To study about the Euler's angle.
- > To expose the special theory of relativity.

Syllabus

UNIT I

FUNDAMENTAL PRINCIPLE and LAGRANGIAN FORMULATION:

Mechanics of the particle and a System of the Particles -Constraints. D'Alembert's principle. Lagrange's equation. Velocity dependence force Dissipation functions Application of Lagrange's formulation. Hamilton's principle Lagrange's equation from Hamilton's principle Advantages of Variational principle formulation

Unit II

Reduction of two body problems

Reduction of two body problems into one body and equivalent dimensional problems. Equation of motion of first integral Virial theorem Bertrand's theorem Kepler's problem Scattering in a central force field. Transformation of scattering problems to laboratory coordinates

UNIT III

Rigid body motion Independent coordinates of a rigid body.

Matrix transformation Euler's angle Coriolis force Angular momentum and kinetic energy Principle of least action Hamilton's equation from Variational principle. Small oscillations Normal coordinates Linear tri atomic molecule Forced vibrations

UNIT IV

Hamilton,s formulationCanonical transformation Generating function.

Poisson's brakets. Poisson braket formula tion for equations of motion. Hamilton's Jacobi theory. Harmonic oscillator Problems. Hamilton's characteristic function. Separation of variables Action angle variables.

UNIT V

Mechanics of small oscillations:

The special theory of relativity. Lorentz transformation. Four dimensional formulation. Relativistic elastic scattering. The Lagrangian and Hamiltonian of a relativistic particle.

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2015
1-L1	Mechanics of the particle.
2-L2	System of the Particles ,Constraints.
3- L3	D'Alembert's principle.
4-L4	Lagrange's equation.
5-L5	Velocity dependence force
6-L6	Dissipation functions.
7-L7	Application of Lagrange's formulation.
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Hamilton's principle.
10- L9	Lagrange's equation from Hamilton's principle.
11-L10	Advantages of Variational principle formulation.
12-L11	Reduction of two body problems into one body and equivalent dimensional

	problems.
13-L12	Equation of motion of first integral.
13 L12 14-L13	Virial theorem.
15-L14	Bertrand's theorem.
16-L15	Kepler's problem.
10 L10 17- L16	Scattering in a central force field.
17 L10 18- L17	Transformation of scattering problems to laboratory coordinates.
10 L17 19- L18	Transformation of scattering problems to laboratory coordinates.
20- L19	Kepler's problem.
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins (20.07.2015)
22- L21	Rigid body motion.
23- IT-1	Internal Test-I
24- L22	Independent coordinates of a rigid body.
25- L23	Matrix transformation
26- L24	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
27- L25	Matrix transformation.
28- L26	Euler's angle
29- L27	Euler's angle
30- P2	College level meeting/Cell function
31-L28	Coriolis force
32-L29	Coriolis force
33-L30	Angular momentum and kinetic energy
34- L31	Angular momentum and kinetic energy.
35- L32	Principle of least action
36- L33	Hamilton's equation from Variational principle.
37- L34	Small oscillations.
38-L35	Normal coordinates
39- L36	Linear tri atomic molecule
40- L37	Forced vibrations.
41- L38	Canonical transformation
42-P3	Department Seminar
43- L39	Generating function.
44- L40	Poisson's brakets.
45- L41	Poisson braket formulation for equations of motion.
46- L42	Hamilton's Jacobi theory.
47- L43	Allotting portion for Internal Test-II
	Internal Test II begins (31.08.2015)
48- L44	Harmonic oscillator Problems.
49-IT-II	Internal Test-II
50-L45	Hamilton's characteristic function.
51- L46	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
52- L47	Seperation of variables.
53- L48	Action angle variables.
54- L49	The special theory of relativity.
55- L50	The special theory of relativity.

Learning Outcomes	COs of the course "Classical Mechanics and relativity"
CO1	Explain the D'Alembert's principle.
CO2	Determine the scattering in a central force field.
CO3	Deduce Euler's equation.
CO4	Generalise the canonical transformation.
CO5	Determine the action angle variables.
CO6	Derive Euler angle.
CO7	Describe abut small oscillations.
CO8	Derive poisson bracket.
CO9	Describe Hamilton's Jacobi theory.

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Mathematical physics I	
Course Code	HPHM12	
Class	I year (2015-2016)	
Semester	Odd	
Staff Name	Uma	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To acquire the knowledge about the vector analysis.
- > To identify the eigen value /eigen vector of the matrix. .
- > To study the differentiation and integration of matrices.
- \succ To derive the polynomials.
- > To calculate the laplace integral transform.
- \succ To explain the convolution theorm.
- > To calculate the Fourier integral transform.

Syllabus

UNIT I

Gauss divergence theorem.

Deduction from Gauss divergence theorem. Green's theorem. Green's theorem in a plane. Classification of vector fields

UNIT II

Eigen values, Eigen vectors

Charecteristic equation of matrix. Cayley Hamilton theorem. Some Important theorems of eigen value and eigen vectors Diagonalisation of matrices Differentiation and integration of matrices. Power of matrices. Exponential of a matrix Matrices in physics

UNIT III

Bessel differential equation

Bessel differential equation Bessel 's function of I kind Generating function Recurrence relations Laguarre's differential equation. Laguerie polynomial. Generating function Recurrence relations

UNIT IV

Fourier's transform

Introduction Fourier's transform(FT) Properities of FT-FT of a derivative Fourier sin and cosine transforms of derivatives FT of function of function of two or three variables Finite FT Simple applications of FT

UNIT V

Laplace Transform

Laplace Transform(LT) Properties of LT LT of derivation of a function L T of periodic functions Properties of inverse LT LT of derivation of a function L T of periodic functions Properties of inverse LT Convolution theorem Evaluation of inverse LT by convolution theorem Application of LT

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2015	
1-L1	Gauss divergence theorem.	
2-L2	Deduction from Gauss divergence theorem.	
3- L3	Green's theorem.	
4-L4	Green's theorem in a plane.	
5-L5	Classification of vector fields	
6-L6	Eigen values, Eigen vectors.	
7-L7	Charecteristic equation of matrix.	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Cayley Hamilton theorem.	
10- L9	Some Important theorems of eigen value and eigen vectors	

11-L10	Some important theorems of sign value and sign vectors	
	Some important theorems of eigen value and eigen vectors.Diagonalisation of matrices	
13-L12	Diagonalisation of matrices Differentiation and integration of matrices.	
13-L12 14-L13	Power of matrices.	
14-L15 15-L14	Exponential of a matrix	
15-L14 16-L15	Matrices in physics	
10-L13 17- L16	Bessel differential equation	
17-L10 18-L17	Bessel 's function of I kind	
10- L17 19- L18	Generating function	
20- L19	Recurrence relations	
20 L1) 21- L20	Allotting portion for Internal Test-I	
	Internal Test I begins (20.07.2015)	
22- L21	Recurrence Relations.	
23- IT-1	Internal Test-I	
24- L22	Laguarre's differential equation.	
25- L23		
26- L24	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
27- L25	Laguerie polynomial.	
28- L26	Generating function	
29- L27	Recurrence relations	
30- P2	College level meeting/Cell function	
31-L28	Recurrence relations	
32-L29	Recurrence relations.	
33-L30	Introduction	
34- L31	Fourier's transform(FT)	
35- L32	Properities of FT-FT of a derivative	
36- L33	Fourier sin and cosine transforms of derivatives	
37- L34	FT of function of two or three variables	
38-L35	Finite FT	
39- L36	Simple applications of FT	
40- L37	Laplace Transform(LT)	
41- L38	Properties of LT	
42-P3	Department Seminar	
43- L39	LT of derivation of a function	
44- L40	L T of periodic functions	
45- L41	Properties of inverse LT	
46- L42	Convolution theorem	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins (31.08.2015)	
48- L44	Evaluation of inverse LT by convolution theorem	
49-IT-II	Internal Test-II	
50-L45	Application of Lt	
51- L46	Test Paper distribution and result analysis	
50 L 17	Entering Internal Test-II Marks into University portal	
52- L47	Laplace Transform(LT)	
53- L48	Properties of LT	
54- L49	LT of a function of a function	

55- L50	LT of periodic functions	
56- L51	Properties of inverse LT	
57- L52	Convolution theorem	
58- L53	Evaluation of inverse LT by convolution theorem	
59-P4	College level meeting/ function	
60- L54	Application of LT	
61- L55	Eigen values: Eigen Vector	
62- L56	Characteristic equation of matrix	
63- L57	Cayley Hamilton theorem	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins (05.10.2015)	
65- L59	Some important theorem	
66- L60	Diagonalisation of matrices	
67-IT-III	Internal Test-III	
68- L61	Differentiation and integration of matrices	
69- L62	Power of matrices	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
71-MT	Model Test (16.10.2015)	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 29.10.2015	

Learning Outcomes	COs of the course "Mathematical physics I"
CO1	Explain the classification of vector field.
CO2	Determine the eigen value and eigen vector of the characteristic
	equation of matrix.
CO3	Design the recurrence relation.
CO4	Determine the fourier transform for a given function
CO5	Explain about the convolution theorem.
CO6	Explain the properities of fourier transform.
CO7	Application of matrix in physics.
CO8	Application of laplace transform.
CO9	Application of fourier transform.

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.

# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Electronic device	
Course Code	HPHM13	
Class	I year (2015-2016)	
Semester	Odd	
Staff Name	C.Stella Rani	
Credits	4	
L. Hours /P. Hours	5 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > To understand different types of electronic devices and preparation of IC
- To discuss logical families in the digital electronics and study the counters and registers
- > To describe the application of operational amplifier in the different field
- > To study the various electronics instrumentation through basics of science

Syllabus

Electronic devices

UNIT I

Transistors:

JFET, BJT, MOSFET& MESFET- Structure-working- Derivations of the equations for I-V characteristics under different conditions- High frequency limits.

UNIT II

Photonic devices:

Eradicative and non radiative transitions- Optical absorption- Bulk and thin film-Photoconductive devices(LDR)- diode photodectors- soloar cell-(open circuit voltage and short circuit current, fill factor)- LED (high frequency limit- effect of surface and indirect combination current, operation of LED)- diode lasers(conditions for population inversion in active region, line confinement factor)- Optical gain and threshold current for lasing- Fabry-Perrot cavity length for lasing and the separation.

UNIT III

Memory devices:

Static and dynamic random access memories SRAM and DRAM- CMOS and NMOS- non volatile- NMOS- magnetic- optical and ferroelectric memories- charge cupled(CCD).

UNIT IV

Other electronic devices:

Electro optic- magneto optic and Acousto- Optic effects- material properties related to get these effects- Important Ferro electric, Liquid Crystal and Polymeric materials of these devices- Piezoelectric- To discuss about - Important exhibiting these properties and their applications in sensors and activated devices. Acoustic Delay lines- Piezoelectric resonators and filters- High frequency piezoelectric devices- Surface acoustic wave devices.

UNIT V

Microwave devices:

Tunnel diode- transfer electron devices- avalanche transit time devices-impatt diodesparametric devices.

BOOKS FOR STUDY

- 5. Semiconductor devices- Physics and technology, S.M. Sze, John Wiley& Sons, 1985.
- 6. Introduction to semiconductors devices, M.S. Tyagi, John Wiley and Sons, 1991.
- Measurement, Instrumentation and Experiment design in physics and eengineering, M. Sayer and A. Mansingh, Prentice Hall, India,2000.
- 8. Optical Electronics, AjoyGhatak and K. Thygarajan, Cambridge Univ. Press, 1989.

Hour allotment	Class Schedule	
	Odd Semester Begin on 18.06.2015	
1-L1	JFET, BJT	
2-L2	MOSFET& MESFET	
3- L3	Structure-working	
4-L4	Derivations of the equations for I-V characteristics under different conditions	
5-L5	High frequency limits.	

6-L6	Eradicative and non radiative transitions		
7-L7	Optical absorption		
8- P1	Welcoming of First year and Inauguration of Physics Association		
9- L8	Bulk and thin film		
10- L9	Photoconductive devices(LDR)		
11-L10	diode photodectors		
12-L11	soloar cell(open circuit voltage and short circuit current, fill factor)		
13-L12	LED (high frequency limit effect of surface and indirect combination current		
	operation of LED)		
14-L13	diode lasers(conditions for population inversion in active region, line		
	confinement factor)		
15-L14	Allotting portion for Internal Test-I		
	Internal Test I begins (20.07.2015)		
16-L15	Optical gain and threshold current for lasing		
17-IT-1	Internal Test-I		
18-L16	Fabry- Perrot cavity length for lasing and the separation.		
19-L17	Test Paper distribution and result analysis		
	Entering Internal Test-I Marks into University portal		
20-L18	Static and dynamic random access memories SRAM and DRAM		
21- L19	CMOS and NMOS		
22- P2	College level meeting/Cell function		
23-L20	non volatile		
24-L21	NMOS		
25-L22	magnetic		
26-L23	optical and ferroelectric memories		
27-L24	chargecupled(CCD).		
28-L25	Electro optic		
29-L26	magneto optic and Acousto		
30-L27	Optic effects		
31-L28	material properties related to get these effects		
32-L29	Important Ferro electric		
33-L30	Liquid Crystal and Polymeric materials of these devices		
34- P3	Department Seminar		
35-L31	Piezoelectric		
36-L32	Allotting portion for Internal Test-II		
	Internal Test II begins (31.08.2015)		
37- L33	Electrostrictive and MagnetostrictiveEfeects- Important exhibiting these		
	properties and their applications in sensors and activated devices.		
38- IT-II	Internal Test-II		
39-L34	Acoustic Delay lines		
40-L35	Test Paper distribution and result analysis		
	Entering Internal Test-II Marks into University portal		
41-L36	Piezoelectric resonators and filters		
42- L37	High frequency piezoelectric devices		
43- L38	Surface acoustic wave devices.		
44- P4	College level meeting/ function		
45-L39	Tunnel diode		
46-L40	transfer electron devices		

avalanche transit time devices	
impatt diodes	
parametric devices.	
Allotting portion for Internal Test-III	
Internal Test III begins (05.10.2015)	
Internal Test-III	
Test Paper distribution and result analysis	
Entering Internal Test-III Marks into University portal	
Model Test (16.10.2015)	
Model Test	
Model Test	
Model test paper distribution and previous year university question paper	
discussion	
Feedback of the Course, analysis and report preparation	
Last Working day on 29.10.2015	

Learning Outcomes	COs of the course "Electronic device"
CO1	JFET, BJT
CO2	MOSFET& MESFET
CO3	NMOS
CO4	soloar cell(open circuit voltage and short circuit current, fill factor)
CO5	LED (high frequency limit effect of surface and indirect
	combination current operation of LED)
CO6	optical and ferroelectric memories
CO7	chargecupled(CCD).
CO8	transfer electron devices
CO9	avalanche transit time devices

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Solid State Physics	
Course Code	HPHM22	
Class	I year (2015-2016)	
Semester	odd	
Staff Name	C.Stella Rani	
Credits	4	
L. Hours /P. Hours	5 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > To understand Bravis lattice
- > To discuss Brillouine zone
- > To explain Crystal binding and study
- > To describe Dulong and petits law
- Explain types of super conductors
- > To Discuss about electronic devices

Syllabus

SOLID STATE PHYSICS

UNIT I:

CRYSTAL STRUCTURE AND DIFFRACTION

Recapitulation of basic concepts- crystal systems- Bravais Lattice- Miller indices-symmetry elements- symmetry groups- simple crystal structures (sodium chloride, cesium chloride, diamond and zincblende structures) Bragg's law- Laue equations- reciprocal lattice- Brillouine zones- atomic scattering factor- geometrical structure factor- experimental methods of structure analysis (the laue, rotating crystal and powder methods)

UNIT II:

CRYSTAL BINDING AND ELASTIC PROPERTIES OF SOLIDS

Crystal bindings: Ionic bond- covalent bond- molecular bond- Hydrogen bondmetallic bond-Vanderwaal's bond-Binding energy of crystals- polaron Elastic properties: Stress componentsdisplacement and strain components- elastic compliances and stiffness constants- relation between elastic compliances and stiffness constants -elastic constants for cubic isotropic crystals-elastic wavesexperimental determination of elastic constants

UNIT III:

LATTICE DYNAMICS AND THERMAL PROPERTIES

Lattice dynamics: Concept of phonons- momentum of phonons- normal and Umklapp processvibrations of one dimensional monoatomic and diatomic linear lattices- inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat- Dulong and Petit's law- Einstein theory and Debye's theory- Widemann Franz law

UNIT IV:

ELECTRONIC PROPERTIES OF SOLIDS

Free electron gas model in three dimensions: Density of states- Fermi energyEffect of temperature- heat capacity of electrons- experimental heat capacity of metalsthermal effective masselectrical conductivity and ohm's law- Hall effect- failure of the free electron gas Band theory of solidsperiodic potential and Bloch's theorem- KronigPenny model-wave equation of electron in a periodic potential- periodic, extended and reduced zone schemes of energy representation- number of orbitals in an energy bandclassification of metals, semi conductors and insulators- tight binding method and its applications to FC and BCC structures.

UNIT V:

SUPER CONDUCTIVITY

Experimental survey: Superconductivity and its occurrence- destruction of superconductivity by magnetic field- Meissner effect- Type I and II super conductorsentropy- free energy- heat capacityenergy gap- isotope effect Theoretical survey: Thermodynamics of the superconducting transition-London equation- coherence length- salient features of the BCS theory of super conductivity- flux quantization in a superconductivity ring- DC and AC Josephson effects

Books for Study and Reference

- 1. Introduction to Solid State Physics 7 The edition by Charles kittel
- 2. Solid State Physics by Neil W Ashroff and N.DavidMermin
- 3. Solid State Physics by S.L. Kakani and C. Hemarajani
- 4. Elementary Solid State Physics by M. Ali Omar

Hour allotment	Class Schedule	
unotinent	Odd Semester Begin on 18.06.2015	
1-L1	Recapitulation of basic concepts	
2-L2	Crystal systems, Bravais Lattice	
3- L3	Miller indices	
4-L4	Symmetry elements, Symmetry groups	
5-L5	simple crystal structures (sodium chloride, cesium chloride, diamond and zincblende structures)	
6-L6	Bragg's law, Laue equations	
7-L7	reciprocal lattice, Brillouine zones	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	atomic scattering factor, Geometrical structure factor	
10- L9	Experimental methods of structure analysis (the laue, rotating crystal and powder methods)	
11-L10	Crystal bindings: Ionic bond, covalent bond	
12-L11	molecular bond,Hydrogenbondmetallic bond	
13-L12	Vanderwaal's bond	
14-L13	Binding energy of crystals	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins (20.07.2015)	
16-L15	polaron Elastic properties: Stress components	

17-IT-1	Internal Test-I	
18-L16	displacement and strain components	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	elastic compliances and stiffness constants	
21- L19	relation between elastic compliances and stiffness constants	
22- P2	College level meeting/Cell function	
23-L20	elastic constants for cubic isotropic crystals	
24-L21	elastic waves	
25-L22	experimental determination of elastic constants	
26-L23	Lattice dynamics: Concept of phonons	
27-L24	momentum of phonons	
28-L25	normal and Umklapp process	
29-L26	vibrations of one dimensional monoatomic and diatomic linear lattices	
30-L27	inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat	
31-L28	Dulong and Petit's law Einstein theory and Debye's theory, Widemann Franz law	
32-L29	Free electron gas model in three dimensions: Density of states, Fermi energyEffect of temperature	
33-L30	heat capacity of electrons, experimental heat capacity of metalsthermal effective mass	
34- P3	electrical conductivity and ohm's law, Hall effect-	
35-L31	failure of the free electron gas Band theory of solids	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (31.08.2015)	
37- L33	periodic potential and Bloch's theorem, KronigPenny model	
38- IT-II	Internal Test-II	
39-L34	wave equation of electron in a periodic potential	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	periodic, extended and reduced zone schemes of energy representation	
42- L37	number of orbitals in an energy bandclassification of metals, semiconductors and insulators	
43- L38	tight binding method and its applications to FC and BCC structures.	
44- P4	College level meeting/ function	
45-L39	Experimental survey: Superconductivity and its occurrence, destruction of	
	superconductivity by magnetic field	
46-L40	Meissner effect, Type I and II super conductors entropy,	
47-L41	free energy, heat capacity ,energy gap, isotope effect	
48-L42	Theoretical survey: Thermodynamics of the superconducting transition	
49-L43	London equation, coherence length	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (05.10.2015)	
51 L45	salient features of the BCS theory of super conductivity	
52- L46	flux quantization in a superconductivity ring,DC and AC Josephson effects	
53-IT-III	Internal Test-III	
54-L47		

55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (16.10.2015)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 30.10.2016	

Learning Outcomes	COs of the course "Solid State Physics"	
C01	elastic waves	
CO2	experimental determination of elastic constants	
CO3	Lattice dynamics: Concept of phonons	
CO4	elastic compliances and stiffness constants	
CO5	relation between elastic compliances and stiffness constants	
CO6	tight binding method and its applications to FC and BCC structures.	
CO7	wave equation of electron in a periodic potential	
CO8	KronigPenny model	
CO9	number of orbitals in an energy bandclassification of metals, semiconductors and insulators	
	semiconductors and insulators	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Quantum Mechanics I	
Course Code	HPHM31	
Class	II year (2015-2016)	
Semester	Odd	
Staff Name	J RUBY JEMIMA	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To develop the schrodinger wave equation. .
- > To derive Ehrenfest theorem.
- > To find energy eigen value of square well potential.
- > To discuss the postulates of quantum mechanics.
- > To derive the energy eigen value of harmonic oscillator.
- > To discuss about scattering.
- > To find scattering cross section of rigid sphere.

Syllabus

UNIT 1

Development of wave equation Travelling harmonic waves The one dimensional wave equation Interpretation of the wave function Normalization Probability current density Expectation values Ehrenfest's theorem Energy Eigen functions One dimensional square well potential

UNIT II

Interpretative postulates and energy eigen functions Motion of a free wave packet in one dimension Discrete Eigen values(bound states) Linear Harmonic oscillator Spherically symmetric potential in three dimension

UNIT III

One dimensional square potential barrier Scattering coefficients Collisions in three dimensions Scattering cross sections Asymmetric behavior Scattering by spherically symmetric potentials Scattering by a perfect rigid sphere Scattering by a square well potential

UNIT IV

Transformation theory Transformation of Hamiltonian with U Transformation of Hamiltonian with V Dirac's bra and ket notation Equations of motion Matrix theory of the linear harmonic oscillator

UNIT V

Rotational angular momentum and unitary groups. Proper rotation group Infinitesimal rotations. Spin of vector particle Commutation relation for the generators Choice of representation Angular momentum matric Combination of angular momentum states And tensor operations Clebsch gordan coefficients Combination of angular momentum states Spin of vector paricle Commutation relation for the generators Dirac's bra ket notation Equation of motion.

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2015	
1-L1	Development of wave equation	
2-L2	Travelling harmonic waves	
3- L3	The one dimensional wave equation	
4-L4	Interpretation of the wave function	
5-L5	Normalization	
6-L6	Probability current density	
7-L7	Expectation values	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Ehrenfest's theorem	
10- L9	Energy Eigen functions	
11-L10	One dimensional square well potential	
12-L11	Interpretative postulates and energy eigen functions	
13-L12	Motion of a free wave packet in one dimension	
14-L13	Discrete Eigen values(bound states)	
15-L14	Linear Harmonic oscillator	

16 1 15	Sphanically symmetric notantial in threadimension	
16-L15	Spherically symmetric potential in three dimension	
17- L16 18- L17	One dimensional square potential barrier Scattering coefficients	
18- L17 19- L18	Collisions in three dimensions	
19- L18 20- L19		
20- L19 21- L20	Scattering cross sections	
21- L20	Allotting portion for Internal Test-I	
22- L21	Internal Test I begins (20.07.2015) Asymmetric behaviour	
22- L21 23- IT-1	Internal Test-I	
23-11-1 24- L22	Scattering by spherically symmetric potentials	
24- L22 25- L23	Scattering by a perfect rigid sphere	
25- L23 26- L24	Test Paper distribution and result analysis	
20- 124	Entering Internal Test-I Marks into University portal	
27- L25	Scattering by a square well potential	
27 L25 28- L26	Scattering by a square well potential	
20 L20 29- L27	Transformation theory	
30- P2	College level meeting/Cell function	
30 12 31-L28	Transformation theory	
32-L29	Transformation of Hamiltonian with U	
33-L30	Transformation of Hamiltonian with U	
34- L31	Transformation of Hamiltonian with V	
35- L32	Transformation of Hamiltonian with V	
36- L33	Dirac's bra and ket notation	
37- L34	Dirac's bra and ket notation	
38-L35	Equations of motion	
39- L36	Equations of motion	
40- L37	Matrix theory of the linear harmonic oscillator	
41- L38	Matrix theory of the linear harmonic oscillator	
42-P3	Department Seminar	
43- L39	Rotational angular momentum and unitary groups.	
44- L40	Rotational angular momentum and unitary groups.	
45- L41	Proper rotation group.	
46- L42	Proper rotation group.	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins (31.08.2015)	
48- L44	Infinitesimal rotations.	
49-IT-II	Internal Test-II	
50-L45	Spin of vector particle.	
51- L46	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	Commutation relation for the generators.	
53- L48	Choice of representation.	
54- L49	Angular momentum matrices.	
55- L50	Angular momentum matrices.	
56- L51	Combination of angular momentum states	
57-L52	And tensor operations.	
58- L53	Clebsch gordan coefficients.	
59-P4	College level meeting/ function	

60- L54	Clebsch gordan coefficients.	
61- L55	Combination of angular momentum states	
62- L56	Spin of vector paricle.	
63- L57		
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins (05.10.2015)	
65- L59	Commutation relation for the generators	
66- L60	Dirac's bra ket notation.	
67-IT-III	Internal Test-III	
68- L61	Equation of motion	
69- L62	Equation of motion	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
71-MT	Model Test (16.10.2015)	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 29.10.2015	

Learning Outcomes	COs of the course " Quantum Mechanics I"
CO1	Develop the wave equation.
CO2	Derive Ehrenfest theorem.
CO3	Derive eigen value of square well potential.
CO4	Derive the eigen value of harmonic oscillator.
CO5	Calculate the scattering cross section for square well potential
CO6 Derive the energy eigen value of harmonic oscillator using ma	
	theory.
CO7	Derive C.G coefficients.
CO8	Discuss about the choice of representation.
CO9	Discuss about the rotational groups

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Statistical Mechanics	
Course Code	HPHM33	
Class	II year (2015-2016)	
Semester	Odd	
Staff Name	E. Christy Jerin	
Credits	4	
L. Hours /P. Hours	5 / WK	
Total 60Hrs/ Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > To import the knowledge about fundamentals of statistical mechanics.
- \succ To study about the Ensembles.
- > To derive the expression for Sackur Tetrode equation.
- ➤ To define Helmholtz free energy.
- > To analysis the Chemical equilibrium and saha ionisation formula.
- > To import the knowledge about phase transistion.
- > To describe the application of density matrices.

Syllabus

Statistical Mechanics

Unit I

Basic concepts

Phase space-phase-space diagram of an oscillator-Volume in phase space-Ensembles Microcanonical ensemble-Canonical ensemble-Grand canonical ensemble-Density of distribution in phase space-Liouvilles theorem-Postulate of equal a priori probabilitystatistical, mechanical and thermal equilibriums-connection between statistical and thermodynamical quantities. (11 L)

Unit II

M-B Distribution law

Microstates and macro states-Stirling's approximation-Thermodynamic probabilityGeneral statistical distribution law-Classical Maxwell-Boltzmann distribution law-Evaluation of constants in the Maxwell Boltzmann distribution law-Maxwell's law of distribution of velocitiesprinciple of equipartition of energy- Boltzmann entropy relation-Probability of magnetic moment distribution of independent atoms. (13 L)

Unit III

Quantum statistics

Postulatory foundations of quantum mechanics-Transition from classical statistical mechanics to quantum statistical mechanics-Indistinguishability and quantum statistics-Exchange symmetry of wave functions-Bose-Einstein Statistics-Fermi-Dirac statistics-Maxwell-Boltzmann statistics-Results of three statistics-Thermodynamic interpretation of the parameters α and β -Black body radiation and the Planck radiation law. (12 L)

Unit IV

Applications of quantum statistics

Specific heat of solids-Dulong and Petit law-Einstein theory of specific heat of solidsDebye theory of specific heat of solids-Criticism of Debye's theory-Ideal Bose Einstein GasEnergy and pressure of the Gas-Gas degeneracy-Bose-Einstein Condensation-Thermal properties of Bose Einstein Gas-Ideal Fermi Dirac gas- Energy and pressure of the Gas-Thermodynamics functions of degenerate Fermi-Dirac gas-Electron Gas. (14 L)

Unit V

Phase transitions

Phase transition-Phase transitions of first and second kind-critical exponent-Yang and Lee theory-Phase transitions of second kind: the Ising model-Braggs-Williams approximation-One dimensional Ising model. (10 L) Total

Hour allotment	Class Schedule
	Odd Semester Begin on 18.06.2015
1-L1	Classification of molecules based on moment of inertia
2-L2	Rotational spectra of rigid and non-rigid diatomic molecules
3- L3	Isotopic effect
4-L4	Linear polyatomic molecule
5-L5	Symmetric top molecule
6-L6	Chemical analysis
7-L7	Microwave spectrometer
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Vibrating diatomic and poly-21 atomic molecules
10- L9	Simple harmonic oscillator
11-L10	Anhormonicity
12-L11	Hydrogen bonding
13-L12	Fermi resonance
14-L13	Rotation vibration spectra of polyatomic molecule
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins (20.07.2015)
16-L15	Information from IR spectra
17-IT-1	Internal Test-I
18-L16	IR spectrometer
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	FTIR
21- L19	Theory of Raman scattering
22- P2	College level meeting/Cell function
23-L20	Rotation vibration Raman spectra
24-L21	Mutual exclusion principle
25-L22	Raman spectrometer
26-L23	Polarization of Raman scattered light
27-L24	Structure determination using Raman spectrum
28-L25	Phase transition
29-L26	Reasonance Raman scattering
30-L27	Magnetic properties of nuclei
31-L28	Relaxation time
32-L29	Chemical shift
33-L30	Application to molecular structure
34- P3	Department Seminar
35-L31	Bloch equation
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins (31.08.2015)
37- L33	NMR instrumentation
38- IT-II	Internal Test-II
39-L34	NMR imaging

40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	ESR theory and hyperfine structure ESR spectra of hydrogen atom and	
	anisotropic systems	
42- L37	Crystal defects and biological studies	
43- L38	ESR spectrometer	
44- P4	College level meeting/ function	
45-L39	Electron Energy Loss Spectroscopy EELS	
46-L40	Reflection	
47-L41	Absorption IR spectroscopy RAIRS	
48-L42	Surface Enhanced Raman Scattering SERS	
49-L43	Inelastic Helium Scattering	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (05.10.2015)	
51 L45	X Ray Photoelectron Spectroscopy XEPS	
52- L46		
53-IT-III	Internal Test-III	
54-L47		
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (16.10.2015)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 30.10.2015	

Learning Outcomes	COs of the course "Statistical Mechanics"
CO1	Explain the ensembles.
CO2	Calculation of entrophy of ideal gas.
CO3	Derive Quantum Lioville's theorem.
CO4	Illustrate Identical particle.
CO5	Calculation of exponent from mean field theory.
CO6	Calculation of chemical equilibrium.
CO7	Derive the Saha ionisation formula.
CO8	Describe the mean field theory.
CO9	Explain about Iising model

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	COMMUNICATION ELECTRONICS	
Course Code	HPHE22	
Class	I year (2015-2016)	
Semester	EVEN	
Staff Name	G.GOMATHI SANKARI	
Credits	6	
L. Hours /P. Hours	6 / WK	
Total 90 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 80 Hrs (5 units; 5×16=80; 16Hrs /unit)		

Course Objectives

- To study the basic concept of communication and different modulation system based on basic parameters.
- > To study the AM, FM, PM process & compute modulation Index
- > To study the fundamentals of AM and FM Receivers.
- > To develop knowledge about fundamentals of Broadband Communication System

Syllabus

COMMUNICATION ELECTRONICS

Unit I

Amplitude modulation:

Modulation index for AM- Frequency spectrum for AM- Average power- AM receiver- AM transmitter- Single side band principles- Frequency Modulation- Frequency spectrum- Average power- FM transmitter- Phase modulation- Pulse am To study the concept of noise, properties & its effects plitude modulation- pulse code modulation- Pulse Frequency modulation- Pulse Time modulation.

Unit II

Synchronization

Asynchronous Transmission- Probability of bit Error in baseband transmission-Matched Filter- Optimum Terminal Filters- Bit time recovery –Digital carrier systemscarrier recovery circuits- Differential Phase Shift Keying (DPSK)- Hard and soft decision decoders.

Unit III

Propagation of waves:

Ground waves- Sky wave propagation- the ionosphere- Space wave troposphere scatter propagation-extra terrestrial communications.

Unit IV

Optical Communication:

Transmission in fiber- Losses in fibers- Dispersion- Light sources for fiber optics-photodetectors-Connectors and splices- Fiber optic communication link.

Unit V

Kepler's law:

Keplers' I,II and III law – Orbits- Geostationary orbits- power systems – altitude Control- Satellite station Keeping- Antenna look angles- limits of visibility – Transponders-Uplink and down link power budget calculation- Digital carrier Transmission- Multiple access methods

Hour	Class Schedule	
allotment		
	Even Semester Begin on 02.12.2015	
1-L1	Amplitude modulation.	
2-L2	Modulation index for AM	
3- L3	Frequency spectrum for AM	
4-L4	Average power	
5-L5	AM receiver	
6-L6	AM transmitter	
7-L7	Single side band principles	
8-L8	Frequency Modulation	
9-L9	Frequency spectrum	
10-P1	Welcoming of First year and Inauguration of Physics Association	
11-L10	Average power	

12-L11	FM transmitter	
12-L11 13-L12	Phase modulation	
13 L12 14-L13	Pulse amplitude modulation	
15-L14	pulse code modulation	
16-L15	Pulse Frequency modulation	
17-L16	Pulse Time modulation	
18-L17	Synchronization:	
19-L18	Asynchronous Transmission	
20-L19	Probability of bit Error in baseband transmission	
21-L20	Matched Filter	
22-L21	Optimum Terminal Filters	
23-L22	Allotting portion for Internal Test-I	
	Internal Test I begins (25.01.2016)	
24-L23	Bit time recovery	
25-L24	Digital carrier systems	
26-IT-1	Internal Test-I	
27-L25	carrier recovery circuits	
28-L26	Differential Phase Shift Keying (DPSK)	
29-L27	Hard and soft decision decoders.	
30-L28	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
31- L29	Propagation of waves	
32- L30	Ground waves	
33- L31	Sky wave propagation	
34-P2	College level meeting/Cell function	
35- L32	The ionosphere	
36- L33	Space wave troposphere scatter propagation	
37- L34	Extra terrestrial communications	
38- L35	Ground waves	
39- L36	Sky wave propagation	
40- L37	Space wave troposphere scatter propagation	
41- L38	Optical Communication	
42- L39	Transmission in fiber	
43- L40	Losses in fibers	
44- L41	Dispersion	
45- L42	Light sources for fiber optics	
46- L43	photodetectors	
47- L44	Connectors and splices	
48- L45	Fiber optic communication link	
49- L46	Revision for losses in fibers	
50- L47	Light sources for fiber optics	
51- P3	Department Seminar	
52- L48	Dispersion	
53- L49		
	Connectors and splices	
54- L50	Fiber optic communication link	

	Internal Test II begins (22.02.2016)	
57-L53	Kepler's law:	
58-L54	Keplers' I,II and III law	
59-IT-II	Internal Test-II	
60- L55	Orbits	
61- L56	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
62- L57	Geostationary orbits	
63- L58	power systems	
64- L59	altitude Control	
65- L60	Satellite station Keeping	
66- L61	Antenna look angles	
67- L62	limits of visibility –	
68- L63	Transponders	
69- L64	Uplink and down link power budget calculation	
70- L65	Digital carrier Transmission	
71- L66	Multiple access methods	
72- L67	power systems	
73- L68	Transponders	
74-P4	College level meeting/ function	
75- L69	Uplink and down link power budget calculation	
76- L70	Geostationary orbits	
77- L71	Revision for multiple access methods	
78- L72	Solved problem	
79- L73	Allotting portion for Internal Test-III	
	Internal Test III begins (28.03.2016)	
80- L74	Previous year question discussion	
81- L75	Question paper solved problem	
82-IT-III	Internal Test-III	
83- L76	Fiber optic communication link	
84- L77	Test Paper distribution and result analysis	
85- L78		
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
86- L79	Model Test (11.04.2016)	
87-MT	Model Test	
88-MT	Model Test	
89-MT	Model test paper distribution and previous year university question paper	
	discussion	
90-L-80	Feedback of the Course, analysis and report preparation	
	Last Working day on 22.04.2016	

Learning Outcomes	COs of the course " Communication Electronics"	
CO1	communication system.	
CO2	Calculate bandwidth and bit rate requirement of system.	
CO3	O3 Solve the problems involving representation & Generation of an AM sine wave	
CO4	Integrate different modulation techniques of Generation of FM (Direct & Indirect Method) in a communication system design	
CO5	Identify, formulate & solve communication engineering problems	
CO6		
CO7	CO7 The AM, FM, PM process & compute modulation Index	
CO8	CO8 The fundamentals of AM and FM Receivers	
CO9	Develop knowledge about fundamentals of Broadband Communication	
	System	
Experimental Learning		
EL1	the study of analog and digital communication systems	
EL2	Experiments based on amplitude modulation, frequency modulation, double side band modulation, single side band modulation are performed.	
EL3	Various parameters of receiver like sensitivity, selectivity & fidelity are tested.	
EL4	Experiments of PAM, PWM, PPM, PCM, Delta modulation & adaptive delta modulation are performed.	
Integrated Activity		
IA1	Advanced digital common training boards are available for performing	
IA2	Experiments based on digital modulation techniques ASK, PSK & FSK and their demodulation using Parity Generator, Error Detection & Correction.	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Microprocessor and Microcontroller	
Course Code	HPHM13	
Class	I year (2015-2016)	
Semester	even	
Staff Name	C.Stella Rani	
Credits	4	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs / Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > The objective of this course is to become familiar with the architecture and the instruction set of an Intel microprocessor
- Assembly language programming will be studied as well as the design of various types of digital and analog interfaces
- Understand the architecture of 8085 and 8051

Syllabus

Microprocessor and Microcontroller

UNIT I

Evolution and Architecture of Microprocessors 8085& 8086

Evolution of microprocessors-computers and its classifications-INTEL 8085 microprocessor pin out configuration-Pins and their functions-Bus system-control and status signals-externally initiated signals including interrupts-architecture-ALU-Flags-Registers-INTEL 8086 microprocessor-Pins description, Operating modes, Pin description for minimum mode –Operation of 8086-Registers, flags, and interrupts of 8086

UNITII Instruction set of 8085 and assembly language programming

Software-Assembly language-Assembler, Assembler Directives-Instruction set of 8085: Data transfer instructions, Arithmetic instructions, Logical instructions, Branching instructions, Machine control instructions processor cycles- Instruction &machine cycle, Timing diagram& Instruction format – Timing diagram for memory read machine cycle & executing an instruction –addressing modes of 8085A –Assembly language programming using 8085A- Sequence , branching and loop programming – Subroutines and ISR

UNIT III

Peripheral interfacing Devices and techniques

Address space- Partitioning, interfacing – Memory and I/O ports: non programmable I/o port INTEL 8212, Programmable peripheral interface INTEL8255, programmable interval timer INTEL 8253-Data transfers: Types of parallel and serial data transfer schemes – Direct memory Access controller INTEL 8257 – 8085A interrupt system : software & hardware interrupts – interfacing , working and programming of PIC 8259 with 8085

UNIT IV

Programming of 8086 and microcontroller 8051

8086 instructions- Data transfer and arithmetic instructions, addressing modes of INTEL 8086. INTEL 8051: Architecture –Hardware features, registers, I/O ports, External memory, counter and timers, serial I/O, Interrupts. 8051 programming: Instruction set, Addressing modes, Data transfer, logical, arithmetic operations, jump/call instructions, interrupt handler

UNIT V

Microprocessor system design and applications

Delays- Generation of square waves of pulses- interfacing of 7 – segment LED display – formation of codes for alphanumeric characters – sensors and transducers in physical instruments – Temperature measurements and control – frequency and resistance measurements – Digital clock – DC motor speed control – Traffic control system

BOOKS FOR STUDY

- 4. Microprocessor architecture, programming and applications with 8085, Ramesh S.Gaonkar, III Edition, PenramInternational publishing 1997
- 5. Fundamentals of microprocessor and microcomputers, B.Ram, V Edition, DhanpatRai publications (P) Ltd. New Delhi, 2003.
- 6. The 8051 Microcontroller Architecture, Programming & Applications, Kenneth J.Ayala, II Edition. Penram International, India, 1996.

BOOKS FOR REFERENCE

- 4. Microprocessor and its Applications, NagoorKani, RBA publications I edition, Chennai, 2004.
- 5. Microprocessors and interfacing Programming and hardware, Dougles. V.Hall, II edition ,MCGraw Hill, India,1999.
- 6. The 8051 microcontroller and embedded systems, Mohammed Ali Mazidi, Janice Gillispiemazidi, Pearson education, India,2001.

