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Preface

While SAS and SPSS have many things in common, R is very different. My
goal in writing this book is to help you translate what you know about SAS or
SPSS into a working knowledge of R as quickly and easily as possible. I point
out how they differ using terminology with which you are familiar, and show
you which add-on packages will provide results most like those from SAS or
SPSS. I provide many example programs done in SAS, SPSS, and R so that
you can see how they compare topic by topic.

When finished, you should know how to:

� Install R, choose a user interface, and choose and install add-on packages.
� Read data from various sources such as text or Excel files, SAS or SPSS

data sets, or relational databases.
� Manage your data through transformations, recodes, and combining data

sets from both the add-cases and add-variables approaches and restructur-
ing data from wide to long formats and vice versa.

� Create publication-quality graphs including bar, histogram, pie, line, scat-
ter, regression, box, error bar, and interaction plots.

� Perform the basic types of analyses to measure strength of association and
group differences, and be able to know where to turn to learn how to do
more complex methods.

Who This Book Is For

This book teaches R requiring no prior knowledge of statistical software. How-
ever, you know SAS or SPSS this book will make learning R as easy as possible
by using terms and concepts that you already know. If you do not know SAS
or SPSS, then you will learn R along with how it compares to the two most
popular commercial packages for data analysis. Stata users would be better
off reading R for Stata Users [41].
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An audience I did not expect to serve is R users wanting to learn SAS or
SPSS. However, I have heard from quite a few of them who have said that
by explaining the differences, it helped them learn in the reverse order I had
anticipated. Keep in mind that I explain none of the SAS or SPSS programs,
only the R ones and how the packages differ, so it is not ideal for that purpose.

Who This Book Is Not For

I make no effort to teach statistics or graphics. Although I briefly state the goal
and assumptions of each analysis along with how to interpret their output,
I do not cover their formulas or derivations. We have more than enough to
discuss without tackling those topics too.

This is also not a book about writing complex R functions, it is about
using the thousands that already exist. We will write only a few very short
functions. If you want to learn more about writing functions, I recommend
Jones et al.’s Introduction to Scientific Programming and Simulation Using R
[31]. However, reading this book should ease your transition to more complex
books like that one.

Practice Data Sets and Programs

All of the programs, data sets, and files that we use in this book are avail-
able for download at http://r4stats.com. A file containing corrections and
clarifications is also available there.

Regarding the Second Edition

As the first edition went to press, I began planning the second edition with the
main goal of adding more statistical methods. However, my readers quickly
let me know that they needed far more information about the basics. There
are many wonderful books devoted to statistics in R. I recommend some in
Chap. 17. The enhancements to this edition include the following:

1. Programming code has been updated throughout.
2. It is easier to find reference material using the new list of tables and list

of figures.
3. It is easier to find topics using the index, which now has four times as

many entries.
4. The glossary defines more R terms.
5. There is a new Sect. 3.6, “Running R in SAS and WPS,” including A

Bridge to R and IML Studio.
6. There is a new Sect. 3.9, “Running R from within Text Editors.”
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7. There is a new Sect. 3.8, “Running R in Excel,” complete with R Com-
mander menus.

8. There is a new Sect. 3.10 on integrated development environments, in-
cluding RStudio.

9. There is a new Sect. 3.11.1 on the Deducer user interface and its Plot
Builder (similar to IBM SPSS Visualization Designer).

10. New Sect. 3.11.4 on Red-R, a flowchart user interface like SAS Enterprise
Miner or IBM SPSS Modeler (Clementine).

11. Chapter 5, “Programming Language Basics,” has been significantly en-
hanced, including additional examples and explanations.

12. There is a new Sect. 5.3.4 on matrix algebra with table of basic matrix
algebra functions.

13. There is a new Sect. 5.6, “Comments to Document Your Objects.”
14. Chapter 6,“Data Acquisition,”includes improved examples of reading SAS

and SPSS data files.
15. There is a new Sect. 6.2.3, “Reading Text from a Web Site.”
16. There is a new Sect. 6.2.4, “Reading Text from the Clipboard.”
17. There is a new Sect. 6.2.6, “Trouble with Tabs,” on common problems

when reading tab-delimited files.
18. Section 6.3, “Reading Text Data Within a Program,” now includes a sim-

pler approach using the stdin function.
19. There is a new Sect. 6.4 “Reading Multiple Observations per Line.”
20. There are new sections on reading/writing Excel files.
21. There is a new Sect. 6.9, “Reading Data from Relational Databases.
22. There is a new Sect. 7.11.1, “Selecting Numeric or Character Variables,”

(like VAR A-numeric-Z; or A-character-Z).
23. There is a new Sect. 8.4,“Selecting Observations using Random Sampling.”
24. Chapter 9, “Selecting Variables and Observations,” has many more exam-

ples, and they are presented in order from most widely used to least.
25. There is a new Table 10.2, “Basic Statistical Functions.”
26. There is a new Sect. 10.2.3 “Standardizing and Ranking Variables.”
27. Section 10.14,“Removing Duplicate Observations,”now includes an exam-

ple for eliminating observations that are duplicates only on key variables
(i.e., PROC SORT NODUPKEY).

28. There is a new Sect. 10.16, “Transposing or Flipping Data Sets” (tricky
with character variables).

29. There is a new Sect. 10.20, “Character String Manipulations,” using the
stringr package.

30. There is a new Sect. 10.21, “Dates and Times,” which covers date/time
manipulations using the lubridate package.

31. The new Chap. 11, “Enhancing Your Output,” covers how to get publica-
tion quality tables from R into word processors, Web pages or LATEX.

32. The new Sect. 12.4, “Generating Values for Reading Fixed-Width Files,”
shows how to generate repetitive patterns of variable names and matching
widths for reading complex text files.
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33. There is a new Sect. 16.15, which shows how to make geographic maps.
34. There is a new Sect. 17.11 “Sign Test: Paired Groups.”
35. Appendix B, ”A Comparison of SAS and SPSS Products with R Packages

and Functions,” is now far more comprehensive and changes so frequently
that I have moved it from the appendix to http://r4stats.com.
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Introduction

1.1 Overview

Norman Nie, one of the founders of SPSS, calls R [55] “The most powerful
statistical computing language on the planet.”1 Written by Ross Ihaka, Robert
Gentleman, the R Core Development Team, and an army of volunteers, R pro-
vides both a language and a vast array of analytical and graphical procedures.
The fact that this level of power is available free of charge has dramatically
changed the landscape of research software.