Hour	Class Schedule	
allotment		
	Even Semester Begin on 2.12.2015	
1-L1	Evolution of microprocessors, computers and its classifications	
2-L2	INTEL 8085 microprocessor pin out configuration, Pins and their functions	
3- L3	Bus system, control and status signals	
4-L4	externally initiated signals including interrupts, architecture	
5-L5	ALU, Flags	
6-L6	Registers, INTEL 8086 microprocessor	
7-L7	Pins description, Operating modes, Pin description for minimum mode	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Operation of 8086	
10- L9	Registers, flags and interrupts of 8086	
11-L10	Software, Assembly language	
12-L11	Assembler, Assembler Directives	
13-L12	Instruction set of 8085: Data transfer instructions, Arithmetic instructions	
14-L13	Logical instructions, Branching instructions	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins (25.01.2016)	
16-L15	Machine control instructions processor cycles	
17-IT-1	Internal Test-I	
18-L16	Instruction & machine cycle, Timing diagram& Instruction format	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Timing diagram for memory read machine cycle & executing an instruction	
21- L19	addressing modes of 8085A, Assembly language programming using 8085A	
22- P2	College level meeting/Cell function	
23-L20	Sequence, branching and loop programming, Subroutines and ISR	
24-L21	Address space, Partitioning, interfacing	
25-L22	Memory and I/O ports: non programmable I/o port INTEL 8212	
26-L23	Programmable peripheral interface INTEL 8255	
27-L24	programmable interval timer INTEL 8253	
28-L25	Data transfers: Types of parallel and serial data transfer schemes	
29-L26	Direct memory Access controller INTEL 8257	

20 1 27	2005 A interment contains a finance 0 handlesses interments	
30-L27	8085A interrupt system : software & hardware interrupts	
31-L28	interfacing, working and programming of PIC 8259 with 8085	
32-L29	8086 instructions, Data transfer and arithmetic instructions	
33-L30	Addressing modes of INTEL 8086, INTEL 8051: Architecture	
34- P3	Department Seminar	
35-L31	Hardware features, registers, I/O ports	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (22.02.2016)	
37- L33	External memory, counter and timers, serial I/O, Interrupts	
38- IT-II	Internal Test-II	
39-L34	8051 programming: Instruction set, Addresssing modes, Data transfer	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	logical, arithmetic operations	
42- L37	jump/call instructions, interrupt handler	
43- L38	Delays	
44- P4	College level meeting/ function	
45-L39	Generation of square waves of pulses- interfacing of 7	
46-L40	segment LED display	
47-L41	formation of codes for alphanumeric characters	
48-L42	sensors and transducers in physical instruments	
49-L43	Temperature measurements and control	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (28.03.2016)	
51 L45	frequency and resistance measurements, Digital clock	
52- L46	DC motor speed control, Traffic control system	
53-IT-III	Internal Test-III	
54-L47		
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (11.04.2016)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 22.4.2016	
L		

Learning Outcomes	COs of the course "Microprocessor and Microcontroller"
CO1	Design and implement programs on 2026 ADM DIC
CO1	Design and implement programs on 8086, ARM, PIC.
CO2	Design I/O circuit.
CO3	The program prepares students to successfully compete for employment
	in Electronics, Manufacturing and Embedded fields
CO4 Design Memory Interfacing circuits	
CO5 Design and implement 8051 microcontroller based system	

CO6	Describe the architecture and instruction set of ARM microcontroller	
CO7	Understand and realize the Interfacing of memory & various I/O devices with 8085 microprocessor	
CO8 Understand and classify the instruction set of 8085 microprocessor distinguish the use of different instructions and apply it in ass language programming		
CO9		
Experimental Learning		
EL1	Microprocessor kits and data acquisition cards DC Power Supplies	
EL2	Microcontroller Programmer	
EL3	Universal Programmer	
EL4	Universal IC Tester	
Integrated Activity		
IA1	The program prepares students to successfully compete for employment in Electronics, Manufacturing and Embedded fields	
IA2	Design and implement 8051 microcontroller based system	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Mathematical physics II	
Course Code	HPHM21	
Class	I year (2015-2016)	
Semester	Even	
Staff Name	E .Christy Jerin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- \blacktriangleright To introduce the special type of matrices. .
- ➤ To derive Cayley hamilton theorem.
- ➤ To derive Cauchy's theorem.
- > To derive Taylor's theorem.
- > To study the Polynomials.
- > To import the knowledge of fourier transform.
- > To apply then laplace transform into the electrical circuits.

Syllabus

UNIT 1

Matrices:

Introduction – special types of matrices Transpose – Conjugate – transposed conjugate Symmetric and antisymmetric matrices Hermitian and skew Hermitian matrices Determinant – Adjoint Orthogonal and unitary matrices Orthogonal and unitary matrices Eigen values and eigen vectors of the matrix Characteristic equation of a matrix – Cayley Hamilton theorem

UNIT II

Complex variables:

Analytical functions – Cauchy Riemann Conditions Line integrals – Cauchy's theorem – Cauchy's integral formula Derivatives of analytical functions – Power series Taylor's theorem – Laurent's theorem Calculus of residues Evaluation of definite integrals of $\cos \Theta$ and $\sin \Theta$ Certain improper real integers.

UNIT III

Bessel function of first kind. Generating function Recurrence relations.

Jn (x) as solution of Bessel differential equation. Expansion of Jn (x) where n is half and odd integer Integral representation Laguerre's differential equation and Laguerre polynomials Generating function Rodrigue's formula Recurrence relations Orthogonal property of lauguerre polynomials Associated laugurre polynomials

UNIT IV

Fourier transform

Introduction-Fourier transform Properities of fourier transform Fourier transform of a derivative Fourier sine and cosine transform of derivatives. Laplace transform (LT) Properities of LT LT of derivative and integral of a function LT of periodic function Inverse of LT Properities of inverse LT Application of LT to electrical circuits

UNIT V

Numerical integration.

Introduction –numerical integration. Trapezoidal rule Simpson's rule Solution of ordinary differential equations of first order. Euler's method. Modified Euler's method Taylor series method. Runge kutta method Approximate solution of algebraic and transcendental equations Newton raphson method Method of iteration Monte-carlo technique Simpson's rule Solution of ordinary differential equations of first order.

Course	Calendar

Hour allotment	Class Schedule	
	Even Semester Begin on 2.12.2015	
1-L1	Matrices: Introduction – special types of matrices	
2-L2	Transpose – Conjugate – transposed conjugate	
3- L3	Symmetric and antisymmetric matrices	
4-L4	Hermitian and skew Hermitian matrices	
5-L5	Determinant – Adjoint	
6-L6	Orthogonal and unitary matrices	

7-L7	Orthogonal and unitary matrices	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Eigen values and eigen vectors of the matrix	
10- L9	Characteristic equation of a matrix – Cayley Hamilton theorem	
11-L10	Complex variables: Analytical functions – Cauchy Riemann Conditions	
12-L11	Line integrals – Cauchy's theorem – Cauchy's integral formula	
13-L12	Derivatives of analytical functions – Power series	
14-L13	Taylor's theorem – Laurent's theorem	
15-L14	Calculus of residues.	
16-L15	Evaluation of definite integrals of $\cos \Theta$ and $\sin \Theta$	
17- L16	Certain improper real integers.	
18- L17	Bessel function of first kind.	
19- L18	Generating function.	
20- L19	Recurrence relations.	
21- L20	Allotting portion for Internal Test-I	
	Internal Test I begins (25.01.2016)	
22- L21	Jn (x) as solution of Bessel differential equation.	
23- IT-1	Internal Test-I	
24- L22	Expansion of Jn (x) where n is half and odd integer.	
25- L23	Integral representation	
26- L24	_Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
27- L25	Laguerre's differential equation and Laguerre polynomials	
28- L26	Generating function	
29- L27	Rodrigue's formula	
30- P2	College level meeting/Cell function	
31-L28	Recurrence relations.	
32-L29	Orthogonal property of lauguerre polynomials.	
33-L30	Associated laugurre polynomials.	
34- L31	Introduction-Fourier transform.	
35-L32	Properities of fourier transfom.	
36- L33	Fourier transform of a derivative.	
37- L34	Fourier sine and cosine transform of derivatives.	
38-L35	Laplace transform (LT)	
39-L36	Properities of LT	
40- L37	LT of derivative and integral of a function	
41- L38 42-P3	LT of periodic function.	
42-P3 43- L39	Department Seminar Inverse of LT	
43- L39 44- L40		
44- L40 45- L41	Properities of inverse LT Application of LT to electrical circuits	
43- L41 46- L42	Introduction –numerical integration.	
40- L42 47- L43	Allotting portion for Internal Test-II	
+/-L+J	Internal Test II begins (22.02.2016)	
48- L44	Trapezoidal rule	
48- L44 49-IT-II	Internal Test-II	
49-11-11 50-L45	Simpson's rule	
51- L46	Test Paper distribution and result analysis	
J1- L40	1 col 1 april ulou ivuluu allu 1 coult allalysis	

	Entering Internal Test-II Marks into University portal	
52- L47	Solution of ordinary differential equations of first order.	
53- L48	Euler's method.	
54- L49	Modified Euler's method	
55- L50	Taylor series method.	
56- L51	Runge kutta method.	
57- L52	Approximate solution of algebraic and transcendental equations.	
58- L53	Newton raphson method.	
59-P4	College level meeting/ function	
60- L54	Method of iteration	
61- L55	Monte-carlo technique	
62- L56	Simpson's rule	
63- L57	Solution of ordinary differential equations of first order.	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins (28.03.2016)	
65- L59	Modified Euler's method	
66- L60	Runge kutta method.	
67-IT-III	Internal Test-III	
68- L61	Approximate solution of algebraic and transcendental equations	
69- L62	Monte-carlo technique	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
71-MT	Model Test (11.04.2016)	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 22.4.2016	

Learning Outcomes	COs of the course "Mathematical physics II"
CO1	Inter desting the set terms of matrices
CO1	Introduction about types of matrices.
CO2	Find the eigen value and eigen vectors of the matrix.
CO3	Derive the Cauchy's integral formula.
CO4	Derive the recurrence relations.
CO5	Study about the laplace transform.
CO6	Find roots of the equation using Newton raphson method.
CO7	Solve the differential equation using Euler's method.
CO8	Solve the numerical integration using sympson's rule.
CO9 Introduction of Monte-carlo method	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Electromagnetic theory	
Course Code	HPHM22	
Class	I year (2015-2016)	
Semester	Even	
Staff Name	Uma	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > To expose the students to the ideas of fundamental laws.
- > To identify formulate and solve fields and electromagnetic wave propagation.
- > To study the importance of the Boundary conditions.
- > To derive the Reflection and transmission of the Electromagnetic wave.
- > To calculate the electric and magnetic dipole radiation.
- > To acquire the knowledge of Electromagnetic wave propagation.

Syllabus

UNIT I

Coulomb's Law-Derivation Gauss law in differential and Integral form. Gauss law in differential and Integral form. Poisson's equation and Laplace's equation. Work done to move a point charge. Energy of a point charge and continuous charge distribution. Electric field in dielectric materials. Induced dipoles and polarizability. Connection between polarizability and susceptibility.

UNIT II

Lorentz force law. Biot-Savart law and ampere law - Magnetic vector potential- Expansion of vector potential - Effect of a magnetic field on atomic orbits- Bound current and its physical interpretations- Ampere's law in magnetic material- Dia , para , Ferro Magnetism. Magnetic susceptibility and permeability in linear and non linear media

UNIT III

Electrodynamics Electromagnetic induction- Faraday law- Maxwell's equation differential and integral form. Boundary conditions on field vectors D,E,B and H Scalar and vector potential. Gauge transformations. Lorentz and coulomb gauge. Pointing vector and pointing theorem. Maxwell's stress tensor. Conservation of momentum.

UNIT IV

The wave equation for A and B-Mono chromatic plane waves Reflection and transmission at normal Incidence Reflection and transmission at oblique Incidence. EM waves in conductor wave guide. The coaxial transmission line.

UNIT V

Retarded Potential. Lenard – wiechart potential. Electric dipole radiation. Magnetic dipole radiation. And derivation. Larmour formula definition. And derivation. Abraham Lorentz formula for the radiation reaction. Physical origin of radiation reaction

Hour	Class Schedule
allotment	
	Even Semester Begin on 2.12.2015
1-L1	Coulomb's Law-Derivation.
2-L2	Gauss law in differential and Integral form.
3- L3	Gauss law in differential and Integral form.
4-L4	Poisson's equation and Laplace's equation.
5-L5	Work done to move a point charge.
6-L6	Energy of a point charge and continuous charge distribution.
7-L7	Energy of a point charge and continuous charge distribution.
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Electric field in dielectric materials.
10- L9	Induced dipoles and polarizability.
11-L10	Connection between polarizability and susceptibility.
12-L11	Connection between polarizability and susceptibility.
13-L12	Lorentz force law.
14-L13	Biot-Savart law
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins (25.01.2016)
16-L15	Magnetic vector potential.
17-IT-1	Internal Test-I
18-L16	Effect of a magnetic field on atomic orbits.
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal

20-L18	Dia, para, Ferro Magnetism.
20 L10 21- L19	Magnetic susceptibility and permeability.
21 E17 22- P2	College level meeting/Cell function
23-L20	Maxwell's equation differential and integral form.
23-L20 24-L21	Maxwell's equation differential and integral form.
25-L22	Boundary conditions on field vectors
26-L23	D,E,B and H
20 L23	Scalar and vector potential.
28-L25	Gauge transformations.
29-L26	Lorentz and coulomb gauge.
30-L27	Pointing vector and pointing theorem.
31-L28	Maxwell's stress tensor.
32-L29	Conservation of momentum.
33-L30	Mono chromatic plane waves
34- P3	Department Seminar
35-L31	Reflection and transmission at normal Incidence.
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins (22.02.2016)
37- L33	Reflection and transmission at oblique Incidence.
38- IT-II	Internal Test-II
39-L34	EM waves in conductor wave guide.
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	The coaxial transmission line.
42- L37	Retarded Potential.
43- L38	Lenard – wiechart potential.
44- P4	College level meeting/ function
45-L39	Electric dipole radiation.
46-L40	Magnetic dipole radiation.
47-L41	And derivation.
48-L42	Larmour formula definition.
49-L43	And derivation.
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins (28.03.2016)
51 L45	Abraham Lorentz formula for the radiation reaction.
52- L46	Physical origin of radiation reaction.
53-IT-III	Internal Test-III
54-L47	
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
56- MT	Model Test (11.04.2016)
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
CO T 50	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 22.4.2016

Learning Outcomes	COs of the course " Electromagnetic theory"
CO1	Explain the fundamental laws governing electromagnetic fields.
CO2	Determine the electromagnetic force exerted on charged particles,
	current elements, working priniciple of various electric and EMT
	conversion devices are based on this force.
CO3	Design maxwell's equation and Boundary condition.
CO4	Deduce the Reflection and Transmission wave equation
CO5	Derive the Pointing Theorem.
CO6	Design Larmour formula.
CO7	Reduce the gauge transformation .
CO8	Calculate magnetic vector potential
CO9	To derive the basic laws.

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Material science	
Course Code	HPHE41	
Class	II year (2015-2016)	
Semester	Even	
Staff Name	J Ruby Jemima	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To introduce the crystalline ,material.
- > To explain X-ray diffraction .
- > To derive London equation
- > To describe BCS theory
- ➢ To explain hall effect
- > To introduce optical and nano material.

Syllabus

MATERIAL SCIENCE

UNIT I

Crystalline Materials :

Introduction-Crystal symmetry-simple crystal structures-Polymorphism and Allotropy-Crystal direction-crystal imperfections-Structure determination by X ray diffraction-Bragg's law production of X ray - determination of lattice parameters(Bragg's X - ray spectrometer method) - The Laue method - The powder method - The rotating crystal method.

UNIT II

Conducting Materials:

Introduction – The classical free electron theory – Wiedemann – Franz law – The quantum free electron theory – Fermi distribution function – density of energy stateselectrons in a periodic potential – conductors – high resistivity materials- superconductivity – General features – Effects of magnetic field – The Meissner effect – Thermal properties – London equation – penetration depth – BCS theory – Josephson effect.

UNIT III

Semiconducting Materials:

Introduction – Elemental intrinsic semiconductors - Carrier concentration in intrinsic semiconductor- Eletrical conductivity – Extrinsic semiconductor- carrier concentration in N-type and P-type semiconductors – Variation of carrier concentration with temperature. Direct and indirect band gap semiconductors- semiconductor – Hall effect – applications.

UNIT IV

Dielectric materials:

Fundamental definitions – Measurement of relative dielectric constant – Various polarization process – electronic polarization – Ionic polarization – orientational polarization – space charge polarization – frequency effect on polarization – Dielectric loss- Internal field – Lorentz method – Clausius Mossoti relation – dielectric break down – required qualities of good insulating materials- classification – applications.

UNIT V

Optical and Nano materials:

Luminescence – photoluminescence – cathode –luminescence – electro luminescence – injection luminescence – PN Junction theory –PN junction as a light sources – Light emitting diode – LED materials – construction – Liquid crystal display – characteristics – action –photo detectors – photo detective material – Nano phase materials – synthesis variation of physical properties with geometry.

Hour allotment	Class Schedule
	Even Semester Begin on 2.12.2015
1-L1	Crystalline Materials : Introduction
2-L2	Crystal symmetry
3- L3	simple crystal structures
4-L4	Polymorphism and Allotropy
5-L5	Crystal direction ,crystal imperfections
6-L6	Structure determination by X ray diffraction
7-L7	Bragg's law production of X ray - determination of lattice parameters(Bragg's X – ray spectrometer method)
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	The Laue method – The powder method
10- L9	The rotating crystal method
11-L10	Conducting Materials: Introduction – The classical free electron theory
12-L11	Wiedemann – Franz law
13-L12	The quantum free electron theory
14-L13	Fermi distribution function
15-L14	density of energy states- electrons in a periodic potential
16-L15	conductors – high resistivity materials
17- L16	superconductivity – General features
18- L17	Effects of magnetic field – The Meissner effect
19- L18	Thermal properties – London equation – penetration depth
20- L19	Thermal properties – London equation – penetration depth
21- L20	Allotting portion for Internal Test-I
22 1 21	Internal Test I begins (25.01.2016)
22- L21 23- IT-1	BCS theory Internal Test-I
23-11-1 24- L22	Josephson effect.
24- L22	Josephson enect.
25- L23	Semiconducting Materials: Introduction – Elemental intrinsic semiconductors
26- L24	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
27- L25	Carrier concentration in intrinsic semiconductor
28- L26	Eletrical conductivity – Extrinsic semiconductor
29- L27	carrier concentration in N-type and P-type semiconductors
30- P2	College level meeting/Cell function
31-L28	Variation of carrier concentration with temperature.
32-L29	Direct and indirect band gap semiconductors- semiconductor
33-L30	Hall effect
34- L31	Applications
35-L32	Dielectric materials: Fundamental definitions
36-L33	Measurement of relative dielectric constant – Various polarization process
37- L34 38-L35	electronic polarization – Ionic polarization
38-L35 39- L36	orientational polarization – space charge polarization frequency effect on polarization
39- L36 40- L37	Dielectric loss
40- L3/	

41- L38	Internal field
42-P3	Department Seminar
43- L39	Lorentz method
44- L40	Clausius Mossoti relation
45- L41	dielectric break down
46- L42	required qualities of good insulating materials
47- L43	Allotting portion for Internal Test-II
	Internal Test II begins (22.02.2016)
48- L44	Classification
49-IT-II	Internal Test-II
50-L45	Optical and Nano materials
51- L46	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
52- L47	Luminescence – photoluminescence
53- L48	cathode –luminescence – electro luminescence
54- L49	injection luminescence – PN Junction theory
55- L50	junction as a light sources – Light emitting diode
56- L51	LED materials – construction – Liquid crystal display
57- L52	Liquid crystal display
58- L53	characteristics – action
59-P4	College level meeting/ function
60- L54	photo detectors
61- L55	photo detective material
62- L56	Nano phase materials
63- L57	Nano phase materials
64- L58	Allotting portion for Internal Test-III
	Internal Test III begins (28.03.2016)
65- L59	PN Junction theory
66- L60	electro luminescence
67-IT-III	Internal Test-III
68- L61	Optical and Nano materials
69- L62	synthesis variation of physical properties with geometry
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
71-MT	Model Test (11.04.2016)
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 22.4.2016

Learning Outcomes	COs of the course "Material science"
C01	Define crystal symmetry
CO2	Explain X-RAY DIFFRACTION
CO3	Explain BCS theory
CO4	Deduce hall effect.
CO5	Theory about PN junction
CO6	Explain Lorentz method
CO7	Application of hall effect
CO8	Application of nano material
CO9	Application of optical material.

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Quantum Mechanics II	
Course Code	HPHM41	
Class	II year (2015-2016)	
Semester	Even	
Staff Name	E.Christy Jerin	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➢ To introduce Pertubation theory
- \succ To derive the dirac equation
- > To explain orbital angular momentum
- > To explain transition probablity

Quantum Mechanics II

UNIT I

Orbital angular momentum Eigen pairs of L2 and Lz Properties of components of L and L 2 Matrix representation of L2 , Lz and L \pm spin state of an electron spin orbit coupling Addition of angular momenta

UNIT II

Time Independent Perturbation Theory: Introduction- Theory for non-degenerate case Application to non-degenerate levels Theory for degenerate levels First order Stark effect in Hydrogen atom

UNIT III

Time Dependent Perturbation Theory: Introduction Transition probability constant perturbation Harmonic perturbation adiabatic perturbation sudden approximation Semi classical theory of radiation calculation of Einstein coefficients

UNIT IV

Classical scattering cross section Centre of mass and laboratory co-ordinate systems Scattering amplitude Green's function approach Born approximation Partial wave analysis Scattering form a square well system

UNIT V

Klein – Gordon equation Dirac equation for a free particle Spin of a Dirac particle Particle in a potential Relativistic particle in a box Relativistic hydrogen atom Electron in a field

Hour	Class Schedule	
allotment		
	Even Semester Begin on 2.12.2015	
1-L1	Orbital angular momentum	
2-L2	Eigen pairs of L2 and Lz	
3- L3	Properties of components of L and L 2	
4-L4	Matrix representation of L2 , Lz and L \pm	
5-L5	spin state of an electron	
6-L6	spin orbit coupling	
7-L7	Addition of angular momenta	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Time Independent Perturbation Theory: Introduction- Theory for non-degenerate case	
10- L9	Application to non-degenerate levels	
11-L10	Theory for degenerate levels	
12-L11	First order Stark effect in Hydrogen atom	
13-L12	Time Dependent Perturbation Theory: Introduction	
14-L13	Transition probability	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins (25.01.2016)	
16-L15	constant perturbation	
17-IT-1	Internal Test-I	
18-L16	Harmonic perturbation	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	adiabatic perturbation	
21- L19	sudden approximation	
22- P2	College level meeting/Cell function	
23-L20	Semi classical theory of radiation	
24-L21	calculation of Einstein coefficients	
25-L22	Classical scattering cross section	
26-L23	Centre of mass and laboratory co-ordinate systems	
27-L24	Scattering amplitude	
28-L25	Green's function approach	
29-L26	Born approximation	
30-L27	Partial wave analysis	
31-L28	Scattering form a square well system	
32-L29	Scattering form a square well system	

33-L30	Klein – Gordon equation	
34- P3	Department Seminar	
35-L31	Klein – Gordon equation	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (22.02.2016)	
37- L33	Dirac equation for a free particle	
38- IT-II	Internal Test-II	
39-L34	Dirac equation for a free particle	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Spin of a Dirac particle	
42- L37	Spin of a Dirac particle	
43- L38	Particle in a potential	
44- P4	College level meeting/ function	
45-L39	Relativistic particle in a box	
46-L40	Relativistic hydrogen atom	
47-L41	Relativistic hydrogen atom	
48-L42	Electron in a field	
49-L43	Electron in a field	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (28.03.2016)	
51 L45	Electron in a field	
52- L46	Electron in a field	
53-IT-III	Internal Test-III	
54-L47		
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (11.04.2016)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 22.4.2016	

Learning Outcomes	COs of the course "Quantum Mechanics II"	
CO1	Properties of components of L and L 2	
CO2	Matrix representation of L2 , Lz and L \pm	
CO3	Time Independent Perturbation Theory: Introduction- Theory for non-	
	degenerate case	
CO4	Application to non-degenerate levels	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,	
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.	
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.	
# Extension activity	: Motivate student to take classes for school students.	

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics		
Course Name	Molecular spectroscopy		
Course Code	HPHM42		
Class	II year (2015-2016)		
Semester	Even		
Staff Name	E.Christy Jerin		
Credits	5		
L. Hours /P. Hours	5 / WK		
Total 75 Hrs/Sem			
Internal Test-3 Hrs			
Model Test-3 Hrs			
Dept. Meetings-2 Hrs			
College Meetings-2 Hrs			
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)			

Course Objectives

- > To develop the knowledge of molecular spectroscopy. .
- \succ To classify the molecules .
- > To discuss the isotope effect in rotational spectra.
- > To calculate the vibrational energy of the diatomic molecule.
- > To derive the Bloch equation.
- > To study about fortrait parabola.

Syllabus

UNIT I

Microwave spectroscopy

Classification of molecules- Rotational spectra of rigid diatomic molecule - Isotopic effect in rotational spectra –Intensity of rotational lines –Non rigid rotator Linear polyatomic molecule Symmetric molecules Asymmetric molecules. Microwave spectrometer-Information derived from rotational spectra.

UNIT II

Infrared spectroscopy

Vibrational energy of a diatomic molecule-Selection rules- Vibrating diatomic molecule -Diatomic vibrating rotator - Assymetry of vibration -Vibration band- Rotational vibrational spectra of polyatomic- molecule Linear molecules -Symmetric top molecules -Information derived from vibrational spectra

UNIT III

RAMAN SPECTROSCOPY

Theory of raman scattering- Classical theory- Quantum theory- Rotational raman spectra- Linear molecules Symmetric top molecules- Vibrational raman spectra- Raman spectrometer- Hyper raman effect- Classical treatment of hyper raman effect-Stimulated raman effect- Inverse raman scattering- CARS-PARS -Multi photon process

UNIT IV

ELECTRONIC SPECTROSCOPY

Vibrational coarse structure - Vibrational analysis of band system -Deslandres table Progression and sequences- Franck Condon principle -Rotational fine structure of electronic vibrational spectra -The fortrat parabola -Dissociation -PreDissociation- Photoelectron spectroscopy- Principle- instrumentation

UNIT V

NMR,ESR AND NQR

NMR NMR-Magnetic properities of nuclei- resonance conditions – relaxation process - Bloch equations- Chemical shift -- NMR instrumentations, ESR- Principle - ESR spectrometer-Hyperfine structure- ESR spectrum of hydrogen atom-ESR spectra of free radicals in solution .NQR -The Quadrapole nucleus- principle- Transistions for axially symmetric systems -transitions for non axially symmetric systems- NQR instrumentations.

Hour	Class Schedule	
allotment		
	Even Semester Begin on 2.12.2015	
1-L1	Classification of molecules.	
2-L2	Rotational spectra of rigid diatomic molecule.	
3- L3	Isotopic effect in rotational spectra.	
4-L4	Linear polyatomic molecule.	
5-L5	Symmetric molecules.	

6-L6	Asymmetric molecules.	
7-L7	Microwave spectrometer.	
8- P1	Where we are and the spectrometer. Welcoming of First year and Inauguration of Physics Association	
9- L8	Information derived from rotational spectra.	
10- L9	Vibrational energy of a diatomic molecule.	
10-L) 11-L10	Selection rules.	
11-L10 12-L11	Vibrating diatomic molecule.	
12-L11 13-L12	Diatomic vibrating rotator.	
13-L12 14-L13	Assymetry of vibration ,Vibration band.	
14-L13 15-L14	Rotational vibratioal spectra of poyatomic molecule.	
16-L15	Linear molecules.	
17-L16	Symmetric top molecules	
17- L10 18- L17	Information derived from vibrational spectra.	
10- L17 19- L18	Theory of raman scattering.	
20- L19	Classical theory.	
20- L17 21- L20	- Allotting portion for Internal Test-I	
21- L20	Internal Test I begins (25.01.2016)	
22- L21	Quantum theory.	
22 L21 23- IT-1	Internal Test-I	
23 II I 24- L22	Rotational raman spectra.	
25-L23	Linear molecules.	
26- L24	- Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
27- L25	Symmetric top molecules.	
28- L26	Vibrational raman spectra.	
29- L27	Raman spectrometer.	
30- P2	College level meeting/Cell function	
31-L28	Hyper raman effect.	
32-L29	Classical treatment of hyper raman effect.	
33-L30	Stimulated raman effect.	
34- L31	Inverse raman scattering.	
35- L32	CARS,PARS	
36- L33	Multi photon process.	
37- L34	Vibrational ocarse structure.	
38-L35	Vibrational analysis of band system.	
39- L36	Deslandres table.	
40- L37	Progression and sequences.	
41- L38	Franck Condon principle.	
42-P3	Department Seminar	
43- L39	Rotational fine structure of electronic vibrational spectra.	
44- L40	The fortrat parabola.	
45- L41	Dissociation	
46- L42	Predissociation.	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins (22.02.2016)	
48- L44	Photoelectron spectroscopy.	
49-IT-II	Internal Test-II	
50-L45	Principle- instrumentation.	

51- L46	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	NMR-Magnetic properities of nuclei.	
53- L48	Bloch equations.	
54- L49	Chemical shift	
55- L50	ESR	
56- L51	Principle of ESR spectrometer.	
57- L52	ESR spectrum of hydrogen atom.	
58- L53	Resonance conditions.	
59-P4	College level meeting/ function	
60- L54	NQR-The Quadrapole nucleus.	
61- L55	Transistions for axially symmetric systems.	
62- L56	NQR instrumentations.	
63- L57	Relaxation process.	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins (28.03.2016)	
65- L59	ESR spectra of free radicals in solution.	
66- L60	NQR Instrmentations.	
67-IT-III	Internal Test-III	
68- L61	NMR Instrumentations.	
69- L62	Chemical shift	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
71-MT	Model Test (11.04.2016)	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 22.4.2016	

Learning Outcomes	COs of the course "Molecular spectroscopy"
CO1	Study about the different type of molecule.
CO2	Discuss the isotope effect
CO3	Derive the raman effect on linear, symmetriv top molecule.
CO4	Explain franck- condon principle.
CO5	Derive resonance condition.
CO6	Explain chemical shift.
CO7	Explain the principle of ESR
CO8	Explain the principle of NQR
CO9	Derive Bloch equation.

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2015-2016)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Nuclear and Particle Physics	
Course Code	HPHM43	
Class	II year (2015-2016)	
Semester	Even	
Staff Name	C.Stella Rani	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➤ .To understand about the nuclear forces in the deutron
- \succ To study the nuclear decays
- > To understand the nuclear models
- ➤ To learn about the nuclear reactions

Nuclear and Particle Physics

Preamble:

This course imparts knowledge about the elementary particles, nuclear structure, nuclear reactions with the help of various nuclear models.

UnitI

Nuclear Forces

Ground and excited states of deuteron – magnetic dipole and electric quadrupole moments of deuteron – n-p scattering at low energies – shape independent effective range theory of np scattering – pp scattering at low energies – exchange forces –meson theory of nuclear force.

Unit II

NuclearDecays

Gamow's theory of alpha decay – lineand Continuous spectrum of β decay-Fermi theory of beta decay – Fermi and Gamow-Teller selection rules – parity violation – Gamma decay – multipole transitions in nuclei – selection rules – internal conversion – nuclear isomerism.

Unit III

Nuclear Model

Liquid drop model – Weizsackers mass formula – nuclear stability – Bohr Wheeler theory of nuclear fission -magic numbers -evidence for magic numbers – shell model – spin orbit coupling – angular momenta and parities of nuclear ground states – magnetic moments - Schmidt line – collective model.

Unit IV

Nuclear Reactions

Types of nuclear reactions – Q-equation – solution of the equation – compound nuclear theory – reciprocity theorem – nuclear cross section – resonance scattering– Breit –Wigner dispersion formula – nuclear chain reaction – four factor formula.

Unit V

Elementary Particles

Classification of elementary particles- fundamental interactions conservations laws – CPT theorem - SU(3) multiplet – meson octet – baryon octet and baryon decouplet – Gellmann-Okubo mass formula - Quark theory.

Books For Study:

- 3. Nuclear Physics, D. C. Tayal, Himalaya Publications
- 4. . 2. Elements of Nuclear Physics, M. C. Pandia and R. P. S. YadavKedarnath.

Books For Reference:

- 1. Concepts of Nuclear Physics, Bernard L Cohen, Tata McGraw-Hill
- 2. Nuclear Physics an Introduction, S. B. Patel, Wiley Eastern Ltd.
- 3. Nuclear Physics, R. R. Roy and B. P. Nigam, New Age International Ltd.

Hour allotment	Class Schedule	
	Even Semester Begin on 02.12.2015	
1-L1	Ground and excited states of deuteron	
2-L2	magnetic dipole and electric quadrupole moments of deuteron	
3- L3	n-p scattering at low energies	
4-L4	shape independent effective range theory of np scattering	
5-L5	pp scattering at low energies	
6-L6	exchange forces	
7-L7	meson theory of nuclear force.	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Gamow'stheory of alpha decay	
10- L9	lineand Continuous spectrum of β decay	
11-L10	Fermi theory of beta decay	
12-L11	Fermi and Gamow-Teller selection rules	
13-L12	parity violation	
14-L13	Gamma decay	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins (25.01.2016)	
16-L15	multipole transitions in nuclei	
17-IT-1	Internal Test-I	
18-L16	selection rules	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	internal conversion	
21- L19	nuclear isomerism.	
22- P2	College level meeting/Cell function	
23-L20	Liquid drop model	
24-L21	Weizsackers mass formula	
25-L22	nuclear stability	
26-L23	Bohr Wheeler theory of nuclear fission	
27-L24	magic numbers	
28-L25	evidence for magic numbers	
29-L26	shell model	
30-L27	spin orbit coupling	
31-L28	angular momenta and parities of nuclear ground states	
32-L29	magnetic moments	
33-L30	Schmidt line	
34- P3	Department Seminar	
35-L31	collective model.	
36-L32	Allotting portion for Internal Test-II	

	Internal Test II begins (22.02.2016)	
37- L33	Types of nuclear reactions	
38- IT-II	Internal Test-II	
39-L34	Q-equation	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	solution of the equation	
42- L37	compound nuclear theory	
43- L38	reciprocity theorem, nuclear cross section resonance scatteringBreit	
44- P4	College level meeting/ function	
45-L39	Wigner dispersion formula nuclear chain reaction, four factor formula.	
46-L40	Classification of elementary particles	
47-L41	fundamental interactions conservations laws	
48-L42	CPT theorem, SU(3) multiplet	
49-L43	meson octet – baryon octet and baryon decouplet	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (28.03.2016)	
51 L45	Gellmann-Okubo mass formula, Quark theory.	
52- L46		
53-IT-III	Internal Test-III	
54-L47		
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (11.04.2016)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 22.04.2016	

Learning Outcomes	COs of the course "Nuclear and Particle Physics"
CO1	Fermi theory of Beta decay
CO2	Solution of the equation
CO3	Magnetic dipole and electric quadrupole moments of deuteron
CO4	Fermi and gamow teller selection rules
CO5	Gamma decay
CO6	Multipole transistions in nuclei
CO7	Compound nuclear theory
CO8	Baryon octet and baryon decouplet
CO9	Gellmann – Okubo mass formula

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	RENEWABLE ENERGY SOURCES	
Course Code	KPHE11	
Class	I year (2016-2017)	
Semester	Odd	
Staff Name	G.GOMATHI SANKARI	
Credits	6	
L. Hours /P. Hours	6 / WK	
Total 90 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 80 Hrs (5 units; 5×16=80; 16Hrs /unit)		

Course Objectives

- > Understand the various forms of conventional energy resources.
- > Learn the present energy scenario and the need for energy conservation
- > Explain the concept of various forms of renewable energy
- Outline division aspects and utilization of renewable energy sources for both domestics and industrial application
- > Analyse the environmental aspects of renewable energy

RENEWABLE ENERGY SOURCES

Unit I:

Introduction : Primary and secondary energy – commercial nd non-commercial energy – renewable and non-renewable energy sources and their importance- world energy use- reserves of energy resources-energy cycle of earth- Indian energy scenario-Long term energy scenario for India-environmental aspects of utilization

Unit II:

Solar Energy: Introduction- extraterrestrial solar radiation-radiation at ground levelcollectors-solar cells- application of solar energy-Biomass energy-introduction-biomass conversion-biogas production-pyrolysis and gasification-direct combustion-applications

Unit III:

Wind energy: Introduction-basic theory-types of turbines-applications. Geothermal energy: Introduction-geothermal resources types-resource base-application for heating and electrically generation. Tidal energy: Introduction-origin of tides-power generation scheme. Wave energy: Introduction-basic theory-wave power devices.

Unit IV:

Other Renewable Energy Sources: Introduction-open and closed OTEC cyclesbiophotolysis-ocean currents-Hydropower-introduction-basic concept-site selection-types of turbine-small scale hydropower-Magnetohydrodynamics(MHD),Theroelectric and thermionic energy resources- basic principles-power generation-Nuclear energy-basic principle-power generation

Unit V:

Chemical Energy Sources: Introduction-Fuel cells-design and principle-classificationtypes-advantages and disadvantages-applications-Batteries-Introduction-theory-different types of batteries arrangements-classification of batteries-advantages of batteries for bulk storage-Hydrogen energy-production-electrolysis-thermochemical methods- solar energy methodhydrogen storage.

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.06.2016
1-L1	Introduction : Primary and secondary energy
2-L2	commercial nd non-commercial energy
3- L3	renewable importance
4-L4	non-renewable energy sources
5-L5	world energy use
6-L6	reserves of energy resources
7-L7	energy cycle of earth
8-L8	Indian energy scenario
9-L9	Long term energy scenario for India
10-P1	Welcoming of First year and Inauguration of PhysicsAssociation

anvinonmentel concete of utilization	
environmental aspects of utilization	
Solar Energy: Introduction. extraterrestrial solar radiation	
radiation at ground level- collectors-solar cells	
application of solar energy	
Biomass energy	
introduction-biomass conversion	
biogas production	
pyrolysis and gasification	
direct combustion-applications	
Wind energy	
Allotting portion for Internal Test-I	
Internal Test I begins (25.07.2016)	
Introduction-basic theory	
types of turbines	
Internal Test-I	
applications	
Geothermal energy: Introduction-geothermal resources	
types-resource	
Test Paper distribution and result analysis	
Entering Internal Test-I Marks into University portal	
base-application for heating and electrically generation	
Tidal energy	
Introduction-origin of tides	
college level meeting/Cell function	
power generation scheme	
Wave energy	
Introduction-basic theory-wave power devices	
Other Renewable Energy Sources	
Introduction-open and closed OTEC cycles	
biophotolysis	
ocean currents-	
Hydropower-introduction	
-basic concept-site selection	
types of turbine	
small scale hydropower	
Magnetohydrodynamics(MHD)	
Theroelectric and thermionic energy resources	
basic principles-power generation	
Nuclear energy	
basic principle-power generation	
Department Seminar	
Chemical Energy Sources:	
Introduction-Fuel cells	
design and principle	
design and principle	

56-L52	Allotting portion for Internal Test-II	
	Internal Test II begins (22.08.2016)	
57-L53	advantages and disadvantages	
58-L54	applications	
59-IT-II	Internal Test-II	
60- L55	Batteries-Introduction	
61- L56	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
62- L57	theory-different types of batteries arrangements-	
63- L58	classification of batteries	
64- L59	advantages of batteries for bulk storage	
65- L60	Hydrogen energy	
66- L61	production-electrolysis-	
67- L62	thermochemical methods	
68- L63	solar energy method	
69- L64	hydrogen storage.	
70- L65	Revision for reserves of energy resources	
71- L66	commercial nd non-commercial energy	
72- L67	application of solar energy	
73- L68	pyrolysis and gasification	
74-P4	College level meeting/ function	
75- L69	types of turbine	
76- L70	Magnetohydrodynamics(MHD)	
77- L71	Nuclear energy	
78- L72	Chemical Energy Sources:	
79- L73	Allotting portion for Internal Test-III	
	Internal Test III begins (03.10.2016)	
80- L74	classification of batteries	
81- L75	production-electrolysis-	
82-IT-III	Internal Test-III	
83- L76	thermochemical methods	
84- L77	Test Paper distribution and result analysis	
85- L78	small scale hydropower	
	Entering Internal Test-III Marks into University portal Model Test begins (17.10.2016)	
86- L79	Model Test	
87-MT	Model Test	
88-MT	Model Test	
89-MT	Model test paper distribution and previous year university question paper	
	discussion	
90-L-80	Feedback of the Course, analysis and report preparation	
	Last Working day on 30.10.2016	

Learning Outcomes	COs of the course "Renewable Energy Sources"	
CO1	Describe the environmental aspects of non-conventional energy resources. In Comparison with various conventional energy systems,	
	their prospects and limitations	
CO2		
	developments	
CO3		
	energy production with respect to applications like - heating, cooling,	
004	desalination, power generation, drying, cooking etc.	
CO4	Appreciate the need of Wind Energy and the various components used in energy generation and know the classifications	
CO5		
	classification, types of biogas Plants- applications	
CO6 Compare Solar, Wind and bio energy systems, their prosp		
Advantages and limitations		
CO7		
	geothermal principles and applications.	
CO8	Understand the various forms of conventional energy resources	
CO9	Analyse the environmental aspects of renewable energy	
Experimental		
Learning		
Learning		
	EL1 Describe sources and uses of energy	
EL2		
EL3		
EL4	Understand and explain general ways to save energy at a personal, community	
	and global level.	
Integrated Activity		
IAI	Understand and explain, in general terms, how passive solar heating,	
	hydropower and wind power work	
IA2	Understand the benefits and disadvantages to using renewable resources	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Classical Mechanics and relativity	
Course Code	KPHM11	
Class	I year (2016-2017)	
Semester	Odd	
Staff Name	J Ruby Jemima	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs / Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- \blacktriangleright To study the mechanics of the particle. .
- ➢ To derive the Lagrange's equation.
- > To generalise the advantages of Variational principle formulation.
- > To derive the Virial theorem.
- > To study about the Euler's angle.
- > To expose the special theory of relativity.

Classical Mechanics and relativity

UNIT I

FUNDAMENTAL PRINCIPLE and LAGRANGIAN FORMULATION: Mechanics of the particle and a System of the Particles -Constraints. D'Alembert's principle. Lagrange's equation. Velocity dependence force Dissipation functions Application of Lagrange's formulation. Hamilton's principle Lagrange's equation from Hamilton's principle Advantages of Variational principle formulation

Unit II

Reduction of two body problems into one body and equivalent dimensional problems. Equation of motion of first integral Virial theorem Bertrand's theorem Kepler's problem Scattering in a central force field. Transformation of scattering problems to laboratory coordinates

UNIT III

Rigid body motion Independent coordinates of a rigid body. Matrix transformation Euler's angle Coriolis force Angular momentum and kinetic energy Principle of least action Hamilton's equation from Variational principle. Small oscillations Normal coordinates Linear tri atomic molecule Forced vibrations

UNIT IV

Hamilton,s formulationCanonical transformation Generating function. Poisson's brakets. Poisson braket formula tion for equations of motion. Hamilton's Jacobi theory. Harmonic oscillator Problems. Hamilton's characteristic function. Seperation of variables Action angle variables.

UNIT V

Mechanics of small oscillations: The special theory of relativity. Lorentz transformation. Four dimensional formulation. Relativistic elastic scattering. The Lagrangian and Hamiltonian of a relativistic particle.

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 16.06.2016	
1-L1	Mechanics of the particle.	
2-L2	System of the Particles ,Constraints.	
3- L3	D'Alembert's principle.	
4-L4	Lagrange's equation.	
5-L5	Velocity dependence force	
6-L6	Dissipation functions.	
7-L7	Application of Lagrange's formulation.	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Hamilton's principle.	
10- L9	Lagrange's equation from Hamilton's principle.	
11-L10	Advantages of Variational principle formulation.	
12-L11	Reduction of two body problems into one body and equivalent dimensional	
	problems.	
13-L12	Equation of motion of first integral.	
14-L13	Virial theorem.	
15-L14	Bertrand's theorem.	
16-L15	Kepler's problem.	
17- L16	Scattering in a central force field.	
18- L17	Transformation of scattering problems to laboratory coordinates.	
19- L18	Transformation of scattering problems to laboratory coordinates	
20- L19	Kepler's problem.	
21- L20	Allotting portion for Internal Test-I	
	Internal Test I begins (25.07.2016)	
22- L21	Rigid body motion.	

23- IT-1	Internal Test-I	
24- L22	Independent coordinates of a rigid body.	
25- L23	Matrix transformation	
26- L24	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
27- L25	Matrix transformation.	
28- L26	Euler's angle	
29- L27	Euler's angle	
30- P2	College level meeting/Cell function	
31-L28	Coriolis force	
32-L29	Coriolis force	
33-L30	Angular momentum and kinetic energy	
34- L31	Angular momentum and kinetic energy.	
35- L32	Principle of least action	
36- L33	Hamilton's equation from Variational principle.	
37- L34	Small oscillations.	
38-L35	Normal coordinates	
39- L36	Linear tri atomic molecule	
40- L37	Forced vibrations.	
41-L38	Canonical transformation	
42-P3	Department Seminar	
43- L39	Generating function.	
44- L40	Poisson's brakets.	
45- L41	Poisson braket formulation for equations of motion.	
46- L42	Hamilton's Jacobi theory.	
47- L43	Allotting portion for Internal Test-II	
48- L44	Internal Test II begins 922.08.2016)Harmonic oscillator Problems.	
48- L44 49-IT-II	Internal Test-II	
49-11-11 50-L45	Hamilton's characteristic function.	
51-L46	Test Paper distribution and result analysis	
51 LH0	Entering Internal Test-II Marks into University portal	
52- L47	Seperation of variables.	
53- L48	Action angle variables.	
54- L49	The special theory of relativity.	
55- L50	The special theory of relativity.	
56- L51	Lorentz transformation.	
57- L52	Lorentz transformation.	
58- L53	Four dimensional formulation.	
59-P4	College level meeting/ function	
60- L54	Relativistic elastic scattering.	
61- L55	Relativistic elastic scattering	
62- L56	The Lagrangian and Hamiltonian of a relativistic particle	
63- L57	The Lagrangian and Hamiltonian of a relativistic particle	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins (03.10.2016)	
65- L59	Covariant formulation	
66- L60	Covariant formulation	

67-IT-III	Internal Test-III
68- L61	Action angle variables
69- L62	Seperation of variables
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
71-MT	Model Test (17.10.2016)
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 30.10.2016

Learning Outcomes	COs of the course "Classical Mechanics and relativity"
C01	Explain the D'Alembert's principle.
CO2	Determine the scattering in a central force field.
CO3	Deduce Euler's equation.
CO4	Generalise the canonical transformation.
CO5	Determine the action angle variables.
CO6	Derive Euler angle.
CO7	Describe abut small oscillations.
CO8	Derive poisson bracket.
CO9	Describe Hamilton's Jacobi theory.

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Mathematical physics I	
Course Code	KPHM12	
Class	I year (2016-2017)	
Semester	Odd	
Staff Name	E.Christy Jerin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To acquire the knowledge about the vector analysis.
- > To identify the eigen value /eigen vector of the matrix. .
- > To study the differentiation and integration of matrices.
- \succ To derive the polynomials.
- > To calculate the laplace integral transform.
- > To explain the convolution theorm.
- > To calculate the Fourier integral transform.

Syllabus

UNIT I

Gauss divergence theorem. Deduction from Gauss divergence theorem. Green's theorem in a plane. Classification of vector fields

UNIT II

Eigen values, Eigen vectors . Charecteristic equation of matrix. Cayley Hamilton theorem. Some Important theorems of eigen value and eigen vectors Diagonalisation of matrices Differentiation and integration of matrices. Power of matrices. Exponential of a matrix Matrices in physics

UNIT III

Bessel differential equation Bessel 's function of I kind Generating function Recurrence relations Laguarre's differential equation. Laguerie polynomial. Generating function Recurrence relations

UNIT IV

Introduction Fourier's transform(FT) Properities of FT-FT of a derivative Fourier sin and cosine transforms of derivatives FT of function of function of two or three variables Finite FT Simple applications of FT

UNIT V

Laplace Transform(LT) Properties of LT LT of derivation of a function L T of periodic functions Properties of inverse LT LT of derivation of a function L T of periodic functions Properties of inverse LT Convolution theorem Evaluation of inverse LT by convolution theorem Application of LT

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 16.06.2016	
1-L1	Gauss divergence theorem.	
2-L2	Deduction from Gauss divergence theorem.	
3- L3	Green's theorem.	
4-L4	Green's theorem in a plane.	
5-L5	Classification of vector fields	
6-L6	Eigen values, Eigen vectors.	
7-L7	Charecteristic equation of matrix.	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Cayley Hamilton theorem.	
10- L9	Some Important theorems of eigen value and eigen vectors	
11-L10	Some important theorems of eigen value and eigen vectors.	
	Diagonalisation of matrices	
13-L12	Differentiation and integration of matrices.	
14-L13	Power of matrices.	
15-L14	Exponential of a matrix	
16-L15	Matrices in physics	
17- L16	Bessel differential equation	
18- L17	Bessel 's function of I kind	
19- L18	Generating function	
20- L19	Recurrence relations	
21- L20	Allotting portion for Internal Test-I	
	Internal Test I begins (25.07.2016)	
22- L21	Recurrence Relations.	
23- IT-1	Internal Test-I	
24- L22	Laguarre's differential equation.	

25- L23		
26- L24	Test Paper distribution and result analysis	
_	Entering Internal Test-I Marks into University portal	
27- L25	Laguerie polynomial.	
28- L26	Generating function	
29- L27	Recurrence relations	
30- P2	College level meeting/Cell function	
31-L28	Recurrence relations	
32-L29	Recurrence relations.	
33-L30	Introduction	
34- L31	Fourier's transform(FT)	
35- L32	Properities of FT-FT of a derivative	
36- L33	Fourier sin and cosine transforms of derivatives	
37- L34	FT of function of function of two or three variables	
38-L35	Finite FT	
39- L36	Simple applications of FT	
40- L37	Laplace Transform(LT)	
41- L38	Properties of LT	
42-P3	Department Seminar	
43- L39	LT of derivation of a function	
44- L40	L T of periodic functions	
45- L41	Properties of inverse LT	
46- L42	Convolution theorem	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins (22.08.2016)	
48- L44	Evaluation of inverse LT by convolution theorem	
49-IT-II	Internal Test-II	
50-L45	Application of Lt	
51- L46	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	Laplace Transform(LT)	
53- L48	Properties of LT	
54- L49	LT of a function of a function	
55- L50	LT of periodic functions	
56- L51	Properties of inverse LT	
57- L52	Convolution theorem	
58- L53	Evaluation of inverse LT by convolution theorem	
59-P4	College level meeting/ function	
60- L54	Application of LT	
61- L55	Eigen values: Eigen Vector	
62- L56	Characteristic equation of matrix	
63- L57	Cayley Hamilton theorem	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins (03.10.2016)	
65- L59	Some important theorem	
66- L60	Diagonalisation of matrices	
67-IT-III	Internal Test-III	

68- L61	Differentiation and integration of matrices
69- L62	Power of matrices
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
71-MT	Model Test (17.10.2016)
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 30.10.2016

Learning Outcomes	COs of the course "Mathematical physics I"	
C01	Explain the classification of vector field.	
CO2	Determine the eigen value and eigen vector of the characteristic equation of matrix.	
CO3	Design the recurrence relation.	
CO4	Determine the fourier transform for a given function	
CO5	Explain about the convolution theorem.	
CO6	Explain the properities of fourier transform.	
CO7	Application of matrix in physics.	
CO8	Application of laplace transform.	
CO9	Application of fourier transform.	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Integrated Electronics	
Course Code	KPHM13	
Class	I year (2016-2017)	
Semester	Odd	
Staff Name	C.Stella Rani	
Credits	4	
L. Hours /P. Hours	5 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > To understand different types of electronic devices and preparation of IC
- To discuss logical families in the digital electronics and study the counters and registers
- > To describe the application of operational amplifier in the different field
- > To study the various electronics instrumentation through basics of science

Syllabus

Integrated Electronics

Unit I

Devices, Applications and Integrated Circuits

FET-Types of FET-Characteristics and applications of FET, MOSFET- SCR, DIAC, TRIAC-High frequency device-Inegrated Circuits-IC Fabrication Technology - Steps in Fabrication - Integrated Resistors and Capacitors-VLSI Technology.

Unit II

Digital Electronics

Logic Families - DTL, RTL, TTL, ECL, I2L, CMOS, NMOS and PMOS - DTL type AND, OR, NAND and NOR gates - RTL and TTL type NAND - CMOS NOR and CMOS NAND - Flip Flops: RS-RST-D- JK- JK Master/Slave- Asynchronous Counters and Synchronous Counters - Registers.

Unit III

OP AMP and Applications

Characteristics and Parameters -DC Analysis of IC OP AMP- Applications of OP AMP - Instrumentation amplifier -Sample and Hold System- Analog Multiplexer -Integrator - Differentiator- Design of Analog circuits for the solution of Simultaneous and Differential Equations- Filters: First and Second order LOW, HIGH and BAND pass filters.

Unit IV

Timer, VCO, PLL, and Applications

Timer-555 Timer IC-Internal Architecture and Working-Modes of Operation: Monostable and Astable operation- Applications-Voltage Control Oscillator - IC 566-PLL Concept-PLL IC 565 - Application- Frequency multiplexer - FSK Modulation and Demodulation.

Unit V

Electronic Measurement and Control

Sensors and Transducers - Measurement and Control - Signal Conditioning and Recovery -Impedance Matching - Amplification (OP Amp based Feedback Amp, Instrumentation Amp) - Noise and Noise Sources -Filtering and Noise Reduction -Shielding and Grounding - Fourier Transform - Lock- in Detector/Amplifier - Box-Car Integrator or Averager - Modulation Techniques.

Books for Study:

1. Integrated Electronics Analog and Digital Circuits and Systems, Second Edition, Jacob Millman, Christos C Halkias, Chetan Parikh, Tata McGraw Hill Education Private Limited, NewDelhi.

2. Analog and Digital Electronics, U.A. Bakshi, A.P.Godse, Technical Publications, Pune.

Books for Reference :

1. Introduction to Semiconductor Devices M.S.Tyagi, John Wiley and Sons.

2. Electronic instrumentation, P.P.L. Regtien, VSSD Publications, 2005

Hour allotment	Class Schedule	
	Odd Semester Begin on 16.06.2016	
1-L1	FET-Types of FET-Characteristics and applications of FET	
2-L2	MOSFET	
3- L3	SCR, DIAC, TRIAC	
4-L4	High frequency device	
5-L5	Inegrated Circuits	
6-L6	IC Fabrication Technology	
7-L7	Steps in Fabrication	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Integrated Resistors and Capacitors	
10- L9	VLSI Technology	
11-L10	Logic Families - DTL, RTL, TTL&ECL	
12-L11 13-L12	I2L,CMOS,NMOS and PMOS	
13-L12 14-L13	DTL type AND, OR, NAND & NOR gates RTL and TTL type NAND - CMOS NOR and CMOS NAND	
14-L15 15-L14	Allotting portion for Internal Test-I	
13-L14	Internal Test I begins (25.07.2016)	
16-L15	Flip Flops: RS-RST-D	
10-L15 17-IT-1	Internal Test-I	
18-L16	JK- JK Master/Slave	
10 L10 19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Asynchronous Counters and Synchronous Counters	
21- L19	Registers	
22- P2	College level meeting/Cell function	
23-L20	Characteristics and Parameters	
24-L21	DC Analysis of IC OPAMP	
25-L22	Applications of OP AMP	
26-L23	Instrumentation amplifier	
27-L24	Sample and Hold System	
28-L25	Analog Multiplexer, Integrator	
29-L26	Differentiator	
30-L27	Design of Analog circuits for the solution of Simultaneous and Differential Equations	
31-L28	Filters: First and Second order LOW, HIGH and BAND pass filters	
32-L29	Timer-555 Timer IC-Internal Architecture and Working	
33-L30	Modes of Operation: Monostable and Astable operation	
34- P3	Department Seminar	
35-L31	Applications-Voltage Control Oscillator	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (22.08.2016)	
37- L33	IC 566-PLL Concept	
38- IT-II	Internal Test-II	
39-L34	PLL IC 565	
40-L35	Test Paper distribution and result analysis	

	Entering Internal Test-II Marks into University portal	
41-L36	Application- Frequency multiplexer	
42- L37	FSK Modulation and Demodulation	
43- L38	Sensors and Transducers	
44- P4	College level meeting/ function	
45-L39	Measurement and Control	
46-L40	Signal Conditioning and Recovery	
47-L41	Impedance Matching, Noise and Noise Sources	
48-L42	Amplification (OP Amp based Feedback Amp, Instrumentation Amp)	
49-L43	Filtering and Noise Reduction, Shielding and Grounding -	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (03.10.2016)	
51 L45	Fourier Transform, Lock- in Detector/Amplifier	
52- L46	Box-Car Integrator or Averager - Modulation Techniques	
53-IT-III	Internal Test-III	
54-L47		
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (17.10.2016)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 30.10.2016	

Learning Outcomes	COs of the course "Integrated Electronics"
CO1	The students can able to
CO2	Explain the principle of integrated circuit and its advancement
CO3	Understand the applications of gates in the various fields
CO4	Know the values of integrated circuit in the development of
	engineering field
CO5	Operate the electronic instrumentation
CO6	
CO7	Solve the problems by constructing the circuit using Op-amp
CO8	Design a circuit using various IC
CO9	
Experimental	Construction of new circuits using chips
Learning	
EL1	Achievements of Electronics in the New era
EL2 The students can able to	

EL3	Explain the principle of integrated circuit and its advancement	
EL4	Understand the applications of gates in the various fields	
Integrated Activity	Know the values of integrated circuit in the development of	
	engineering field	
IA1	Operate the electronic instrumentation	
IA2		

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Solid State Physics	
Course Code	KPHM22	
Class	II year (2016-2017)	
Semester	odd	
Staff Name	J Ruby Jemima	
Credits	4	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- To understand Bravis lattice
- To discuss Brillouine zone
- ➢ To explain Crystal binding and study
- To describe Dulong and petits law
- Explain types of super conductors
- > To Discuss about electronic devices
- \triangleright

SOLID STATE PHYSICS

UNIT I:

CRYSTAL STRUCTURE AND DIFFRACTION

Recapitulation of basic concepts- crystal systems- Bravais Lattice- Miller indices-symmetry elements- symmetry groups- simple crystal structures (sodium chloride, cesium chloride, diamond and zincblende structures) Bragg's law- Laue equations- reciprocal lattice- Brillouine zones- atomic scattering factor- geometrical structure factor- experimental methods of structure analysis (the laue, rotating crystal and powder methods)

UNIT II:

CRYSTAL BINDING AND ELASTIC PROPERTIES OF SOLIDS

Crystal bindings: Ionic bond- covalent bond- molecular bond- Hydrogen bondmetallic bond-Vanderwaal's bond-Binding energy of crystals- polaron Elastic properties: Stress componentsdisplacement and strain components- elastic compliances and stiffness constants- relation between elastic compliances and stiffness constants -elastic constants for cubic isotropic crystals-elastic wavesexperimental determination of elastic constants

UNIT III:

LATTICE DYNAMICS AND THERMAL PROPERTIES

Lattice dynamics: Concept of phonons- momentum of phonons- normal and Umklapp processvibrations of one dimensional monoatomic and diatomic linear lattices- inelastic scattering of neutrons by phonons Thermal properties: Theories of specific heat- Dulong and Petit's law- Einstein theory and Debye's theory- Widemann Franz law

UNIT IV:

ELECTRONIC PROPERTIES OF SOLIDS

Free electron gas model in three dimensions: Density of states- Fermi energyEffect of temperature- heat capacity of electrons- experimental heat capacity of metalsthermal effective masselectrical conductivity and ohm's law- Hall effect- failure of the free electron gas Band theory of solidsperiodic potential and Bloch's theorem- KronigPenny model-wave equation of electron in a periodic potential- periodic, extended and reduced zone schemes of energy representation- number of orbitals in an energy bandclassification of metals, semi conductors and insulators- tight binding method and its applications to FC and BCC structures.

UNIT V:

SUPER CONDUCTIVITY

Experimental survey: Superconductivity and its occurrence- destruction of superconductivity by magnetic field- Meissner effect- Type I and II super conductorsentropy- free energy- heat capacityenergy gap- isotope effect Theoretical survey: Thermodynamics of the superconducting transition-London equation- coherence length- salient features of the BCS theory of super conductivity- flux quantization in a superconductivity ring- DC and AC Josephson effects

Books for Study and Reference

- 1. Introduction to Solid State Physics 7 The edition by Charles kittel
- 2. Solid State Physics by Neil W Ashroff and N.DavidMermin
- 3. Solid State Physics by S.L. Kakani and C. Hemarajani
- 4. Elementary Solid State Physics by M. Ali Omar

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.06.2016
1-L1	Recapitulation of basic concepts
2-L2	Crystal systems, Bravais Lattice
3- L3	Miller indices
4-L4	Symmetry elements, Symmetry groups
5-L5	simple crystal structures (sodium chloride, cesium chloride, diamond and zincblende structures)
6-L6	Bragg's law, Laue equations
7-L7	reciprocal lattice, Brillouine zones
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	atomic scattering factor, Geometrical structure factor
10- L9	Experimental methods of structure analysis (the laue, rotating crystal and powder methods)
11-L10	Crystal bindings: Ionic bond, covalent bond
12-L11	molecular bond,Hydrogenbondmetallic bond
13-L12	Vanderwaal's bond
14-L13	Binding energy of crystals
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins (25.07.2017)
16-L15	polaron Elastic properties: Stress components
17-IT-1	Internal Test-I
18-L16	displacement and strain components
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	elastic compliances and stiffness constants
21- L19	relation between elastic compliances and stiffness constants
22- P2	College level meeting/Cell function
23-L20	elastic constants for cubic isotropic crystals
24-L21	elastic waves
25-L22	experimental determination of elastic constants
26-L23	Lattice dynamics: Concept of phonons
27-L24	momentum of phonons
27 L24 28-L25	normal and Umklapp process
20 L25 29-L26	vibrations of one dimensional monoatomic and diatomic linear lattices
30-L27	inelastic scattering of neutrons by phonons Thermal properties: Theories of specific
JU-L21	heat
31-L28	Dulong and Petit's law Einstein theory and Debye's theory, Widemann Franz law

32-L29	Free electron gas model in three dimensions: Density of states, Fermi energyEffect of
	temperature
33-L30	heat capacity of electrons, experimental heat capacity of metalsthermal effective mass
34- P3	electrical conductivity and ohm's law, Hall effect-
35-L31	failure of the free electron gas Band theory of solids
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins (22.08.2016)
37- L33	periodic potential and Bloch's theorem, KronigPenny model
38- IT-II	Internal Test-II
39-L34	wave equation of electron in a periodic potential
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	periodic, extended and reduced zone schemes of energy representation
42- L37	number of orbitals in an energy bandclassification of metals, semiconductors and
	insulators
43- L38	tight binding method and its applications to FC and BCC structures.
44- P4	College level meeting/ function
45-L39	Experimental survey: Superconductivity and its occurrence, destruction of
	superconductivity by magnetic field
46-L40	Meissner effect, Type I and II super conductors entropy,
47-L41	free energy, heat capacity ,energy gap, isotope effect
48-L42	Theoretical survey: Thermodynamics of the superconducting transition
49-L43	London equation, coherence length
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins (03.10.2016)
51 L45	salient features of the BCS theory of super conductivity
52- L46	flux quantization in a superconductivity ring, DC and AC Josephson effects
53-IT-III	Internal Test-III
54-L47	
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
56- MT	Model Test (17.10.2016)
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 30.10.2016

Learning Outcomes	COs of the course "Solid state physics"
CO1	elastic waves
CO2	experimental determination of elastic constants
CO3	Lattice dynamics: Concept of phonons
CO4	elastic compliances and stiffness constants
CO5	relation between elastic compliances and stiffness constants
CO6	tight binding method and its applications to FC and BCC structures.
CO7	wave equation of electron in a periodic potential
CO8	KronigPenny model
CO9	number of orbitals in an energy bandclassification of metals, semiconductors and insulators

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Quantum Mechanic I	
Course Code	KPHM31	
Class	II year (2016-2017)	
Semester	Odd	
Staff Name	E .Christy Jerin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To develop the schrodinger wave equation. .
- > To derive Ehrenfest theorem.
- > To find energy eigen value of square well potential.
- > To discuss the postulates of quantum mechanics.
- > To derive the energy eigen value of harmonic oscillator.
- > To discuss about scattering.
- > To find scattering cross section of rigid sphere.

Syllabus

Quantum Mechanic I

UNIT 1

Development of wave equation Travelling harmonic waves The one dimensional wave equation Interpretation of the wave function Normalization Probability current density Expectation values Ehrenfest's theorem Energy Eigen functions One dimensional square well potential

UNIT II

Interpretative postulates and energy eigen functions Motion of a free wave packet in one dimension Discrete Eigen values(bound states) Linear Harmonic oscillator Spherically symmetric potential in three dimension

UNIT III

One dimensional square potential barrier Scattering coefficients Collisions in three dimensions Scattering cross sections Asymmetric behavior Scattering by spherically symmetric potentials Scattering by a perfect rigid sphere Scattering by a square well potential

UNIT IV

Transformation theory Transformation of Hamiltonian with U Transformation of Hamiltonian with V Dirac's bra and ket notation Equations of motion Matrix theory of the linear harmonic oscillator

UNIT V

Rotational angular momentum and unitary groups. Proper rotation group Infinitesimal rotations. Spin of vector particle Commutation relation for the generators Choice of representation Angular momentum matric Combination of angular momentum states And tensor operations Clebsch gordan coefficients Combination of angular momentum states Spin of vector paricle Commutation relation for the generators Dirac's bra ket notation Equation of motion.

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.06.2016
1-L1	Development of wave equation
2-L2	Travelling harmonic waves
3- L3	The one dimensional wave equation
4-L4	Interpretation of the wave function
5-L5	Normalization
6-L6	Probability current density
7-L7	Expectation values
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Ehrenfest's theorem
10- L9	Energy Eigen functions
11-L10	One dimensional square well potential
12-L11	Interpretative postulates and energy eigen functions
13-L12	Motion of a free wave packet in one dimension

14-L13	Discrete Eigen values(bound states)
14-L13 15-L14	Linear Harmonic oscillator
13-L14 16-L15	Spherically symmetric potential in three dimension
10-L15 17- L16	
17-L10 18-L17	One dimensional square potential barrier Scattering coefficients
18- L17 19- L18	Collisions in three dimensions
-	
20- L19	Scattering cross sections
21- L20	Allotting portion for Internal Test-I
22 1 21	Internal Test I begins (25.07.2016)
22- L21	Asymmetric behaviour
23- IT-1	Internal Test-I
24- L22	Scattering by spherically symmetric potentials
25-L23	Scattering by a perfect rigid sphere
26- L24	Test Paper distribution and result analysis
27.1.25	Entering Internal Test-I Marks into University portal
27-L25	Scattering by a square well potential
28-L26	Scattering by a square well potential
29-L27	Transformation theory
30- P2	College level meeting/Cell function
31-L28	Transformation theory
32-L29	Transformation of Hamiltonian with U
33-L30	Transformation of Hamiltonian with U
34-L31	Transformation of Hamiltonian with V
35-L32	Transformation of Hamiltonian with V
36-L33	Dirac's bra and ket notation
37- L34 38-L35	Dirac's bra and ket notation
	Equations of motion
39- L36 40- L37	Equations of motion Matrix theory of the linear harmonic oscillator
41-L38	Matrix theory of the linear harmonic oscillator
42-P3	Department Seminar
43- L39 44- L40	Rotational angular momentum and unitary groups.
44- L40 45- L41	Rotational angular momentum and unitary groups.
	Proper rotation group.
46- L42 47- L43	Proper rotation group.
41-L43	Allotting portion for Internal Test-II Internal Test II beging (22.08.2016)
48- L44	Internal Test II begins (22.08.2016) Infinitesimal rotations.
48- L44 49-IT-II	Infinitesimal rotations. Internal Test-II
49-11-11 50-L45	
50-L45 51- L46	Spin of vector particle. Test Paper distribution and result analysis
31- L40	
52- L47	Entering Internal Test-II Marks into University portal
52- L47 53- L48	Commutation relation for the generators.
53- L48 54- L49	Choice of representation.
	Angular momentum matrices.
55-L50	Angular momentum matrices.
56-L51	Combination of angular momentum states
57- L52	And tensor operations.

58- L53	Clebsch gordan coefficients.
59-P4	College level meeting/ function
60- L54	Clebsch gordan coefficients.
61- L55	Combination of angular momentum states
62- L56	Spin of vector paricle.
63- L57	
64- L58	Allotting portion for Internal Test-III
	Internal Test III begins (03.10.2016)
65- L59	Commutation relation for the generators
66- L60	Dirac's bra ket notation.
67-IT-III	Internal Test-III
68- L61	Equation of motion
69- L62	Equation of motion
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
71-MT	Model Test (17.10.2016)
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 30.10.2016

Learning Outcomes	COs of the course "Quantum Mechanic I"
CO1	Develop the wave equation.
CO2	Derive Ehrenfest theorem.
CO3	Derive eigen value of square well potential.
CO4	Derive the eigen value of harmonic oscillator.
CO5	Calculate the scattering cross section for square well potential
CO6	Derive the energy eigen value of harmonic oscillator using matrix
	theory.
CO7	Derive C.G coefficients.
CO8	Discuss about the choice of representation.
CO9	Discuss about the rotational groups

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Statistical Mechanics	
Course Code	KPHM33	
Class	II year (2016-2017)	
Semester	Odd	
Staff Name	C.Stella Rani	
Credits	4	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To understand different types of velocities and its relation Maxwell distribution of molecular velocities
- > To discuss how viscosity of gases varies with T and P
- > To explain basic principle of photochemistry
- > To describe the application of luminance types
- > To analyse the stability of radioactive elements
- > To illustrate nuclear reactor and its application
- > To differentiate crystalline and amorphous solids
- Explain types of crystal
- > To derive expression for depression of freezing point
- > To define osmotic pressure and application

Syllabus

Statistical Mechanics

Unit I

Basic concepts

Phase space-phase-space diagram of an oscillator-Volume in phase space-EnsemblesMicrocanonical ensemble-Canonical ensemble-Grand canonical ensemble-Density of distribution in phase space-Liouvilles theorem-Postulate of equal a priori probabilitystatistical, mechanical and thermal equilibriums-connection between statistical and thermodynamical quantities. (11 L)

Unit II

M-B Distribution law

Microstates and macro states-Stirling's approximation-Thermodynamic probabilityGeneral statistical distribution law-Classical Maxwell-Boltzmann distribution law-Evaluation of constants in the Maxwell Boltzmann distribution law-Maxwell's law of distribution of velocitiesprinciple of equipartition of energy- Boltzmann entropy relation-Probability of magnetic moment distribution of independent atoms. (13 L)

Unit III

Quantum statistics

Postulatory foundations of quantum mechanics-Transition from classical statistical mechanics to quantum statistical mechanics-Indistinguishability and quantum statistics-Exchange symmetry of wave functions-Bose-Einstein Statistics-Fermi-Dirac statistics-Maxwell-Boltzmann statistics-Results of three statistics-Thermodynamic interpretation of the parameters α and β -Black body radiation and the Planck radiation law. (12 L)

Unit IV

Applications of quantum statistics

Specific heat of solids-Dulong and Petit law-Einstein theory of specific heat of solidsDebye theory of specific heat of solids-Criticism of Debye's theory-Ideal Bose Einstein GasEnergy and pressure of the Gas-Gas degeneracy-Bose-Einstein Condensation-Thermal properties of Bose Einstein Gas-Ideal Fermi Dirac gas- Energy and pressure of the Gas-Thermodynamics functions of degenerate Fermi-Dirac gas-Electron Gas. (14 L)

Unit V

Phase transitions

Phase transition-Phase transitions of first and second kind-critical exponent-Yang and Lee theory-Phase transitions of second kind: the Ising model-Braggs-Williams approximation-One dimensional Ising model. (10 L) Total (60 L)

Book for Study:

1.ElementarystatisticalMechanicsDr.S.L.Gupta&Dr.V.Kumar,PragatiPrakasan,Meerut22nd Edition2008

Books for Reference:

1. Fundamentals of statistical mechanics B B Laud New age international Publishers 2005

2. An Introductory course of Statistical Mechanics PalashB.PalNarosa First reprint 2009

3. Statistical Mechanics by Kerson Huang 4. Statistical Mechnics by Sears and Salinger.

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 16.06.2016	
1-L1	Phase Space	
2-L2	Phase-space diagram of an oscillator	
3- L3	Volume in phase space	
4-L4	Ensembles Microcanonical ensemble	
5-L5	Canonical ensemble	
6-L6	Grand canonical ensemble	
7-L7	Density of distribution in phase space	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Liouvilles theorem	
10- L9	Postulate of equal a priori probability	
11-L10	Statistical, mechanical and thermal equilibriums	
12-L11	Connection between statistical and thermodynamical quantities.	
13-L12	Microstates and macro states	
14-L13	Stirling's approximation	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins (25.07.2016)	
16-L15	Thermodynamic probabilityGeneral statistical distribution law	
17-IT-1	Internal Test-I	
18-L16	Boltzmann distribution law	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	

Evaluation of constants in the Maxwell Boltzmann distribution law
Maxwell's law of distribution of velocitiesprinciple of equipartition of energy
College level meeting/Cell function
Boltzmann entropy relation
Probability of magnetic moment distribution of independent atoms.
Postulatory foundations of quantum mechanics
Transition from classical statistical mechanics to quantum statistical mechanics
Indistinguishability and quantum statistics
Exchange symmetry of wave functions
Bose-Einstein Statistics
Fermi-Dirac statistics
Maxwell-Boltzmann statistics
Results of three statistics, Thermodynamic interpretation of the parameters $\alpha \& \beta$
Black body radiation and the Planck radiation law.
Department Seminar
Specific heat of solids
Allotting portion for Internal Test-II
Internal Test II begins (22.08.2016)
Dulong and Petit law
Internal Test-II
Einstein theory of specific heat of solids
Test Paper distribution and result analysis
Entering Internal Test-II Marks into University portal
Debye theory of specific heat of solids
Criticism of Debye's theory
Ideal Bose Einstein Gas, Energy and pressure of the Gas degeneracy
College level meeting/ function
Bose-Einstein Condensation, Thermal properties of Bose Einstein Gas-
Ideal Fermi Dirac gas, Energy and pressure of the Gas
Thermodynamics functions of degenerate Fermi-Dirac gas-Electron Gas.
Phase transition, Phase transitions of first and second kind
critical exponent, Yang and Lee theory
Allotting portion for Internal Test-III
Internal Test III begins (03.10.2016)
Phase transitions of second kind: the Ising model-Braggs-Williams
approximation,One dimensional Ising model
Internal Test-III
Test Paper distribution and result analysis
Entering Internal Test-III Marks into University portal
Model Test (17.10.2006)
Model Test
Model Test
Model test paper distribution and previous year university question paper
discussion
discussion Feedback of the Course, analysis and report preparation

Learning Outcomes	COs of the course "Statistical Mechanics"
CO1	Derive the density of states
CO2	Determine the Maxwell Boltzmann distribution velocities
CO3	Define Microstates and macro states
CO4	Application to the Black body distribution
CO5	Analogy between statistical and thermo dynamical quantities
CO6	Determine the specific heat of solids
CO7	Difference between three statistics
CO8	Finding the condensation of Bose - Einstein
CO9	Knowledge about Electron gas
Experimental	
Learning	
EL1	Phase transitions of first and second kind
EL2	
Integrated Activity	
IA1	Yang and Lee theory
IA2	Stirling's approximation

Blended Learning : using PPT, video, library resources, ICT techniques, E-learning resources, Google classroom, study tour, etc.,

# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

Programme Name	M.Sc. Physics
Course Name	NUMERICAL METHODS AND
	PROGRAMMING IN C++
Course Code	KPHE21
Class	I year (2016-2017)
Semester	EVEN
Staff Name	G.GOMATHISANKARI
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	
-	

Course Objectives

- The aim is to teach the student various topics in Numerical Analysis such as solutions of nonlinear equations in one variable
- > Interpolation and approximation, **numerical** differentiation and integration,
- Direct methods for solving linear systems
- > Numerical solution of ordinary differential equations.

Numerical Methods and Programming in C++

Unit I

Roots of equations and eigen-value problems

Newton-Raphson method. Secant Method. Muller's Method - Lin -Bairstow's Method. Linear Algebraic Equations: Gauss elimination - Gauss-Jordan - Gauss-Jacobi - Inverse of a matrix by Gauss Jordan elimination method.

Unit II

Curve Fitting / Interpolation

Curve fitting: Linear Least square fitting - Nonlinear Fit- Fitting a Polynomial Function, Exponential function - Cubic spline fitting - Interpolation: Fundamental theorem of finite difference,

Finite difference interpolation with equally spaced: Newton's forward and backward difference formulae - Unequally spaced: Lagrangian interpolation formula.

Unit III

Numerical differentiation and integration

Numerical Differentiation : Methods based on interpolation: non uniform & uniform nodal points - Methods based on finite differences: forward & backward difference formulae. Numerical Integration: Trapezoidal Rule, Simpson Rule - Monte-Carlo evaluation of integration. Methods based on undetermined coefficients: Gauss-Legendre, Gauss - Lagurre, Gauss - Hermite integration methods.

Unit IV

Solution to ordinary and partial differential equations

Ordinary Differential Equations- Taylor's Series Method- Euler's Method-Euler's modified method - Runge -Kutta 2nd and 4th Order Methods-Predictor- Corrector Methods-Solution to partial differential equations

Unit: V

C++ Programming applications

Programme structure: header files, local, global and static variables, input and output statements; Euler's Method: Charging and discharging of a condenser; Runge-Kutta methods: Radioactive Decay; Newton-Raphson method: Solution van der Waals equation; Gauss elimination method: Currents in Wheatstone's bridge; Linear fitting. - least square method : Cauchy's constant; Simpson's and Monte-Carlo methods : Evaluation of (integral) area under the curve;Eigenvalues and eigenvectors of symmetry matrices; Numerical differentiation: Newton's Law of cooling.

Course Car	
Hour	Class Schedule
allotment	
	Even Semester Begin on 01.12.2016
1-L1	Roots of equations and eigen-value problems
2-L2	Newton-Raphson method. Secant Method
3- L3	Muller's Method - Lin -Bairstow's Method.
4-L4	Linear Algebraic Equations
5-L5	Gauss elimination - Gauss-Jordan
6-L6	Gauss-Jacobi
7-L7	Inverse of a matrix by Gauss Jordan elimination method
8- P1	Physics Assiocation
9- L8	Curve Fitting / Interpolation Curve fitting
10- L9	Linear Least square fitting - Nonlinear Fit- Fitting a Polynomial Function, Exponential
	function
11-L10	Cubic spline fitting – Interpolation
12-L11	Interpolation: Fundamental theorem of finite difference, Finite difference interpolation

10 1 10	with equally spaced:
13-L12	Newton's forward and backward difference formulae
14-L13	Unequally spaced: Lagrangian interpolation formula.
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins (24.01.2017)
16-L15	Numerical Differentiation : Methods based on interpolation:
17-IT-1	Internal Test-I
18-L16	non uniform & uniform nodal points - Methods based on finite differences: forward &
10 1 17	backward difference formulae
19-L17	Test Paper distribution and result analysis
20 X 10	Entering Internal Test-I Marks into University portal
20-L18	Numerical Integration: Trapezoidal Rule
21-L19	Simpson Rule
22- P2	College level meeting/Cell function
23-L20	Monte-Carlo evaluation of integration.
24-L21	Methods based on undetermined coefficients
25-L22	Gauss-Legendre, Gauss - Lagurre
26-L23	Gauss - Hermite integration methods.
27-L24	Solution to ordinary and partial differential equations
28-L25	Ordinary Differential Equations
29-L26	Taylor's Series Method- Euler's Method
30-L27	Euler's modified method - Runge -Kutta 2nd and 4th Order Methods
31-L28	Predictor- Corrector Methods
32-L29	Solution to partial differential equations
33-L30	C++ Programming applications Programme structure: header files, local
34- P3	Department Seminar
35-L31	global and static variables.
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins (24.02.2017)
37- L33	input and output statements
38- IT-II	Internal Test-II
39-L34	Euler's Method
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Charging and discharging of a condenser
42- L37	Runge-Kutta methods
43- L38	Radioactive Decay; Newton-Raphson method
44- P4	College level meeting/ function
45-L39	Gauss elimination method Solution van der Waals equation;:
46-L40	Currents in Wheatstone's bridge
47-L41	Linear fitting
48-L42	least square method : Cauchy's constant
49-L43	Simpson's and Monte-Carlo methods
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins ()
51 L45	Evaluation of (integral) area under the curve
52- L46	Eigenvalues and eigenvectors of symmetry matrices;
53-IT-III	Internal Test-III
54-L47	Numerical differentiation: Newton's Law of cooling.

55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins (05.04.2017)
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 21.04.2017

Learning Outcomes	COs of the course "NUMERICAL METHODS AND PROGRAMMING
	IN C++"
CO1	Students will understand basics of numerical analysis
CO2	Students will be able to find roots of polynomial equations using
	numerical analysis
CO3	Students will be able to conduct numerical integration and differentiation
CO4	Students will be able to use numerical methods to solve the problem
CO5	Demonstrate an understanding of the fundamental principles of digital
	computing, including number representation and arithmetic operations
CO6	Develop and implement stable and accurate numerical methods to solve
	linear systems of equations and find roots of linear and non-linear
	equations.
CO7	Perform numerical interpolation, curve fitting, integration, and
	differentiation
CO8	Develop and implement Gauss Elimination method
CO9	To perform Eigen values and Eigen vector
Experimental Learning	
EL1	
	Study of basic matrix operations
EL2	Solution of Linear equations for Underdetermined and Over determined
	cases.
EL3	
EL4	Solution of Difference Equations using Euler Method
Integrated Activity	
IA1	Have a strong theoretical background of various numerical methods
IA2	Select the appropriate method for given problem

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Mathematical physics II	
Course Code	KPHM21	
Class	I year (2016-2017)	
Semester	Even	
Staff Name	E .Christy Jerin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- \blacktriangleright To introduce the special type of matrices. .
- ➤ To derive Cayley hamilton theorem.
- ➤ To derive Cauchy's theorem.
- > To derive Taylor's theorem.
- > To study the Polynomials.
- > To import the knowledge of fourier transform.
- > To apply then laplace transform into the electrical circuits.

Syllabus

UNIT 1

Matrices:

Introduction – special types of matrices Transpose – Conjugate – transposed conjugate Symmetric and antisymmetric matrices Hermitian and skew Hermitian matrices Determinant – Adjoint Orthogonal and unitary matrices Orthogonal and unitary matrices Eigen values and eigen vectors of the matrix Characteristic equation of a matrix – Cayley Hamilton theorem

UNIT II

Complex variables:

Analytical functions – Cauchy Riemann Conditions Line integrals – Cauchy's theorem – Cauchy's integral formula Derivatives of analytical functions – Power series Taylor's theorem – Laurent's theorem Calculus of residues Evaluation of definite integrals of $\cos \Theta$ and $\sin \Theta$ Certain improper real integers.

UNIT III

Bessel function of first kind. Generating function Recurrence relations. Jn (x) as solution of Bessel differential equation. Expansion of Jn (x) where n is half and odd integer Integral representation Laguerre's differential equation and Laguerre polynomials Generating function Rodrigue's formula Recurrence relations Orthogonal property of lauguerre polynomials Associated laugurre polynomials

UNIT IV

Introduction-Fourier transform Properities of fourier transform Fourier transform of a derivative Fourier sine and cosine transform of derivatives. Laplace transform (LT) Properities of LT LT of derivative and integral of a function LT of periodic function Inverse of LT Properities of inverse LT Application of LT to electrical circuits

UNIT V

Introduction –numerical integration. Trapezoidal rule Simpson's rule Solution of ordinary differential equations of first order. Euler's method. Modified Euler's method Taylor series method. Runge kutta method Approximate solution of algebraic and transcendental equations Newton raphson method Method of iteration Monte-carlo technique Simpson's rule Solution of ordinary differential equations of first order.