R is a variation of the S language, developed by John Chambers with
substantial input from Douglas Bates, Rick Becker, Bill Cleveland, Trevor
Hastie, Daryl Pregibon, and Allan Wilks.2 The Association of Computing
Machinery presented John Chambers with a Software System Award and said
that the S language, “. . . will forever alter the way people analyze, visualize,
and manipulate data. . . ” and went on to say that it is, “. . . an elegant, widely
accepted, and enduring software system, with conceptual integrity. . . .” The
original S language is still commercially available as Tibco Spotfire S+. Most
programs written in the S language will run in R.

The SAS Institute, IBM’s SPSS Company, and other vendors are helping
their customers extend the power of their software through R. They have
added interfaces that allow you to use R functions from within their programs,
expanding their capabilities. You can now blend SAS or IBM SPSS Statistics
(hereafter referred to as simply SPSS) code with R, easily transferring data
and output back and forth.

SAS and SPSS are so similar to each other that moving from one to the
other is straightforward. R, however, is very different, making the transition
confusing at first. I hope to ease that confusion by focusing on the similarities

1 He said this after moving to Revolution Analytics, a company that sells a version
of R.

2 For a fascinating history of S and R, see Appendix A of Software for Data Anal-
ysis: Programming with R [12].

DOI 10.1007/978-1-4614-0685-3_1, © Springer Science+Business Media, LLC 2011
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and differences in this book. When we examine a particular analysis by, say,
comparing two groups with a t-test, someone who knows SAS or SPSS will
have very little trouble figuring out what R is doing. However, the basics of
the R language are very different, so that is where we will spend most of our
time.

For each aspect of R we discuss, I will compare and contrast it with SAS
and SPSS. Many of the topics end with example programs that do almost
identical things in all three. The R programs often display more variations
on each theme than do the SAS or SPSS examples, making the R programs
longer.

I introduce topics in a carefully chosen order, so it is best to read from
beginning to end the first time through, even if you think you do not need
to know a particular topic. Later you can skip directly to the section you
need. I include a fair amount of redundancy on key topics to help teach those
topics and to make it easier to read just one section as a future reference. The
glossary in Appendix A defines R concepts in terms that SAS or SPSS users
will understand, and provides parallel definitions using R terminology.

1.2 Why Learn R?

If you already know SAS or SPSS, why should you bother to learn R? Both
SAS and SPSS are excellent packages for analyzing data. I use them both
several times a week. However, R has many benefits:

� R offers a vast array of analytical methods. There are several thousand add-
on packages available for R on the Internet, and you can easily download
and install them within R itself.

� R offers new methods sooner. Since people who develop new analytic meth-
ods often program in R, you often get access to them years before the
methods are added to SAS or SPSS.

� Many analytic packages can run R programs. These include: SAS, SPSS,
Excel, JMP, Oracle Data Mining, Statistica, StatExact, and others. This
provides you the option of using R functions without having to learn its
entire language. You can do all your data management in your preferred
software, and call the R functions you need from within it.

� R is rapidly becoming a universal language for data analysis. Books and
journals frequently use R for their examples because they know everyone
can run them. As a result, understanding R is important for your continu-
ing education. It also allows you to communicate your analytic ideas with
a wide range of colleagues.

� R’s graphics are extremely flexible and are of publication quality. They are
flexible enough to overlay data from different data sets, even at different
levels of aggregation. You are even free to completely replace R’s graphics
subsystem, as people have already done.
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� R is very flexible in the type of data it can analyze. While SAS and SPSS
require you to store your data in rectangular data sets, R offers a rich
variety of data structures that are much more flexible. You can perform
analyses that include variables from different data structures easily without
having to merge them.

� R has object oriented abilities. This provides many advantages including
an ability to “do the right thing.” For example, when using a categorical
variable as a predictor in a linear regression analysis, it will automatically
take the proper statistical approach.

� If you like to develop your own analytic methods, you’ll find much to like
in the power of R’s language. The vast array of add-ons for R demonstrates
that people who like to develop new methods like working in R.

� R’s procedures, called functions, are open for you to see and modify. This
makes it easier to understand what it is doing. Copying an existing function
and then modifying it is a common way to begin writing your own function.

� Functions that you write in R are automatically on an equal footing with
those that come with the software. The ability to write your own com-
pletely integrated procedures in SAS or SPSS requires using a different
language such as C or Python and, in the case of SAS, a developer’s kit.

� R has comprehensive matrix algebra capabilities similar to those in MAT-
LAB. It even offers a MATLAB emulation package [48].

� R runs on almost any computer, including Windows, Macintosh, Linux,
and UNIX.

� R is free. This has an obvious appeal to corporate users. Even academics
who purchase software at substantial discounts for teaching and internal
use will appreciate the fact that they can consult with outside organiza-
tions without having to purchase a commercial license.

1.3 Is R Accurate?

When people first learn of R, one of their first questions is, “Can a package
written by volunteers be as accurate as one written by a large corporation?”
Just as with SAS and SPSS, the development of the main R package, referred
to as Base R plus Recommended Packages, is handled with great care. This
includes levels of beta testing and running validation suites to ensure accu-
rate answers. When you install R, you can ask it to install the Test Files,
which includes the tools package and a set of validation programs. See the R
Installation and Administration Manual [56] on the R help menu for details.

The various quality assurance steps used with each version of R are
outlined in [19]. R’s Base and Recommended Packages currently consist of
the following packages: base, boot, class, cluster, codetools, datasets,
foreign, graphics, grDevices, grid, KernSmooth, lattice, MASS, methods,
mgcv, nlme, nnet, rpart, spatial, splines, stats, stats4, survival, tcltk,
tools and utils. Those packages, and the functions they contain, are roughly
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the equivalent to Base SAS, SAS/GRAPH, SAS/STAT and SAS/IML. Com-
pared to SPSS products, they cover similar territory as IBM SPSS Statistics
Base, IBM SPSS Advanced Statistics, and IBM SPSS Regression. The help
files show in which each package each function resides.