Hour	Class Schedule
allotment	
	Even Semester Begin on 1.12.2016
1-L1	Matrices: Introduction – special types of matrices
2-L2	Transpose – Conjugate – transposed conjugate
3- L3	Symmetric and antisymmetric matrices
4-L4	Hermitian and skew Hermitian matrices
5-L5	Determinant – Adjoint
6-L6	Orthogonal and unitary matrices
7-L7	Orthogonal and unitary matrices
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Eigen values and eigen vectors of the matrix
10- L9	Characteristic equation of a matrix – Cayley Hamilton theorem

11 T 10	Complex and they Analytical functions (C. J. D. C. 1997)
11-L10	Complex variables: Analytical functions – Cauchy Riemann Conditions
12-L11 13-L12	Line integrals – Cauchy's theorem – Cauchy's integral formula
	Derivatives of analytical functions – Power series
14-L13	Taylor's theorem – Laurent's theorem Calculus of residues.
15-L14	
16-L15	Evaluation of definite integrals of $\cos \Theta$ and $\sin \Theta$
17- L16 18- L17	Certain improper real integers. Bessel function of first kind.
19-L18	Generating function.
20- L19	Recurrence relations.
21- L20	Allotting portion for Internal Test-I
22- L21	Internal Test I begins (24.01.2017)
22- L21 23- IT-1	Jn (x) as solution of Bessel differential equation. Internal Test-I
23-11-1 24- L22	
24- L22 25- L23	Expansion of Jn (x) where n is half and odd integer.Integral representation
25- L25 26- L24	Test Paper distribution and result analysis
20- L24	Entering Internal Test-I Marks into University portal
27- L25	Laguerre's differential equation and Laguerre polynomials
27- L25 28- L26	Generating function
28- L20 29- L27	Rodrigue's formula
30- P2	College level meeting/Cell function
30-12 31-L28	Recurrence relations.
31-L28 32-L29	Orthogonal property of lauguerre polynomials.
32-L29 33-L30	Associated laugurre polynomials.
33-L30 34- L31	Introduction-Fourier transform.
35- L32	Properities of fourier transform.
36- L32	Fourier transform of a derivative.
37- L34	Fourier sine and cosine transform of derivatives.
38-L35	Laplace transform (LT)
39- L36	Properities of LT
40- L37	LT of derivative and integral of a function
41- L37	LT of periodic function.
42-P3	Department Seminar
43- L39	Inverse of LT
44- L40	Properities of inverse LT
45- L41	Application of LT to electrical circuits
46- L42	Introduction –numerical integration.
47- L43	Allotting portion for Internal Test-II
	Internal Test II begins (24.02.2017)
48- L44	Trapezoidal rule
49-IT-II	Internal Test-II
50-L45	Simpson's rule
51- L46	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
52- L47	Solution of ordinary differential equations of first order.
53- L48	Euler's method.
54- L49	Modified Euler's method

55- L50	Taylor series method.
56- L51	Runge kutta method.
57- L52	Approximate solution of algebraic and transcendental equations.
58- L53	Newton raphson method.
59-P4	College level meeting/ function
60- L54	Method of iteration
61- L55	Monte-carlo technique
62- L56	Simpson's rule
63- L57	Solution of ordinary differential equations of first order.
64- L58	Allotting portion for Internal Test-III
	Internal Test III begins
65- L59	Modified Euler's method
66- L60	Runge kutta method.
67-IT-III	Internal Test-III
68- L61	Approximate solution of algebraic and transcendental equations
69- L62	Monte-carlo technique
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
71-MT	Model Test (05.04.2017)
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 21.4.2017

Learning Outcomes	COs of the course "Mathematical physics II"
CO1	Introduction about types of matrices.
CO2	Find the eigen value and eigen vectors of the matrix.
CO3	Derive the Cauchy's integral formula.
CO4	Derive the recurrence relations.
CO5	Study about the laplace transform.
CO6	Find roots of the equation using Newton raphson method.
CO7	Solve the differential equation using Euler's method.
CO8	Solve the numerical integration using sympson's rule.
CO9	Introduction of Monte-carlo method

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Condensed matter physics	
Course Code	KPHM22	
Class	I year (2016-2017)	
Semester	Even	
Staff Name	E.Chrsity Jerin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To study the classification of crystals..
- > To analysis of elastic strains.
- > To calculate the phonons momentum.
- > To derive the Bloch function.
- > To acquire the knowledge of superconductivity.

Syllabus

UNIT I

Classification of crystals Two dimensional Brava's Brava's lattices in 3 dimensional crystals of inert gases ionic crystals covalent crystals ,metals hydrogen bonds analysis of elastic strains elastic compliance and stiffness constants elastic wave in cubic crystals

UNIT II

Lattice waves properties of Lattice waves vibrational modes of a finite one dimensional lattice of identical atoms diatomic linear lattice quantization of lattice vibrations phonons momentum Inelastic scattering by phonons, by long wave length phonons X rays by photons neutrons by phonons

UNIT III

Energy levels in one dimension free electron gas in three dimensions-heat capacity of the electron gas Electrical conductivity and Ohm's law Hall effect thermal conductivity of metals Bloch functions Kronig-Forder-magnons antiferro magnetic order Ferromagnetic domains Origin of domains

UNIT IV

Langevin diamagnetism equation quantum theory of diamagnetism Hund rule Paramagnetic susceptibility of conduction electrons Ferromagnetic order Magnons antiferro magnetic order ferromagnetic domains origin of domains.

UNIT V

Macroscopic electric field Local field at an atom Dielectric constant and polarizability Structural phase transitions Ferroelectric crystals Ferroelectric domains Piezoelectricity occurrence of superconductivity Meissner effect thermodynamics of superconducting transition London equation coherence length BCS theory of superconductivity Single particle tunneling DC AND AC Josephson effect

Hour allotment	Class Schedule
	Even Semester Begin on 01.12.2016
1-L1	Classification of crystals
2-L2	Two dimensional Brava's
3- L3	Brava's lattices in 3 dimensional
4-L4	crystals of inert gases
5-L5	ionic crystals
6-L6	covalent crystals ,metals
7-L7	hydrogen bonds
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	analysis of elastic strains
10- L9	elastic compliance and stiffness constants
11-L10	elastic wave in cubic crystals
12-L11	Lattice waves
13-L12	properties of Lattice waves
14-L13	vibrational modes of a finite one
15-L14	dimensional lattice of identical atoms
16-L15	diatomic linear lattice
17- L16	quantization of lattice vibrations
18- L17	phonons momentum
19- L18	Inelastic scattering by phonons, by long wave length phonons
20- L19	X rays by photons
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins (24.01.2017)
22- L21	neutrons by phonons
23- IT-1	Internal Test-I

24- L22	neutrons by phonons	
24- L22 25- L23	Energy levels in one dimension	
23- L23 26- L24		
20- L24	Test Paper distribution and result analysisEntering Internal Test-I Marks into University portal	
27- L25	free electron gas in three dimensions	
27- L23 28- L26		
	heat capacity of the electron gas	
29- L27 30- P2	Electrical conductivity and Ohm's law	
	College level meeting/Cell function Hall effect	
31-L28		
32-L29	thermal conductivity of metals	
33-L30	thermal conductivity of metals Bloch functions	
34- L31		
35-L32	Kronig-Forder-magnons antiferro magnetic order	
36- L33	U	
37- L34	Ferromagnetic domains Origin of domains	
38-L35	Origin of domains	
39- L36 40- L37	Langevin diamagnetism equation quantum theory of diamagnetism	
41- L38	quantum theory of paramagnetism	
42-P3	Department Seminar Hund rule	
43- L39 44- L40		
44- L40 45- L41	Paramagnetic susceptibility of conduction electrons Ferromagnetic order	
43- L41 46- L42	Magnons	
40- L42 47- L43		
47-L43	Allotting portion for Internal Test-II Internal Test II begins (24.02.2017)	
48- L44	antiferro magnetic order	
48- L44 49-IT-II	Internal Test-II	
49-11-11 50-L45	ferromagnetic domains	
51- L46		
31- L40	Test Paper distribution and result analysisEntering Internal Test-II Marks into University portal	
52- L47	origin of domains.	
53- L47	Macroscopic electric field	
54- L49	Local field at an atom	
55- L50	Dielectric constant and polarizability	
56- L51	Structural phase transitions	
57- L52	Ferroelectric crystals	
58- L53	Ferroelectric domains	
59-P4	College level meeting/ function	
60- L54	Piezoelectricity	
61- L55	occurrence of superconductivity	
62- L56	Meissner effect	
63- L57	thermodynamics of superconducting transition	
64- L58	Allotting portion for Internal Test-III	
0 4 - LJ0	Internal Test III begins	
65- L59	London equation	
66- L60	coherence length	
67-IT-III	Internal Test-III	
07-11-111		

68- L61	BCS theory of superconductivity
69- L62	Single particle tunnelling
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
71-MT	Model Test (05.04.2017)
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 21.04.2017

Learning Outcomes	COs of the course "Condensed matter physics"
C01	Explain the concept of ionic crystals, covalent crystals.
CO2	Derive the London equation.
CO3	Explain the concept of elastic compliance.
CO4	Calculate the value of phonon momentum.
CO5	Deduce the electrical conductivity.
CO6	Explain Hall effect.
CO7	Design Hund rules.
CO8	Explain the concept of magnons.
CO9	Determine the coherence length

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN

(Prepared by staff member handling the course)

Programme Name	M.Sc., Physics	
Course Name	Micoprocessor and Microcontroller	
Course Code	KPHM23	
Class	I year (2016-2017)	
Semester	Even	
Staff Name	G.GOMATHI SANKARI	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➤ The objective of this course is to become familiar with the architecture and the instruction set of an Intel microprocessor
- Assembly language programming will be studied as well as the design of various types of digital and analog interfaces
- Understand the architecture of 8085 and 8051

Syllabus

Microprocessor 8085 and Microcontroller 8051

Unit I

Introduction to 8085 Microprocessor

Pin diagram and description - Bus System, Control Signals, Status Signals- Clock System - Latching of Address Bus - Interrupt System - Direct Memory Access- Internal architecture -ALU- Registers organization - Special purpose Registers and Counters - Flags - Program Status Word.

Unit II

Programming 8085

Assembly Language Programming - Assembler - Instruction Format of 8085-Instruction Set - Addressing Modes - Instruction Cycle, Machine Cycle and T-Slates - Timing Diagram of Read, Write machine Cycles and some basic Instructions - 8 bit and 16 bit addition and subtraction- Loops and Branching - Multiplication and Division in 8085-Searching and Sorting -Finding smallest/biggest number in an array - Time delay calculation- Stack and Subroutines -Software Interrupts and ISR- Data Transfer Schemes.

Unit III

Interfacing and peripheral devices

Address Space of 8085- Address space partition- Memory Interfacing - Memory map and Address decoding- Interfacing of RAM (2K x 8 & 4K x 8) and ROM (2R x 8 & 4K x 8) - I/O mapped I/O and Memory Mapped I/O interfacing Schemes - Ports- Interfacing chips: Nonprogrammable Port 8212 - Programmable Peripheral Interface (PPI) 8255 architecture, Control Signals and operating Modes - Programmable Interval Timer (PIT) 8253.

Unit IV

Micro Controller 8051

Introduction - Comparison of Microcontroller & Microprocessor - Pin Diagram and description - Block Diagram of 8051 and Internal Architecture - Clocks - Registers- Flags-Internal Memory, SFR and I/O Ports - External Memory and decoding- Instruction Set and Addressing Modes of 8051- Features available in 8051: Timer and Counters, Timer Modes - Serial Port and Serial Data Transfer.

Unit V

Micro Processor based system design and a Applications

Design considerations - Sensors and Transducers - Sample and Hold Circuits- -Interfacing Keyboard and multiplexed seven segment displays - DAC and ADC interfacing -Square, Rectangular and Ramp Wave Generation - Temperature measurement and control -Digital Clock - Stepper Motor Control.

Hour	Class Schedule	
allotment		
	Even Semester Begin on 01.012.2016	
1-L1	Introduction to 8085 Microprocessor Pin diagram and description	
2-L2	Bus System, Control Signals, Status Signals- Clock System	
3- L3	Latching of Address Bus	
4-L4	Interrupt System - Direct Memory Access- Internal architecture	

5-L5	ALU- Registers organization
6-L6	Special purpose Registers and Counters - Flags - Program Status Word.
7-L7	Programming 8085 Assembly Language Programming
8- P1	Welcoming of First year and Inauguration of PhysicsAssociation
9- L8	- Assembler - Instruction Format of 8085-Instruction Set
10- L9	- Instruction Cycle, Machine Cycle and T-Slates
11-L10	- Timing Diagram of Read, Write machine Cycles and some basic Instructions -
12-L11	8 bit and 16 bit addition and subtraction- Loops and Branching
13-L12	Multiplication and Division in 8085-
14-L13	Searching and Sorting - Finding smallest/biggest number in an array Time delay calculation-
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins
16-L15	Stack and Subroutines - Software Interrupts and ISR-
17-IT-1	Internal Test-I
18-L16	Data Transfer Schemes
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	.Interfacing and peripheral devices Address Space of 8085- Address space
	partition- Memory Interfacing
21- L19	Interfacing of RAM (2K x 8 & 4K x 8) and ROM (2R x 8 & 4K x 8) - I/O mapped
	I/O and Memory Mapped I/O interfacing Schemes -
22- P2	College level meeting/Cell function
23-L20	Ports- Interfacing chips: Nonprogrammable Port 8212 -
24-L21	- Programmable Peripheral Interface (PPI) 8255 architecture, Control Signals and
	operating Modes Programmable Interval Timer (PIT) 8253 .
25-L22	Introduction - Comparison of Microcontroller & Microprocessor -
26-L23	Pin Diagram and description - Block Diagram of 8051 and Internal Architecture -
27-L24	Clocks
28-L25	Registers
29-L26	Flags-Internal Memory, SFR and I/O Ports-
30-L27	External Memory and decoding
31-L28	Instruction Set and Addressing Modes of 8051-
32-L29	Features available in 8051: Timer and Counters, Timer Modes
33-L30	Internal Memory, SFR and I/O Ports -
34- P3	Department Seminar
35-L31	Serial Port and Serial Data TransferFlags
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins
37- L33	Micro Processor based system design and a Applications Design considerations -
38- IT-II	Internal Test-II
39-L34	Design considerations -
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Sensors and Transducers -
42- L37	Sample and Hold Circuits-

43- L38	Interfacing Keyboard and multiplexed seven segment displays
44- P4	College level meeting/ function
45-L39	Interfacing Keyboard and multiplexed seven segment displays
46-L40	DAC and ADC interfacing
47-L41	Square, Rectangular and Ramp Wave Generation -
48-L42	Square, Rectangular and Ramp Wave Generation -
49-L43	Temperature measurement and control -
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins
51 L45	Digital Clock
52- L46	Stepper Motor Control
53-IT-III	Internal Test-III
54-L47	Stepper Motor Control
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 21.04.2017

Learning Outcomes	COs of the course "Micoprocessor and Microcontroller"
C01	Design and implement programs on 8086, ARM, PIC.
CO2	Design I/O circuit.
CO3	The program prepares students to successfully compete for employment in Electronics, Manufacturing and Embedded fields
CO4	Design Memory Interfacing circuits
CO5	Design and implement 8051 microcontroller based system
CO6	Describe the architecture and instruction set of ARM microcontroller
CO7	Understand and realize the Interfacing of memory & various I/O devices with 8085 microprocessor
CO8	Understand and classify the instruction set of 8085 microprocessor and distinguish the use of different instructions and apply it in assembly language programming
CO9	
Experimental Learning	
EL1	Microprocessor kits and data acquisition cards DC Power Supplies

EL2	Microcontroller Programmer	
EL3	Universal Programmer	
EL4	Universal IC Tester	
Integrated Activity		
IA1	The program prepares students to successfully compete for employment	
	in Electronics, Manufacturing and Embedded fields	
IA2	Design and implement 8051 microcontroller based system	

# Blended Learning	: using PPT, video, library resources, ICT techniques,		
	E-learning resources, Google classroom, study tour, etc.,		
# For Advanced Learner	: use library books, E- books, motivate student to prepare for		
	higher study.		
# For slow learner	: special care taken, motivate the advanced learner to support		
	the slow learner to study. To attend the remedial classes.		
# Extension activity	: Motivate student to take classes for school students.		

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Material science	
Course Code	KPHE41	
Class	IIyear (2016-2017)	
Semester	Even	
Staff Name	E.Christy jerin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To introduce the crystalline ,material.
- > To explain X-ray diffraction .
- > To derive London equation
- ➢ To describe BCS theory
- > To explain hall effect
- > To introduce optical and nano material.

Syllabus

MATERIAL SCIENCE

UNIT I

Crystalline Materials

Introduction – Crystal symmetry – simple crystal structures- Polymorphism and Allotropy – Crystal direction – crystal imperfections – Structure determination by X ray diffraction – Bragg's law production of X ray - determination of lattice parameters(Bragg's X – ray spectrometer method) – The Laue method – The powder method – The rotating crystal method.

UNIT II

Conducting Materials

Introduction – The classical free electron theory – Wiedemann – Franz law – The quantum free electron theory – Fermi distribution function – density of energy stateselectrons in a periodic potential – conductors – high resistivity materials- superconductivity – General features – Effects of magnetic field – The Meissner effect – Thermal properties – London equation – penetration depth – BCS theory – Josephson effect.

UNIT III

Semiconducting Materials

Introduction – Elemental intrinsic semiconductors - Carrier concentration in intrinsic semiconductor- Eletrical conductivity – Extrinsic semiconductor- carrier concentration in N-type and P-type semiconductors – Variation of carrier concentration with temperature. Direct and indirect band gap semiconductors- semiconductor – Hall effect – applications.

UNIT IV

Dielectric materials

Fundamental definitions – Measurement of relative dielectric constant – Various polarization process – electronic polarization – Ionic polarization – orientational polarization – space charge polarization – frequency effect on polarization – Dielectric loss- Internal field – Lorentz method – Clausius Mossoti relation – dielectric break down – required qualities of good insulating materials- classification – applications.

UNIT V

Optical and Nano materials

Luminescence – photoluminescence – cathode –luminescence – electro luminescence – injection luminescence – PN Junction theory –PN junction as a light sources – Light emitting diode – LED materials – construction – Liquid crystal display – characteristics – action –photo detectors – photo detective material – Nano phase materials – synthesis variation of physical properties with geometry.

Hour allotment	Class Schedule	
	Even Semester Begin on 1.12.2016	
1-L1	Crystalline Materials : Introduction	
2-L2	Crystal symmetry	
3- L3	simple crystal structures	
4-L4	Polymorphism and Allotropy	
5-L5	Crystal direction ,crystal imperfections	
6-L6	Structure determination by X ray diffraction	
7-L7	Bragg's law production of X ray - determination of lattice parameters(Bragg's X – ray spectrometer method)	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	The Laue method – The powder method	
10- L9	The rotating crystal method	
11-L10	Conducting Materials: Introduction – The classical free electron theory	
12-L11	Wiedemann – Franz law	
13-L12	The quantum free electron theory	
14-L13	Fermi distribution function	
15-L14	density of energy states- electrons in a periodic potential	
16-L15	conductors – high resistivity materials	
17-L16	superconductivity – General features	
18- L17 19- L18	Effects of magnetic field – The Meissner effect	
20- L19	Thermal properties – London equation – penetration depth Thermal properties – London equation – penetration depth	
20- L19 21- L20	Allotting portion for Internal Test-I	
21- 120	Internal Test I begins (24.01.2017)	
22- L21	BCS theory	
23- IT-1	Internal Test-I	
24- L22	Josephson effect.	
25- L23	Semiconducting Materials: Introduction – Elemental intrinsic semiconductors	
26- L24	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
27- L25	Carrier concentration in intrinsic semiconductor	
28- L26	Eletrical conductivity – Extrinsic semiconductor	
29- L27	carrier concentration in N-type and P-type semiconductors	
30- P2	College level meeting/Cell function	
31-L28	Variation of carrier concentration with temperature.	
32-L29	Direct and indirect band gap semiconductors- semiconductor	
33-L30	Hall effect	
34- L31	Applications	
35-L32	Dielectric materials: Fundamental definitions	
36- L33	Measurement of relative dielectric constant – Various polarization process	
37-L34	electronic polarization – Ionic polarization	
38-L35	orientational polarization – space charge polarization	
39-L36	frequency effect on polarization	
40- L37	Dielectric loss	
41- L38	Internal field	

42-P3	Department Seminar
43- L39	Lorentz method
44- L40	Clausius Mossoti relation
45- L41	dielectric break down
46- L42	required qualities of good insulating materials
47- L43	Allotting portion for Internal Test-II
	Internal Test II begins (24.02.2017)
48- L44	Classification
49-IT-II	Internal Test-II
50-L45	Optical and Nano materials
51- L46	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
52- L47	Luminescence – photoluminescence
53- L48	cathode –luminescence – electro luminescence
54- L49	injection luminescence – PN Junction theory
55- L50	junction as a light sources – Light emitting diode
56- L51	LED materials – construction – Liquid crystal display
57- L52	Liquid crystal display
58- L53	characteristics – action
59-P4	College level meeting/ function
60- L54	photo detectors
61- L55	photo detective material
62- L56	Nano phase materials
63- L57	Nano phase materials
64- L58	Allotting portion for Internal Test-III
	Internal Test III begins
65- L59	PN Junction theory
66- L60	electro luminescence
67-IT-III	Internal Test-III
68- L61	Optical and Nano materials
69- L62	synthesis variation of physical properties with geometry
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
71-MT	Model Test (05.04.2017)
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 21.4.2017

Learning Outcomes	COs of the course "Material science"
C01	Define crystal symmetry
CO2	Explain X-RAY DIFFRACTION
CO3	Explain BCS theory
CO4	Deduce hall effect.
CO5	Theory about PN junction
CO6	Explain Lorentz method
CO7	Application of hall effect
CO8	Application of nano material
CO9	Application of optical material.

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Quantum Mechanics II	
Course Code	KPHM41	
Class	II year (2016-2017)	
Semester	Even	
Staff Name	E.Christy Jerin	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➢ To introduce Pertubation theory
- \succ To derive the dirac equation
- > To explain orbital angular momentum
- > To explain transition probablity

Syllabus

Quantum Mechanics II

UNIT I

Orbital angular momentum Eigen pairs of L2 and Lz Properties of components of L and L 2 Matrix representation of L2 , Lz and L \pm spin state of an electron spin orbit coupling Addition of angular momenta

UNIT II

Time Independent Perturbation Theory: Introduction- Theory for non-degenerate case Application to non-degenerate levels Theory for degenerate levels First order Stark effect in Hydrogen atom

UNIT III

Time Dependent Perturbation Theory: Introduction Transition probability constant perturbation Harmonic perturbation adiabatic perturbation sudden approximation Semi classical theory of radiation calculation of Einstein coefficients

UNIT IV

Classical scattering cross section Centre of mass and laboratory co-ordinate systems Scattering amplitude Green's function approach Born approximation Partial wave analysis Scattering form a square well system

UNIT V

Klein – Gordon equation Dirac equation for a free particle Spin of a Dirac particle Particle in a potential Relativistic particle in a box Relativistic hydrogen atom Electron in a field

Hour	Class Schedule
allotment	
	Even Semester Begin on 1.12.2016
1-L1	Orbital angular momentum
2-L2	Eigen pairs of L2 and Lz
3- L3	Properties of components of L and L 2
4-L4	Matrix representation of L2 , Lz and L \pm
5-L5	spin state of an electron
6-L6	spin orbit coupling
7-L7	Addition of angular momenta
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Time Independent Perturbation Theory: Introduction- Theory for non-degenerate case
10- L9	Application to non-degenerate levels
11-L10	Theory for degenerate levels
12-L11	First order Stark effect in Hydrogen atom
13-L12	Time Dependent Perturbation Theory: Introduction
14-L13	Transition probability
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins (24.01.2017)
16-L15	constant perturbation
17-IT-1	Internal Test-I
18-L16	Harmonic perturbation
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	adiabatic perturbation
21- L19	sudden approximation
22- P2	College level meeting/Cell function
23-L20	Semi classical theory of radiation
24-L21	calculation of Einstein coefficients

25-L22	Classical scattering cross section	
25-L22 26-L23	Centre of mass and laboratory co-ordinate systems	
20-L23 27-L24	Scattering amplitude	
27-L24 28-L25	Green's function approach	
28-L23 29-L26	Born approximation	
30-L27	Partial wave analysis	
	· · · · · · · · · · · · · · · · · · ·	
31-L28 32-L29	Scattering form a square well system Scattering form a square well system	
33-L30	Klein – Gordon equation	
34- P3	Department Seminar	
35-L31	Klein – Gordon equation	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (24.02.2017)	
37-L33	Dirac equation for a free particle	
38- IT-II	Internal Test-II	
39-L34	Dirac equation for a free particle	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Spin of a Dirac particle	
42- L37	Spin of a Dirac particle	
43- L38	Particle in a potential	
44- P4	College level meeting/ function	
45-L39	Relativistic particle in a box	
46-L40	Relativistic hydrogen atom	
47-L41	Relativistic hydrogen atom	
48-L42	Electron in a field	
49-L43	Electron in a field	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Electron in a field	
52- L46	Electron in a field	
53-IT-III	Internal Test-III	
54-L47		
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (05.04.2017)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 21.4.2017	

Learning Outcomes	COs of the course "Quantum Mechanics II"
CO1	Properties of components of L and L 2
CO2	Matrix representation of L2 , Lz and L \pm
CO3	First order Stark effect in Hydrogen atom
CO4	Time Dependent Perturbation Theory: Introduction
CO5	Relativistic hydrogen atom
CO6	Classical scattering cross section
CO7	Centre of mass and laboratory co-ordinate systems
CO8	Scattering amplitude
CO9	Green's function approach

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Spectroscopy	
Course Code	KPHM42	
Class	IIyear (2016-2017)	
Semester	Even	
Staff Name	J Ruby Jemima	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > This course gives detailed knowledge of about various types of spectroscopy.
- The structure of different chemial compounds can be determined by studying these types.
- > To study the simple hormonic oscillator.
- > To know the structure determination uing Raman spectrum.
- > To gain some knowledge of about Raman spectroscopy.
- \succ To expose the students to the idea of the spectroscopy.
- > To know the application of molecular structure.

Syllabus

Spectroscopy

Unit I

Microwave Spectroscopy

Classification of molecules based on moment of inertia – rotational spectra of rigid and non-rigid diatomic molecules – Isotopic effect – linear polyatomic molecule - symmetric top molecule – chemical analysis –microwave spectrometer. (13 L)

Unit II

Infrared Spectroscopy

Vibrating diatomic and poly-21atomic molecules – Simple harmonic oscillator – anhormonicity – Hydrogen bonding – Fermi resonance – rotation vibration spectra of polyatomic molecule – information from IR spectra – IR spectrometer – FTIR. (14 L)

Unit III

Raman Spectroscopy

Theory of Raman scattering – rotation vibration Raman spectra – mutual exclusion principle – Raman spectrometer – polarization of Raman scattered light – structure determination using Raman spectrum – phase transition – resonance Raman scattering. (12 L)

Unit IV

Resonance Spectroscopy

Magnetic properties of nuclei – resonance condition – relaxation time – Chemical shift –application to molecular structure – Bloch equation – NMR instrumentation – NMR imaging – ESR theory and hyperfine structure ESR spectra of hydrogen atom and anisotropic systems – crystal defects and biological studies – ESR spectrometer. (11 L)

Unit V

Surface spectroscopy

Electron Energy Loss Spectroscopy EELS – Reflection – absorption IR spectroscopy RAIRS – Surface Enhanced Raman Scattering SERS – Inelastic Helium Scattering – X-Ray Photoelectron Spectroscopy XEPS.

Book for Study:

1. N.Banwell and E.M.Mc Cash, Fundamentals of Molecular Spectroscopy, Tata McGraw Hill.

2. G.Aruldhas, Molecular Structure and Spectroscopy, Prentice Hall India.

Book for Reference:

1. B.P.Strughan and S.Walker, Spectroscopy, John Wiley.

- 2. Peter J.Larkin, IR and Raman Spectroscopy Principle and Spectral Interpretation, Elsevier.
- 3. Gordon M. Barrow, Introduction to Molecular Spectroscopy, McGraw-Hill .

Hour	Class Schedule
allotment	
	Even Semester Begin on 1.12.2016
1-L1	Classification of molecules based on moment of inertia
2-L2	Rotational spectra of rigid and non-rigid diatomic molecules
3- L3	Isotopic effect
4-L4	Linear polyatomic molecule
5-L5	Symmetric top molecule
6-L6	Chemical analysis
7-L7	Microwave spectrometer

8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Vibrating diatomic and poly-21 atomic molecules
10- L9	Simple harmonic oscillator
11-L10	Anhormonicity
12-L11	Hydrogen bonding
13-L12	Fermi resonance
14-L13	Rotation vibration spectra of polyatomic molecule
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins (24.01.2017)
16-L15	Information from IR spectra
17-IT-1	Internal Test-I
18-L16	IR spectrometer
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	FTIR
21- L19	Theory of Raman scattering
22- P2	College level meeting/Cell function
23-L20	Rotation vibration Raman spectra
24-L21	Mutual exclusion principle
25-L22	Raman spectrometer
26-L23	Polarization of Raman scattered light
27-L24	Structure determination using Raman spectrum
28-L25	Phase transition
29-L26	Reasonance Raman scattering
30-L27	Magnetic properties of nuclei
31-L28	Relaxation time
32-L29	Chemical shift
33-L30	Application to molecular structure
34- P3	Department Seminar
35-L31	Bloch equation
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins (24.02.2017)
37- L33	NMR instrumentation
38- IT-II	Internal Test-II
39-L34	NMR imaging
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	ESR theory and hyperfine structure ESR spectra of hydrogen atom and
10.2.07	anisotropic systems
42- L37	Magnetic properties of nuclei
43- L38	ESR spectrometer
44- P4	College level meeting/ function
45-L39	Electron Energy Loss Spectroscopy EELS
46-L40	ESR spectra of free radicals in solution.NQR
47-L41	The Quadrupole nucleus-principle
48-L42	Transitions for axially symmetric systems
49-L43	Transitions for non axially symmetric systems
50-L44	Allotting portion for Internal Test-III

	Internal Test III begins
51 L45	NQR instrumentation
52- L46	Revision
53-IT-III	Internal Test-III
54-L47	Revision
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
56- MT	Model Test (05.04.2017)
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 21.4.2017

Learning Outcomes	COs of the course "Spectroscopy"	
CO1	Energy equation for diatomic rotator	
CO2		
CO3	Simple hormonic oscillator and its energy diagram	
CO4	Hydrogen Bonding.	
CO5		
CO6	To know FTIR spectrum.	
CO7	To construct the Raman spectrometer.	
CO8	To calculate X Ray Photoelectron Spectroscopy XEPS	
CO9	To study the ESR spectrometer.	
Experimental		
Learning		
EL1	FTIR Spectrum of some sample nanopowders was analysed	
# Blended Learning	: using PPT, video, library resources, ICT techniques, E-	
	learning resources, Google classroom, study tour, etc.,	
# For Advanced Learner	: use library books, E- books, motivate student to prepare for	
	higher study.	
# For slow learner	: special care taken, motivate the advanced learner to support	
	the slow learner to study. To attend the remedial classes.	
# Extension activity	: Motivate student to take classes for school students.	

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2016-2017)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Nuclear and Particle Physics	
Course Code	KPHM43	
Class	IIyear (2016-2017)	
Semester	Even	
Staff Name	C.Stella Rani	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➤ .To understand about the nuclear forces in the deutron
- \succ To study the nuclear decays
- > To understand the nuclear models
- > To learn about the nuclear reactions

Syllabus

Nuclear and Particle Physics

UnitI

Nuclear Forces

Ground and excited states of deuteron – magnetic dipole and electric quadrupole moments of deuteron – n-p scattering at low energies – shape independent effective range theory of np scattering – pp scattering at low energies – exchange forces –meson theory of nuclear force.

Unit II

NuclearDecays

Gamow's theory of alpha decay – lineand Continuous spectrum of β decay-Fermi theory of beta decay – Fermi and Gamow-Teller selection rules – parity violation – Gamma decay – multipole transitions in nuclei – selection rules – internal conversion – nuclear isomerism.

Unit III

Nuclear Model

Liquid drop model – Weizsackers mass formula – nuclear stability – Bohr Wheeler theory of nuclear fission -magic numbers -evidence for magic numbers – shell model – spin orbit coupling – angular momenta and parities of nuclear ground states – magnetic moments - Schmidt line – collective model.

Unit IV

Nuclear Reactions

Types of nuclear reactions – Q-equation – solution of the equation – compound nuclear theory – reciprocity theorem – nuclear cross section – resonance scattering– Breit –Wigner dispersion formula – nuclear chain reaction – four factor formula.

Unit V

Elementary Particles

Classification of elementary particles- fundamental interactions conservations laws – CPT theorem - SU(3) multiplet – meson octet – baryon octet and baryon decouplet – Gellmann-Okubo mass formula - Quark theory.

Books For Study:

- 5. Nuclear Physics, D. C. Tayal, Himalaya Publications
- 6. . 2. Elements of Nuclear Physics, M. C. Pandia and R. P. S. YadavKedarnath.

Books For Reference:

- 1. Concepts of Nuclear Physics, Bernard L Cohen, Tata McGraw-Hill
- 2. Nuclear Physics an Introduction, S. B. Patel, Wiley Eastern Ltd.
- 3. Nuclear Physics, R. R. Roy and B. P. Nigam, New Age International Ltd.

Course Calendar

Hour	Class Schedule	
allotment	Even Semester Begin on 1.12.2016	
1-L1	Ground and excited states of deuteron	
2-L2	magnetic dipole and electric quadrupole moments of deuteron	
2-L2 3- L3	n-p scattering at low energies	
3-L3 4-L4		
4-L4 5-L5	shape independent effective range theory of np scattering pp scattering at low energies	
5-L5 6-L6		
0-L0 7-L7	exchange forces	
	meson theory of nuclear force.	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9-L8	Gamow'stheory of alpha decay	
10- L9	lineand Continuous spectrum of β decay	
11-L10	Fermi theory of beta decay	
12-L11	Fermi and Gamow-Teller selection rules	
13-L12	parity violation	
14-L13	Gamma decay	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins (24.01.2017)	
16-L15	multipole transitions in nuclei	
17-IT-1	Internal Test-I	
18-L16	selection rules	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	internal conversion	
21- L19	nuclear isomerism.	
22- P2	College level meeting/Cell function	
23-L20	Liquid drop model	
24-L21	Weizsackers mass formula	
25-L22	nuclear stability	
26-L23	Bohr Wheeler theory of nuclear fission	
27-L24	magic numbers	
28-L25	evidence for magic numbers	
29-L26	shell model	
30-L27	spin orbit coupling	
31-L28	angular momenta and parities of nuclear ground states	
32-L29	magnetic moments	
33-L30	Schmidt line	
34- P3	Department Seminar	

35-L31	collective model.	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (24.02.2017)	
37- L33	Types of nuclear reactions	
38- IT-II	Internal Test-II	
39-L34	Q-equation	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	solution of the equation	
42- L37	compound nuclear theory	
43- L38	reciprocity theorem, nuclear cross section resonance scattering Breit	
44- P4	College level meeting/ function	
45-L39	Wigner dispersion formula nuclear chain reaction, four factor formula.	
46-L40	Classification of elementary particles	
47-L41	fundamental interactions conservations laws	
48-L42	CPT theorem, SU(3) multiplet	
49-L43	meson octet – baryon octet and baryon decouplet	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins	
51 L45	Gellmann-Okubo mass formula, Quark theory.	
52- L46		
53-IT-III	Internal Test-III	
54-L47		
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (05.04.217)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 21.04.2017	

Learning Outcomes	COs of the course "Nuclear and Particle Physics"
C01	Magnetic dipole and electric quadrupole moments of deuteron
CO2	Fermi theory of Beta decay
CO3	Fermi and gamow teller selection rules
CO4	Gamma decay
CO5	Multipole transistions in nuclei
CO6	Solution of the equation
CO7	Compound nuclear theory
CO8	Baryon octet and baryon decouplet
CO9	Gellmann – Okubo mass formula

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2017-2018)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Integrated Electronics	
Course Code	KPHM13	
Class	I year (2017-2018)	
Semester	Odd	
Staff Name	C.Stella Rani	
Credits	4	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To understand different types of electronic devices and preparation of IC
- To discuss logical families in the digital electronics and study the counters and registers
- > To describe the application of operational amplifier in the different field
- > To study the various electronics instrumentation through basics of science

Syllabus

Integrated Electronics

Unit I

Devices, Applications and Integrated Circuits

FET-Types of FET-Characteristics and applications of FET, MOSFET- SCR, DIAC, TRIAC-High frequency device-Inegrated Circuits-IC Fabrication Technology - Steps in Fabrication - Integrated Resistors and Capacitors-VLSI Technology.

Unit II

Digital Electronics

Logic Families - DTL, RTL, TTL, ECL, I2L, CMOS, NMOS and PMOS - DTL type AND, OR, NAND and NOR gates - RTL and TTL type NAND - CMOS NOR and CMOS NAND - Flip Flops: RS-RST-D- JK- JK Master/Slave- Asynchronous Counters and Synchronous Counters - Registers.

Unit III

OP AMP and Applications

Characteristics and Parameters -DC Analysis of IC OP AMP- Applications of OP AMP - Instrumentation amplifier -Sample and Hold System- Analog Multiplexer -Integrator - Differentiator- Design of Analog circuits for the solution of Simultaneous and Differential Equations- Filters: First and Second order LOW, HIGH and BAND pass filters.

Unit IV

Timer, VCO, PLL, and Applications

Timer-555 Timer IC-Internal Architecture and Working-Modes of Operation: Monostable and Astable operation- Applications-Voltage Control Oscillator - IC 566-PLL Concept-PLL IC 565 - Application- Frequency multiplexer - FSK Modulation and Demodulation.

Unit V

Electronic Measurement and Control

Sensors and Transducers - Measurement and Control - Signal Conditioning and Recovery -Impedance Matching - Amplification (OP Amp based Feedback Amp, Instrumentation Amp) - Noise and Noise Sources -Filtering and Noise Reduction -Shielding and Grounding - Fourier Transform - Lock- in Detector/Amplifier - Box-Car Integrator or Averager - Modulation Techniques.

Books for Study:

1. Integrated Electronics Analog and Digital Circuits and Systems, Second Edition, Jacob Millman, Christos C Halkias, Chetan Parikh, Tata McGraw Hill Education Private Limited, NewDelhi.

2. Analog and Digital Electronics, U.A. Bakshi, A.P.Godse, Technical Publications, Pune.

Books for Reference :

1. Introduction to Semiconductor Devices M.S.Tyagi, John Wiley and Sons.

2. Electronic instrumentation, P.P.L. Regtien, VSSD Publications, 2005

Hour	Class Schedule	
allotment	Odd Semester Begin on 16.06.2017	
1-L1	FET-Types of FET-Characteristics and applications of FET	
2-L2	MOSFET	
3- L3	SCR, DIAC, TRIAC	
4-L4	High frequency device	
5-L5	Inegrated Circuits	
6-L6	IC Fabrication Technology	
7-L7	Steps in Fabrication	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Integrated Resistors and Capacitors	
10- L9	VLSI Technology	
11-L10	Logic Families - DTL, RTL, TTL&ECL	
12-L11	I2L,CMOS,NMOS and PMOS	
13-L12	DTL type AND, OR, NAND & NOR gates	
14-L13	RTL and TTL type NAND - CMOS NOR and CMOS NAND	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins (31.07.2017)	
16-L15	Flip Flops: RS-RST-D	
17-IT-1	Internal Test-I	
18-L16	JK- JK Master/Slave	
19-L17	Test Paper distribution and result analysis	
20-L18	Entering Internal Test-I Marks into University portal Asynchronous Counters and Synchronous Counters	
20-L18 21- L19	Registers	
21- E17 22- P2	College level meeting/Cell function	
23-L20	Characteristics and Parameters	
24-L21	DC Analysis of IC OPAMP	
25-L22	Applications of OP AMP	
26-L23	Instrumentation amplifier	
27-L24	Sample and Hold System	
28-L25	Analog Multiplexer, Integrator	
29-L26	Differentiator	
30-L27	Design of Analog circuits for the solution of Simultaneous and Differential	
-	Equations	
31-L28	Filters: First and Second order LOW, HIGH and BAND pass filters	
32-L29	Timer-555 Timer IC-Internal Architecture and Working	
33-L30	Modes of Operation: Monostable and Astable operation	
34- P3	Department Seminar	
35-L31	Applications-Voltage Control Oscillator	
36-L32	Allotting portion for Internal Test-II	
27 1 22	Internal Test II begins (30.08.2017)	
37- L33 38- IT-II	IC 566-PLL Concept Internal Test-II	
38-11-11 39-L34	PLL IC 565	
39-L34 40-L35	Test Paper distribution and result analysis	
40-L33	rest raper distribution and result analysis	

	Entering Internal Test-II Marks into University portal	
41-L36	Application- Frequency multiplexer	
42- L37	FSK Modulation and Demodulation	
43- L38	Sensors and Transducers	
44- P4	College level meeting/ function	
45-L39	Measurement and Control	
46-L40	Signal Conditioning and Recovery	
47-L41	Impedance Matching, Noise and Noise Sources	
48-L42	Amplification (OP Amp based Feedback Amp, Instrumentation Amp)	
49-L43	Filtering and Noise Reduction, Shielding and Grounding -	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (03.10.2017)	
51 L45	Fourier Transform, Lock- in Detector/Amplifier	
52- L46	Box-Car Integrator or Averager - Modulation Techniques	
53-IT-III	Internal Test-III	
54-L47		
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (19.10.2017)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 6.11.2017	

Learning Outcomes		
	COs of the course "Integrated Electronics"	
CO1	Explain the principle of integrated circuit and its advancement	
CO2	Understand the applications of gates in the various fields	
CO3	3 Know the values of integrated circuit in the development of	
	engineering field	
CO4	Operate the electronic instrumentation	
Experimental		
Learning		
EL1	Solve the problems by constructing the circuit using Op-amp	
EL2	Design a circuit using various IC	
Integrated Activity		
IA1	Construction of new circuits using chips	
IA2	2 Achievements of Electronics in the New era	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2017-2018)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Nonlinear Dynamics	
Course Code	PPHE11	
Class	I year	
Semester	ODD	
Staff Name	G.GOMATHI SANKARI	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- Designed to provide an introduction to the theory and basic concepts of Nonlinear Dynamics and Chaos.
- The course concentrates on simple models of dynamical systems, their relevance to natural phenomena.
- The main goal of the course is to introduce and describe nonlinear phenomena in physical systems by only using a minimum background in physics and Physics
- The emphasis is on nonlinear phenomena that may be described by few variables that evolve with time

Syllabus

Nonlinear Dynamics

UNIT I

Nonlinearity, linear and nonlinear oscillators

Dynamical systems-linear and nonlinear forces-Mathematical implications of nonlinearlty- Working definition of nonlinearity-Effects of nonlinearity-Linear oscillators and predictability- Damped and driven nonlinear oscillators.

UNIT II

Equilibrium points, bifurcations and chaos

Equilibrium points-General criteria for stability-Classification-Some simple bifurcations -Saddle node, pitch fork, transcritical and Hopf bifurcations-Discrete dynamical systems-Logistic map-Equilibrium points and their stability-period doubling phenomenon-chaos.