Just as with SAS or SPSS programs or macros that you find on the In-
ternet, R’s add-on packages may or may not have been put through rigorous
testing. They are often written by the university professors who invented the
methods the packages implement. In that case, the work has usually passed the
academic journal peer-review process with three experts in the field checking
the work. However, a package could have been written by some poor program-
mer who just learned R.

One way you can estimate the quality of a given package is to see how
people rate it at http://crantastic.org. You can also search the R-help
archives to see what people are saying about a package that interests you. For
details on R-help, see Chap. 4, ”Help and Documentation”.

It is to their credit that the SAS Institute and SPSS, Inc. post databases of
known bugs on their Web sites, and they usually fix problems quickly. R also
has open discussions of its known bugs and R’s developers fix them quickly,
too. However, software of this complexity will never be completely free of
errors, regardless of its source.

The most comprehensive study of R’s accuracy to date was done by Keeling
and Pavur [33]. They compared nine statistics packages on the accuracy of
their univariate statistics, analysis of variance, linear regression, and nonlinear
regression. The accuracy of R was comparable to SAS and SPSS and, by the
time the article was published, Bolker [9] found that R’s accuracy had already
improved.

Another study by Almiron et al. [1] replicated the Keeling and Pavur
results, verified that R’s accuracy had improved, and found R to be more
accurate than several other open source packages.

1.4 What About Tech Support?

When you buy software from SAS or SPSS, you can call or e-mail for tech
support that is quick, polite, and accurate. Their knowledgeable consultants
have helped me out of many a jam.

If you use the free version of R, you do not get a number to call, but you
do get direct access to the people who wrote the program and others who
know it well via e-mail. They usually answer your question in less than an
hour. Since they are scattered around the world, that support is around the
clock.

The main difference is that the SAS or SPSS consultants will typically
provide a single solution that they consider best, while the R-help list respon-
ders will often provide several ways to solve your problem. You learn more
that way, but the solutions can vary quite a bit in level of difficulty. However,
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by the time you finish this book, that should not be a problem. For details on
the various R e-mail support lists, see Chap. 4,

”

Help and Documentation.”
There are companies that provide various types of support for a fee. Ex-

amples of such organizations are Revolution Analytics, Inc., RStudio, Inc.,
and XL-Solutions Corporation.

1.5 Getting Started Quickly

If you wish to start using R quickly, you can do so by reading fewer than fifty
pages of this book. Since you have SAS, the SAS-compatible World Program-
ming System (WPS), or SPSS to do your basic descriptive statistics, you are
likely to need R’s modeling functions. Here are the steps you can follow to use
them.

1. Read the remainder of this chapter and Chap. 2, “Installing and Updating
R.” Download and install R on your computer.

2. Read the part of Chap. 3, “Running R,” that covers your operating system
and running R from within either SAS, WPS or SPSS.

3. In Chap. 5, “Programming Language Basics,” read Sect. 5.3.2 about fac-
tors, and Sect. 5.3.3 about data frames.

4. Also in Chap. 5, read Sect. 5.7.1,“Controlling Functions with Arguments,”
and Sect. 5.7.3, “Controlling Functions with Formulas,” including Ta-
ble 17.1, “Example formulas in SAS, SPSS, and R.”

5. If you do not have SAS/IML Studio, or MineQuest’s A Bridge to R, read
Sect. 6.10, “Reading Data from SAS.”

After reading the pages above, do all your data management in SAS, WPS
or SPSS, stripping out observations containing any missing values. Then save
the data to a new file to pass to SAS or SPSS using their internal links to R.
Assuming your variables are named y, x1, x2, . . . , your entire R program will
look something like this:

library("TheLibraryYouNeed") # If you need any.

mymodel <- TheFunctionYouNeed(y ~ x1 + x2, data = mydata)

summary(mymodel)

plot(mymodel) # If your function does plots.

We will discuss what these commands mean shortly. The ones that begin
with “#” are comments.

1.6 The Five Main Parts of SAS and SPSS

While SAS and SPSS offer hundreds of functions and procedures, they fall
into five main categories:
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1. Data input and management statements that help you read, transform,
and organize your data.

2. Statistical and graphical procedures to help you analyze data. You could
certainly consider these two as separate categories, but they share a similar
syntax and you can use them in the same parts of programs;

3. An output management system to help you extract output from statistical
procedures for processing in other procedures or to let you customize
printed output. SAS calls theirs the Output Delivery System (ODS) and
SPSS calls theirs the Output Management System (OMS);

4. A macro language to help you use sets of the above commands repeatedly;
5. A matrix language to add new algorithms (SAS/IML and SPSS Matrix).

SAS and SPSS handle each of these five areas with different systems that
follow different rules. For simplicity’s sake, introductory training in SAS or
SPSS typically focuses on only the first two topics. Perhaps the majority of
users never learn the more advanced topics. However, R performs these five
functions in a way that completely integrates them all. The integration of
these five areas gives R a significant advantage in power and is the reason
that most R developers write procedures using the R language.

While we will focus on topics 1 and 2 when discussing SAS and SPSS, we
will discuss some of all five regarding R. Since SAS and SPSS procedures tend
to print all of their output at once, a relatively small percentage of their users
take advantage of their output management systems. Virtually all R users use
output management. That is partly because R shows you only the pieces of
output you request, and partly because R’s output management is easier to
use. For example, you can create and store a linear regression model using the
lm function.

myModel <- lm(y ~ x)

You can then get several diagnostic plots with the plot function.

plot(myModel)

You can compare two models using the anova function.

anova(myModel1, myModel2)

That is a very flexible approach! It requires fewer commands than SAS or
SPSS and it requires almost no knowledge of how the model is stored. The
plot and anova functions have a built-in ability to work with models and
other data structures.

The price R pays for this output management advantage is that the output
to most procedures is sparse and does not appear as publication quality within
R itself. It appears in a monospace font without a word-processor-style table
structure or even tabs between columns. Variable labels are not a part of the
core system, so if you want clarifying labels, you add them in other steps.
You can use functions from add-on packages to write out HTML, ODF, or
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LATEX files to use in word processing tools. SPSS and, more recently, SAS
make output that is publication quality by default, but not as easy to use as
input to further analyses.

On the topic of matrix languages, SAS and SPSS offer them in a form
that differs sharply from their main languages. For example, the way you
select variables in the main SAS product bears no relation to how you select
them in SAS/IML. In R, the matrix capabilities are completely integrated and
follow the same rules.

1.7 Our Practice Data Sets

Throughout much of this book we will use a small artificial data set named
mydata. This allows me to show you how to enter and manipulate it in many
ways without much work on your part. The data set is a pretend survey of
students who attended some workshops to learn statistical software. It records
which workshop they took, their gender, and their responses to four questions:

q1 – The instructor was well prepared.
q2 – The instructor communicated well.
q3 – The course materials were helpful.
q4 – Overall, I found this workshop useful.

The values for the workshops are 1, 2, 3, and 4 for R, SAS, SPSS, and
Stata respectively. In the smallest form of these data, only the R and SAS
workshops appear. Here is mydata:

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

3 1 f 2 2 4 3

4 2 NA 3 1 NA 3

5 1 m 4 5 2 4

6 2 m 5 4 5 5

7 1 m 5 3 4 4

8 2 m 4 5 5 5

The letters “NA” stand for Not Available, or missing.
In Chap. 5 we will create various small R objects. They are all stored in a

file named myall.RData.
When we study missing data, we will use a version of these data named

mydataNA. That file contains many missing values coded in different ways.
For examples that require more data the data setmydata100 has 100 obser-

vations in the same form, plus two additional variables, pretest and posttest.
A version of this data set that adds variable labels is mydata100L, with the
“L” standing “labeled.”
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Here are the first few observations from mydata100:

workshop gender q1 q2 q3 q4 pretest posttest

1 R Female 4 3 4 5 72 80

2 SPSS Male 3 4 3 4 70 75

3 <NA> <NA> 3 2 NA 3 74 78

4 SPSS Female 5 4 5 3 80 82

5 Stata Female 4 4 3 4 75 81

6 SPSS Female 5 4 3 5 72 77

We will occasionally treat the survey questions as interval-level data, which
is a bit of a stretch. In a more realistic setting, we would have several items
for each topic and we would create mean scores containing many more values
than simply 1, 2, 3, 4, and 5.

Finally, when learning to read and manipulate dates and character strings,
we will use a very small data file containing some famous people from the field
of statistics:

born, died

R.A. Fisher, 2/17/1890, 7/29/1962

Carl Pearson, 3/27/1857, 4/27/1936

Gertrude Cox, 1/13/1900, 10/17/1978

John Tukey, 6/16/1915, 7/26/2000

William Gosset, 6/13/1876, 10/16/1937

1.8 Programming Conventions

The example programs are set to look for their matching data files in a folder
named myRfolder, but that is easy to change to whatever location you prefer.
Each program begins by loading the data as if it were a new session. That
is not required if you already have the data loaded, but it makes it easier to
ensure that previous programming does not interfere with the example. It also
allows each program to run on its own.

Each example program in this book begins with a comment stating its
purpose and the name of the file it is stored in. For example, each of the
programs for selecting variables begin with a comment like the following.

# R Program for Selecting Variables.

# Filename: SelectingVars.R

R uses the “#” symbol at the beginning of comments used to document
programs. The filename in the practice files will always match, so the three files
for this topic are SelectingVars.sas, SelectingVars.sps, and SelectingVars.R.
Each R data object in this book is available in a single file. Its name is the
same as is used in the book, with the extension “.RData.” For example, our
most widely used data object, mydata, is stored in mydata.RData. Also, the
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objects we create and use frequently, data and functions, are all stored in
myWorkspace.RData.

1.9 Typographic Conventions

All programming code and the names of all R functions and packages are
written in this Courier font. The names of other documents and menus
is in this italic font. Menus appear in the form File> Save as, which means
“choose Save as from the File menu.”

When learning a new language, it can be hard to tell the commands from
the names you can choose (e.g., variable or data set names). To help differ-
entiate, I CAPITALIZE statements in SAS and SPSS and use lowercase for
names that you can choose. However, R is case-sensitive, so I have to use the
exact case that the program requires. Therefore, to help differentiate, I use
the common prefix “my” in names like mydata or mySubset.

R uses “>” to prompt you to input a new line and “+” to prompt you to
enter a continued line. When there is no output to see, I delete the prompt
characters to reduce clutter. However, when examples include both input and
output, I leave the input prompts in place. That helps you identify which is
which. So the first three lines below are the input I submitted and the last
line is the mean that R wrote out.

> q1 <- c(1, 2, 2, 3,

+ 4, 5, 5, 5, 4)

> mean(q1)

[1] 3.4444

R tends to pack its input and different sections of output tightly together.
This makes it harder to read when you are learning it. Therefore, I also add
spacing in some places to improve legibility. In the example above, I added a
blank line on either side of the line containing “> mean(q1)”.
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Installing and Updating R

When you purchase SAS, WPS or SPSS, they sell you a“binary”version. That
is one that the company has compiled for you from the “source code” version
they wrote using languages such as C, FORTRAN, or Java. You usually install
everything you purchased at once and do not give it a second thought. Instead,
R is modular. The main installation provides Base R and a recommended set
of add-on modules called packages. You can install other packages later when
you need them. With thousands to choose from, few people need them all.

To download R itself, go to the Comprehensive R Archive Network
(CRAN) at http://cran.r-project.org/. Choose your operating system
under the web page heading, Download and Install R. The binary versions
install quickly and easily. Binary versions exist for many operating systems
including Windows, Mac OS X, and popular versions of Linux such as Ubuntu,
RedHat, Suse, and others that use either the RPM or APT installers.

Since R is an Open Source project, there are also source code versions of
R for experienced programmers who prefer to compile their own copy. Using
that version, you can modify R in any way you like. Although R’s developers
write many of its analytic procedures (or at least parts of them) using the R
language, they use other languages such as C and FORTRAN to write R’s
most fundamental functions.