UNIT III

Chaos in nonlinear electronic circuits

Linear and nonlinear circuit elements-nonlinear circuits-Chua's diode-Autonomous case-Bifurcations and chaos-Chaotic dynamics of MLC circuit-Analogue circuit simulation-Some other useful nonlinear circuit - Colpitt's oscillator.

UNIT IV

Fractals

Self similarity-Properties and examples of fractals-Fractal dimension-Construction and properties of some fractals-Middle one third cantor set-Koch curve-Sierpinski triangle-Julia set-Mandelbrot set-Applications of fractals.

UNIT V

Solitons

Linear waves-Linear non dispersive wave propagation-Linear dispersive wave propagation-Nonlinear dispersive systems-Korteweg de vries equation- solitary and cnoidal waves-Numerical experiments of Zabusky and Kruskal-birth of solitons—Properties of solitons-applications of solitons.

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.6.2017
1-L1	Nonlinearity, linear and nonlinear oscillators
2-L2	Dynamical systems
3- L3	linear and nonlinear forces
4-L4	Mathematical implications of nonlinearlty-
5-L5	Working definition of nonlinearity-
6-L6	Effects of nonlinearity-
7-L7	Linear oscillators
8- P1	Physics Association
9- L8	predictability

10- L9	Damped and driven nonlinear- oscillators.	
11-L10	Revision for Dynamical system	
12-L11	Solved problem	
13-L12	Previous Question discussion	
14-L13	Equilibrium points, bifurcations and chaos	
15-L14	Equilibrium points	
16-L15	General criteria for stability-Classification	
17- L16	some simple bifurcations -Saddle node, pitch fork,	
18- L17	Transcritical and Hopf bifurcations-	
19- L18	Discrete dynamical systems	
20- L19	Logistic map	
21- L20	Allotting portion for Internal Test-I	
	Internal Test I begins(31.07.17)	
22- L21	Equilibrium points and their stability	
23- IT-1	Internal Test-I	
24- L22	period doubling phenomenon	
25- L23	chaos.	
26- L24	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
27- L25	Revision for Pitchfork bifurcation	
28- L26	Hopf Bifurcation	
29- L27	Discuss the dynamical system	
30- P2	College level meeting/Cell function	
31-L28	Worked Exercise problem	
32-L29	Previous question discussion	
33-L30	Chaos in nonlinear electronic circuits	
34- L31	Linear and nonlinear circuit	
35- L32	elements-nonlinear circuits	
36- L33	Chua's diode	
37- L34	Autonomous case-Bifurcations and chaos	
38-L35	Analogue circuit simulation-	
39- L36	Chaotic dynamics of MLC circuit	
40- L37	Some other useful nonlinear circuit	
41- L38	Colpitt's oscillator	
42-P3	Department Seminar	
43- L39	Fractals	
44- L40	Self similarity	
45- L41	Properties and examples of fractals	
46- L42	Fractal dimension	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins(30.08.17)	
48- L44	Construction and properties of some fractals	

49-IT-II	Internal Test-II	
50-L45	Middle one third cantor set	
51- L46	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	Koch curve	
53- L48	Julia set	
54- L49	Applications of fractals	
55- L50	Sierpinski triangle	
56- L51	Mandelbrot set	
57- L52	Introduction to Solitons.	
58- L53	Linear waves-Linear non dispersive wave propagation	
59-P4	College level meeting/ function	
60- L54	Linear dispersive wave propagation	
61- L55	Nonlinear dispersive systems	
62- L56	-Korteweg de vries equation	
63- L57	solitary and cnoidal waves	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins(03.10.17)	
65- L59	Numerical experiments of Zabusky and Kruskal	
66- L60	birth of solitons	
67-IT-III	Internal Test-III	
68- L61	Properties of solitons	
69- L62	applications of solitons	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
71-MT	Model Test(17.10.17)	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 6.11.2017	

Learning Outcomes	COs of the course "Nonlinear Dynamics"
CO1	Students will be able to analyze the behavior of dynamical systems
	expressed as either a discrete-time mapping or a continuous-time flow
CO2	Students will be able to apply the techniques of nonlinear dynamics to
	physical processes drawn from a variety of scientific and engineering
	disciplines

CO3	Students will be able to analyze changes (i.e. bifurcations) to dynamical
	systems as system parameters are varied.
CO4	
	dynamics and synthesize this work into coherent written and oral
	presentations.
CO5	Draw bifurcation diagrams and stability diagrams. For two-
003	Draw bifurcation diagrams and stability diagrams. For two- dimensional systems,.
	diffensionals ystems,.
C06	The student is able to draw phase portraits and find basins of attraction.
C07	The student is able to analyze limit cycles and their stability
CO8	The student has basic knowledge of the most important fractals, and their
	topological and metric properties
CO9	The students will improve their communication skills by solving
	problems on the blackboard and training in solving nonlinear problems
	using numerical methods.
Experimental	
Learning	
EL1	Describing the nonlinear system using a linear model
EL2	Representing the nonlinear system in a series expansion, and obtaining
	the respective coefficients either by using a regression estimation
	technique,
EL3	By minimizing a cost functional, by using correlation techniques
EL4	obtaining a graphical representation of the nonlinear term(s), then finding
	an analytical model for the nonlinearity
Integrated Activity	
IA1	The network must integrate the torques to obtain the angular velocities
	which in turn must be integrated for the angles
IA2	Learning these dynamics is difficult due to these sequential integrations
	involving non-linear functions of the state variables and the input

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for
	higher study.
# For slow learner	: special care taken, motivate the advanced learner to support
	the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN(2017-2018)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Classical Mechanics	
Course Code	PPHM11	
Class	I year (2017-2018)	
Semester	Odd	
Staff Name	J Ruby Jemima	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To expose the students to the idea of the fundamental principle
- > To learn the Lagrangian formulations
- > To study the rigid body dynamics
- > To derive the Hamilton's equations
- > To calculate the Principle of least action
- > To discuss the postulates of special theory of relativity

Syllabus

Classical Mechanics

UNIT I

Mechanics of a particle and a system of particles Conservation laws-Constraints Generalised coordinates Principle of virtual work-D'Alembert's Principle and Lagrange's equations Applications of Lagrange's equations Hamilton's principle-Lagrange's equation from Hamilton's principle-examples Conservation theorems and symmetry properties Motion under central force-General feature Differential equation for the orbit and classification of orbits Kepler problem-Scattering in a central force field Rutherford scattering

UNIT II

Mechanics of a rigid body-Displacement of a rigid body Orthogonal transformation Infinitesimal rotation-coriolis effect Kinematics of a rigid body Kinetic energy of a rigid body-Euler's equation of motion Torque free motion-Spinning top. Oscillatary motion: Theory of small oscillations-Periodic motion Frequencies of vibration and normal modes-Linear tri atomic molecules

UNIT III

Hamilton's equation from variational principle Principle of least actionapplicationLegendre transformations Lagrange and Poisson brackets Equation of motion and conservation theorms in Poisson brackets. Hamilton-Jacobi method-application to harmonic oscillator Hamilton's Characteristic function-separation of variables Action angle variableskepler problem in action angle variable.

UNIT IV

Linear, nonlinear systems-Integration of linear equation Quadrature method-Integration of nonlinear second order equation Pendulum equation Phase curve of simple harmonic oscillator Phase portrait of the pendulum Bifurcation in Logistic map-attractors Universality of chaos Routes to chaos Quasi periodicity-Intermittency Crises

UNIT V

Postualtes of special theory of relativity Lorentz transformation equation Variation of masss with velocity Evaluation of inverse LT by convolution theorem Relativistic Lagrangian and Hamiltonian Kinematic effects of Lorentz transformation Minkowski's splace Four vectors Covariant four dimensional formulation of the law of mechanics Covariance of Maxwellfield equations under Lorentz transformation. Phase plane analysis of dynamical systems Canonical transformations Lyapunov exponent and chaos Period doubling Moments and products of inertia Eulerian angles

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 16.06.2017	
1-L1	Mechanics of a particle and a system of particles	
2-L2	Conservation laws-Constraints	
3- L3	Generalised coordinates	
4-L4	Principle of virtual work-D'Alembert's Principle and Lagrange's equations	
5-L5	Applications of Lagrange's equations	
6-L6	Hamilton's principle-Lagrange's equation from Hamilton's principle-examples	
7-L7	Conservation theorems and symmetry properties	
8- P1	Welcoming of First year and Inauguration of Physics Association	

Notion under control terce (Concred testure
Motion under central force-General feature
Differential equation for the orbit and classification of orbits
Kepler problem-Scattering in a central force field
Rutherford scattering
Mechanics of a rigid body-Displacement of a rigid body
Orthogonal transformation
Infinitesimal rotation-coriolis effect
Kinematics of a rigid body
Kinetic energy of a rigid body-Euler's equation of motion
Torque free motion-Spinning top.
Oscillatary motion: Theory of small oscillations-Periodic motion Frequencies of vibration and normal modes-Linear tri atomic molecules
Allotting portion for Internal Test-I
Internal Test I begins(31.07.17) Hamilton's equation from variational principle
Internal Test-I
Principle of least action-application
Legendre transformations
Test Paper distribution and result analysis
Entering Internal Test-I Marks into University portal
Lagrange and Poisson brackets
Equation of motion and conservation theorems in Poisson brackets.
Hamilton-Jacobi method-application to harmonic oscillator
College level meeting/Cell function
Hamilton's Characteristic function-separation of variables
Action angle variables-kepler problem in action angle variable.
Linear, nonlinear systems-Integration of linear equation
Quadrature method-Integration of nonlinear second order equation
Pendulum equation
Phase curve of simple harmonic oscillator
Phase portrait of the pendulum
Bifurcation in Logistic map-attractors
Universality of chaos
Routes to chaos
Quasi periodicity-Intermittency
Department Seminar
Crises
Postuates of special theory of relativity
Lorentz transformation equation
Variation of masss with velocity
Allotting portion for Internal Test-II
Internal Test II begins(30.08.17)
Evaluation of inverse LT by convolution theorem
Internal Test-II
Equivalence of mass and energy
Test Paper distribution and result analysis
Entering Internal Test-II Marks into University portal
Relativistic Lagrangian and Hamiltonian

53- L48	Kinematic effects of Lorentz transformation	
54- L49	Minkowski's splace	
55- L50	Four vectors	
56- L51	Covariant four dimensional formulation of the law of mechanics	
57- L52	Covariance of Maxwellfield equations under Lorentz transformation.	
58- L53	Phase plane analysis of dynamical systems	
59-P4	College level meeting/ function	
60- L54	Canonical transformations	
61- L55	Lyapunov exponent and chaos	
62- L56	Period doubling	
63- L57	Moments and products of inertia	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins(03.10.17)	
65- L59	Eulerian angles	
66- L60	Revision	
67-IT-III	Internal Test-III	
68- L61	Revision	
69- L62	Revision	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
71-MT	Model Test(17.10.17)	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 6.11.2017	

Learning Outcomes	COs of the course "Classical Mechanics"
CO1	Derivate the D'Alembert's principle
CO2	Classification of orbits and and differential equation
CO3	Discuss the kepler problem
CO4	To study the Rutherford scattering
CO5	Design the bifuration in logistic map
CO6	Derive the phase curve of simple hormonic oscillator
CO7	To learn the Maxwell equation
CO8	Explain the lorenz transformation
CO9	Explore the integration of nonlinear second order equation.
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2017-2018)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Mathematical physics I	
Course Code	PPHM12	
Class	I year (2017-2018)	
Semester	Odd	
Staff Name	E.Christy Jerin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To acquire the knowledge about the vector analysis.
- > To identify the eigen value /eigen vector of the matrix. .
- > To study the differentiation and integration of matrices.
- \succ To derive the polynomials.
- > To calculate the laplace integral transform.
- > To explain the convolution theorm.
- > To calculate the Fourier integral transform.

Mathematical physics I

UNIT I

Gauss divergence theorem. Deduction from Gauss divergence theorem. Green's theorem in a plane. Classification of vector fields

UNIT II

Eigen values, Eigen vectors . Charecteristic equation of matrix. Cayley Hamilton theorem. Some Important theorems of eigen value and eigen vectors Diagonalisation of matrices Differentiation and integration of matrices. Power of matrices. Exponential of a matrix Matrices in physics

UNIT III

Bessel differential equation Bessel 's function of I kind Generating function Recurrence relations Laguarre's differential equation. Laguerie polynomial. Generating function Recurrence relations

UNIT IV

Introduction Fourier's transform(FT) Properities of FT-FT of a derivative Fourier sin and cosine transforms of derivatives FT of function of function of two or three variables Finite FT Simple applications of FT

UNIT V

Laplace Transform(LT) Properties of LT LT of derivation of a function L T of periodic functions Properties of inverse LT LT of derivation of a function L T of periodic functions Properties of inverse LT Convolution theorem Evaluation of inverse LT by convolution theorem Application of LT

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.06.2017
1-L1	Gauss divergence theorem.
2-L2	Deduction from Gauss divergence theorem.
3- L3	Green's theorem.
4-L4	Green's theorem in a plane.
5-L5	Classification of vector fields
6-L6	Eigen values, Eigen vectors.
7-L7	Charecteristic equation of matrix.
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Cayley Hamilton theorem.
10- L9	Some Important theorems of eigen value and eigen vectors
11-L10	Some important theorems of eigen value and eigen vectors.
	Diagonalisation of matrices
13-L12	Differentiation and integration of matrices.
14-L13	Power of matrices.
15-L14	Exponential of a matrix
16-L15	Matrices in physics
17- L16	Bessel differential equation
18- L17	Bessel 's function of I kind
19- L18	Generating function
20- L19	Recurrence relations
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins(31.07.17)
22- L21	Recurrence Relations.
23- IT-1	Internal Test-I
24- L22	Laguarre's differential equation.

25- L23	
26- L24	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
27- L25	Laguerie polynomial.
28- L26	Generating function
29- L27	Recurrence relations
30- P2	College level meeting/Cell function
31-L28	Recurrence relations
32-L29	Recurrence relations.
33-L30	Introduction
34- L31	Fourier's transform(FT)
35- L32	Properities of FT-FT of a derivative
36- L33	Fourier sin and cosine transforms of derivatives
37- L34	FT of function of two or three variables
38-L35	Finite FT
39- L36	Simple applications of FT
40- L37	Laplace Transform(LT)
41- L38	Properties of LT
42-P3	Department Seminar
43- L39	LT of derivation of a function
44- L40	L T of periodic functions
45- L41	Properties of inverse LT
46- L42	Convolution theorem
47- L43	Allotting portion for Internal Test-II
10 X 11	Internal Test II begins(30.08.17)
48- L44	Evaluation of inverse LT by convolution theorem
49-IT-II	Internal Test-II
50-L45	Application of Lt
51- L46	Test Paper distribution and result analysis
50 I 47	Entering Internal Test-II Marks into University portal
52-L47	Laplace Transform(LT)
53- L48 54- L49	Properties of LT LT of a function of a function
55- L50	LT of periodic functions
56- L50	Properties of inverse LT
57- L52	Convolution theorem
57-L52 58-L53	Evaluation of inverse LT by convolution theorem
59-P4	College level meeting/ function
60- L54	Application of LT
61- L55	Eigen values: Eigen Vector
62- L56	Characteristic equation of matrix
63- L57	Cayley Hamilton theorem
64- L58	Allotting portion for Internal Test-III
-	Internal Test III begins(03.10.17)
65- L59	Some important theorem
66- L60	Diagonalisation of matrices
67-IT-III	Internal Test-III
	Differentiation and integration of matrices

69- L62	Power of matrices
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
71-MT	Model Test(17.10.17)
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 6.11.2017

Learning Outcomes	COs of the course "Mathematical physics I"
CO1	Explain the classification of vector field.
CO2	Determine the eigen value and eigen vector of the characteristic
	equation of matrix.
CO3	Design the recurrence relation.
CO4	Determine the fourier transform for a given function
CO5	Explain about the convolution theorem.
CO6	Explain the properities of fourier transform.
CO7	Application of matrix in physics.
CO8	Application of laplace transform.
CO9	Application of fourier transform.

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2017-2018)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Electromagnetic theory	
Course Code	KPHM32	
Class	II year (2017-2018)	
Semester	Odd	
Staff Name	E. Christy jerin	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > To expose the students to the ideas of fundamental laws.
- > To identify formulate and solve fields and electromagnetic wave propagation.
- > To study the importance of the Boundary conditions.
- > To derive the Reflection and transmission of the Electromagnetic wave.
- > To calculate the electric and magnetic dipole radiation.
- > To acquire the knowledge of Electromagnetic wave propagation.

Syllabus

Electromagnetic theory

UNIT I

Coulomb's Law-Derivation Gauss law in differential and Integral form. Gauss law in differential and Integral form. Poisson's equation and Laplace's equation. Work done to move a point charge. Energy of a point charge and continuous charge distribution. Electric field in dielectric materials. Induced dipoles and polarizability. Connection between polarizability and susceptibility.

UNIT II

Lorentz force law. Biot-Savart law and ampere law - Magnetic vector potential-Expansion of vector potential - Effect of a magnetic field on atomic orbits- Bound current and its physical interpretations- Ampere's law in magnetic material- Dia , para , Ferro Magnetism. Magnetic susceptibility and permeability in linear and non linear media

UNIT III

Electrodynamics Electromagnetic induction- Faraday law- Maxwell's equation differential and integral form. Boundary conditions on field vectors D,E,B and H Scalar and vector potential. Gauge transformations. Lorentz and coulomb gauge. Pointing vector and pointing theorem. Maxwell's stress tensor. Conservation of momentum.

UNIT IV

The wave equation for A and B-Mono chromatic plane waves Reflection and transmission at normal Incidence Reflection and transmission at oblique Incidence. EM waves in conductor wave guide. The coaxial transmission line.

UNIT V

Retarded Potential. Lenard – wiechart potential. Electric dipole radiation. Magnetic dipole radiation. And derivation. Larmour formula definition. And derivation. Abraham Lorentz formula for the radiation reaction. Physical origin of radiation reaction

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 16.06.2017	
1-L1	Coulomb's Law-Derivation.	
2-L2	Gauss law in differential and Integral form.	
3- L3	Gauss law in differential and Integral form.	
4-L4	Poisson's equation and Laplace's equation.	
5-L5	Work done to move a point charge.	
6-L6	Energy of a point charge and continuous charge distribution.	
7-L7	Energy of a point charge and continuous charge distribution.	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Electric field in dielectric materials.	
10- L9	Induced dipoles and polarizability.	
11-L10	Connection between polarizability and susceptibility.	
12-L11	Connection between polarizability and susceptibility.	
13-L12	Lorentz force law.	
14-L13	Biot-Savart law	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins (30.07.2017)	
16-L15	Magnetic vector potential.	
17-IT-1	Internal Test-I	

18-L16	Effect of a magnetic field on atomic orbits.	
10 L10 19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Dia , para , Ferro Magnetism.	
20 L10 21- L19	Magnetic susceptibility and permeability.	
22- P2	College level meeting/Cell function	
23-L20	Maxwell's equation differential and integral form.	
24-L21	Maxwell's equation differential and integral form.	
25-L22	Boundary conditions on field vectors	
26-L23	D.E.B and H	
27-L24	Scalar and vector potential.	
28-L25	Gauge transformations.	
29-L26	Lorentz and coulomb gauge.	
30-L27	Pointing vector and pointing theorem.	
31-L28	Maxwell's stress tensor.	
32-L29	Conservation of momentum.	
33-L30	Mono chromatic plane waves	
34- P3	Department Seminar	
35-L31	Reflection and transmission at normal Incidence.	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (30.08.2017)	
37- L33	Reflection and transmission at oblique Incidence.	
38- IT-II	Internal Test-II	
39-L34	EM waves in conductor wave guide.	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	The coaxial transmission line.	
42- L37	Retarded Potential.	
43- L38	Lenard – wiechart potential.	
44- P4	College level meeting/ function	
45-L39	Electric dipole radiation.	
46-L40	Magnetic dipole radiation.	
47-L41	And derivation.	
48-L42	Larmour formula definition.	
49-L43	And derivation.	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (03.10.2017)	
51 L45	Abraham Lorentz formula for the radiation reaction.	
52- L46	Physical origin of radiation reaction.	
53-IT-III	Internal Test-III	
54-L47		
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (19.10.2017)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	

60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 06.11.2017

Learning Outcomes	COs of the course "Electromagnetic theory"
CO1	Explain the fundamental laws governing electromagnetic fields.
CO2	Determine the electromagnetic force exerted on charged particles,
	current elements, working priniciple of various electric and EMT
	conversion devices are based on this force.
CO3	Design maxwell's equation and Boundary condition.
CO4	Deduce the Reflection and Transmission wave equation
CO5	Derive the Pointing Theorem.
CO6	Design Larmour formula.
CO7	Reduce the gauge transformation .
CO8	Calculate magnetic vector potential
CO9	To derive the basic laws.

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2017-2018)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Statistical Mechanics	
Course Code	KPHM33	
Class	II year (2017-2018)	
Semester	Odd	
Staff Name	C.Stella Rani	
Credits	4	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To introduce the basic concepts of statistical mechanics
- > To import the knowledge of Maxwell Boltzmann distribution
- > To describe the quantum mechanical view of the statistics
- > To explain the Black body radiation
- > To determines the thermal properties of Bose Einstein statistics

Syllabus

Statistical Mechanics

$L \ T \ P \ C$

Preamble:

The basic concepts involved in statistical mechanics, classical and quantum statistics, applications of quantum statistics, phase transition in certain physical problems is expected to study. The theory of statistics and quantum ideas are prerequisites. Postulates of quantum mechanics, Maxwell-Boltzmann distribution law, theory and applications of quantum statistics are studied.

Unit I

Basic concepts

Phase space-phase-space diagram of an oscillator-Volume in phase space-EnsemblesMicrocanonical ensemble-Canonical ensemble-Grand canonical ensemble-Density of distribution in phase space-Liouvilles theorem-Postulate of equal a priori probabilitystatistical, mechanical and thermal equilibriums-connection between statistical and thermodynamical quantities. (11 L)

Unit II

M-B Distribution law

Microstates and macro states-Stirling's approximation-Thermodynamic probabilityGeneral statistical distribution law-Classical Maxwell-Boltzmann distribution law-Evaluation of constants in the Maxwell Boltzmann distribution law-Maxwell's law of distribution of velocitiesprinciple of equipartition of energy- Boltzmann entropy relation-Probability of magnetic moment distribution of independent atoms. (13 L)

Unit III

Quantum statistics

Postulatory foundations of quantum mechanics-Transition from classical statistical mechanics to quantum statistical mechanics-Indistinguishability and quantum statistics-Exchange symmetry of wave functions-Bose-Einstein Statistics-Fermi-Dirac statistics-Maxwell-Boltzmann statistics-Results of three statistics-Thermodynamic interpretation of the parameters α and β -Black body radiation and the Planck radiation law. (12 L)

Unit IV

Applications of quantum statistics

Specific heat of solids-Dulong and Petit law-Einstein theory of specific heat of solidsDebye theory of specific heat of solids-Criticism of Debye's theory-Ideal Bose Einstein GasEnergy and pressure of the Gas-Gas degeneracy-Bose-Einstein Condensation-Thermal properties of Bose Einstein Gas-Ideal Fermi Dirac gas- Energy and pressure of the Gas-Thermodynamics functions of degenerate Fermi-Dirac gas-Electron Gas. (14 L)

Unit V

Phase transitions

Phase transition-Phase transitions of first and second kind-critical exponent-Yang and Lee theory-Phase transitions of second kind: the Ising model-Braggs-Williams approximation-One dimensional Ising model. (10 L) Total (60 L)

Book for Study:

1.ElementarystatisticalMechanicsDr.S.L.Gupta&Dr.V.Kumar,PragatiPrakasan,Meerut22nd Edition2008

Books for Reference:

1. Fundamentals of statistical mechanics B B Laud New age international Publishers 2005

2. An Introductory course of Statistical Mechanics PalashB.PalNarosa First reprint 2009

3. Statistical Mechanics by Kerson Huang 4. Statistical Mechnics by Sears and Salinger.

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.06.2017
1-L1	Phase Space
2-L2	Phase-space diagram of an oscillator
3- L3	Volume in phase space
4-L4	Ensembles Microcanonical ensemble
5-L5	Canonical ensemble
6-L6	Grand canonical ensemble
7-L7	Density of distribution in phase space
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Liouvilles theorem
10- L9	Postulate of equal a priori probability
11-L10	Statistical, mechanical and thermal equilibriums
12-L11	Connection between statistical and thermodynamical quantities.
13-L12	Microstates and macro states
14-L13	Stirling's approximation
15-L14	Allotting portion for Internal Test-I

	Internal Test I begins (31.07.2017)
16-L15	Thermodynamic probabilityGeneral statistical distribution law
10-L15 17-IT-1	Internal Test-I
18-L16	Boltzmann distribution law
19-L17	Test Paper distribution and result analysis
19-L17	Entering Internal Test-I Marks into University portal
20-L18	Evaluation of constants in the Maxwell Boltzmann distribution law
20-L18 21- L19	Maxwell's law of distribution of velocitiesprinciple of equipartition of energy
21- L19 22- P2	
22- F2 23-L20	College level meeting/Cell function Boltzmann entropy relation
23-L20 24-L21	
24-L21 25-L22	Probability of magnetic moment distribution of independent atoms.
	Postulatory foundations of quantum mechanicsTransition from classical statistical mechanics to quantum statistical mechanics
26-L23	
27-L24	Indistinguishability and quantum statistics
28-L25	Exchange symmetry of wave functions
29-L26	Bose-Einstein Statistics
30-L27	Fermi-Dirac statistics
31-L28	Maxwell-Boltzmann statistics
32-L29	Results of three statistics, Thermodynamic interpretation of the parameters $\alpha \& \beta$
33-L30	Black body radiation and the Planck radiation law.
34- P3	Department Seminar
35-L31	Specific heat of solids
36-L32	Allotting portion for Internal Test-II
27.1.22	Internal Test II begins (30.08.2017)
37-L33	Dulong and Petit law
38- IT-II	Internal Test-II
39-L34	Einstein theory of specific heat of solids
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Debye theory of specific heat of solids
42- L37	Criticism of Debye's theory
43- L38	Ideal Bose Einstein Gas, Energy and pressure of the Gas degeneracy
44- P4	College level meeting/ function
45-L39	Bose-Einstein Condensation ,Thermal properties of Bose Einstein Gas-
46-L40	Ideal Fermi Dirac gas, Energy and pressure of the Gas
47-L41	Thermodynamics functions of degenerate Fermi-Dirac gas-Electron Gas.
48-L42	Phase transition, Phase transitions of first and second kind
49-L43	critical exponent, Yang and Lee theory
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins (03.10.2017)
51 L45	Phase transitions of second kind: the Ising model-Braggs-Williams
	approximation,One dimensional Ising model
52- L46	
53-IT-III	Internal Test-III
54-L47	
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
56- MT	Model Test (19.10.2017)

57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 06.11.2017

Learning Outcomes	COs of the course "Statistical Mechanics"
CO1	Derive the density of states
CO2	Determine the Maxwell Boltzmann distribution velocities
CO3	Define Microstates and macro states
CO4	Application to the Black body distribution
CO5	Analogy between statistical and thermo dynamical quantities
CO6	Determine the specific heat of solids
CO7	Difference between three statistics
CO8	Finding the condensation of Bose - Einstein
CO9	Knowledge about Electron gas
Experimental	
Learning	
EL1	Phase transitions of first and second kind
Integrated Activity	
IA1	Yang and Lee theory
IA2	Stirling's approximation

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2017-2018)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Quantum Mechanics-I	
Course Code	PPHM31	
Class	II year (2017-2018)	
Semester	Odd	
Staff Name	Dr. J. Ruby Jemima	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > This course imparts knowledge about wave functions and schrodinger equations and matrix mechanics.
- Heisenberg uncertainty principle and different operators and certain solvable systems and various pictures involved in quantum mechanics.
- ➢ Basics of quantum mechanics are essential.
- Methods of solving some microscopic problems using quantum mechanical ideas are studied.

Syllabus

QUANTUM MECHANICS I

Unit I :

Schrodinger equation and wave function

Introduction – Construction of Schrodinger equation – Solution of time dependent equation – Physical interpretation of – Conditions on allowed wave functions - Box normalization – Conservation of probability – Expectation value –Ehrenfest's theorem – Verification of Ehrenfest's theorem – Linear harmonic oscillator – particle in an infinite square well potential – Particle in a magnetic field.

Unit II :

Heisenberg Uncertainty Principle and Operators

Classical uncertainty relation –Heisenberg uncertainty relation – Implication of uncertainty relation – Illustration of uncertainty relation – Gamma-Ray microscope – Doppler effect. Operators, Eigen values and Eigen functions: Linear operators, commuting and noncommuting operators – Self-ad joint and Hermitian operator – Discrete and continuous eigenvalues.

Unit III:

Exactly solvable systems

Bound states – Classical probability distribution – linear harmonic oscillator – Particle in a box – Poschl-Teller potentials – Quantum pendulum – Time dependent harmonic oscillator – Rigid rotator.

Unit IV:

Matrix Mechanics

Linear vector space – Matrix representation of operators and wave functions – Unitary transformation – Schrodinger equation and other quantities in matrix form – Application of matrix mechanics – Dirac's Bra and Ket notations – Properties of bra and ket vectors – Hilbert space.

Unit V:

Various Pictures and Density matrix

Schrodinger picture – Heisenberg picture – Interaction picture – Density matrix for a single system – Density matrix of an ensemble – Time evolution of density operator – A spin ½

Hour	Class Schedule
allotment	
	Odd Semester Begin on 16.06.2017
1-L1	Introduction :Construction of Schrodinger equation
2-L2	Solution of time dependent equation
3- L3	Physical interpretation of chi*chi
4-L4	Conditions on allowed wave functions
5-L5	Box normalization
6-L6	Conservation of probability
7-L7	Expectation value
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Ehrenfest's theorem& Verification of Ehrenfest's theorem
10- L9	Linear harmonic oscillator
11-L10	particle in an infinite square well potential

12-L11	Particle in a magnetic field	
13-L12	Classical uncertainty relation	
14-L13	Heisenberg uncertainty relation	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins (31.07.2017)	
16-L15	Implication of uncertainty relation	
17-IT-1	Internal Test-I	
18-L16	Illustration of uncertainty relation	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Gamma-Ray microscope	
21- L19	Doppler effect	
22- P2	College level meeting/Cell function	
23-L20	Operators, Eigen values and Eigen functions: Linear operators, commuting and non-	
	commuting operators	
24-L21	Self-ad joint and Hermitian operator	
25-L22	Discrete and continuous eigen values	
26-L23	Bound states	
27-L24	Classical probability distribution	
28-L25	linear harmonic oscillator	
29-L26	Particle in a box	
30-L27	Poschl-Teller potentials	
31-L28	Quantum pendulum	
32-L29	Time dependent harmonic oscillator	
33-L30	Rigid rotator	
34- P3	Department Seminar	
35-L31	Linear vector space	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (30.08.2017)	
37- L33	Matrix representation of operators and wave functions	
38- IT-II	Internal Test-II	
39-L34	Unitary transformation	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Schrodinger equation and other quantities in matrix form	
42- L37	Application of matrix mechanics	
43- L38	Dirac's Bra and Ket notations	
44- P4	College level meeting/ function	
45-L39	Properties of bra and ket vectors	
46-L40	Hilbert space	
47-L41	Schrodinger picture	
48-L42	Heisenberg picture	
49-L43	Interaction picture	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (03.10.2017)	
51 L45	Density matrix for a single system & Density matrix of an ensemble	
52- L46	Time evolution of density operator	
53-IT-III	Internal Test-III	

54-L47	A spin ½ system
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
56- MT	Model Test (19.10.2017)
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 06.11.2017

Learning Outcomes	COs of the course "Quantum Mechanics II"
CO1	To construct the schrodinger equation
CO2	To derive the solution of time dependent equation
CO3	To discuss the physical interpretation of wave function
CO4	To described the properties of bra and ket vectors
CO5	To know the Box normalization
CO6	Explain the conservation of probability
CO7	To derive the Dirac's Bra and Ket notations
CO8	To discuss the application of matrix mechanics
CO9	To studied the time evolution of density operator

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
	learning resources, obogie classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2017-2018)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Spectroscopy	
Course Code	PPHM42	
Class	IIyear (2017-2018)	
Semester	Odd	
Staff Name	J Ruby Jemima	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > This course gives detailed knowledge of about various types of spectroscopy.
- The structure of different chemial compounds can be determined by studying these types.
- > To study the simple hormonic oscillator.
- > To know the structure determination uing Raman spectrum.
- > To gain some knowledge of about Raman spectroscopy.
- \succ To expose the students to the idea of the spectroscopy.
- > To know the application of molecular structure.

Syllabus

Unit I

Spectroscopy

Microwave Spectroscopy

Classification of molecules based on moment of inertia – rotational spectra of rigid and non-rigid diatomic molecules – Isotopic effect – linear polyatomic molecule - symmetric topmolecule – chemical analysis – microwave spectrometer. (13 L)

Unit II

Infrared Spectroscopy

Vibrating diatomic and poly-21atomic molecules – Simple harmonic oscillator – anhormonicity – Hydrogen bonding – Fermi resonance – rotation vibration spectra of polyatomic molecule – information from IR spectra – IR spectrometer – FTIR. (14 L)

Unit III

Raman Spectroscopy

Theory of Raman scattering – rotation vibration Raman spectra – mutual exclusion principle – Raman spectrometer – polarization of Raman scattered light – structure determination using Raman spectrum – phase transition – resonance Raman scattering. (12 L)

Unit IV

Resonance Spectroscopy

Magnetic properties of nuclei – resonance condition – relaxation time – Chemical shift –application to molecular structure – Bloch equation – NMR instrumentation – NMR imaging – ESR theory and hyperfine structure ESR spectra of hydrogen atom and anisotropic systems – crystal defects and biological studies – ESR spectrometer. (11 L)

Unit V

Surface spectroscopy

Electron Energy Loss Spectroscopy EELS – Reflection – absorption IR spectroscopy RAIRS – Surface Enhanced Raman Scattering SERS – Inelastic Helium Scattering – X-Ray Photoelectron Spectroscopy XEPS.

Book for Study:

1. N.Banwell and E.M.Mc Cash, Fundamentals of Molecular Spectroscopy, Tata McGraw Hill.

2. G.Aruldhas, Molecular Structure and Spectroscopy, Prentice Hall India.

Book for Reference:

1. B.P.Strughan and S.Walker, Spectroscopy, John Wiley.

- 2. Peter J.Larkin, IR and Raman Spectroscopy Principle and Spectral Interpretation, Elsevier.
- 3. Gordon M. Barrow, Introduction to Molecular Spectroscopy, McGraw-Hill .

Hour allotment	Class Schedule
anotment	Odd Semester Begin on 7.12.2017
1 T 1	
1-L1	Classification of molecules based on moment of inertia
2-L2	Rotational spectra of rigid and non-rigid diatomic molecules
3- L3	Isotopic effect
4-L4	Linear polyatomic molecule
5-L5	Symmetric top molecule

6-L6	Chemical analysis
7-L7	Microwave spectrometer
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Vibrating diatomic and poly-21atomic molecules
10- L9	Simple harmonic oscillator
11-L10	Anhormonicity
12-L11	Hydrogen bonding
13-L12	Fermi resonance
13 L12 14-L13	Rotation vibration spectra of polyatomic molecule
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins (31.07.2017)
16-L15	Information from IR spectra
17-IT-1	Internal Test-I
18-L16	IR spectrometer
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	FTIR
21- L19	Theory of Raman scattering
22- P2	College level meeting/Cell function
23-L20	Rotation vibration Raman spectra
24-L21	Mutual exclusion principle
25-L22	Raman spectrometer
26-L23	Polarization of Raman scattered light
27-L24	Structure determination using Raman spectrum
28-L25	Phase transition
29-L26	Reasonance Raman scattering
30-L27	Magnetic properties of nuclei
31-L28	Relaxation time
32-L29	Chemical shift
33-L30	Application to molecular structure
34- P3	Department Seminar
35-L31	Bloch equation
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins (30.08.2017)
37- L33	NMR instrumentation
38- IT-II	Internal Test-II
39-L34	NMR imaging
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	ESR theory and hyperfine structure ESR spectra of hydrogen atom and
	anisotropic systems
42- L37	Magnetic properties of nuclei
43- L38	ESR spectrometer
44- P4	College level meeting/ function
45-L39	Electron Energy Loss Spectroscopy EELS
46-L40	ESR spectra of free radicals in solution.NQR
47-L41	The Quadrupole nucleus-principle
48-L42	Transitions for axially symmetric systems

49-L43	Transitions for non axially symmetric systems
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins (03.10.2017)
51 L45	NQR instrumentation
52- L46	Revision
53-IT-III	Internal Test-III
54-L47	Revision
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
56- MT	Model Test (19.10.2017)
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.4.2018

Learning Outcomes	COs of the course "Spectroscopy"
CO1	Energy equation for diatomic rotator
CO2	Isotopic effect on energy levels of rotator
CO3	Simple hormonic oscillator and its energy diagram
CO4	Hydrogen Bonding.
CO5	Raman spectrometer
CO6	To know FTIR spectrum.
CO7	To construct the Raman spectrometer.
CO8	To calculate X Ray Photoelectron Spectroscopy XEPS
CO9	To study the ESR spectrometer.
Experimental	
Learning	
EL1	FTIR Spectrum of some sample nanopowders was analysed

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2017-2018)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	NUMERICAL METHODS AND	
	PROGRAMMING IN C++	
Course Code	PPHE21	
Class	I year (2017-2018)	
Semester	EVEN	
Staff Name	G.GOMATHISANKARI	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > The aim is to teach the student various topics in **Numerical Analysis** such as solutions of nonlinear equations in one variable
- > Interpolation and approximation, **numerical** differentiation and integration,
- Direct methods for solving linear systems
- > Numerical solution of ordinary differential equations.

Syllabus

Numerical Methods and Programming in C++

Unit I

Roots of equations and eigen-value problems

Newton-Raphson method. Secant Method. Muller's Method - Lin -Bairstow's Method. Linear Algebraic Equations: Gauss elimination - Gauss-Jordan - Gauss-Jacobi - Inverse of a matrix by Gauss Jordan elimination method.

Unit II

Curve Fitting / Interpolation

Curve fitting: Linear Least square fitting - Nonlinear Fit- Fitting a Polynomial Function, Exponential function - Cubic spline fitting – Interpolation: Fundamental theorem of finite difference, Finite difference interpolation with equally spaced: Newton's forward and backward difference formulae - Unequally spaced: Lagrangian interpolation formula.

Unit III

Numerical differentiation and integration

Numerical Differentiation : Methods based on interpolation: non uniform & uniform nodal points - Methods based on finite differences: forward & backward difference formulae. Numerical Integration: Trapezoidal Rule, Simpson Rule - Monte-Carlo evaluation of integration. Methods based on undetermined coefficients: Gauss-Legendre, Gauss - Lagurre, Gauss - Hermite integration methods.

Unit IV

Solution to ordinary and partial differential equations

Ordinary Differential Equations- Taylor's Series Method- Euler's Method-Euler's modified method - Runge -Kutta 2nd and 4th Order Methods-Predictor- Corrector Methods-Solution to partial differential equations

Unit: V

C++ Programming applications

Programme structure: header files, local, global and static variables, input and output statements; Euler's Method: Charging and discharging of a condenser; Runge-Kutta methods: Radioactive Decay; Newton-Raphson method: Solution van der Waals equation; Gauss elimination method: Currents in Wheatstone's bridge; Linear fitting. - least square method : Cauchy's constant; Simpson's and Monte-Carlo methods : Evaluation of (integral) area under the curve; Eigenvalues and eigenvectors of symmetry matrices; Numerical differentiation: Newton's Law of cooling.

Hour	Class Schedule
allotment	
	Even Semester Begin on 07.12.2017
1-L1	Roots of equations and eigen-value problems

2-L2	Newton-Raphson method. Secant Method	
3- L3	Muller's Method - Lin -Bairstow's Method.	
4-L4	Linear Algebraic Equations	
5-L5	Gauss elimination - Gauss-Jordan	
6-L6	Gauss-Jacobi	
7-L7	Inverse of a matrix by Gauss Jordan elimination method	
8- P1	Physics Assiocation	
9- L8	Curve Fitting / Interpolation Curve fitting	
10- L9	Linear Least square fitting - Nonlinear Fit- Fitting a Polynomial Function,	
	Exponential function	
11-L10	Cubic spline fitting – Interpolation	
12-L11	Interpolation: Fundamental theorem of finite difference, Finite difference	
	interpolation with equally spaced:	
13-L12	Newton's forward and backward difference formulae	
14-L13	Unequally spaced: Lagrangian interpolation formula.	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins(22.01.18)	
16-L15	Numerical differentiation and integration Numerical Differentiation : Methods	
	based on interpolation:	
17-IT-1	Internal Test-I	
18-L16	non uniform & uniform nodal points - Methods based on finite differences: forward	
	& backward difference formulae	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Numerical Integration: Trapezoidal Rule	
		
21- L19	Simpson Rule	
21- L19 22- P2		
	Simpson Rule	
22- P2	Simpson Rule College level meeting/Cell function	
22- P2 23-L20	Simpson Rule College level meeting/Cell function Monte-Carlo evaluation of integration.	
22- P2 23-L20 24-L21	Simpson Rule College level meeting/Cell function Monte-Carlo evaluation of integration. Methods based on undetermined coefficients	
22- P2 23-L20 24-L21 25-L22	Simpson Rule College level meeting/Cell function Monte-Carlo evaluation of integration. Methods based on undetermined coefficients Gauss-Legendre, Gauss - Lagurre	
22- P2 23-L20 24-L21 25-L22 26-L23	Simpson RuleCollege level meeting/Cell functionMonte-Carlo evaluation of integration.Methods based on undetermined coefficientsGauss-Legendre, Gauss - LagurreGauss - Hermite integration methods.	
22- P2 23-L20 24-L21 25-L22 26-L23 27-L24	Simpson RuleCollege level meeting/Cell functionMonte-Carlo evaluation of integration.Methods based on undetermined coefficientsGauss-Legendre, Gauss - LagurreGauss - Hermite integration methods.Solution to ordinary and partial differential equations	
22- P2 23-L20 24-L21 25-L22 26-L23 27-L24 28-L25	Simpson RuleCollege level meeting/Cell functionMonte-Carlo evaluation of integration.Methods based on undetermined coefficientsGauss-Legendre, Gauss - LagurreGauss - Hermite integration methods.Solution to ordinary and partial differential equationsOrdinary Differential Equations	
22- P2 23-L20 24-L21 25-L22 26-L23 27-L24 28-L25 29-L26	Simpson RuleCollege level meeting/Cell functionMonte-Carlo evaluation of integration.Methods based on undetermined coefficientsGauss-Legendre, Gauss - LagurreGauss - Hermite integration methods.Solution to ordinary and partial differential equationsOrdinary Differential EquationsTaylor's Series Method- Euler's Method	
22- P2 23-L20 24-L21 25-L22 26-L23 27-L24 28-L25 29-L26 30-L27	Simpson RuleCollege level meeting/Cell functionMonte-Carlo evaluation of integration.Methods based on undetermined coefficientsGauss-Legendre, Gauss - LagurreGauss - Hermite integration methods.Solution to ordinary and partial differential equationsOrdinary Differential EquationsTaylor's Series Method- Euler's MethodEuler's modified method - Runge -Kutta 2nd and 4th Order Methods	
22- P2 23-L20 24-L21 25-L22 26-L23 27-L24 28-L25 29-L26 30-L27 31-L28	Simpson RuleCollege level meeting/Cell functionMonte-Carlo evaluation of integration.Methods based on undetermined coefficientsGauss-Legendre, Gauss - LagurreGauss - Hermite integration methods.Solution to ordinary and partial differential equationsOrdinary Differential EquationsTaylor's Series Method- Euler's MethodEuler's modified method - Runge -Kutta 2nd and 4th Order MethodsPredictor- Corrector Methods	
22- P2 23-L20 24-L21 25-L22 26-L23 27-L24 28-L25 29-L26 30-L27 31-L28 32-L29	Simpson RuleCollege level meeting/Cell functionMonte-Carlo evaluation of integration.Methods based on undetermined coefficientsGauss-Legendre, Gauss - LagurreGauss - Hermite integration methods.Solution to ordinary and partial differential equationsOrdinary Differential EquationsTaylor's Series Method- Euler's MethodEuler's modified method - Runge -Kutta 2nd and 4th Order MethodsPredictor- Corrector MethodsSolution to partial differential equations	

36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins(26.02.18)	
37- L33	input and output statements	
38- IT-II	Internal Test-II	
39-L34	Euler's Method	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Charging and discharging of a condenser	
42- L37	Runge-Kutta methods	
43- L38	Radioactive Decay; Newton-Raphson method	
44- P4	College level meeting/ function	
45-L39	Gauss elimination method Solution van der Waals equation;:	
46-L40	Currents in Wheatstone's bridge	
47-L41	Linear fitting	
48-L42	least square method : Cauchy's constant	
49-L43	Simpson's and Monte-Carlo methods	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins(01.04.18)	
51 L45	Evaluation of (integral) area under the curve	
52- L46	Eigenvalues and eigenvectors of symmetry matrices;	
53-IT-III	Internal Test-III	
54-L47	Numerical differentiation: Newton's Law of cooling.	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test(12.04.18)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.04.2018	

Learning Outcomes	COs of the course "Numerical Methods"
C01	Students will understand basics of numerical analysis
CO2	Students will be able to find roots of polynomial equations using
	numerical analysis

Students will be able to conduct numerical integration and differentiation
Students will be able to use numerical methods to solve theproblem
Demonstrate an understanding of the fundamental principles of digital
computing, including number representation and arithmetic operations
Develop and implement stable and accurate numerical methods to solve
linear systems of equations and find roots of linear and non-linear
equations.
Perform numerical interpolation, curve fitting, integration, and
differentiation
Develop and implement Gauss Elimination method
To perform Eigen values and Eigen vector
Study of basic matrix operations
Solution of Linear equations for Underdetermined and Overdetermined
cases.
Determination of Eigen values and Eigen vectors of a Square matrix.
Solution of Difference Equations using Euler Method
Have a strong theretical background of various numerical methods
Select the appropriate method for given problem

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2017-2018)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Mathematical physics II	
Course Code	PPHM21	
Class	I year (2017-2018)	
Semester	Even	
Staff Name	E .Christy Jerin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- \blacktriangleright To introduce the special type of matrices. .
- ➤ To derive Cayley hamilton theorem.
- ➤ To derive Cauchy's theorem.
- > To derive Taylor's theorem.
- > To study the Polynomials.
- > To import the knowledge of fourier transform.
- > To apply then laplace transform into the electrical circuits.

Syllabus

UNIT 1

Matrices

Introduction – special types of matrices Transpose – Conjugate – transposed conjugate Symmetric and antisymmetric matrices Hermitian and skew Hermitian matrices Determinant – Adjoint Orthogonal and unitary matrices Orthogonal and unitary matrices Eigen values and eigen vectors of the matrix Characteristic equation of a matrix – Cayley Hamilton theorem

UNIT II

Complex variables

Analytical functions – Cauchy Riemann Conditions Line integrals – Cauchy's theorem – Cauchy's integral formula Derivatives of analytical functions – Power series Taylor's theorem – Laurent's theorem Calculus of residues Evaluation of definite integrals of $\cos \Theta$ and $\sin \Theta$ Certain improper real integers.

UNIT III

Bessel function of first kind. Generating function Recurrence relations. Jn (x) as solution of Bessel differential equation. Expansion of Jn (x) where n is half and odd integer Integral representation Laguerre's differential equation and Laguerre polynomials Generating function Rodrigue's formula Recurrence relations Orthogonal property of lauguerre polynomials Associated laugurre polynomials

UNIT IV

Introduction-Fourier transform Properities of fourier transform Fourier transform of a derivative Fourier sine and cosine transform of derivatives. Laplace transform (LT) Properities of LT LT of derivative and integral of a function LT of periodic function Inverse of LT Properities of inverse LT Application of LT to electrical circuits

UNIT V

Introduction –numerical integration. Trapezoidal rule Simpson's rule Solution of ordinary differential equations of first order. Euler's method. Modified Euler's method Taylor series method. Runge kutta method Approximate solution of algebraic and transcendental equations Newton raphson method Method of iteration Monte-carlo technique Simpson's rule Solution of ordinary differential equations of first order.

Hour	Class Schedule	
allotment		
	Even Semester Begin on 7.12.2017	
1-L1	Matrices: Introduction – special types of matrices	
2-L2	Transpose – Conjugate – transposed conjugate	
3- L3	Symmetric and antisymmetric matrices	
4-L4	Hermitian and skew Hermitian matrices	
5-L5	Determinant – Adjoint	
6-L6	Orthogonal and unitary matrices	
7-L7	Orthogonal and unitary matrices	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Eigen values and eigen vectors of the matrix	
10- L9	Characteristic equation of a matrix – Cayley Hamilton theorem	

11 T 10	Complex and the Angle in the Control of Control	
11-L10	Complex variables: Analytical functions – Cauchy Riemann Conditions	
12-L11	Line integrals – Cauchy's theorem – Cauchy's integral formula	
13-L12	Derivatives of analytical functions – Power series	
14-L13	Taylor's theorem – Laurent's theorem	
15-L14	Calculus of residues.	
16-L15	Evaluation of definite integrals of $\cos \Theta$ and $\sin \Theta$	
17-L16	Certain improper real integers.	
18- L17	Bessel function of first kind.	
19-L18	Generating function.	
20- L19	Recurrence relations.	
21- L20	Allotting portion for Internal Test-I	
22 1 21	Internal Test I begins (22.01.2018)	
22- L21	Jn (x) as solution of Bessel differential equation.	
23- IT-1	Internal Test-I	
24- L22	Expansion of Jn (x) where n is half and odd integer.	
25- L23 26- L24	Integral representation Test Paper distribution and result analysis	
20- L24	Test Paper distribution and result analysis	
27- L25	Entering Internal Test-I Marks into University portalLaguerre's differential equation and Laguerre polynomials	
27-L25 28-L26		
28- L20 29- L27	Generating function	
30- P2	Rodrigue's formula	
30- F2 31-L28	College level meeting/Cell function Recurrence relations.	
31-L28 32-L29	Orthogonal property of lauguerre polynomials.	
32-L29 33-L30	Associated laugurre polynomials.	
33-L30 34- L31	Introduction-Fourier transform.	
34- L31 35- L32	Properities of fourier transform.	
36- L32	Fourier transform of a derivative.	
30- L33 37- L34	Fourier sine and cosine transform of derivatives.	
37-L34 38-L35	Laplace transform (LT)	
39-L35	Properities of LT	
40- L37	LT of derivative and integral of a function	
40- L37 41- L38	LT of periodic function.	
41-L38 42-P3	Department Seminar	
43- L39	Inverse of LT	
44- L40	Properities of inverse LT	
45- L41	Application of LT to electrical circuits	
46- L42	Introduction –numerical integration.	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins (26.02.2018)	
48- L44	Trapezoidal rule	
49-IT-II	Internal Test-II	
50-L45	Simpson's rule	
51- L46	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	Solution of ordinary differential equations of first order.	
53- L48	Euler's method.	
54- L49	Modified Euler's method	

55- L50	Taylor series method.	
56- L51	Runge kutta method.	
57- L52	Approximate solution of algebraic and transcendental equations.	
58- L53	Newton raphson method.	
59-P4	College level meeting/ function	
60- L54	Method of iteration	
61- L55	Monte-carlo technique	
62- L56	Simpson's rule	
63- L57	Solution of ordinary differential equations of first order.	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins (01.04.2018)	
65- L59	Modified Euler's method	
66- L60	Runge kutta method.	
67-IT-III	Internal Test-III	
68- L61	Approximate solution of algebraic and transcendental equations	
69- L62	Monte-carlo technique	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
71-MT	Model Test (12.04.2018)	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.4.2018	

Learning Outcomes	COs of the course "Mathematical physics II"
CO1	Introduction about types of matrices.
CO2	Find the eigen value and eigen vectors of the matrix.
CO3	Derive the Cauchy's integral formula.
CO4	Derive the recurrence relations.
CO5	Study about the laplace transform.
CO6	Find roots of the equation using Newton raphson method.
CO7	Solve the differential equation using Euler's method.
CO8	Solve the numerical integration using sympson's rule.
CO9	Introduction of Monte-carlo method

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.

# For slow learner	: special care taken, motivate the advanced learner to support
	the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2017-2018)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Condensed matter physics	
Course Code	PPHM22	
Class	I year (2017-2018)	
Semester	Even	
Staff Name	E.Chrsity Jerin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To study the classification of crystals..
- > To analysis of elastic strains.
- > To calculate the phonons momentum.
- > To derive the Bloch function.
- > To acquire the knowledge of superconductivity.

Syllabus

UNIT I

Classification of crystals Two dimensional Brava's Brava's lattices in 3 dimensional crystals of inert gases ionic crystals covalent crystals ,metals hydrogen bonds analysis of elastic strains elastic compliance and stiffness constants elastic wave in cubic crystals

UNIT II

Lattice waves properties of Lattice waves vibrational modes of a finite one dimensional lattice of identical atoms diatomic linear lattice quantization of lattice vibrations phonons momentum Inelastic scattering by phonons, by long wave length phonons X rays by photons neutrons by phonons

UNIT III

Energy levels in one dimension free electron gas in three dimensions-heat capacity of the electron gas Electrical conductivity and Ohm's law Hall effect thermal conductivity of metals Bloch functions Kronig-Forder-magnons antiferro magnetic order Ferromagnetic domains Origin of domains

UNIT IV

Langevin diamagnetism equation quantum theory of diamagnetism Hund rule Paramagnetic susceptibility of conduction electrons Ferromagnetic order Magnons antiferro magnetic order ferromagnetic domains origin of domains.

UNIT V

Macroscopic electric field Local field at an atom Dielectric constant and polarizability Structural phase transitions Ferroelectric crystals Ferroelectric domains Piezoelectricity occurrence of superconductivity Meissner effect thermodynamics of superconducting transition London equation coherence length BCS theory of superconductivity Single particle tunneling DC AND AC Josephson effect

Hour	Class Schedule	
allotment		
	Even Semester Begin on 07.12.2017	
1-L1	Classification of crystals	
2-L2	Two dimensional Brava's	
3- L3	Brava's lattices in 3 dimensional	
4-L4	crystals of inert gases	
5-L5	ionic crystals	
6-L6	covalent crystals ,metals	
7-L7	hydrogen bonds	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	analysis of elastic strains	
10- L9	elastic compliance and stiffness constants	
11-L10	elastic wave in cubic crystals	
12-L11	Lattice waves	
13-L12	properties of Lattice waves	
14-L13	vibrational modes of a finite one	
15-L14	dimensional lattice of identical atoms	
16-L15	diatomic linear lattice	
17- L16	quantization of lattice vibrations	
18- L17	phonons momentum	
19- L18	Inelastic scattering by phonons, by long wave length phonons	
20- L19	X rays by photons	
21- L20	Allotting portion for Internal Test-I	
	Internal Test I begins (22.01.2018)	
22- L21	neutrons by phonons	
23- IT-1	Internal Test-I	
24- L22	neutrons by phonons	
25- L23	Energy levels in one dimension	
26- L24	Test Paper distribution and result analysis	

	Entering Internal Test-I Marks into University portal	
27- L25	free electron gas in three dimensions	
28- L26	heat capacity of the electron gas	
29- L27	Electrical conductivity and Ohm's law	
30- P2	College level meeting/Cell function	
31-L28	Hall effect	
32-L29	thermal conductivity of metals	
33-L30	thermal conductivity of metals	
34- L31	Bloch functions	
35- L32	Kronig-Forder-magnons	
36- L33	antiferro magnetic order	
37- L34	Ferromagnetic domains	
38-L35	Origin of domains	
39- L36	Langevin diamagnetism equation	
40- L37	quantum theory of diamagnetism	
41- L38	quantum theory of paramagnetism	
42-P3	Department Seminar	
43- L39	Hund rule	
44- L40	Paramagnetic susceptibility of conduction electrons	
45- L41	Ferromagnetic order	
46- L42	Magnons	
47- L43	Allotting portion for Internal Test-II	
	Internal Test II begins (26.02.2018)	
48- L44	antiferro magnetic order	
49-IT-II	Internal Test-II	
50-L45	ferromagnetic domains	
51- L46	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
52- L47	origin of domains.	
53- L48	Macroscopic electric field	
54- L49	Local field at an atom	
55- L50	Dielectric constant and polarizability	
56- L51	Structural phase transitions	
57- L52	Ferroelectric crystals	
58- L53	Ferroelectric domains	
59-P4	College level meeting/ function	
60- L54	Piezoelectricity	
61- L55	occurrence of superconductivity	
62- L56	Meissner effect	
63- L57	thermodynamics of superconducting transition	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins (01.04.2018)	
65- L59	London equation	
66- L60	coherence length	
67-IT-III	Internal Test-III	
68- L61	BCS theory of superconductivity	
69- L62	Single particle tunnelling	
70- L63	Test Paper distribution and result analysis	

	Entering Internal Test-III Marks into University portal
71-MT	Model Test (12.04.2018)
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 23.04.2018

Learning Outcomes	COs of the course "Condensed matter physics"
CO1	Explain the concept of ionic crystals, covalent crystals.
CO2	Derive the London equation.
CO3	Explain the concept of elastic compliance.
CO4	Calculate the value of phonon momentum.
CO5	Deduce the electrical conductivity.
CO6	Explain Hall effect.
CO7	Design Hund rules.
CO8	Explain the concept of magnons.
CO9	Determine the coherence length

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2017-2018)

(Prepared by staff member handling the course)

Programme Name	M.Sc., Physics	
Course Name	Micoprocessor and Microcontroller	
Course Code	PPHM23	
Class	I year (2017-2018)	
Semester	Even	
Staff Name	G.GOMATHI SANKARI	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > The objective of this course is to become familiar with the architecture and the instruction set of an Intel microprocessor
- Assembly language programming will be studied as well as the design of various types of digital and analog interfaces
- Understand the architecture of 8085 and 8051

Syllabus

Microprocessor 8085 and Microcontroller 8051

Unit I

Introduction to 8085 Microprocessor

Pin diagram and description - Bus System, Control Signals, Status Signals- Clock System - Latching of Address Bus - Interrupt System - Direct Memory Access- Internal architecture -ALU- Registers organization - Special purpose Registers and Counters - Flags - Program Status Word.

Unit II

Programming 8085

Assembly Language Programming - Assembler - Instruction Format of 8085-Instruction Set - Addressing Modes - Instruction Cycle, Machine Cycle and T-Slates - Timing Diagram of Read, Write machine Cycles and some basic Instructions - 8 bit and 16 bit addition and subtraction- Loops and Branching - Multiplication and Division in 8085-Searching and Sorting -Finding smallest/biggest number in an array - Time delay calculation- Stack and Subroutines -Software Interrupts and ISR- Data Transfer Schemes.

Unit III

Interfacing and peripheral devices

Address Space of 8085- Address space partition- Memory Interfacing - Memory map and Address decoding- Interfacing of RAM (2K x 8 & 4K x 8) and ROM (2R x 8 & 4K x 8) - I/O mapped I/O and Memory Mapped I/O interfacing Schemes - Ports- Interfacing chips: Nonprogrammable Port 8212 - Programmable Peripheral Interface (PPI) 8255 architecture, Control Signals and operating Modes - Programmable Interval Timer (PIT) 8253.

Unit IV

Micro Controller 8051

Introduction - Comparison of Microcontroller & Microprocessor - Pin Diagram and description - Block Diagram of 8051 and Internal Architecture - Clocks - Registers- Flags-Internal Memory, SFR and I/O Ports - External Memory and decoding- Instruction Set and Addressing Modes of 8051- Features available in 8051: Timer and Counters, Timer Modes - Serial Port and Serial Data Transfer.

Unit V

Micro Processor based system design and a Applications

Design considerations - Sensors and Transducers - Sample and Hold Circuits- -Interfacing Keyboard and multiplexed seven segment displays - DAC and ADC interfacing -Square, Rectangular and Ramp Wave Generation - Temperature measurement and control -Digital Clock - Stepper Motor Control.

Hour	Class Schedule
allotment	
	Even Semester Begin on 07.12.2017
1-L1	Introduction to 8085 Microprocessor Pin diagram and description
2-L2	Bus System, Control Signals, Status Signals- Clock System
3- L3	Latching of Address Bus
4-L4	Interrupt System - Direct Memory Access- Internal architecture

5-L5	ALU- Registers organization
6-L6	Special purpose Registers and Counters - Flags - Program Status Word.
7-L7	Programming 8085 Assembly Language Programming
8- P1	Welcoming of First year and Inauguration of PhysicsAssociation
9- L8	- Assembler - Instruction Format of 8085-Instruction Set
10- L9	- Instruction Cycle, Machine Cycle and T-Slates
11-L10	- Timing Diagram of Read, Write machine Cycles and some basic Instructions -
12-L11	8 bit and 16 bit addition and subtraction- Loops and Branching
13-L12	Multiplication and Division in 8085-
14-L13	Searching and Sorting - Finding smallest/biggest number in an array Time delay calculation-
15-L14	Allotting portion for Internal Test-I
15 114	Internal Test I begins (22.01.2018)
16-L15	Stack and Subroutines - Software Interrupts and ISR-
10-L15 17-IT-1	Internal Test-I
18-L16	Data Transfer Schemes
19-L17	Test Paper distribution and result analysis
17-117	Entering Internal Test-I Marks into University portal
20-L18	.Interfacing and peripheral devices Address Space of 8085- Address space
20-110	partition- Memory Interfacing
21- L19	Interfacing of RAM (2K x 8 & 4K x 8) and ROM (2R x 8 & 4K x 8) - I/O mapped
21 217	I/O and Memory Mapped I/O interfacing Schemes -
22- P2	College level meeting/Cell function
23-L20	Ports- Interfacing chips: Nonprogrammable Port 8212 -
24-L21	- Programmable Peripheral Interface (PPI) 8255 architecture, Control Signals and
	operating Modes Programmable Interval Timer (PIT) 8253 .
25-L22	Micro Controller 8051 Introduction - Comparison of Microcontroller &
	Microprocessor -
26-L23	Pin Diagram and description - Block Diagram of 8051 and Internal Architecture -
27-L24	Clocks
28-L25	Registers
29-L26	Flags-Internal Memory, SFR and I/O Ports-
30-L27	External Memory and decoding
31-L28	Instruction Set and Addressing Modes of 8051-
32-L29	Features available in 8051: Timer and Counters, Timer Modes
33-L30	Internal Memory, SFR and I/O Ports -
34- P3	Department Seminar
35-L31	Serial Port and Serial Data TransferFlags
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins (26.02.2018)
37- L33	Micro Processor based system design and a Applications Design considerations -
38- IT-II	Internal Test-II
39-L34	Design considerations -
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Sensors and Transducers -
42-L37	Sample and Hold Circuits-
43- L38	Interfacing Keyboard and multiplexed seven segment displays
44- P4	College level meeting/ function

45-L39	Interfacing Keyboard and multiplexed seven segment displays	
46-L40	DAC and ADC interfacing	
47-L41	Square, Rectangular and Ramp Wave Generation -	
48-L42	Square, Rectangular and Ramp Wave Generation -	
49-L43	Temperature measurement and control -	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (01.04.2018)	
51 L45	Digital Clock	
52- L46	Stepper Motor Control	
53-IT-III	Internal Test-III	
54-L47	Stepper Motor Control	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins	
56- MT	Model Test (12.04.2018)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.04.2018	

Learning Outcomes	COs of the course "Microprocessor and Microcontroller"
CO1	Design and implement programs on 8086, ARM, PIC.
CO2	Design I/O circuit.
CO3	The program prepares students to successfully compete for employment in Electronics, Manufacturing and Embedded fields
CO4	Design Memory Interfacing circuits
CO5	Design and implement 8051 microcontroller based system
CO6	Describe the architecture and instruction set of ARM microcontroller
CO7	Understand and realize the Interfacing of memory & various I/O devices with 8085 microprocessor
CO8	Understand and classify the instruction set of 8085 microprocessor and distinguish the use of different instructions and apply it in assembly language programming
CO9	Understand the architecture and operation of Programmable Interface Devices and realize the programming & interfacing of it with 8085 microprocessor
Experimental Learning	
EL1	Microprocessor kits and data acquisition cards DC Power Supplies

EL2	Microcontroller Programmer
EL3	Universal Programmer
EL4	Universal IC Tester
Integrated Activity	
IA1	The program prepares students to successfully compete for employment
	in Electronics, Manufacturing and Embedded fields
IA2	Design and implement 8051 microcontroller based system
IA1	in Electronics, Manufacturing and Embedded fields

# Blended Learning	: using PPT, video, library resources, ICT techniques,	
	E-learning resources, Google classroom, study tour, etc.,	
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.	
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.	
# Extension activity	: Motivate student to take classes for school students.	

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2017-2018)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Quantum Mechanics II	
Course Code	KPHM41	
Class	II year (2017-2018)	
Semester	Even	
Staff Name	E.Christy Jerin	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➢ To introduce Pertubation theory
- \succ To derive the dirac equation
- > To explain orbital angular momentum
- > To explain transition probablity

Syllabus

Quantum Mechanics II

UNIT I

Orbital angular momentum Eigen pairs of L2 and Lz Properties of components of L and L 2 Matrix representation of L2 , Lz and L \pm spin state of an electron spin orbit coupling Addition of angular momenta

UNIT II

Time Independent Perturbation Theory: Introduction- Theory for non-degenerate case Application to non-degenerate levels Theory for degenerate levels First order Stark effect in Hydrogen atom

UNIT III

Time Dependent Perturbation Theory: Introduction Transition probability constant perturbation Harmonic perturbation adiabatic perturbation sudden approximation Semi classical theory of radiation calculation of Einstein coefficients

UNIT IV

Classical scattering cross section Centre of mass and laboratory co-ordinate systems Scattering amplitude Green's function approach Born approximation Partial wave analysis Scattering form a square well system

UNIT V

Klein – Gordon equation Dirac equation for a free particle Spin of a Dirac particle Particle in a potential Relativistic particle in a box Relativistic hydrogen atom Electron in a field

Hour	Class Schedule
allotment	
	Even Semester Begin on 7.12.2018
1-L1	Orbital angular momentum
2-L2	Eigen pairs of L2 and Lz
3- L3	Properties of components of L and L 2
4-L4	Matrix representation of L2 , Lz and L \pm
5-L5	spin state of an electron
6-L6	spin orbit coupling
7-L7	Addition of angular momenta
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Time Independent Perturbation Theory: Introduction- Theory for non-degenerate case
10- L9	Application to non-degenerate levels
11-L10	Theory for degenerate levels
12-L11	First order Stark effect in Hydrogen atom
13-L12	Time Dependent Perturbation Theory: Introduction
14-L13	Transition probability
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins (22.01.2018)
16-L15	constant perturbation
17-IT-1	Internal Test-I
18-L16	Harmonic perturbation
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	adiabatic perturbation
21- L19	sudden approximation
22- P2	College level meeting/Cell function
23-L20	Semi classical theory of radiation
24-L21	calculation of Einstein coefficients

25.1.22		
25-L22	Classical scattering cross section	
26-L23	Centre of mass and laboratory co-ordinate systems	
27-L24	Scattering amplitude	
28-L25	Green's function approach	
29-L26	Born approximation	
30-L27	Partial wave analysis	
31-L28	Scattering form a square well system	
32-L29	Scattering form a square well system	
33-L30	Klein – Gordon equation	
34- P3	Department Seminar	
35-L31	Klein – Gordon equation	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (26.02.2018)	
37- L33	Dirac equation for a free particle	
38- IT-II	Internal Test-II	
39-L34	Dirac equation for a free particle	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Spin of a Dirac particle	
42- L37	Spin of a Dirac particle	
43- L38	Particle in a potential	
44- P4	College level meeting/ function	
45-L39	Relativistic particle in a box	
46-L40	Relativistic hydrogen atom	
47-L41	Relativistic hydrogen atom	
48-L42	Electron in a field	
49-L43	Electron in a field	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (01.04.2018)	
51 L45	Electron in a field	
52- L46	Electron in a field	
53-IT-III	Internal Test-III	
54-L47		
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (12.04.2018)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
-	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.4.2018	
L		

Learning Outcomes	COs of the course "Quantum Mechanics II"
CO1	spin state of an electron
CO2	spin orbit coupling
CO3	Partial wave analysis
CO4	Scattering form a square well system
CO5	Scattering form a square well system
CO6	Relativistic hydrogen atom
CO7	Relativistic hydrogen atom
CO8	Electron in a field
CO9	Klein – Gordon equation

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2017-2018)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Nuclear and Particle Physics	
Course Code	KPHM43	
Class	IIyear (2017-2018)	
Semester	Even	
Staff Name	C.Stella Rani	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- ➢ .To understand about the nuclear forces in the deutron
- \succ To study the nuclear decays
- > To understand the nuclear models
- > To learn about the nuclear reactions

Syllabus

Nuclear and Particle Physics

UnitI

Nuclear Forces

Ground and excited states of deuteron – magnetic dipole and electric quadrupole moments of deuteron – n-p scattering at low energies – shape independent effective range theory of np scattering – pp scattering at low energies – exchange forces –meson theory of nuclear force.

Unit II

NuclearDecays

Gamow's theory of alpha decay – lineand Continuous spectrum of β decay-Fermi theory of beta decay – Fermi and Gamow-Teller selection rules – parity violation – Gamma decay – multipole transitions in nuclei – selection rules – internal conversion – nuclear isomerism.

Unit III

Nuclear Model

Liquid drop model – Weizsackers mass formula – nuclear stability – Bohr Wheeler theory of nuclear fission -magic numbers -evidence for magic numbers – shell model – spin orbit coupling – angular momenta and parities of nuclear ground states – magnetic moments - Schmidt line – collective model.

Unit IV

Nuclear Reactions

Types of nuclear reactions – Q-equation – solution of the equation – compound nuclear theory – reciprocity theorem – nuclear cross section – resonance scattering– Breit –Wigner dispersion formula – nuclear chain reaction – four factor formula.

Unit V

Elementary Particles

Classification of elementary particles- fundamental interactions conservations laws – CPT theorem - SU(3) multiplet – meson octet – baryon octet and baryon decouplet – Gellmann-Okubo mass formula - Quark theory.

Books For Study:

- 7. Nuclear Physics, D. C. Tayal, Himalaya Publications
- 8. . 2. Elements of Nuclear Physics, M. C. Pandia and R. P. S. YadavKedarnath.

Books For Reference:

- 1. Concepts of Nuclear Physics, Bernard L Cohen, Tata McGraw-Hill
- 2. Nuclear Physics an Introduction, S. B. Patel, Wiley Eastern Ltd.
- 3. Nuclear Physics, R. R. Roy and B. P. Nigam, New Age International Ltd.

Hour allotment	Class Schedule	
	Even Semester Begin on07.12.2017	
1-L1	Ground and excited states of deuteron	
2-L2	magnetic dipole and electric quadrupole moments of deuteron	
3- L3	n-p scattering at low energies	
4-L4	shape independent effective range theory of np scattering	
5-L5	pp scattering at low energies	
6-L6	exchange forces	
7-L7	meson theory of nuclear force.	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	Gamow's theory of alpha decay	
10- L9	lineand Continuous spectrum of β decay	
11-L10	Fermi theory of beta decay	
12-L11	Fermi and Gamow-Teller selection rules	
13-L12	parity violation	
14-L13	Gamma decay	
15-L14	Allotting portion for Internal Test-I	
	Internal Test I begins (22.01.2018)	
16-L15	multipole transitions in nuclei	
17-IT-1	Internal Test-I	
18-L16	selection rules	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	internal conversion	
21- L19	nuclear isomerism.	
22- P2	College level meeting/Cell function	
23-L20	Liquid drop model	
24-L21	Weizsackers mass formula	
25-L22	nuclear stability	
26-L23	Bohr Wheeler theory of nuclear fission	
27-L24	magic numbers	
28-L25	evidence for magic numbers	
29-L26	shell model	
30-L27	spin orbit coupling	
31-L28	angular momenta and parities of nuclear ground states	
32-L29	magnetic moments	
33-L30	Schmidt line	
34- P3	Department Seminar	
35-L31	collective model.	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (26.02.2018)	
37- L33	Types of nuclear reactions	

38- IT-II	Internal Test-II	
39-L34	Q-equation	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	solution of the equation	
42- L37	compound nuclear theory	
43- L38	reciprocity theorem, nuclear cross section resonance scatteringBreit	
44- P4	College level meeting/ function	
45-L39	Wigner dispersion formula nuclear chain reaction, four factor formula.	
46-L40	Classification of elementary particles	
47-L41	fundamental interactions conservations laws	
48-L42	CPT theorem, SU(3) multiplet	
49-L43	meson octet – baryon octet and baryon decouplet	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (01.04.2018)	
51 L45	Gellmann-Okubo mass formula, Quark theory.	
52- L46		
53-IT-III	Internal Test-III	
54-L47		
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (12.04.2018)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.04.2018	

Learning Outcomes	COs of the course "Nuclear and Particle Physics"
CO1	
CO2	Magnetic dipole and electric quadrupole moments of deuteron
CO3	Fermi theory of Beta decay
CO4	Fermi and gamow teller selection rules
CO5	Gamma decay
CO6	Multipole transistions in nuclei
CO7	Solution of the equation
CO8	Compound nuclear theory
CO9	Baryon octet and baryon decouplet
Experimental	Gellmann – Okubo mass formula
Learning	

[Type text]

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

[Type text]

Department of Physics

COURSE ACADEMIC PLAN (2017-2018)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	RESEARCH METHODOLOGY	
Course Code	PPHM34	
Class	II year (2017-2018)	
Semester	EVEN	
Staff Name	G.GOMATHI SANKARI	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		
Course Objectives		

Course Objectives

- Understand research terminology.
- > Describe quantitative, qualitative and mixed **methods** approaches to **research**
- > Identify the components of a literature review process
- Critically analyze published research
- Be aware of the ethical principles of research, ethical challenges and approval processes.

Syllabus

Research Methodology

Unit I

Introduction to Research: (BFS – 1)

Objectives of Research – Importance of research – research methods and research methodology – Types of research – Basic research – applied research – Quantitative and Qualitative methods – other types of research – explanatory, exploratory, comparative – various stages of research – Identification of research topic – Literature survey – Reference collection – Hypothesis. (**12** L)

Unit II

Research Activity: (BFS – 1,2)

Mode of research – Research design – joy in doing research – crucial stage of Ph.D., - actual investigation – doing good research – results and conclusion – preparing the oral report – presenting the oral report in scientific seminar Planning the assignment – Defining and limiting the problem – time schedule – preparing the working bibliography – taking notes – outline – first draft. (**11** L)

Unit III

Writing the thesis: (BFS – 2)

 $\label{eq:Planning the thesis - Writing the thesis / assignment - General format - Page and chapter format - Tables and figures - Referencing - Appendixes. (10 L)$

Unit IV

Plotting software: Origin: (BFS – 3)

Introduction - Importing your data - Designating Worksheet Columns as Error Bars -Plotting Data - Customizing the Data Plot - Customizing the Graph Axes -Adding Text to the Graph - Exploring Data: Transforming Column Values - Sorting Worksheet Data - Plotting a Range of the Worksheet Data - Masking Data in the Graph - Performing a Linear Fit - Creating Multiple Layer Graphs–Working with Excel in Origin. (**13** L)

Unit : V

Typesetting Software : Latex (BFS – 4)

Introduction to LaTeX – TeX and LaTeX – A typical LaTeX input file – Characters and control sequences - Producing Simple Documents using LaTeX – LaTeX input file – producing ordinary text using LaTeX – Section headings in LaTeX – changing fonts in text mode – Active characters and special symbols in text - Producing Mathematical Formulae using LaTeX–

MSU / 2017-18 / PG –Colleges / M.Sc.(Physics) / Semester -III / Ppr.no.17 / Core-17 Physics mode – characters in Physics mode – superscripts and subscripts – Greek letters – mathematical symbols – standard functions – fraction and roots –Ellipsis – accents in Physics mode - Matrices and other arrays in LaTeX - Derivatives, Limits, Sums and Integrals – Lists – tables - Defining your own Control Sequences in LaTeX. (14 L)

Hour	Class Schedule
allotment	
	Even Semester Begin on 07.12.2017
1-L1	Introduction to Research:
2-L2	Objectives of Research – Importance of research
3- L3	research methods and research methodology
4-L4	Types of research – Basic research
5-L5	applied research – Quantitative and Qualitative methods
6-L6	other types of research – explanatory
7-L7	exploratory, comparative – various stages of research
8- P1	Physics Association
9- L8	Identification of research topic
10- L9	Literature survey – Reference collection
11-L10	Hypothesis
12-L11	Literature survey revision
13-L12	Various step of research
14-L13	Mode of research – Research design
15-L14	joy in doing research
16-L15	crucial stage of Ph.D., -
17- L16	actual investigation
18- L17	doing good research
19- L18	results and conclusion
20- L19	preparing the oral report
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins (22.01.2018)
22- L21	presenting the oral report in scientific seminar
23- IT-1	Internal Test-I
24- L22	Research design
25- L23	Common research topic
26- L24	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
27- L25	Planning the thesis
28- L26	Writing the thesis / assignment
29- L27	General format
30- P2	College level meeting/Cell function
31-L28	Page and chapter format

32-L29	Tables and figures
33-L30	Referencing
34- L31	Appendixes
35- L32	Format of pages
36- L33	Introduction - Importing your data –.
37- L34	Designating Worksheet Columns as Error Bars
38-L35	Plotting Data
39- L36	Customizing the Data Plot
40- L37	Customizing the Graph Axes
41- L38	Adding Text to the Graph
42-P3	Department Seminar
43- L39	Exploring : Transforming Column Values Data
44- L40	Sorting Worksheet Data
45- L41	Plotting a Range of the Worksheet Data
46- L42	Masking Data in the Graph
47- L43	Allotting portion for Internal Test-II
	Internal Test II begins (26.02.2018)
48- L44	Performing a Linear Fit
49-IT-II	Internal Test-II
50-L45	Creating Multiple Layer Graphs
51- L46	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
52- L47	Working with Excel in Origin
53- L48	Introduction to LaTeX-LaTeX input file
54- L49	TeX and LaTeX, A typical LaTeX input file
55- L50	Characters and control sequences
56- L51	producing ordinary text using LaTeX
57- L52	Section headings in LaTeX
58- L53	changing fonts in text mode
59-P4	College level meeting/ function
60- L54	Active characters and special symbols in text
61- L55	Producing Mathematical Formulae using LaTeX-
62- L56	Physics mode – characters in Physics mode
63- L57	superscripts and subscripts – Greek letters – mathematical symbols
64- L58	Allotting portion for Internal Test-III
	Internal Test III begins (01.04.2018)
65- L59	standard functions – fraction and roots –Ellipsis – accents in Physics mode
66- L60	Matrices and other arrays in LaTeX - Derivatives, Limits, Sums and Integrals
67-IT-III	Internal Test-III
68- L61	Lists – tables
69- L62	Defining your own Control Sequences in LaTeX.tables
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins (12.04.2018)
71-MT	Model Test

72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 23.04.2018

Learning Outcomes	COs of the course "Research Methodology"
CO1	demonstrate knowledge of research processes (reading, evaluating,
001	and developing)
CO2	perform literature reviews using print and online databases
CO3	employ American Psychological Association (APA) formats for
	citations of print and electronic materials
CO4	
	research proposal/report
CO5	define and develop a possible HIED research interest area using
	specific research designs;
CO6	compare and contrast quantitative and qualitative research
	paradigms, and explain the use of each in HIED research;
CO7	
	statistics, and provide examples of their use in HIED research;
CO8	
	and appropriate uses of each;
CO9	explain the rationale for research ethics, and the importance of and
	local processes for Institutional Review Board (IRB) review
Experimental Learning	
EL1	students created a hypothetical counseling program to evaluate
	based on a generic case study
EL2	Although the students met their learning outcomes with this
	assignment
EL3	The ultimate goal for the experiential learning was twofold: to
	provide a real world scenario for students to apply their knowledge
	of research method
EL4	Two semesters prior to the study, the first author began planning
	the experiential learning component and approached the
	community agency to inquire about their interest
Integrated Activity	
IA1	Understanding the context of the research study
IA2	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Classical Mechanics	
Course Code	PPHM11	
Class	I year (2018-2019)	
Semester	Odd	
Staff Name	E.Christy Jerin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To expose the students to the idea of the fundamental principle
- > To learn the Lagrangian formulations
- > To study the rigid body dynamics
- > To derive the Hamilton's equations
- > To calculate the Principle of least action
- > To discuss the postulates of special theory of relativity

Syllabus

Classical Mechanics

UNIT I

Mechanics of a particle and a system of particles Conservation laws-Constraints Generalised coordinates Principle of virtual work-D'Alembert's Principle and Lagrange's equations Applications of Lagrange's equations Hamilton's principle-Lagrange's equation from Hamilton's principle-examples Conservation theorems and symmetry properties Motion under central force-General feature Differential equation for the orbit and classification of orbits Kepler problem-Scattering in a central force field Rutherford scattering

UNIT II

Mechanics of a rigid body-Displacement of a rigid body Orthogonal transformation Infinitesimal rotation-coriolis effect Kinematics of a rigid body Kinetic energy of a rigid body-Euler's equation of motion Torque free motion-Spinning top. Oscillatary motion: Theory of small oscillations-Periodic motion Frequencies of vibration and normal modes-Linear tri atomic molecules

UNIT III

Hamilton's equation from variational principle Principle of least actionapplicationLegendre transformations Lagrange and Poisson brackets Equation of motion and conservation theorms in Poisson brackets. Hamilton-Jacobi method-application to harmonic oscillator Hamilton's Characteristic function-separation of variables Action angle variableskepler problem in action angle variable.