Each version of R installs into its own directory (folder), so there is no
problem having multiple versions installed on your computer. You can then
install your favorite add-on packages for the new release.

2.1 Installing Add-on Packages

While the main installation of R contains many useful functions, many addi-
tional packages, written by R users, are available on the Internet. The main
site for additional packages is at the CRAN web site under Packages. The sec-
tion labeled Task Views organizes packages by task, such as Bayesian, Cluster
Analysis, Distribution, Econometrics, and so on. While CRAN is a good place

DOI 10.1007/978-1-4614-0685-3_2, © Springer Science+Business Media, LLC 2011
, Statistics and Computing,R.A. Muenchen, R for SAS and SPSS Users 11
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to read about and choose packages to install, you usually do not need to down-
load them from there yourself. As you will see, R automates the download and
installation process. A comparison of SAS and SPSS add-ons to R packages is
presented at this book’s web site, http://www.r4stats.com. Another useful
site helps you to find useful packages and write reviews of packages you like:
Crantastic at http://crantastic.org/.

Before installing packages, your computer account should have adminis-
trative privileges and you must start R in a manner that allows administrative
control. If you do not have administrative privileges on your computer, you can
install packages to a directory to which you have write access. For instructions,
see the FAQ (F requently Asked Questions) at http://www.r-project.org/.

To start R with administrative control on Windows Vista or later, right-
click its menu choice and then choose Run as administrator. Window’s User
Account Control will then ask for your permission to allow R to modify your
computer.

On the R version for Microsoft Windows, you can choose Packages> Install
package(s) from the menus. It will ask you to choose a CRAN site or “mirror”
that is close you:

CRAN mirror

Australia

Austria

Belgium

Brazil (PR)

...

USA (TX 2)

USA (WA)

Then it will ask which package you wish to install:

Packages

abc

abd

abind

AcceptanceSampling

...

zipcode

zoo

zyp

Choose one of each and click OK.
If you prefer to use a function instead of the menus, you can use the

install.packages function. For example, to download and install Frank Har-
rell’s Hmisc package [32], start R and enter the command:

install.packages("Hmisc")
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R will then prompt you to choose the closest mirror site and the package
you need. If you are using a graphical user interface (GUI), you click on your
choice, then click OK. If not, R will number them for you and you enter the
number of the mirror.

A common error is to forget the quotes around the package name:

> install.packages(Hmisc) # Quotes are missing!

Error in install.packages(Hmisc) : object 'Hmisc' not found

Older versions of R also required the argument dependencies = TRUE,
which tells R to also install any packages that this package “depends” on and
those that its author “suggests” as useful. That is now the default setting and
so it is usually best to avoid adding that. However, a few packages still require
that setting. The best known of these packages is Fox’s R Commander user
interface. So you would install it using:

install.packages("Rcmdr", dependencies = TRUE)

After a package is installed, you can find out how to cite it using the
citation function. Note that you call this function with the package name in
quotes:

> citation("Rcmdr")

To cite package 'Rcmdr' in publications use:

John Fox <jfox@mcmaster.ca>, with

contributions from ...(2010). Rcmdr: R

Commander. R package version 1.6-2.

http://CRAN.R-project.org/package=Rcmdr

A BibTeX entry for LaTeX users is

@Manual{,

title = {Rcmdr: R Commander},

author = {John Fox and with contributions from ...

If you use simply citation() it will tell you how to cite R itself.

2.2 Loading an Add-on Package

Once installed, a package is on your computer’s hard drive in an area called
your library. However, it is not quite ready to use. Each time you start R,
you also have to load the package from your library into your computer’s
main memory before you can use it. The reason for this additional step is
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twofold. It makes efficient use of your computer’s memory and it keeps different
packages conflicting with each other, or with base R functions. You can see
what packages are installed and ready to load with the library function:

> library()

R Packages available

Packages in library 'C:/PROGRA~1/R/R-212~1.1/library':

anchors Statistical analysis of surveys with...

arules Mining Association Rules and Frequent Itemsets

base The R Base Package

...

xtable Export tables to LaTeX or HTML

xts Extensible Time Series

Zelig Everyone's Statistical Software

If you have just installed R, this command will show you the Base and
Recommended Packages. They are the ones that are thoroughly tested by the
R Core Team. The similar installed.packages function lists your installed
packages along with the version and location of each.

You can load a package you need with the menu selection, Packages> Load
packages. It will show you the names of all packages that you have installed
but have not yet loaded. You can then choose one from the list.

Alternatively, you can use the library function. Here I am loading the
Hmisc package. Since the Linux version lacks menus, this function is the only
way to load packages.

library("Hmisc")

With the library function, the quotes around the package name are op-
tional and are not usually used. However, other commands that refer to pack-
age names – such as install.packages – require them.

Many packages load without any messages; you will just see the“>”prompt
again. When trying to load a package, you may see the error message below. It
means you have either mistyped the package name (remember capitalization
is important) or you have not installed the package before trying to load
it. In this case, Lemon and Grosjean’s prettyR [38] package name is typed
accurately, so I have not yet installed it.

> library("prettyR")

Error in library("prettyR") :

there is no package called 'prettyR'

To see what packages you have loaded, use the search function.
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> search()

[1] ".GlobalEnv" "package:Hmisc"

[3] "package:stats" "package:graphics"

[5] "package:grDevices" "package:utils"

[7] "package:datasets" "package:methods"

[9] "Autoloads" "package:base"

We will discuss this function in detail in Chapter 13, “Managing Your Files
and Workspace.”

Since there are so many packages written by users, two packages will occa-
sionally have functions with the same name. That can be very confusing until
you realize what is happening. For example, the Hmisc and prettyR packages
both have a describe function that does similar things. In such a case, the
package you load last will mask the function(s) in the package you loaded ear-
lier. For example, I loaded the Hmisc package first, and now I am loading the
prettyR package (having installed it in the meantime). The following message
results:

> library("prettyR")

Attaching package: 'prettyR'

The following object(s) are masked from package:Hmisc :

describe

Since people usually want to use the functions in the package they loaded
most recently, this is rarely a problem. However, if warnings like these bother
you, you can avoid them by detaching each package as soon as you are done
using it by using the detach function. For details, see Section 13.4, “Loading
Packages.”