UNIT IV

Linear, nonlinear systems-Integration of linear equation Quadrature method-Integration of nonlinear second order equation Pendulum equation Phase curve of simple harmonic oscillator Phase portrait of the pendulum Bifurcation in Logistic map-attractors Universality of chaos Routes to chaos Quasi periodicity-Intermittency Crises

UNIT V

Postualtes of special theory of relativity Lorentz transformation equation Variation of masss with velocity Evaluation of inverse LT by convolution theorem Relativistic Lagrangian and Hamiltonian Kinematic effects of Lorentz transformation Minkowski's splace Four vectors Covariant four dimensional formulation of the law of mechanics Covariance of Maxwellfield equations under Lorentz transformation. Phase plane analysis of dynamical systems Canonical transformations Lyapunov exponent and chaos Period doubling Moments and products of inertia Eulerian angles

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2018
1-L1	Mechanics of a particle and a system of particles
2-L2	Conservation laws-Constraints
3- L3	Generalised coordinates
4-L4	Principle of virtual work-D'Alembert's Principle and Lagrange's equations
5-L5	Applications of Lagrange's equations
6-L6	Hamilton's principle-Lagrange's equation from Hamilton's principle-examples
7-L7	Conservation theorems and symmetry properties
8- P1	Welcoming of First year and Inauguration of Physics Association

9- L8	Motion under central force-General feature	
10- L9	Differential equation for the orbit and classification of orbits	
11-L10	Kepler problem-Scattering in a central force field	
	Rutherford scattering	
13-L12	Mechanics of a rigid body-Displacement of a rigid body	
14-L13	Orthogonal transformation	
15-L14	Infinitesimal rotation-coriolis effect	
16-L15	Kinematics of a rigid body	
17- L16	Kinetic energy of a rigid body-Euler's equation of motion	
18- L17	Torque free motion-Spinning top.	
19- L18	Oscillatary motion: Theory of small oscillations-Periodic motion	
20- L19	Frequencies of vibration and normal modes-Linear tri atomic molecules	
21- L20	Allotting portion for Internal Test-I	
	Internal Test I begins (30.07.2018)	
22- L21	Hamilton's equation from variational principle	
23- IT-1	Internal Test-I	
24- L22	Principle of least action-application	
25- L23	Legendre transformations	
26- L24	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
27- L25	Lagrange and Poisson brackets	
28- L26	Equation of motion and conservation theorms in Poisson brackets.	
29- L27	Hamilton-Jacobi method-application to harmonic oscillator	
30- P2	College level meeting/Cell function	
31-L28	Hamilton's Characteristic function-separation of variables	
32-L29	Action angle variables-kepler problem in action angle variable.	
33-L30	Linear, nonlinear systems-Integration of linear equation	
34- L31	Quadrature method-Integration of nonlinear second order equation	
35-L32	Pendulum equation	
36- L33	Phase curve of simple harmonic oscillator	
37-L34	Phase portrait of the pendulum	
38-L35	Bifurcation in Logistic map-atttractors	
39- L36	Universality of chaos	
40- L37	Routes to chaos	
41- L38	Quasi periodicity-Intermittency	
42-P3	Department Seminar	
43- L39	Crises	
44- L40	Postuates of special theory of relativity	
45- L41	Lorentz transformation equation	
46- L42	Variation of masss with velocity	
47- L43	Allotting portion for Internal Test-II	
ΛΟ Τ Λ Λ	Internal Test II begins (03.09.2018)	
48- L44	Evaluation of inverse LT by convolution theorem	
40 IT II	Internal Test II	
49-IT-II 50-L45	Internal Test-II	
50-L45 51- L46	Equivalence of mass and energy Test Paper distribution and result analysis	
JI- L40		
	Entering Internal Test-II Marks into University portal	

52- L47	Relativistic Lagrangian and Hamiltonian	
53- L48	Kinematic effects of Lorentz transformation	
54- L49	Minkowski's splace	
55- L50	Four vectors	
56- L51	Covariant four dimensional formulation of the law of mechanics	
57- L52	Covariance of Maxwellfield equations under Lorentz transformation.	
58- L53	Phase plane analysis of dynamical systems	
59-P4	College level meeting/ function	
60- L54	Canonical transformations	
61- L55	Lyapunov exponent and chaos	
62- L56	Period doubling	
63- L57	Moments and products of inertia	
64- L58	Allotting portion for Internal Test-III	
	Internal Test III begins (08.10.2018)	
65- L59	Eulerian angles	
66- L60	Revision	
67-IT-III	Internal Test-III	
68- L61	Revision	
69- L62	Revision	
70- L63	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
71-MT	Model Test (22.10.2018)	
72-MT	Model Test	
73-MT	Model Test	
74-L64	Model test paper distribution and previous year university question paper	
	discussion	
75-L65	Feedback of the Course, analysis and report preparation	
	Last Working day on 31.10.2018	

Learning Outcomes	COs of the course "Classical Mechanics"
CO1	Derivate the D'Alembert's principle
CO2	Classification of orbits and and differential equation
CO3	Discuss the kepler problem
CO4	To study the Rutherford scattering
CO5	Design the bifuration in logistic map
CO6	Derive the phase curve of simple hormonic oscillator
CO7	To learn the Maxwell equation
CO8	Explain the lorenz transformation
CO9	Explore the integration of nonlinear second order equation.
IA2	

[Type text]

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	M.Sc Physics	
Course Name	Integrated Electronics	
Course Code	PPHM13	
Class	I year (2018-2019)	
Semester	Odd	
Staff Name	Dr. P. Sumithraj Premkumar	
Credits	4	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > To understand different types of electronic devices and preparation of IC
- To discuss logical families in the digital electronics and study the counters and registers
- > To describe the application of operational amplifier in the different field
- > To study the various electronics instrumentation through basics of science

MSU/ 2017-18 / PG-Colleges / M.Sc Physics / Semester - I / Core-3

INTEGRATED ELECTRONICS

Unit I

Devices, Applications and Integrated Circuits

FET-Types of FET-Characteristics and applications of FET, MOSFET- SCR, DIAC, TRIAC-High frequency device-Integrated Circuits-IC Fabrication Technology - Steps in Fabrication - Integrated Resistors and Capacitors-VLSI Technology.

Unit II

Digital Electronics

Logic Families - DTL, RTL, TTL, ECL, I2L, CMOS, NMOS and PMOS - DTL type AND, OR, NAND and NOR gates - RTL and TTL type NAND - CMOS NOR and CMOS NAND - Flip Flops: RS-RST-D- JK- JK Master/Slave- Asynchronous Counters and Synchronous Counters - Registers.

Unit III

OP AMP and Applications

Characteristics and Parameters -DC Analysis of IC OP AMP- Applications of OP AMP -Instrumentation amplifier -Sample and Hold System- Analog Multiplexer -Integrator -Differentiator- Design of Analog circuits for the solution of Simultaneous and Differential Equations- Filters: First and Second order LOW,HIGH and BAND pass filters.

Unit IV

Timer, VCO, PLL, and Applications

Timer-555 Timer IC-Internal Architecture and Working-Modes of Operation: Monostable and Astable operation- Applications-Voltage Control Oscillator - IC 566-PLL Concept-PLL IC 565 - Application- Frequency multiplexer - FSK Modulation and Demodulation.

Unit V

Electronic Measurement and Control

Sensors and Transducers - Measurement and Control - Signal Conditioning and Recovery -Impedance Matching - Amplification (OP Amp based Feedback Amp, Instrumentation Amp) -Noise and Noise Sources -Filtering and Noise Reduction -Shielding and Grounding - Fourier Transform - Lock- in Detector/Amplifier - Box-Car Integrator or Averager - Modulation Techniques.

Text Book:

1. Integrated Electronics Analog and Digital Circuits and Systems, Second Edition, Jacob Millman, Christos C Halkias, Chetan Parikh, Tata McGraw Hill Education Private Limited, NewDelhi.

Books for Reference:

- 1. Introduction to Semiconductor Devices M.S.Tyagi, John Wiley and Sons.
- 2. Electronic instrumentation, P.P.L. Regtien, VSSD Publications, 2005

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18-6-2018	
1-L1	Unit I Devices, Applications and Integrated Circuits - Introduction	
2-L2	FET-Types of FET	
3- L3	Characteristics and applications of FET,	
4-L4	MOSFET	
5-L5	SCR	
6-L6	DIAC,TRIAC-High frequency device	
7-L7	Integrated Circuits	
8-L8	IC Fabrication Technology	
9-L9	Steps in Fabrication (first and second steps)	

10-P1	Welcoming of First year and Inauguration of Chemistry Association
11-L10	Steps in Fabrication (remaining steps)
12-L11	Integrated Resistors
13-L12	Integrated Capacitors
14-L13	VLSI Technology Allotting portion for Internal Test-I
15-L14	Unit II : Digital Electronics Logic Families - DTL, RTL
16-L15	TTL, ECL
17-IT-1	Internal Test-I (30.07.2018)
18-L16	CMOS,NMOS and PMOS
19-L17	DTL type AND, OR, gates
	Entering Internal Test-I Marks into University portal
20-L18	DTL type NAND and NOR gates
21-P2	College level meeting/Cell function
22-L19	RTL type NAND
23-L20	TTL type NAND
24-L21	CMOS NOR and CMOS NAND
25-L22	Flip Flops: RS-RST-D
26-L23	Flip Flops: JK- JK Master/Slave
27-L24	Asynchronous Counters
28-L25	Synchronous Counters
29-L26	Registers
30-L27	Unit III OP AMP and Applications Characteristics and Parameters
31-L28	DC Analysis of IC OP AMP
32-L29	Applications of OP AMP
33-L30	Instrumentation amplifier, II internal test portion allocation
34- P3	Department Seminar
35-L31	Sample and Hold System
36-L32	Analog Multiplexer
37-IT-II	Internal Test-II (03.09.2018)
38-L33	Integrator
39-L34	Differentiator
40-L35	Design of Analog circuits for the solution of Simultaneous Equations
41-L36	Design of Analog circuits for the solution of Differential Equations
	Entering Internal Test-II Marks into University portal
42-P4	College level meeting/ function
43-L37	Filters: First order LOW, HIGH and BAND pass filters
44-L38	Filters: First and Second order LOW, HIGH and BAND pass filters
45-L39	Filters: First and Second order LOW, HIGH and BAND pass filters
46-L40	Unit IV Timer, VCO, PLL, and Applications - Timer-555
47-L41	Timer IC-Internal Architecture
48-L42	Timer IC Working Allotting portion for Internal Test-III
49-L43	Modes of Operation: Monostable
50-L44	Modes of Operation: Astable
51-IT-III	Internal Test-III (08.10.2018)
52-L45	Applications
53-L46	Voltage Control Oscillator
54-L47	IC 566
55-L48	PLL Concept Entering Internal Test-III Marks into University portal

56-L49	PLL IC 565
57-L50	Application
58-L51	Frequency multiplexer
59-L52	FSK Modulation and Demodulation
60-L53	Unit V Electronic Measurement and Control Sensors and Transducers
61-L54	Measurement and Control
62-L55	Signal Conditioning and Recovery - Impedance Matching
63-L56	Amplification Principle
64-L57	OP Amp based Feedback Amplifier
65-L58	Instrumentation Amplifier
66-L59	Noise and Noise Sources
67-L60	Filtering and Noise Reduction
68-L61	Shielding and Grounding
69-L62	Fourier Transform, Model Test Announcement
70-L63	Lock- in Detector/Amplifier
71-L64	Box-Car Integrator or Averager
72-L65	Modulation Techniques
73-MT	Model Test (22.10.2018)
74-MT	Model Test
75-MT	Model test paper distribution and previous year university question paper
	discussion, Feedback of the Course, analysis and report preparation
	Last Working day on 30.10.2018

Learning Outcomes	
	COs of the course "Integrated Electronics"
C01	Explain the principle of integrated circuit and its advancement
CO2	Understand the applications of gates in the various fields
CO3	Know the values of integrated circuit in the development of engineering field
CO4	Operate the electronic instrumentation
Experimental	
Learning	
EL1	Solve the problems by constructing the circuit using Op-amp
EL2	Design a circuit using various IC
Integrated Activity	
IA1	Construction of new circuits using chips
IA2	Achievements of Electronics in the New era

[Type text]

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# Forslow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Mathematical physics I	
Course Code	PPHM21	
Class	I year (2018-2019)	
Semester	odd	
Staff Name	E .Christy Jerin	
Credits	5	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To acquire the knowledge about the vector analysis.
- > To identify the eigen value /eigen vector of the matrix. .
- > To study the differentiation and integration of matrices.
- \succ To derive the polynomials.
- > To calculate the laplace integral transform.
- \succ To explain the convolution theorm.
- > To calculate the Fourier integral transform.

Syllabus

Mathematical physics I

UNIT 1

Matrices

Introduction – special types of matrices Transpose – Conjugate – transposed conjugate Symmetric and antisymmetric matrices Hermitian and skew Hermitian matrices Determinant – Adjoint Orthogonal and unitary matrices Orthogonal and unitary matrices Eigen values and eigen vectors of the matrix Characteristic equation of a matrix – Cayley Hamilton theorem

UNIT II

Complex variables

Analytical functions – Cauchy Riemann Conditions Line integrals – Cauchy's theorem – Cauchy's integral formula Derivatives of analytical functions – Power series Taylor's theorem – Laurent's theorem Calculus of residues Evaluation of definite integrals of $\cos \Theta$ and $\sin \Theta$ Certain improper real integers.

UNIT III

Bessel function of first kind.

Generating function Recurrence relations. Jn (x) as solution of Bessel differential equation. Expansion of Jn (x) where n is half and odd integer Integral representation Laguerre's differential equation and Laguerre polynomials Generating function Rodrigue's formula Recurrence relations Orthogonal property of lauguerre polynomials Associated laugurre polynomials

UNIT IV

Fourier transform

Introduction-Fourier transform Properities of fourier transform Fourier transform of a derivative Fourier sine and cosine transform of derivatives. Laplace transform (LT) Properities of LT LT of derivative and integral of a function LT of periodic function Inverse of LT Properities of inverse LT Application of LT to electrical circuits

UNIT V

Numerical integration

Introduction –numerical integration. Trapezoidal rule Simpson's rule Solution of ordinary differential equations of first order. Euler's method. Modified Euler's method Taylor series method. Runge kutta method Approximate solution of algebraic and transcendental equations Newton raphson method Method of iteration Monte-carlo technique Simpson's rule Solution of ordinary differential equations of first order.

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2018
1-L1	Matrices: Introduction – special types of matrices
2-L2	Transpose – Conjugate – transposed conjugate
3- L3	Symmetric and antisymmetric matrices

4-L4	Hermitian and skew Hermitian matrices
5-L5	Determinant – Adjoint
6-L6	Orthogonal and unitary matrices
7-L7	Orthogonal and unitary matrices
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Eigen values and eigen vectors of the matrix
10- L9	Characteristic equation of a matrix – Cayley Hamilton theorem
11-L10	Complex variables: Analytical functions – Cauchy Riemann Conditions
12-L11	Line integrals – Cauchy's theorem – Cauchy's integral formula
13-L12	Derivatives of analytical functions – Power series
14-L13	Taylor's theorem – Laurent's theorem
15-L14	Calculus of residues.
16-L15	Evaluation of definite integrals of $\cos \Theta$ and $\sin \Theta$
17- L16	Certain improper real integers.
18- L17	Bessel function of first kind.
19- L18	Generating function.
20- L19	Recurrence relations.
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins (30.07.2018)
22- L21	Jn (x) as solution of Bessel differential equation.
23- IT-1	Internal Test-I
24- L22	Expansion of Jn (x) where n is half and odd integer.
25- L23	Integral representation
26- L24	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
27- L25	Laguerre's differential equation and Laguerre polynomials
28- L26	Generating function
29- L27	Rodrigue's formula
30- P2	College level meeting/Cell function
31-L28	Recurrence relations.
32-L29	Orthogonal property of lauguerre polynomials.
33-L30	Associated laugurre polynomials.
34- L31	Introduction-Fourier transform.
35- L32	Properities of fourier transfom.
36- L33	Fourier transform of a derivative.
37- L34	Fourier sine and cosine transform of derivatives.
38-L35	Laplace transform (LT)
39- L36	Properities of LT
40- L37	LT of derivative and integral of a function
41-L38	LT of periodic function.
42-P3	Department Seminar
43-L39	Inverse of LT Proposition of inverse LT
44- L40	Properities of inverse LT
45- L41	Application of LT to electrical circuits
46- L42 47- L43	Introduction –numerical integration.
41-L43	Allotting portion for Internal Test-II Internal Test II begins (03 00 2018)
48- L44	Internal Test II begins (03.09.2018) Trapezoidal rule
40- L/44	

49-IT-II	Internal Test-II
50-L45	Simpson's rule
51- L46	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
52- L47	Solution of ordinary differential equations of first order.
53- L48	Euler's method.
54- L49	Modified Euler's method
55- L50	Taylor series method.
56- L51	Runge kutta method.
57- L52	Approximate solution of algebraic and transcendental equations.
58- L53	Newton raphson method.
59-P4	College level meeting/ function
60- L54	Method of iteration
61- L55	Monte-carlo technique
62- L56	Simpson's rule
63- L57	Solution of ordinary differential equations of first order.
64- L58	Allotting portion for Internal Test-III
	Internal Test III begins (08.10.2018)
65- L59	Modified Euler's method
66- L60	Runge kutta method.
67-IT-III	Internal Test-III
68- L61	Approximate solution of algebraic and transcendental equations
69- L62	Monte-carlo technique
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
71-MT	Model Test (22.10.2018)
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 31.10.2018

Learning Outcomes	COs of the course "Mathematical physics I"
CO1	Introduction about types of matrices.
CO2	Find the eigen value and eigen vectors of the matrix.
CO3	Derive the Cauchy's integral formula.
CO4	Derive the recurrence relations.
CO5	Study about the laplace transform.
CO6	Find roots of the equation using Newton raphson method.
CO7	Solve the differential equation using Euler's method.
CO8	Solve the numerical integration using sympson's rule.
CO9	Introduction of Monte-carlo method

[Type text]

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	M.sc Physcics			
Course Name	Nonlinear Dynamics			
Course Code	PPHE11			
Class	I year (2018-2019)			
Semester	Odd			
Staff Name	G.GOMATHI SANKARI			
Credits	4			
L. Hours /P. Hours	4 / WK			
Total 60Hrs/Sem				
Internal Test-3 Hrs				
Model Test-3 Hrs				
Dept. Meetings-2 Hrs				
College Meetings-2 Hrs				
Remaining 50Hrs (5 units; 5×10=50; 10Hrs /unit)				

Course Objectives

- designed to provide an introduction to the theory and basic concepts of Nonlinear Dynamics and Chaos.
- The course concentrates on simple models of dynamical systems, their relevance to natural phenomena.
- The main goal of the course is to introduce and describe nonlinear phenomena in physical systems by only using a minimum background in physics and Physics
- ➤ The emphasis is on nonlinear phenomena that may be described by few variables that evolve with time

Syllabus

Nonlinear Dynamics

UNIT I

Nonlinear Dynamics Nonlinearity, linear and nonlinear oscillators

Dynamical systems-linear and nonlinear forces-Mathematical implications of nonlinearlty-Working definition of nonlinearity-Effects of nonlinearity-Linear oscillators and predictability-Damped and driven nonlinear oscillators.

UNIT II

Equilibrium points, bifurcations and chaos

Equilibrium points-General criteria for stability-Classification-Some simple bifurcations - Saddle node, pitch fork, transcritical and Hopf bifurcations-Discrete dynamical systems-Logistic map-Equilibrium points and their stability-period doubling phenomenon-chaos.

UNIT III

Chaos in nonlinear electronic circuits

Linear and nonlinear circuit elements-nonlinear circuits-Chua's diode-Autonomous case-Bifurcations and chaos-Chaotic dynamics of MLC circuit-Analogue circuit simulation-Some other useful nonlinear circuit - Colpitt's oscillator.

UNIT IV

Fractals

Self similarity-Properties and examples of fractals-Fractal dimension-Construction and properties of some fractals-Middle one third cantor set-Koch curve-Sierpinski triangle-Julia set-Mandelbrot set-Applications of fractals.

UNIT V

Solitons

Linear waves-Linear non dispersive wave propagation-Linear dispersive wave propagation-Nonlinear dispersive systems-Korteweg de vries equation- solitary and cnoidal waves-Numerical experiments of Zabusky and Kruskal-birth of solitons—Properties of solitons-applications of solitons.

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2018
1-L1	Nonlinearity, linear and nonlinear oscillators
2-L2	Dynamical systems-linear and nonlinear forces
3- L3	Mathematical implications of nonlinearlty
4-L4	Working definition of nonlinearity-Effects of nonlinearity
5-L5	Linear oscillators and predictability
6-L6	Damped and driven nonlinear oscillators.
7-L7	Revision
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Introduction to Equilibrium points, bifurcations and chaos
10- L9	Equilibrium points-General criteria for stability

11-L10	Classification-Some simple bifurcations -Saddle node	
12-L11	pitch fork, transcritical bifurcation	
13-L12	Hopf bifurcations-Discrete dynamical systems	
14-L13	Logistic map	
15-L14	Allotting portion for Internal Test-I	
10 111	Internal Test I begins (30.07.2018)	
16-L15	Equilibrium points and their stability	
17-IT-1	Internal Test-I	
18-L16	period doubling phenomenon-chaos.	
19-L17	Test Paper distribution and result analysis	
19 - L17	Entering Internal Test-I Marks into University portal	
20-L18	Introduction to chaos non linear electronic circuit	
20-L18 21- L19	L inear and nonlinear circuit elements	
21- L19 22- P2		
	College level meeting/Cell function nonlinear circuits-Chua's diode-Autonomous case	
23-L20 24-L21	Bifurcations and chaos	
24-L21 25-L22		
25-L22 26-L23	Chaotic dynamics of MLC circuit Solved problem	
	1	
27-L24	Analogue circuit simulation-Some other useful nonlinear circuit .	
28-L25	Colpitt's oscillator	
29-L26	Solved the problem	
30-L27	Previous university question discussion	
31-L28	Introduction to Fractals	
32-L29	Self similarity-Properties and examples of fractals-	
33-L30	Fractal dimension-Construction and properties of some fractals	
34- P3	Department Seminar	
35-L31	Quiz Competition	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (03.09.2018)	
37- L33	Monitoring Mouse activity	
38- IT-II	Internal Test-II	
39-L34	File Handling -	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Middle one third cantor set-Koch curve-Sierpinski triangle-	
42- L37		
43- L38	Applications of fractals	
44- P4	College level meeting/ function	
45-L39	Solitons Linear waves-Linear non dispersive wave propagation-Linear dispersive	
	wave propagation	
46-L40	Nonlinear dispersive systems-Korteweg de vries equation- solitary and cnoidal	
	waves-	
47-L41	Numerical experiments of Zabusky and Kruskal-birth of solitons—	
48-L42	Properties of solitons-	

40 T 42		
49-L43	applications of solitons.	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (08.10.2018)	
51 L45	Solved the problem	
52- L46	Revision solitary and cnoidal	
53-IT-III	Internal Test-III	
54-L47	Revision	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (22.10.2018)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 31.10.2018	

Learning Outcomes	COs of the course "Nonlinear Dynamics"
CO1	Students will be able to analyze the behavior of dynamical systems expressed as either a discrete-time mapping or a continuous-time flow
CO2	Students will be able to apply the techniques of nonlinear dynamics to physical processes drawn from a variety of scientific and engineering disciplines
CO3	Students will be able to analyze changes (i.e. bifurcations) to dynamical systems as system parameters are varied.
CO4	Students will be able to independently research topics in nonlinear dynamics and synthesize this work into coherent written and oral presentations.
CO5	Draw bifurcation diagrams and stability diagrams. For two-dimensional systems,.
CO6	The student is able to draw phase portraits and find basins of attraction.
CO7	The student is able to analyze limit cycles and their stability
CO8	The student has basic knowledge of the most important fractals, and their topological and metric properties
CO9	The students will improve their communication skills by solving problems on the blackboard and training in solving nonlinear problems using numerical methods.
Experimental Learning	
EL1	Describing the nonlinear system using a linear model

EL2	Representing the nonlinear system in a series expansion, and obtaining the respective coefficients either by using a regression estimation technique,	
EL3	By minimizing a cost functional, by using correlation techniques	
EL4	obtaining a graphical representation of the nonlinear term(s), then finding an analytical model for the nonlinearity	
Integrated Activity		
IA1	The network must integrate the torques to obtain the angular velocities which in turn must be integrated for the angles	
IA2	Learning these dynamics is difficult due to these sequential integrations involving non-linear functions of the state variables and the input	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

[Type text]

.

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	M.Sc Physics	
Course Name	Research Methodology	
Course Code	PPHM24	
Class	II year (2018-2019)	
Semester	Odd	
Staff Name	Dr. P. Sumithraj Premkumar	
Credits	4	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > To study the concept of Literature survey
- > To involve the activities in the research problem
- > To motivate research activities in the right directions
- > To gain the knowledge graphical and typewriting softwares

MSU / 2017-18 / PG –Colleges / M.Sc.(Physics) / Semester -III / Ppr.no.17 / Core-17

RESEARCH METHODOLOGY

Unit I :

Introduction to Research: (BFS - 1)

Objectives of Research – Importance of research – research methods and research methodology – Types of research – Basic research – applied research – Quantitative and Qualitative methods – other types of research – explanatory, exploratory, comparative – various stages of research – Identification of research topic – Literature survey – Reference collection – Hypothesis.

Unit II :

Research Activity: (BFS – 1,2)

Mode of research – Research design – joy in doing research – crucial stage of Ph.D., actual investigation – doing good research – results and conclusion – preparing the oral report – presenting the oral report in scientific seminar Planning the assignment – Defining and limiting the problem – time schedule – preparing the working bibliography – taking notes – outline – first draft.

Unit III:

Writing the thesis: (BFS – 2)

 $Planning \ the \ thesis - Writing \ the \ thesis \ / \ assignment \ - \ General \ format \ - \ Page \ and \ chapter \ format \ - \ Tables \ and \ figures \ - \ Referencing \ - \ Appendixes.$

Unit IV:

Plotting software: Origin: (BFS – 3)

Introduction - Importing your data - Designating Worksheet Columns as Error Bars -Plotting Data - Customizing the Data Plot - Customizing the Graph Axes - Adding Text to the Graph - Exploring Data: Transforming Column Values - Sorting Worksheet Data - Plotting a Range of the Worksheet Data - Masking Data in the Graph - Performing a Linear Fit -Creating Multiple Layer Graphs–Working with Excel in Origin.

Unit : V

Typesetting Software : Latex (BFS – 4)

Introduction to LaTeX – TeX and LaTeX – A typical LaTeX input file – Characters and control sequences - Producing Simple Documents using LaTeX – LaTeX input file – producing ordinary text using LaTeX – Section headings in LaTeX – changing fonts in text mode – Active characters and special symbols in text - Producing Mathematical Formulae using LaTeX – Physics mode – characters in Physics mode – superscripts and subscripts – Greek letters – mathematical symbols – standard functions – fraction and roots –Ellipsis – accents in Physics mode - Matrices and other arrays in LaTeX - Derivatives, Limits, Sums and Integrals – Lists – tables - Defining your own Control Sequences in LaTeX.

Books for study (BFS):

- 1. Research methodology Dr. S. Rajasekar, Dr. P. Philominathan, Dr. V. Chinnathambi https://arxiv.org/pdf/physics/0601009.pdf
- 2. Thesis and Assignment writing Janathan Anderson, Berry H. Durston, Millicent Poole Wiley Eastern University Edition, Wiley Eastern Ltd.
- 3. http://www.physics.rutgers.edu/~eandrei/389/Origin6_Tutorial.pdf
- 4. http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/

Books for further references:

- 1. Research Methodology Methods and techniques (2nd edition) C.R.Kothari New Age International Publishers, NewDelhi (2005).
- 2. A Guide to LaTeX Document preparation for beginners and advanced users Helmut Kopka and Patrick W. Daly Addison Wesley Publishing company.

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18-6-2018	
1-L1	I: Introduction to Research Objectives of Research	
2-L2	Importance of research	
3- L3	Research methods	
4-L4	Research methodology	
5-L5	Types of research – Basic research – applied research	
6-L6	Quantitative and Qualitative methods	
7-L7	Other types of research – explanatory, exploratory	
8-L8	Other types of research – comparative	
9-L9	Various stages of research	
10-P1	Welcoming of First year and Inauguration of Chemistry Association	
11-L10	Identification of research topic	
12-L11	Literature survey	
13-L12	Reference collection	
14-L13	Hypothesis Allotting portion for Internal Test-I	
15-L14	II : Research Activity Mode of research – Research design	
16-L15	Joy in doing research	
17-IT-1	Internal Test-I (30.07.2018)	
18-L16	crucial stage of Ph.D.,	
19-L17	Actual investigation – doing good research	
	Entering Internal Test-I Marks into University portal	
20-L18	Results and conclusion	
21-P2	College level meeting/Cell function	
22-L19	Preparing the oral report	
23-L20	Presenting the oral report in scientific seminar	
24-L21	Planning the assignment	
25-L22	Defining and limiting the problem	
26-L23	Time schedule	
27-L24	Preparing the working bibliography	
28-L25	Taking notes – outline	
29-L26	first draft	
30-L27	III: Writing the thesis Planning the thesis	
31-L28	Writing the thesis	
32-L29	Writing the assignment	
33-L30	General format of thesis	
34- P3	Department Seminar	
35-L31	General format of thesis	
36-L32	Page format	

37-IT-II	Internal Test-II (03.09.2018)	
38-L33	chapter format	
39-L34	Tables format	
40-L35	Figures format	
41-L36	Referencing	
	Entering Internal Test-II Marks into University portal	
42-P4	College level meeting/ function	
43-L37	Referencing with examples	
44-L38	Appendixes	
45-L39	Appendixes with examples	
46-L40	IV: Plotting software: Origin: Introduction	
47-L41	Importing your data	
48-L42	Designating Worksheet Columns as Error Bars	
49-L43	Plotting Data - Customizing the Data Plot	
50-L44	Customizing the Graph Axes	
51-IT-III	Internal Test-III (08.10.2018)	
52-L45	Adding Text to the Graph	
53-L46	Exploring Data: Transforming Column Values	
54-L47	Sorting Worksheet Data	
55-L48	Plotting a Range of the Worksheet Data Entering Internal Test-III Marks	
	into University portal	
56-L49	Masking Data in the Graph	
57-L50	Performing a Linear Fit	
58-L51	Creating Multiple Layer Graphs	
59-L52	Working with Excel in Origin	
60-L53	V: Typesetting Software : Latex Introduction to LaTeX – TeX and LaTeX	
61-L54	A typical LaTeX input file – Characters and control sequences	
62-L55	Producing Simple Documents using LaTeX	
63-L56	LaTeX input file – producing ordinary text using LaTeX	
64-L57	Section headings in LaTeX – changing fonts in text mode	
65-L58	Active characters and special symbols in text	
66-L59	Producing Mathematical Formulae using LaTeX– Physics mode	
67-L60	characters in Physics mode – superscripts and subscripts	
68-L61	Greek letters – mathematical symbols – standard functions – fraction and roots	
69-L62	Ellipsis – accents in Physics mode, Model Test Announcement	
70-L63	Matrices and other arrays in LaTeX	
71-L64	Derivatives, Limits, Sums and Integrals – Lists – tables	
72-L65	Defining your own Control Sequences in LaTeX.	
73-MT	Model Test (22.10.2018)	
74-MT	Model Test	
75-MT	Model test paper distribution and previous year university question paper	
	discussion, Feedback of the Course, analysis and report preparation	
	Last Working day on 31-10-2018	

Learning Outcomes		
	COs of the course "Research Methodology"	
CO1	Understand the research and its importance	
CO2	Prepare the research thesis/assignments	
CO3	Draw the graphs and diagrams using advanced software	
CO4	Write the programme for the documents using typewriting	
	software	
Experimental learning		
EL1	Demonstration of creating the graphs using origin	
EL2	How to present a paper in the seminar?	
Integrated Activity		
IA1	1 Collection of literature on the different topics	
IA2	Advancement on the recent softwares	

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# Forslow learner	: special care taken, motivate the advanced learner to support the slow learner to study.To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Quantum Mechanics I	
Course Code	PPHM31	
Class	I year (2018-2019)	
Semester	Odd	
Staff Name	J RUBY JEMIMA	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > This course imparts knowledge about wave functions and schrodinger equations and matrix mechanics.
- Heisenberg uncertainty principle and different operators and certain solvable systems and various pictures involved in quantum mechanics.
- ➢ Basics of quantum mechanics are essential.
- Methods of solving some microscopic problems using quantum mechanical ideas are studied.

Syllabus

QUANTUM MECHANICS I

Unit I :

Schrodinger equation and wave function

Introduction – Construction of Schrodinger equation – Solution of time dependent equation – Physical interpretation of – Conditions on allowed wave functions - Box normalization – Conservation of probability – Expectation value –Ehrenfest's theorem – Verification of Ehrenfest's theorem – Linear harmonic oscillator – particle in an infinite square well potential – Particle in a magnetic field.

Unit II :

Heisenberg Uncertainty Principle and Operators

Classical uncertainty relation –Heisenberg uncertainty relation – Implication of uncertainty relation –Illustration of uncertainty relation – Gamma-Ray microscope – Doppler effect. Operators, Eigen values and Eigen functions: Linear operators, commuting and noncommuting operators – Self-ad joint and Hermitian operator – Discrete and continuous eigenvalues.

Unit III:

Exactly solvable systems

Bound states – Classical probability distribution – linear harmonic oscillator – Particle in a box – Poschl-Teller potentials – Quantum pendulum – Time dependent harmonic oscillator – Rigid rotator.

Unit IV:

Matrix Mechanics

Linear vector space – Matrix representation of operators and wave functions – Unitary transformation – Schrodinger equation and other quantities in matrix form – Application of matrix mechanics – Dirac's Bra and Ket notations – Properties of bra and ket vectors – Hilbert space.

Unit V:

Various Pictures and Density matrix

Schrodinger picture – Heisenberg picture – Interaction picture – Density matrix for a single system – Density matrix of an ensemble – Time evolution of density operator – A spin $\frac{1}{2}$

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 18.06.2018	
1-L1	Introduction :Construction of Schrodinger equation	
2-L2	Solution of time dependent equation	
3- L3	Physical interpretation of chi*chi	
4-L4	Conditions on allowed wave functions	
5-L5	Box normalization	
6-L6	Conservation of probability	
7-L7	Expectation value	
8- P1	Welcoming of First year and Inauguration of Association	
9- L8	Ehrenfest's theorem& Verification of Ehrenfest's theorem	
10- L9	Linear harmonic oscillator	

nortiale in an infinite equare well not antial
particle in an infinite square well potential
Particle in a magnetic field Classical uncertainty relation
Heisenberg uncertainty relation
Allotting portion for Internal Test-I
Internal Test I begins (30.07.2018)
Implication of uncertainty relation
Internal Test-I
Illustration of uncertainty relation
Test Paper distribution and result analysis
Entering Internal Test-I Marks into University portal
Gamma-Ray microscope
Doppler effect
College level meeting/Cell function
Operators, Eigen values and Eigen functions: Linear operators, commuting and non-
commuting operators
Self-ad joint and Hermitian operator
Discrete and continuous eigen values
Bound states
Classical probability distribution
linear harmonic oscillator
Particle in a box
Poschl-Teller potentials
Quantum pendulum
Time dependent harmonic oscillator
Rigid rotator
Department Seminar
Linear vector space
Allotting portion for Internal Test-II
Internal Test II begins (03.9.2018)
Matrix representation of operators and wave functions
Internal Test-II
Unitary transformation
Test Paper distribution and result analysis
Entering Internal Test-II Marks into University portal
Schrodinger equation and other quantities in matrix form
Application of matrix mechanics
Dirac's Bra and Ket notations
College level meeting/ function
Properties of bra and ket vectors
Hilbert space
Schrodinger picture
Heisenberg picture
Interaction picture
Allotting portion for Internal Test-III
Internal Test III begins (08.10.2018)
Density matrix for a single system & Density matrix of an ensemble

53-IT-III	Internal Test-III
54-L47	A spin ¹ / ₂ system
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
56- MT	Model Test (22.10.2018)
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 31.10.2018

Learning Outcomes	COs of the course "Quantum Mechanics I"
CO1	To construct the schrodinger equation
CO2	To derive the solution of time dependent equation
CO3	To discuss the physical interpretation of wave function
CO4	To described the properties of bra and ket vectors
CO5	To know the Box normalization
CO6	Explain the conservation of probability
CO7	To derive the Dirac's Bra and Ket notations
CO8	To discuss the application of matrix mechanics
CO9	To studied the time evolution of density operator

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Electromagnetic theory	
Course Code	PPHM32	
Class	II year (2018-2019)	
Semester	Odd	
Staff Name	E. Christy jerin	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > To expose the students to the ideas of fundamental laws.
- > To identify formulate and solve fields and electromagnetic wave propagation.
- > To study the importance of the Boundary conditions.
- > To derive the Reflection and transmission of the Electromagnetic wave.
- > To calculate the electric and magnetic dipole radiation.
- > To acquire the knowledge of Electromagnetic wave propagation.

Syllabus

Electromagnetic theory

UNIT I

Coulomb's Law-Derivation Gauss law in differential and Integral form. Gauss law in differential and Integral form. Poisson's equation and Laplace's equation. Work done to move a point charge. Energy of a point charge and continuous charge distribution. Electric field in dielectric materials. Induced dipoles and polarizability. Connection between polarizability and susceptibility.

UNIT II

Lorentz force law. Biot-Savart law and ampere law - Magnetic vector potential-Expansion of vector potential - Effect of a magnetic field on atomic orbits- Bound current and its physical interpretations- Ampere's law in magnetic material- Dia , para , Ferro Magnetism. Magnetic susceptibility and permeability in linear and non linear media

UNIT III

Electrodynamics Electromagnetic induction- Faraday law- Maxwell's equation differential and integral form. Boundary conditions on field vectors D,E,B and H Scalar and vector potential. Gauge transformations. Lorentz and coulomb gauge. Pointing vector and pointing theorem. Maxwell's stress tensor. Conservation of momentum.

UNIT IV

The wave equation for A and B-Mono chromatic plane waves Reflection and transmission at normal Incidence Reflection and transmission at oblique Incidence. EM waves in conductor wave guide. The coaxial transmission line.

UNIT V

Retarded Potential. Lenard – wiechart potential. Electric dipole radiation. Magnetic dipole radiation. And derivation. Larmour formula definition. And derivation. Abraham Lorentz formula for the radiation reaction. Physical origin of radiation reaction

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2018
1-L1	Coulomb's Law-Derivation.
2-L2	Gauss law in differential and Integral form.
3- L3	Gauss law in differential and Integral form.
4-L4	Poisson's equation and Laplace's equation.
5-L5	Work done to move a point charge.
6-L6	Energy of a point charge and continuous charge distribution.
7-L7	Energy of a point charge and continuous charge distribution.
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Electric field in dielectric materials.
10- L9	Induced dipoles and polarizability.
11-L10	Connection between polarizability and susceptibility.
12-L11	Connection between polarizability and susceptibility.
13-L12	Lorentz force law.
14-L13	Biot-Savart law
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins (30.07.2018)

16-L15	Magnetic vector potential.
17-IT-1	Internal Test-I
18-L16	Effect of a magnetic field on atomic orbits.
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Dia, para, Ferro Magnetism.
21- L19	Magnetic susceptibility and permeability.
22- P2	College level meeting/Cell function
23-L20	Maxwell's equation differential and integral form.
24-L21	Maxwell's equation differential and integral form.
25-L22	Boundary conditions on field vectors
26-L23	D,E,B and H
27-L24	Scalar and vector potential.
28-L25	Gauge transformations.
29-L26	Lorentz and coulomb gauge.
30-L27	Pointing vector and pointing theorem.
31-L28	Maxwell's stress tensor.
32-L29	Conservation of momentum.
33-L30	Mono chromatic plane waves
34- P3	Department Seminar
35-L31	Reflection and transmission at normal Incidence.
36-L32	Allotting portion for Internal Test-II
	Internal Test II begins (03.09.2018)
37- L33	Reflection and transmission at oblique Incidence.
38- IT-II	Internal Test-II
39-L34	EM waves in conductor wave guide.
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	The coaxial transmission line.
42- L37	Retarded Potential.
43- L38	Lenard – wiechart potential.
44- P4	College level meeting/ function
45-L39	Electric dipole radiation.
46-L40	Magnetic dipole radiation.
47-L41	And derivation.
48-L42	Larmour formula definition.
49-L43	And derivation.
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins (08.10.2018)
51 L45	Abraham Lorentz formula for the radiation reaction.
52- L46	Physical origin of radiation reaction.
53-IT-III	Internal Test-III
54-L47	
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
56- MT	Model Test (22.10.2018)
56- MT 57-MT 58-MT	<u> </u>

59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.10.2018

Learning OutcomesCOs of the course "Electromagnetic theory"	
CO1	Explain the fundamental laws governing electromagnetic fields.
CO2	Determine the electromagnetic force exerted on charged particles,
	current elements, working priniciple of various electric and EMT
	conversion devices are based on this force.
CO3	Design maxwell's equation and Boundary condition.
CO4	Deduce the Reflection and Transmission wave equation
CO5	Derive the Pointing Theorem.
CO6	Design Larmour formula.
CO7	Reduce the gauge transformation .
CO8	Calculate magnetic vector potential
CO9	To derive the basic laws.

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-
	learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Statistical Mechanics	
Course Code	PPHM33	
Class	II year (2018-2019)	
Semester	Odd	
Staff Name	C.Stella Rani	
Credits	4	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)		

Course Objectives

- > To introduce the basic concepts of statistical mechanics
- > To import the knowledge of Maxwell Boltzmann distribution
- > To describe the quantum mechanical view of the statistics
- > To explain the Black body radiation
- > To determines the thermal properties of Bose Einstein statistics

Syllabus

Statistical Mechanics

$L \ T \ P \ C$

Preamble:

The basic concepts involved in statistical mechanics, classical and quantum statistics, applications of quantum statistics, phase transition in certain physical problems is expected to study. The theory of statistics and quantum ideas are prerequisites. Postulates of quantum mechanics, Maxwell-Boltzmann distribution law, theory and applications of quantum statistics are studied.