If your favorite packages do not conflict with one anther, you can have R
load them each time you start R by putting the commands in a file named
“.Rprofile”. That file can automate your settings just like the autoexec.sas file
for SAS. For details, see Appendix C.

2.3 Updating Your Installation

Keeping your add-on packages current is very easy. You simply use the
update.packages function.

> update.packages()

graph :

Version 1.15.6 installed in C:/PROGRA~1/R/R-26~1.1/library
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Version 1.16.1 available at

http://rh-mirror.linux.iastate.edu/CRAN

Update (y/N/c)? y

R will ask you if you want to update each package. That can get tedious if
you have a lot of packages to install. You can avoid that starting the update
process with:

update.packages(ask = FALSE)

If you enter“y,”it will do it and show you the following. This message, repeated
for each package, tells you what file it is getting from the mirror you requested
(Iowa State) and where it placed the file.

trying URL 'http://rh-mirror.linux.iastate.edu

/CRAN/bin/windows/contrib/2.6/graph_1.16.1.zip'

Content type 'application/zip' length 870777 bytes (850 Kb)

opened URL

downloaded 850 Kb

This next message tells you that the file was checked for errors (its sums
were checked) and it says where it stored the file. As long as you see no error
messages, the update is complete.

package 'graph' successfully unpacked and MD5 sums checked

The downloaded packages are in

C:/Documents and Settings/muenchen/Local Settings/

Temp/Rtmpgf4C4B/downloaded_packages

updating HTML package descriptions

Moving to a whole new version of R is not as easy. First, you download and
install the new version just like you did the first one. Multiple versions can
coexist on the same computer. You can even run them at the same time if you
wanted to compare results across versions. When you install a new version of
R, I recommend also installing your add-on packages again. There are ways
to point your new version to the older set of packages, I find them more
trouble than they are worth. You can reinstall your packages in the step-
by-step fashion discussed previously. An easier way is to define a character
variable like “myPackages” that contains the names of the packages you use.
The following is an example that uses this approach to install most of the
packages we use in this book1.

myPackages <- c("car", "hexbin", "Hmisc", "ggplot2",

"gmodels", "gplots", "reshape2", "prettyR", "xtable")

1 R Commander is left out since it requires dependencies = TRUE.
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install.packages(myPackages)

We will discuss the details of the c function used above later. We will also
discuss how to store programs like this so you can open and execute them
again in the future. While this example makes it clear what we are storing
in myPackages, a shortcut to creating it is to use the installed.packages

function:

myPackages <- row.names( installed.packages() )

You can automate the creation of myPackages (or whatever name you
choose to store your package names) by placing either code example that
defines it in your .Rprofile. Putting it there will ensure that myPackages is
defined every time you start R. As you find new packages to install, you
can add to the definition of myPackages. Then installing all of them when a
new version of R comes out is easy. Of course, you do not want to place the
install.packages function into your .Rprofile. There is no point in installing
package every time you start R! For details, see Appendix C.

2.4 Uninstalling R

When you get a new version of any software package, it is good to keep the
old one around for a while in case any bugs show up in the new one. Once
you are confident that you will no longer need an older version of R, you can
remove it.

In Microsoft Window, uninstall it in the usual way using Start> Control
Panel, then Programs and Features. To uninstall R on the Macintosh, simply
drag the application to the trash. Linux users should use their distribution’s
package manager to uninstall R.

2.5 Uninstalling a Package

Since uninstalling R itself also removes any packages in your library, it is
rarely necessary to uninstall packages separately. However, it is occasionally
necessary. You can uninstall a package using the uninstall.packages func-
tion. First, though, you must make sure it is not in use by detaching it. For
example, to remove just the Hmisc package, use the following code:

detach("package:Hmisc") # If it is loaded.

remove.packages("Hmisc")
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2.6 Choosing Repositories

While most R packages are stored at the CRAN site, there are other repos-
itories. If the Packages window does not list the one you need, you may
need to choose another repository. The Omegahat Project for Statistical
Computing [59] at http://www.omegahat.org/ and R-Forge [61] at http:

//r-forge.r-project.org/ are repositories similar to CRAN that have a
variety of different packages available. There are also several repositories as-
sociated with the BioConductor project. As they say at their main web site,
http://www.bioconductor.org/, “BioConductor is an open source and open
development software project for the analysis and comprehension of genomic
data” [23].

To choose your repositories, choose Packages> Select repositories. . . and
the Repositories window will appear:

Repositories

CRAN

CRAN (extras)

Omegahat

BioC software

BioC annotation

BioC experiment

BioC extra

R-Forge

rforge.net

The two CRAN repositories are already set by default. Your operating
system’s common mouse commands work as usual to make contiguous or
noncontiguous selections. In Microsoft Window, that is Shift-click and Ctrl-
click, respectively.

You can also select repositories using the setRepositories function:

> setRepositories()

If you are using a GUI the result will be the same. If you are instead working
without a graphical user interface, R will number the repositories and prompt
you to enter the number(s) of those you need.

2.7 Accessing Data in Packages

You can get a list of data sets available in each loaded package with the data
function. A window listing the default data sets will appear:

> data()

R data sets
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Data sets in package 'datasets':

AirPassengers Monthly Airline Passenger Numbers 1949-1960

BJsales Sales Data with Leading Indicator

CO2 Carbon Dioxide Uptake in Grass Plants

...

volcano Topographic Information on Auckland's...

warpbreaks The Number of Breaks in Yarn during Weaving

women Average Heights and Weights for American Women

You can usually use these practice data sets directly. For example, to look
at the top of the CO2 file (capital letters C and O, not zero!), you can use the
head function:

> head(CO2)

Plant Type Treatment conc uptake

1 Qn1 Quebec nonchilled 95 16.0

2 Qn1 Quebec nonchilled 175 30.4

3 Qn1 Quebec nonchilled 250 34.8

4 Qn1 Quebec nonchilled 350 37.2

5 Qn1 Quebec nonchilled 500 35.3

6 Qn1 Quebec nonchilled 675 39.2

The similar tail function shows you the bottom few observations.
Not all packages load their example data sets when you load the packages.

If you see that a package includes a data set, but you cannot access it after
loading the package, try loading it specifically using the data function. For
example:

data(CO2)

If you only want a list of data sets in a particular package, you can use
the package argument. For example, if you have installed the car package
[21] (from Fox’s Companion to Applied Regression), you can load it from the
library and see the data sets only it has using the following statements:

> library("car")

> data(package = "car")

Data sets in package 'car':

AMSsurvey American Math Society Survey Data

Adler Experimenter Expectations

Angell Moral Integration of American Cities

Anscombe U. S. State Public-School Expenditures

Baumann Methods of Teaching Reading Comprehension
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Bfox Canadian Women's Labour-Force Participation

Blackmoor Exercise Histories of Eating-Disordered...

Burt Fraudulent Data on IQs of Twins Raised Apart

...

You could then print the top of any data set using the head function:

> head(Adler)

instruction expectation rating

1 GOOD HIGH 25

2 GOOD HIGH 0

3 GOOD HIGH -16

4 GOOD HIGH 5

5 GOOD HIGH 11

6 GOOD HIGH -6

To see all of the data sets available in all the packages you have installed,
even those not loaded from your library, enter the following function call:

data(package = .packages(all.available = TRUE))
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Running R

There are several ways you can run R:

� Interactively using its programming language: You can see the result of
each command immediately after you submit it;

� Interactively using one of several GUIs that you can add on to R: Some
of these use programming while others help you avoid programming by
using menus and dialog boxes like SPSS, ribbons like Microsoft Office, or
flowcharts like SAS Enterprise Guide or SPSS Modeler (formerly Clemen-
tine);

� Noninteractively in batch mode using its programming language: You enter
your program into a file and run it all at once.

� From within another package, such as Excel, SAS, or SPSS.

You can ease your way into R by continuing to use SAS, SPSS, or your
favorite spreadsheet program to enter and manage your data and then use
one of the methods below to import and analyze them. As you find errors in
your data (and you know you will), you can go back to your other software,
correct them, and then import them again. It is not an ideal way to work, but
it does get you into R quickly.

3.1 Running R Interactively on Windows

You can run R programs interactively in several steps:

1. Start R by double-clicking on its desktop icon or by choosing Start> All
Programs> R> R x.x.x (where x.x.x is the version of R you are using).
The main R console window will appear looking like the left window in
Fig. 3.1. Then enter your program choosing one of the methods described
in steps 2 and 3 below.

DOI 10.1007/978-1-4614-0685-3_3, © Springer Science+Business Media, LLC 2011
, Statistics and Computing,R.A. Muenchen, R for SAS and SPSS Users 21
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Fig. 3.1. R graphical user interface in Microsoft Windows with the console on the
left and an open script editor window on the right

2. Enter R commands into the R console. You can enter commands into the
console one line at a time at the “>” prompt. R will execute each line
when you press the Enter key. If you enter commands into the console,
you can retrieve them with the up arrow key and edit them to run again.
I find it much easier to use the program editor described in the next step.
If you type the beginning of an R function, such as “me” and press Tab,
R will show you all of the R functions that begin with those letters, such
as mean or median. If you enter the name of a function and an open
parenthesis, such as “mean(,”R will show you the parameters or keywords
(R calls them arguments) that you can use to control that function.

3. Enter R programming commands into the R editor. Open the R editor
by choosing File> New Script. R programs are called scripts. You can see
one on the right side of Fig. 6.1. You can enter programs as you would in
the SAS Program Editor or the SPSS Syntax Editor.

4. Submit your program from the R editor. To submit just the current line,
you can hold the Ctrl key down and press “r,” for run, or right-click on it
and choose Run line or selection, or using the menus choose, Edit> Run
line or selection. To run a block of lines, select them first, and then submit
them the same way. To run the whole program, select all lines by holding
the Ctrl key down and pressing “a” and then submit them the same way.

5. As you submit program statements, they will appear in the R Console
along with results or error messages. Make any changes you need and
submit the program again until finished. You can clear the console results
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by choosing Edit> Clear console or by holding the Ctrl key down and
pressing “l” (i.e., Ctrl-l). See Help> Console for more keyboard shortcuts.

6. Save your script (program). Click on the R editor window to make it active
and choose File> Save to file. Unlike most Windows programs, R will not
automatically add the “.R” extension to files saved in the program editor.
You must actually type the extension yourself. If you forget, later when
you go to open the program R will not see the file, making you wonder if
you actually saved it!

7. Save your output. Click on the console window to make it active and
choose File> Save to file. The console output will contain the commands
and their output blended together like an SPSS output file rather than
the separate log and listing files of SAS. It will simply be text so giving it
a file extension of “.txt” is good. Again, you will have to actually type the
extension if later you want to be able to double-click on the file and open
it with your default text editor.

8. Save your data and any functions you may have written. The data or
function(s) you created are stored in an area called your workspace. You
can save them with the command File> Save Workspace. . . . In a later R
session you can retrieve it with File> Load Workspace. . . . You can also
save your workspace using the save.image function:

save.image(file = "myWorkspace.RData")

Again note that you need to type the extension“.RData”at the end of the
filename. Later, you can read the workspace back in with the command:

load("myWorkspace.RData")

For details, see Chap. 13, “Managing Your Files and Workspace.”
9. Optionally save your history. R has a history file that saves all of the

commands you submit in a given session. This is just like the SPSS journal
file. This is similar to the SAS log except that the history contains input
and no output or system messages. If you are working with the R editor,
your program is already saved in a more organized form, so I rarely save
the command history.
You can save the session history to a file using File> Save History. . . and
you can load it in a future session with File> Load History. . . . You can
also use R functions to do these tasks.

savehistory(file = "myHistory.Rhistory")

loadhistory(file = "myHistory.Rhistory")

Note that the filename can be anything you like, but the extension should
be “.Rhistory.” In fact the entire filename will be simply “.Rhistory” if you
do not provide one.