Unit I

Basic concepts

Phase space-phase-space diagram of an oscillator-Volume in phase space-EnsemblesMicrocanonical ensemble-Canonical ensemble-Grand canonical ensemble-Density of distribution in phase space-Liouvilles theorem-Postulate of equal a priori probabilitystatistical, mechanical and thermal equilibriums-connection between statistical and thermodynamical quantities. (11 L)

Unit II

M-B Distribution law

Microstates and macro states-Stirling's approximation-Thermodynamic probabilityGeneral statistical distribution law-Classical Maxwell-Boltzmann distribution law-Evaluation of constants in the Maxwell Boltzmann distribution law-Maxwell's law of distribution of velocitiesprinciple of equipartition of energy- Boltzmann entropy relation-Probability of magnetic moment distribution of independent atoms. (13 L)

Unit III

Quantum statistics

Postulatory foundations of quantum mechanics-Transition from classical statistical mechanics to quantum statistical mechanics-Indistinguishability and quantum statistics-Exchange symmetry of wave functions-Bose-Einstein Statistics-Fermi-Dirac statistics-Maxwell-Boltzmann statistics-Results of three statistics-Thermodynamic interpretation of the parameters α and β -Black body radiation and the Planck radiation law. (12 L)

Unit IV

Applications of quantum statistics

Specific heat of solids-Dulong and Petit law-Einstein theory of specific heat of solidsDebye theory of specific heat of solids-Criticism of Debye's theory-Ideal Bose Einstein GasEnergy and pressure of the Gas-Gas degeneracy-Bose-Einstein Condensation-Thermal properties of Bose Einstein Gas-Ideal Fermi Dirac gas- Energy and pressure of the Gas-Thermodynamics functions of degenerate Fermi-Dirac gas-Electron Gas. (14 L)

Unit V

Phase transitions

Phase transition-Phase transitions of first and second kind-critical exponent-Yang and Lee theory-Phase transitions of second kind: the Ising model-Braggs-Williams approximation-One dimensional Ising model. (10 L) Total (60 L)

Book for Study:

1.ElementarystatisticalMechanicsDr.S.L.Gupta&Dr.V.Kumar,PragatiPrakasan,Meerut22nd Edition2008

Books for Reference:

1. Fundamentals of statistical mechanics B B Laud New age international Publishers 2005

2. An Introductory course of Statistical Mechanics PalashB.PalNarosa First reprint 2009

3. Statistical Mechanics by Kerson Huang 4. Statistical Mechnics by Sears and Salinger.

Hour	Class Schedule
allotment	
	Odd Semester Begin on 18.06.2018
1-L1	Phase Space
2-L2	Phase-space diagram of an oscillator
3- L3	Volume in phase space
4-L4	Ensembles Microcanonical ensemble
5-L5	Canonical ensemble
6-L6	Grand canonical ensemble
7-L7	Density of distribution in phase space
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Liouvilles theorem
10- L9	Postulate of equal a priori probability
11-L10	Statistical, mechanical and thermal equilibriums
12-L11	Connection between statistical and thermodynamical quantities.
13-L12	Microstates and macro states
14-L13	Stirling's approximation
15-L14	Allotting portion for Internal Test-I

	Internal Test I begins (30.07.2018)	
16-L15	Thermodynamic probabilityGeneral statistical distribution law	
10-L13 17-IT-1	Internal Test-I	
17-11-1 18-L16	Boltzmann distribution law	
18-L10 19-L17	Test Paper distribution and result analysis	
19-L17	Entering Internal Test-I Marks into University portal	
20 I 19		
20-L18 21- L19	Evaluation of constants in the Maxwell Boltzmann distribution law	
	Maxwell's law of distribution of velocitiesprinciple of equipartition of energy	
22- P2	College level meeting/Cell function	
23-L20	Boltzmann entropy relation	
24-L21	Probability of magnetic moment distribution of independent atoms.	
25-L22	Postulatory foundations of quantum mechanics	
26-L23	Transition from classical statistical mechanics to quantum statistical mechanics	
27-L24	Indistinguishability and quantum statistics	
28-L25	Exchange symmetry of wave functions	
29-L26	Bose-Einstein Statistics	
30-L27	Fermi-Dirac statistics	
31-L28	Maxwell-Boltzmann statistics	
32-L29	Results of three statistics, Thermodynamic interpretation of the parameters $\alpha \& \beta$	
33-L30	Black body radiation and the Planck radiation law.	
34- P3	Department Seminar	
35-L31	Specific heat of solids	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (03.09.2018)	
37- L33	Dulong and Petit law	
38- IT-II	Internal Test-II	
39-L34	Einstein theory of specific heat of solids	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Debye theory of specific heat of solids	
42- L37	Criticism of Debye's theory	
43- L38	Ideal Bose Einstein Gas, Energy and pressure of the Gas degeneracy	
44- P4	College level meeting/ function	
45-L39	Bose-Einstein Condensation ,Thermal properties of Bose Einstein Gas-	
46-L40	Ideal Fermi Dirac gas, Energy and pressure of the Gas	
47-L41	Thermodynamics functions of degenerate Fermi-Dirac gas-Electron Gas.	
48-L42	Phase transition, Phase transitions of first and second kind	
49-L43	critical exponent, Yang and Lee theory	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (08.10.2018)	
51 L45	Phase transitions of second kind: the Ising model-Braggs-Williams	
	approximation,One dimensional Ising model	
52- L46		
53-IT-III	Internal Test-III	
54-L47		
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (22.10.2018)	

57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.11.2018

Learning Outcomes	COs of the course "Statistical Mechanics"
CO1	Derive the density of states
CO2 Determine the Maxwell Boltzmann distribution velocities	
CO3 Define Microstates and macro states	
CO4 Application to the Black body distribution	
CO5	Analogy between statistical and thermo dynamical quantities
CO6	Determine the specific heat of solids
CO7	Difference between three statistics
CO8	Finding the condensation of Bose - Einstein
CO9 Knowledge about Electron gas	
Experimental	
Learning	
EL1	Phase transitions of first and second kind
Integrated Activity	
IA1	Yang and Lee theory
IA2	Stirling's approximation

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	NUMERICAL METHODS AND	
	PROGRAMMING IN C++	
Course Code	PPHE21	
Class	I year (2018-2019)	
Semester	EVEN	
Staff Name	G.GOMATHISANKARI	
Credits	4	
L. Hours /P. Hours	4 / WK	
Total 60Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- The aim is to teach the student various topics in Numerical Analysis such as solutions of nonlinear equations in one variable
- > Interpolation and approximation, **numerical** differentiation and integration,
- Direct methods for solving linear systems
- > Numerical solution of ordinary differential equations.

Syllabus

Numerical Methods and Programming in C++

Unit I

Roots of equations and eigen-value problems

Newton-Raphson method. Secant Method. Muller's Method - Lin -Bairstow's Method. Linear Algebraic Equations: Gauss elimination - Gauss-Jordan - Gauss-Jacobi - Inverse of a matrix by Gauss Jordan elimination method.

Unit II

Curve Fitting / Interpolation

Curve fitting: Linear Least square fitting - Nonlinear Fit- Fitting a Polynomial Function, Exponential function - Cubic spline fitting – Interpolation: Fundamental theorem of finite difference, Finite difference interpolation with equally spaced: Newton's forward and backward difference formulae - Unequally spaced: Lagrangian interpolation formula.

Unit III

Numerical differentiation and integration

Numerical Differentiation : Methods based on interpolation: non uniform & uniform nodal points - Methods based on finite differences: forward & backward difference formulae. Numerical Integration: Trapezoidal Rule, Simpson Rule - Monte-Carlo evaluation of integration. Methods based on undetermined coefficients: Gauss-Legendre, Gauss - Lagurre, Gauss - Hermite integration methods.

Unit IV

Solution to ordinary and partial differential equations

Ordinary Differential Equations- Taylor's Series Method- Euler's Method-Euler's modified method - Runge -Kutta 2nd and 4th Order Methods-Predictor- Corrector Methods-Solution to partial differential equations

Unit: V

C++ Programming applications

Programme structure: header files, local, global and static variables, input and output statements; Euler's Method: Charging and discharging of a condenser; Runge-Kutta methods: Radioactive Decay; Newton-Raphson method: Solution van der Waals equation; Gauss elimination method: Currents in Wheatstone's bridge; Linear fitting. - least square method : Cauchy's constant; Simpson's and Monte-Carlo methods : Evaluation of (integral) area under the curve; Eigenvalues and eigenvectors of symmetry matrices; Numerical differentiation: Newton's Law of cooling.

Hour	Class Schedule
allotment	
	Even Semester Begin on 03.12.2018
1-L1	Roots of equations and eigen-value problems
2-L2	Newton-Raphson method. Secant Method
3- L3	Muller's Method - Lin -Bairstow's Method.
4-L4	Linear Algebraic Equations

5-L5	Gauss elimination - Gauss-Jordan	
6-L6	Gauss-Jacobi	
7-L7	Inverse of a matrix by Gauss Jordan elimination method	
8- P1	Physics Assiocation	
9- L8	Curve Fitting / Interpolation Curve fitting	
10- L9	Linear Least square fitting - Nonlinear Fit- Fitting a Polynomial Function,	
	Exponential function	
11-L10	Cubic spline fitting – Interpolation	
12-L11	Interpolation: Fundamental theorem of finite difference, Finite difference	
	interpolation with equally spaced:	
13-L12	Newton's forward and backward difference formulae	
14-L13	Unequally spaced: Lagrangian interpolation formula.	
15 1 1 4		
15-L14	Allotting portion for Internal Test-I	
16115	Internal Test I begins (18.01.2019)	
16-L15	Numerical differentiation and integration Numerical Differentiation : Methods	
	based on interpolation:	
17-IT-1	Internal Test-I	
17-11-1 18-L16	non uniform & uniform nodal points - Methods based on finite differences: forward	
10-L10	& backward difference formulae	
19-L17	Test Paper distribution and result analysis	
	Entering Internal Test-I Marks into University portal	
20-L18	Numerical Integration: Trapezoidal Rule	
21-L19	Simpson Rule	
22- P2	College level meeting/Cell function	
23-L20	Monte-Carlo evaluation of integration.	
24-L21	Methods based on undetermined coefficients	
25-L22	Gauss-Legendre, Gauss – Lagurre	
26-L23	Gauss - Hermit integration methods.	
27-L24	Solution to ordinary and partial differential equations	
28-L25	Ordinary Differential Equations	
29-L26	Taylor's Series Method- Euler's Method	
30-L27	Euler's modified method - Runge -Kutta 2nd and 4th Order Methods	
31-L28	Predictor- Corrector Methods	
32-L29	Solution to partial differential equations	
33-L30	C++ Programming applications Programme structure: header files, local	
34- P3	Department Seminar	
35-L31	global and static variables.	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (25.02.2019)	
37- L33	input and output statements	
38- IT-II	Internal Test-II	
39-L34	Euler's Method	

40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Charging and discharging of a condenser	
42- L37	Runge-Kutta methods	
43- L38	Radioactive Decay; Newton-Raphson method	
44- P4	College level meeting/ function	
45-L39	Gauss elimination method Solution van der Waals equation;:	
46-L40	Currents in Wheatstone's bridge	
47-L41	Linear fitting	
48-L42	least square method : Cauchy's constant	
49-L43	Simpson's and Monte-Carlo methods	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (22.03.2019)	
51 L45	Evaluation of (integral) area under the curve	
52- L46	Eigenvalues and eigenvectors of symmetry matrices;	
53-IT-III	Internal Test-III	
54-L47	Numerical differentiation: Newton's Law of cooling.	
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
	Model Test begins (08.04.2019)	
56- MT	Model Test	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 23.04.2019	

Learning Outcomes	COs of the course "Numerical Methods"
CO1	Students will understand basics of numerical analysis
CO2	Students will be able to find roots of polynomial equations using numerical analysis
CO3	Students will be able to conduct numerical integration and differentiation
CO4	Students will be able to use numerical methods to solve theproblem
CO5	Demonstrate an understanding of the fundamental principles of digital computing, including number representation and arithmetic operations
CO6	Develop and implement stable and accurate numerical methods to solve linear systems of equations and find roots of linear and non-linear equations.
CO7	Perform numerical interpolation, curve fitting, integration, and differentiation
CO8	Develop and implement Gauss Elimination method

CO9	To perform Eigen values and Eigen vector	
Experimental		
Learning		
EL1	Study of basic matrix operations	
EL2	Solution of Linear equations for Underdetermined and Overdetermined	
	cases.	
EL3	Determination of Eigen values and Eigen vectors of a Square matrix.	
EL4	Solution of Difference Equations using Euler Method	
Integrated Activity		
IA1	Have a strong theretical background of various numerical methods	
IA2	Select the appropriate method for given problem	
# Blended Learning	: using PPT, video, library resources, ICT techniques, E-learning resources, Google classroom, study tour, etc.,	
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.	

# For slow learner	: special care taken, motivate the advanced learner to support the
	slow learner to study. To attend the remedial classes.

Extension activity : Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics	
Course Name	Mathematicl Physics-II	
Course Code	PPHM21	
Class	I year (2018-2019)	
Semester	even	
Staff Name	C.Stella Rani	
Credits	4	
L. Hours /P. Hours	5 / WK	
Total 75 Hrs/Sem		
Internal Test-3 Hrs		
Model Test-3 Hrs		
Dept. Meetings-2 Hrs		
College Meetings-2 Hrs		
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)		

Course Objectives

- > To introduce the special type of matrices. .
- ➤ To derive Cayley hamilton theorem.
- > To derive Cauchy's theorem.
- > To derive Taylor's theorem.
- \succ To study the Polynomials.
- > To import the knowledge of fourier transform.
- > To apply then laplace transform into the electrical circuits.

Syllabus

Mathematical Physics II

Unit I

Complex analysis

Functions of complex variable - Analytic functions - Cauchy -Riemann differential equation - Harmonic functions - Cauchy's integral theorem - Cauchy's integral formula - Derivatives of analytic functions - Residues and their evaluations - Cauchy's residue theorem.

Unit II

Group theory

Concept of a group - Abelian group - Cyclic group - Subgroup - Coset - Classes Conjugate subgroups - Isomorphism and homomorphism - Reducible and irreducible representations - Some important theorems on representations - Orthogonality theorem.

Unit III

Special functions II.

Introduction - Legendre differential equation and Legendre polynomial - Generating functions - Recurrence relations - Hermite differential equation and Hermite polynomial Generating function - Recurrence relations.

Unit IV

Partial Differential Equations

Solution of heat flow equation (Method of separation of vriables) – Linear flow in semi infinite solid : Temperature on one face given as sinusoidal function of time – Variable linear flow in an infinite bar – two dimentional heat flow - three dimentional heat flow – Heat flow in circular plate (use of cylindrical co ordinates) – Equation of motion for the vibrating string – Vibrations of a rectangular membrane - Vibrations of a circular membrane

Unit V

Tensor analysis

Introduction - Scalar, contravarient and covarient vectors - Tensor of higher ranks Algebraic operations of tensors - Symmetric and anti symmetric tensor - Fundamental tensor - Tensors in dynamic of a particle - Tensors in elasticity - Moment of inertia tensor.

Book for Study:

1. Mathematical Physics, Sathyapakash, Sultan Chand & Sons, New Delhi.

Books for Reference:

1. Applied Physics for Engineers and Physicsts, Louis A.Pipes, Lawrence R, Harvill, McGraw-Hill Ltd, 1970 2. Matrices and Tensors in1 Physics- A.W.Joshi, 3rd edition, New Age International Publishers, New Delhi, 1995.

Hour allotment	Class Schedule
	Odd Semester Begin on 3.12.2018
1-L1	Functions of complex variable
2-L2	Analytic functions
3- L3	Cauchy -Riemann differential equation
4-L4	Harmonic functions
5-L5	Cauchy's integral theorem
6-L6	Cauchy's integral formula
7-L7	Derivatives of analytic functions
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Residues and their evaluations
10- L9	Cauchy's residue theorem
11-L10	Concept of a group
12-L11	Abelian group
13-L12 14-L13	Cyclic group Subgroup
14-L15 15-L14	
13-L14	Allotting portion for Internal Test-I Internal Test I begins (18.01.2019)
16-L15	Coset
10-L15 17-IT-1	Internal Test-I
18-L16	Classes Conjugate subgroups
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	Isomorphism and homomorphism
21- L19	Reducible and irreducible representations
22- P2	College level meeting/Cell function
23-L20	Some important theorems on representations
24-L21	Orthogonality theorem.
25-L22	Introduction, Legendre differential equation and Legendre polynomial
26-L23	Generating functions
27-L24	Recurrence relations
28-L25	Hermite differential equation and Hermite polynomial Generating function
29-L26	Recurrence relations.
30-L27	Solution of heat flow equation (Method of separation of vriables)
31-L28	Linear flow in semi infinite solid : Temperature on one face given as sinusoidal
22 1 20	function of time Variable linear flow in an infinite bar
32-L29	two dimentional heat flow
33-L30 34- P3	Department Seminar
34- P3 35-L31	three dimentional heat flow
36-L32	Allotting portion for Internal Test-II
50 152	Internal Test II begins (25.02.2019)
37- L33	Heat flow in circular plate (use of cylindrical co ordinates)
38- IT-II	Internal Test-II
39-L34	Equation of motion for the vibrating string
40-L35	Test Paper distribution and result analysis

	Entering Internal Test-II Marks into University portal
41-L36	Vibrations of a rectangular membrane
42- L37	Vibrations of a circular membrane
43- L38	Introduction ,Scalar, contravarient and covarient vectors
44- P4	College level meeting/ function
45-L39	Tensor of higher ranks Algebraic operations of tensors
46-L40	Symmetric and anti symmetric tensor
47-L41	Fundamental tensor
48-L42	Tensors in dynamic of a particle
49-L43	Tensors in elasticity
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins (22.03.2019)
51 L45	Moment of inertia tensor
52- L46	
53-IT-III	Internal Test-III
54-L47	
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
56- MT	Model Test (08.04.2019)
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.04.2019

Learning Outcomes	COs of the course "Mathematical Physics-II"
CO1	Introduction about types of matrices.
CO2	Find the eigen value and eigen vectors of the matrix.
CO3	Derive the Cauchy's integral formula.
CO4	Derive the recurrence relations.
CO5	Study about the laplace transform.
CO6	Find roots of the equation using Newton raphson method.
CO7	Solve the differential equation using Euler's method.
CO8	Solve the numerical integration using sympson's rule.
CO9	Introduction of Monte-carlo method

[Type text]

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics
Course Name	Condensed matter physics
Course Code	PPHM22
Class	I year (2018-2019)
Semester	Even
Staff Name	E.Chrsity Jerin
Credits	5
L. Hours /P. Hours	5 / WK
Total 75 Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)	

Course Objectives

- > To study the classification of crystals..
- > To analysis of elastic strains.
- > To calculate the phonons momentum.
- > To derive the Bloch function.
- > To acquire the knowledge of superconductivity.

Syllabus

Condensed matter physics

UNIT I

Classification of crystals Two dimensional Brava's Brava's lattices in 3 dimensional crystals of inert gases ionic crystals covalent crystals ,metals hydrogen bonds analysis of elastic strains elastic compliance and stiffness constants elastic wave in cubic crystals

UNIT II

Lattice waves properties of Lattice waves vibrational modes of a finite one dimensional lattice of identical atoms diatomic linear lattice quantization of lattice vibrations phonons momentum Inelastic scattering by phonons, by long wave length phonons X rays by photons neutrons by phonons

UNIT III

Energy levels in one dimension free electron gas in three dimensions-heat capacity of the electron gas Electrical conductivity and Ohm's law Hall effect thermal conductivity of metals Bloch functions Kronig-Forder-magnons antiferro magnetic order Ferromagnetic domains Origin of domains

UNIT IV

Langevin diamagnetism equation quantum theory of diamagnetism Hund rule Paramagnetic susceptibility of conduction electrons Ferromagnetic order Magnons antiferro magnetic order ferromagnetic domains origin of domains.

UNIT V

Macroscopic electric field Local field at an atom Dielectric constant and polarizability Structural phase transitions Ferroelectric crystals Ferroelectric domains Piezoelectricity occurrence of superconductivity Meissner effect thermodynamics of superconducting transition London equation coherence length BCS theory of superconductivity Single particle tunneling DC AND AC Josephson effect

Hour	Class Schedule	
allotment		
	Odd Semester Begin on 03.12.2018	
1-L1	Classification of crystals	
2-L2	Two dimensional Brava's	
3- L3	Brava's lattices in 3 dimensional	
4-L4	crystals of inert gases	
5-L5	ionic crystals	
6-L6	covalent crystals ,metals	
7-L7	hydrogen bonds	
8- P1	Welcoming of First year and Inauguration of Physics Association	
9- L8	analysis of elastic strains	
10- L9	elastic compliance and stiffness constants	
11-L10	elastic wave in cubic crystals	
12-L11	Lattice waves	
13-L12	properties of Lattice waves	
14-L13	vibrational modes of a finite one	
15-L14	dimensional lattice of identical atoms	
16-L15	diatomic linear lattice	
17- L16	quantization of lattice vibrations	
18- L17	phonons momentum	
19- L18	Inelastic scattering by phonons, by long wave length phonons	
20- L19	X rays by photons	
21- L20	Allotting portion for Internal Test-I	
	Internal Test I begins (18.01.2019)	
22- L21	neutrons by phonons	
23- IT-1	Internal Test-I	

24- L22	neutrons by phonons
25- L23	Energy levels in one dimension
26- L24	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
27- L25	free electron gas in three dimensions
28- L26	heat capacity of the electron gas
29- L27	Electrical conductivity and Ohm's law
30- P2	College level meeting/Cell function
31-L28	Hall effect
32-L29	thermal conductivity of metals
33-L30	thermal conductivity of metals
34- L31	Bloch functions
35- L32	Kronig-Forder-magnons
36- L33	antiferro magnetic order
37- L34	Ferromagnetic domains
38-L35	Origin of domains
39- L36	Langevin diamagnetism equation
40- L37	quantum theory of diamagnetism
41- L38	quantum theory of paramagnetism
42-P3	Department Seminar
43- L39	Hund rule
44- L40	Paramagnetic susceptibility of conduction electrons
45- L41	Ferromagnetic order
46- L42	Magnons
47- L43	Allotting portion for Internal Test-II
	Internal Test II begins (25.02.2019)
48- L44	antiferro magnetic order
49-IT-II	Internal Test-II
50-L45	ferromagnetic domains
51- L46	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
52- L47	origin of domains.
53- L48	Macroscopic electric field
54- L49	Local field at an atom
55- L50	Dielectric constant and polarizability
56- L51	Structural phase transitions
57- L52	Ferroelectric crystals
58- L53	Ferroelectric domains
59-P4	College level meeting/ function
60- L54	Piezoelectricity
61- L55	occurrence of superconductivity
62- L56	Meissner effect
63- L57	thermodynamics of superconducting transition
64- L58	Allotting portion for Internal Test-III
	Internal Test III begins (22.03.2019)
65- L59	London equation
66- L60	coherence length
67-IT-III	Internal Test-III

68- L61	BCS theory of superconductivity
69- L62	Single particle tunnelling
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
71-MT	Model Test (08.04.2019)
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 23.04.2019

Learning Outcomes	COs of the course "Condensed matter physics"
CO1	Explain the concept of ionic crystals, covalent crystals.
CO2	Derive the London equation.
CO3	Explain the concept of elastic compliance.
CO4	Calculate the value of phonon momentum.
CO5	Deduce the electrical conductivity.
CO6	Explain Hall effect.
CO7	Design Hund rules.
CO8	Explain the concept of magnons.
CO9	Determine the coherence length

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	M.Sc., Physics
Course Name	Micoprocessor and Microcontroller
Course Code	PPHM23
Class	I year (2018-2019)
Semester	Even
Staff Name	G.GOMATHI SANKARI
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

- > The objective of this course is to become familiar with the architecture and the instruction set of an Intel microprocessor
- Assembly language programming will be studied as well as the design of various types of digital and analog interfaces
- Understand the architecture of 8085 and 8051

Syllabus

Microprocessor 8085 and Microcontroller 8051

Unit I

Introduction to 8085 Microprocessor

Pin diagram and description - Bus System, Control Signals, Status Signals- Clock System - Latching of Address Bus - Interrupt System - Direct Memory Access- Internal architecture -ALU- Registers organization - Special purpose Registers and Counters - Flags - Program Status Word.

Unit II

Programming 8085

Assembly Language Programming - Assembler - Instruction Format of 8085-Instruction Set - Addressing Modes - Instruction Cycle, Machine Cycle and T-Slates - Timing Diagram of Read, Write machine Cycles and some basic Instructions - 8 bit and 16 bit addition and subtraction- Loops and Branching - Multiplication and Division in 8085-Searching and Sorting -Finding smallest/biggest number in an array - Time delay calculation- Stack and Subroutines -Software Interrupts and ISR- Data Transfer Schemes.

Unit III

Interfacing and peripheral devices

Address Space of 8085- Address space partition- Memory Interfacing - Memory map and Address decoding- Interfacing of RAM (2K x 8 & 4K x 8) and ROM (2R x 8 & 4K x 8) - I/O mapped I/O and Memory Mapped I/O interfacing Schemes - Ports- Interfacing chips: Nonprogrammable Port 8212 - Programmable Peripheral Interface (PPI) 8255 architecture, Control Signals and operating Modes - Programmable Interval Timer (PIT) 8253.

Unit IV

Micro Controller 8051

Introduction - Comparison of Microcontroller & Microprocessor - Pin Diagram and description - Block Diagram of 8051 and Internal Architecture - Clocks - Registers- Flags-Internal Memory, SFR and I/O Ports - External Memory and decoding- Instruction Set and Addressing Modes of 8051- Features available in 8051: Timer and Counters, Timer Modes - Serial Port and Serial Data Transfer.

Unit V

Micro Processor based system design and a Applications

Design considerations - Sensors and Transducers - Sample and Hold Circuits- -Interfacing Keyboard and multiplexed seven segment displays - DAC and ADC interfacing -Square, Rectangular and Ramp Wave Generation - Temperature measurement and control -Digital Clock - Stepper Motor Control.

Hour	Class Schedule
allotment	
	Even Semester Begin on 03.12.2018
1-L1	Introduction to 8085 Microprocessor Pin diagram and description
2-L2	Bus System, Control Signals, Status Signals- Clock System
3- L3	Latching of Address Bus
4-L4	Interrupt System - Direct Memory Access- Internal architecture

5-L5	ALU- Registers organization
6-L6	Special purpose Registers and Counters - Flags - Program Status Word.
7-L7	Programming 8085 Assembly Language Programming
8- P1	Welcoming of First year and Inauguration of PhysicsAssociation
9- L8	- Assembler - Instruction Format of 8085-Instruction Set
10- L9	- Instruction Cycle, Machine Cycle and T-Slates
11-L10	- Timing Diagram of Read, Write machine Cycles and some basic Instructions -
12-L11	8 bit and 16 bit addition and subtraction- Loops and Branching
13-L12	Multiplication and Division in 8085-
14-L13	Searching and Sorting - Finding smallest/biggest number in an array Time delay
	calculation-
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins (18.01.2019)
16-L15	Stack and Subroutines - Software Interrupts and ISR-
17-IT-1	Internal Test-I
18-L16	Data Transfer Schemes
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	.Interfacing and peripheral devices Address Space of 8085- Address space
A 1 A 10	partition- Memory Interfacing
21- L19	Interfacing of RAM (2K x 8 & 4K x 8) and ROM (2R x 8 & 4K x 8) - I/O mapped
22 D2	I/O and Memory Mapped I/O interfacing Schemes -
22- P2	College level meeting/Cell function
23-L20	Ports- Interfacing chips: Nonprogrammable Port 8212 -
24-L21	- Programmable Peripheral Interface (PPI) 8255 architecture, Control Signals and operating Modes Programmable Interval Timer (PIT) 8253 .
25-L22	Introduction - Comparison of Microcontroller & Microprocessor -
26-L23	Pin Diagram and description - Block Diagram of 8051 and Internal Architecture -
20-L23 27-L24	Clocks
27-L24 28-L25	Registers
29-L25	Flags-Internal Memory, SFR and I/O Ports-
30-L27	External Memory and decoding
31-L28	Instruction Set and Addressing Modes of 8051-
31-L20 32-L29	Features available in 8051: Timer and Counters, Timer Modes
33-L30	Internal Memory, SFR and I/O Ports -
34- P3	Department Seminar
35-L31	Serial Port and Serial Data TransferFlags
36-L32	Allotting portion for Internal Test-II
50 252	Internal Test II begins (25.02.2019)
37- L33	Micro Processor based system design and a Applications Design considerations -
38- IT-II	Internal Test-II
39-L34	Design considerations -
40-L35	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
41-L36	Sensors and Transducers -
42- L37	Sample and Hold Circuits-
43- L38	Interfacing Keyboard and multiplexed seven segment displays
44- P4	College level meeting/ function
45-L39	Interfacing Keyboard and multiplexed seven segment displays

46-L40	DAC and ADC interfacing
47-L41	Square, Rectangular and Ramp Wave Generation -
48-L42	Square, Rectangular and Ramp Wave Generation -
49-L43	Temperature measurement and control -
50-L44	Allotting portion for Internal Test-III
	Internal Test III begins (22.03.2019)
51 L45	Digital Clock
52- L46	Stepper Motor Control
53-IT-III	Internal Test-III
54-L47	Stepper Motor Control
55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
	Model Test begins
56- MT	Model Test (8.04.2019)
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 23.04.2019

Course Outcomes

Learning Outcomes	COs of the course "Micoprocessor and Microcontroller"
CO1	Design and implement programs on 8086, ARM, PIC.
CO2	Design I/O circuit.
CO3	The program prepares students to successfully compete for employment
205	in Electronics, Manufacturing and Embedded fields
CO4	Design Memory Interfacing circuits
CO5	Design and implement 8051 microcontroller based system
CO6	Describe the architecture and instruction set of ARM microcontroller
	It has to do not be the factor of more and a since I/O docion
CO7	Understand and realize the Interfacing of memory & various I/O devices with 8085 microprocessor
CO8	Understand and classify the instruction set of 8085 microprocessor and
	distinguish the use of different instructions and apply it in assembly
	language programming
CO9	Understand the architecture and operation of Programmable Interface Devices and realize the programming & interfacing of it with 8085
	microprocessor
Experimental	
Learning	
EL1	Microprocessor kits and data acquisition cards
	DC Power Supplies
EL2	Microcontroller Programmer

EL3	Universal Programmer
EL4	Universal IC Tester
Integrated Activity	
IA1	The program prepares students to successfully compete for employment in Electronics, Manufacturing and Embedded fields
IA2	Design and implement 8051 microcontroller based system

# Blended Learning	: using PPT, video, library resources, ICT techniques, E-learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics
Course Name	Quantum Mechanics II
Course Code	PPHM41
Class	II year (2018-2019)
Semester	Even
Staff Name	E.Christy Jerin
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

- ➢ To introduce Pertubation theory
- \succ To derive the dirac equation
- > To explain orbital angular momentum
- > To explain transition probablity

Syllabus

Quantum Mechanics II

UNIT I

Orbital angular momentum Eigen pairs of L2 and Lz Properties of components of L and L 2 Matrix representation of L2 , Lz and L \pm spin state of an electron spin orbit coupling Addition of angular momenta

UNIT II

Time Independent Perturbation Theory: Introduction- Theory for non-degenerate case Application to non-degenerate levels Theory for degenerate levels First order Stark effect in Hydrogen atom

UNIT III

Time Dependent Perturbation Theory: Introduction Transition probability constant perturbation Harmonic perturbation adiabatic perturbation sudden approximation Semi classical theory of radiation calculation of Einstein coefficients

UNIT IV

Classical scattering cross section Centre of mass and laboratory co-ordinate systems Scattering amplitude Green's function approach Born approximation Partial wave analysis Scattering form a square well system

UNIT V

Klein – Gordon equation Dirac equation for a free particle Spin of a Dirac particle Particle in a potential Relativistic particle in a box Relativistic hydrogen atom Electron in a field

Hour	Class Schedule
allotment	
	Even Semester Begin on 04.12.2018
1-L1	Orbital angular momentum
2-L2	Eigen pairs of L2 and Lz
3- L3	Properties of components of L and L 2
4-L4	Matrix representation of L2 , Lz and L \pm
5-L5	spin state of an electron
6-L6	spin orbit coupling
7-L7	Addition of angular momenta
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Time Independent Perturbation Theory: Introduction- Theory for non-degenerate case
10- L9	Application to non-degenerate levels
11-L10	Theory for degenerate levels
12-L11	First order Stark effect in Hydrogen atom
13-L12	Time Dependent Perturbation Theory: Introduction
14-L13	Transition probability
15-L14	Allotting portion for Internal Test-I
	Internal Test I begins (18.01.2019)
16-L15	constant perturbation
17-IT-1	Internal Test-I
18-L16	Harmonic perturbation
19-L17	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
20-L18	adiabatic perturbation
21- L19	sudden approximation
22- P2	College level meeting/Cell function
23-L20	Semi classical theory of radiation
24-L21	calculation of Einstein coefficients

25-L22	Classical scattering cross section	
	Centre of mass and laboratory co-ordinate systems	
26-L23		
27-L24	Scattering amplitude	
28-L25	Green's function approach	
29-L26	Born approximation	
30-L27	Partial wave analysis	
31-L28	Scattering form a square well system	
32-L29	Scattering form a square well system	
33-L30	Klein – Gordon equation	
34- P3	Department Seminar	
35-L31	Klein – Gordon equation	
36-L32	Allotting portion for Internal Test-II	
	Internal Test II begins (25.10.2019)	
37- L33	Dirac equation for a free particle	
38- IT-II	Internal Test-II	
39-L34	Dirac equation for a free particle	
40-L35	Test Paper distribution and result analysis	
	Entering Internal Test-II Marks into University portal	
41-L36	Spin of a Dirac particle	
42- L37	Spin of a Dirac particle	
43- L38	Particle in a potential	
44- P4	College level meeting/ function	
45-L39	Relativistic particle in a box	
46-L40	Relativistic hydrogen atom	
47-L41	Relativistic hydrogen atom	
48-L42	Electron in a field	
49-L43	Electron in a field	
50-L44	Allotting portion for Internal Test-III	
	Internal Test III begins (08.04.2019)	
51 L45	Electron in a field	
52- L46	Electron in a field	
53-IT-III	Internal Test-III	
54-L47		
55-L48	Test Paper distribution and result analysis	
	Entering Internal Test-III Marks into University portal	
56- MT	Model Test (08.04.2019)	
57-MT	Model Test	
58-MT	Model Test	
59- L49	Model test paper distribution and previous year university question paper	
	discussion	
60-L50	Feedback of the Course, analysis and report preparation	
	Last Working day on 30.10.2019	

Learning Outcomes	COs of the course "Quantum Mechanics II"
CO1	Time Independent Perturbation Theory: Introduction- Theory for non-
	degenerate case
CO2	Application to non-degenerate levels
CO3	Theory for degenerate levels
CO4	First order Stark effect in Hydrogen atom
CO5	Born approximation
CO6	Partial wave analysis
CO7	Scattering form a square well system
CO8	Scattering form a square well system
CO9	Klein – Gordon equation

Course Outcomes

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Principal

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics
Course Name	Spectroscopy
Course Code	PPHM42
Class	II year (2018-2019)
Semester	Even
Staff Name	Dr. P. Sumithraj Premkumar
Credits	4
L. Hours /P. Hours	4 / WK
Total 60Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 50 Hrs (5 units; 5×10=50; 10Hrs /unit)	

Course Objectives

- > To gain knowledge about various types of spectroscopy.
- > To understand the structure of different chemical compounds by studying these types.
- To learn about the spectroscopy instrumentation and its uses in the research field

Syllabus

MSU / 2017-18 / PG –Colleges / M.Sc.(Physics) / Semester -IV / Ppr.no.21 / Core – 21

Spectroscopy

Unit I

Microwave Spectroscopy

Classification of molecules based on moment of inertia – rotational spectra of rigid and non-rigid diatomic molecules – Isotopic effect – linear polyatomic molecule - symmetric top molecule – chemical analysis –microwave spectrometer. (13 L)

Unit II

Infrared Spectroscopy

Vibrating diatomic and poly-21atomic molecules – Simple harmonic oscillator – anhormonicity – Hydrogen bonding – Fermi resonance – rotation vibration spectra of polyatomic molecule – information from IR spectra – IR spectrometer – FTIR. (14 L)

Unit III

Raman Spectroscopy

Theory of Raman scattering – rotation vibration Raman spectra – mutual exclusion principle – Raman spectrometer – polarization of Raman scattered light – structure determination using Raman spectrum – phase transition – resonance Raman scattering. (12 L)

Unit IV

Resonance Spectroscopy

Magnetic properties of nuclei – resonance condition – relaxation time – Chemical shift – application to molecular structure – Bloch equation – NMR instrumentation – NMR imaging – ESR theory and hyperfine structure ESR spectra of hydrogen atom and anisotropic systems – crystal defects and biological studies – ESR spectrometer. (11 L)

Unit V

Surface spectroscopy

Electron Energy Loss Spectroscopy EELS – Reflection – absorption IR spectroscopy RAIRS – Surface Enhanced Raman Scattering SERS – Inelastic Helium Scattering – X-Ray Photoelectron Spectroscopy XEPS.

Book for Study:

1. N.Banwell and E.M.Mc Cash, Fundamentals of Molecular Spectroscopy, Tata McGraw Hill.

2. G.Aruldhas, Molecular Structure and Spectroscopy, Prentice Hall India.

Book for Reference:

1. B.P.Strughan and S.Walker, Spectroscopy, John Wiley.

- 2. Peter J.Larkin, IR and Raman Spectroscopy Principle and Spectral Interpretation, Elsevier.
- 3. Gordon M. Barrow, Introduction to Molecular Spectroscopy, McGraw-Hill .

Hour allotment	Class Schedule
anotinent	Even Semester Begin on 04.12.2018
1-L1	Unit I Microwave Spectroscopy Introduction
2-L2	Classification of molecules based on moment of inertia
3- L3	rotational spectra of rigid diatomic molecules
4-L4	rotational spectra of non-rigid diatomic molecules
5-L5	Isotopic effect
6-L6	linear polyatomic molecule
7-L7	linear polyatomic molecule
8- P1	
9- L8	symmetric top molecule
10- L9	chemical analysis
11-L10	microwave spectrometer

[Type text]

55-L48	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
56- MT	Model Test (08.04.2019)
57-MT	Model Test
58-MT	Model Test
59- L49	Model test paper distribution and previous year university question paper
	discussion
60-L50	Feedback of the Course, analysis and report preparation
	Last Working day on 30.10.2019

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature

Department of Physics

COURSE ACADEMIC PLAN (2018-2019)

(Prepared by staff member handling the course)

Programme Name	M.Sc. Physics
Course Name	Nuclear particle physics
Course Code	PPHM43
Class	II year (2018-2019)
Semester	Even
Staff Name	J Ruby Jemima
Credits	5
L. Hours /P. Hours	5 / WK
Total 75 Hrs/Sem	
Internal Test-3 Hrs	
Model Test-3 Hrs	
Dept. Meetings-2 Hrs	
College Meetings-2 Hrs	
Remaining 65 Hrs (5 units; 5×13=65; 13Hrs /unit)	

Course Objectives

- > .To understand about the nuclear forces in the deutron
- \succ To study the nuclear decays
- > To understand the nuclear models
- > To learn about the nuclear reactions

Syllabus

Nuclear and Particle Physics

Preamble:

This course imparts knowledge about the elementary particles, nuclear structure, nuclear reactions with the help of various nuclear models.

UnitI

Nuclear Forces

Ground and excited states of deuteron - magnetic dipole and electric quadrupole moments of deuteron - n-p scattering at low energies - shape independent effective range theory of np scattering - pp scattering at low energies - exchange forces -meson theory of nuclear force.

Unit II

NuclearDecays

Gamow's theory of alpha decay – lineand Continuous spectrum of β decay-Fermi theory of beta decay – Fermi and Gamow-Teller selection rules – parity violation – Gamma decay – multipole transitions in nuclei – selection rules – internal conversion – nuclear isomerism.

Unit III

Nuclear Model

Liquid drop model – Weizsackers mass formula – nuclear stability – Bohr Wheeler theory of nuclear fission -magic numbers -evidence for magic numbers – shell model – spin orbit coupling – angular momenta and parities of nuclear ground states – magnetic moments - Schmidt line – collective model.

Unit IV

Nuclear Reactions

Types of nuclear reactions – Q-equation – solution of the equation – compound nuclear theory – reciprocity theorem – nuclear cross section – resonance scattering– Breit – Wigner dispersion formula – nuclear chain reaction – four factor formula.

Unit V

Elementary Particles

Classification of elementary particles- fundamental interactions conservations laws-CPT theorem - SU(3) multiplet - meson octet - baryon octet and baryon decouplet - Gellmann-Okubo mass formula - Quark theory.

Books For Study:

1. Nuclear Physics, D. C. Tayal, Himalaya Publications

2. . 2. Elements of Nuclear Physics, M. C. Pandia and R. P. S. YadavKedarnath.

Books For Reference:

- 1. Concepts of Nuclear Physics, Bernard L Cohen, Tata McGraw-Hill
- 2. Nuclear Physics an Introduction, S. B. Patel, Wiley Eastern Ltd.
- 3. Nuclear Physics, R. R. Roy and B. P. Nigam, New Age International Ltd.

Hour allotment	Class Schedule
	Even Semester Begin on 03.12.2018
1-L1	Ground and Excited state of deutron
2-L2	Magntic dipole and electric quadrupole
3- L3	Moments of deutron
4-L4	n-p scattering at low energies
5-L5	Shape independent effective range theory of np scattering
6-L6	p-p scattering at low energies
7-L7	Exchanges forces
8- P1	Welcoming of First year and Inauguration of Physics Association
9- L8	Meson theory of nuclear force
10- L9	Gamow's theory of alpha decay
11-L10	Line and continuous spectrum of Beta decay
12-L11	Fermi theory of Beta decay
13-L12	Fermi and gamow teller selection rules
14-L13	Parity violation
15-L14	Gamma decay
16-L15	Multipole transistions in nuclei
17- L16	Selection rules
18- L17	Interval conversion
19- L18	Nuclear isomerism
20- L19	Liquid drop model
21- L20	Allotting portion for Internal Test-I
	Internal Test I begins (18.01.2019)
22- L21	Weizsackers mass formular
23- IT-1	Internal Test-I
24- L22	Nuclear stability
25- L23	Bohr wheeler theory of nuclear fission
26- L24	Test Paper distribution and result analysis
	Entering Internal Test-I Marks into University portal
27- L25	Magic numbers
28- L26	Evidence for magic numbers
29- L27	Shell model
30- P2	College level meeting/Cell function
31-L28	Spin orbit coupling
32-L29	Angular momenta and parities of nuclear ground state
33-L30	Magnetic moments
34- L31	Schmidt line
35-L32	Collective model
36- L33	Types of nuclear reactions
37-L34	Q equation
38-L35	Solution of the equation
39- L36	Compound nuclear theory
40- L37	Reciprocity theorem
41- L38	Nuclear cross section

42-P3	Department Seminar
43- L39	Resonance scattering
44- L40	Breit-Wigner dispersion formula
45- L41	Nuclear chain reaction
46- L42	Four factor formula
47- L43	Allotting portion for Internal Test-II
	Internal Test II begins (25.02.2019)
48- L44	Classification of elementary particles
49-IT-II	Internal Test-II
50-L45	Fundamental interactions conservations laws
51- L46	Test Paper distribution and result analysis
	Entering Internal Test-II Marks into University portal
52- L47	CPT theorem
53- L48	SU(3) multiplet
54- L49	Meson effect
55- L50	Octet
56- L51	Baryon octet and baryon decouplet
57- L52	Gellmann – Okubo mass formula
58- L53	Quark theory
59-P4	College level meeting/ function
60- L54	CPT theorem
61- L55	Octet
62- L56	Q equation
63- L57	Revision
64- L58	Allotting portion for Internal Test-III
	Internal Test III begins (22.03.2019)
65- L59	Recall the classification of elementary particles
66- L60	Recall the Gamow's theory of alpha decay
67-IT-III	Internal Test-III
68- L61	Recall the Fermi and Gamow Teller selection rule
69- L62	Revision
70- L63	Test Paper distribution and result analysis
	Entering Internal Test-III Marks into University portal
71-MT	Model Test (08.04.2019)
72-MT	Model Test
73-MT	Model Test
74-L64	Model test paper distribution and previous year university question paper
	discussion
75-L65	Feedback of the Course, analysis and report preparation
	Last Working day on 23.04.2019

Course Outcomes

Learning Outcomes	COs of the course "Nuclear particle physics"
C01	Magnetic dipole and electric quadrupole moments of deuteron
CO2	Fermi theory of Beta decay
CO3	Fermi and gamow teller selection rules

CO4	Gamma decay
CO5	Multipole transistions in nuclei
CO6	Solution of the equation
CO7	Compound nuclear theory
CO8	Baryon octet and baryon decouplet
CO9	Gellmann – Okubo mass formula

# Blended Learning	: using PPT, video, library resources, ICT techniques, E- learning resources, Google classroom, study tour, etc.,
# For Advanced Learner	: use library books, E- books, motivate student to prepare for higher study.
# For slow learner	: special care taken, motivate the advanced learner to support the slow learner to study. To attend the remedial classes.
# Extension activity	: Motivate student to take classes for school students.

HOD Signature

Staff Signature