10. To quit R, choose File> Exit or submit the function quit() or just q().
R offers to save your workspace automatically on exit. If you are using
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Fig. 3.2. R graphical user interface on Macintosh with the console on the left, script
editor in the center, and the history window on the right

the save.image and load functions to tell R where to save and retrieve
your workspace in step 4 above, you can answer No. If you answer Yes, it
will save your work in the file “.RData” in your default working directory.
The next time you start R, it will load the contents of the .RData file
automatically. Creating an .RData file in this way is a convenient way to
work. However, I recommend naming each project yourself, as described
in step 4 above.
You can stop R from saving and restoring its own workspace by starting R
with the options --no-save --no-restore. You can set these options by
right-clicking on the R menu item or icon, choosing Properties and under
Target appending the options to the string that appears there as follows:
"C:\Program Files...\Rgui.exe" --no-save --no-restore

Be careful not to change the Properties string itself. Then simply click
OK. From then on, R will neither save the workspace to .RData nor load
one automatically if it finds it.

3.2 Running R Interactively on Macintosh

You can run R programs interactively on a Macintosh in several steps.

1. Start R by choosing R in the Applications folder. The R console window
will appear (see left window in Fig. 3.2). Then enter your program choosing
one of the methods described in steps 2 and 3 below.
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2. Enter R functions in the console window. You can enter commands into
the console one line at a time at the “>” prompt. R will execute each line
when you press the Enter key. If you enter commands into the console, you
can retrieve them with the up arrow key and edit them to run again. I find
it much easier to use the program editor described in the next step. If you
type “me” at the command prompt and press Tab or hold the Command
key down and press “.” (i.e., CTRL-period), R will show you all of the R
functions that begin with those letters, such as mean or median. When
you type a whole function name, the arguments (parameters or keywords)
that you can use to control the function will appear below it in the console
window.

3. Enter R programming statements into the R editor. Open the R editor by
choosing File> New Document. Although R programs are called scripts,
here R uses the standard Macintosh term document. The R editor will
start with an empty window. You can see it in the center of Fig. 3.2. You
can enter R programs as you would in the SAS Program Editor or the
SPSS Syntax Editor.

4. Submit your program from the R editor. To submit one or more lines,
highlight them, then hold the Command key, and press Return, or choose
Edit> Execute. To run the whole program, select it by holding down the
Command key and pressing “a,” and then choose Edit> Execute.

5. As you submit program statements, they will appear in the R Console
along with results or error messages. Make any changes you need and
submit the program again until finished.

6. Save your program and output. Click on a window to make it the active
window and choose File> Save as.... The commands and their output are
blended together like an SPSS output file rather than the separate log and
listing files of SAS.

7. Save your data and any functions you may have written. The data or func-
tion(s) you created are stored in an area called your workspace. You can
save your workspace with Workspace> Save Workspace File. . . . In a later
R session you can retrieve it with Workspace> Load Workspace File. . . .
You can also perform these functions using the R functions save.image
and load:

save.image(file = "myWorkspace.RData")

load("myWorkspace.RData")

For details, see Chap. 13, “Managing Your Files and Workspace.”
8. Optionally save your history. R has a history file that saves all of the com-

mands you submit in a given session (and not the output). This is just
like the SPSS journal file. This is similar to the SAS log except that the
history contains input and no output or system messages. If you are work-
ing with the R editor, your program is already saved in a more organized
form, so I rarely save the command history.
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You can view your history by clicking on the Show/Hide R command
history icon in the console window (to the right of the lock icon). You can
see the command history window on the right side of Fig. 3.2. Notice that
it has alternating stripes, matching its icon. Clicking the icon once makes
the history window slide out to the right of the console. Clicking it again
causes it to slide back and disappear. You can see the various buttons at
the bottom of the history, such as Save History or Load History. You can
use them to save your history or load it from a previous session. You can
also use R functions to do these tasks:

savehistory(file = "myHistory.Rhistory")

loadhistory(file = "myHistory.Rhistory")

Note that the filename can be anything you like, but the extension should
be “.Rhistory.” In fact the entire filename will be simply “.Rhistory” if you
do not provide one.

9. Exit R by choosing R> Quit R. Users of any operating system can also
quit by submitting the function quit() or just q(). R will offer to save
your workspace automatically on exit. If you are using the save.image

and load functions to tell R where to save/retrieve your workspace as
recommended previously, you can answer No. If you answer Yes, it will
save your work in the file “.RData” in your default working directory. The
next time you start R, it will load the contents of the .RData file auto-
matically. Some people find creating an .RData file this way a convenient
way to work. However, I much prefer giving each project its own name.
You can stop R from ever saving an .RData file by choosing the menu R>
Preferences> Startup and under Save workspace on exit from R click No.

3.3 Running R Interactively on Linux or UNIX

You can run R programs interactively in several steps.

1. Start R by entering the command “R,” which will bring up the “>”
prompt, where you enter commands. For a wide range of options, re-
fer to Appendix B, “An Introduction to R” [66], available at http:

//www.r-project.org/ under Manuals, or in your R Help menu. You
can enter R functions using either of the methods described in steps 2 and
3 below.

2. Enter R functions into the console one line at a time at the “>” prompt.
R will execute each line when you press the Enter key. You can retrieve a
function call with the up arrow key and edit it, and then press Enter to
run it again. You can include whole R programs from files with the source
function. For details, see Sect. 3.4,“Running Programs That Include Other
Programs.” If you type the beginning of an R function, such as “me” and
press Tab, R will show you all of the R functions that begin with those
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letters, such as mean or median. If you enter the name of a function and
an open parenthesis, such as “mean(,” R will show you the arguments
(parameters or keywords) that you can use to control that function.

3. Enter your R program in an R-compatible text editor and submit your
functions from there. Although R for Linux or UNIX does not come with
its own GUI or program editor, a popular alternative is to use text editors
that color-code their commands and automatically transfer them to R.
See Sect. 3.9 for details.

4. Save your program and output. If you are working in a text editor (highly
recommended), then saving your program is the usual process. You can
save your output from the console window easily as well. However, if you
are entering your program into the console directly, you may wish to route
input and output to a file with the sink function. You must specify it in
advance of any output you wish to save.

sink("myTranscript.txt", split = TRUE)

The argument split = TRUE tells R to display the text on the screen as
well as route it to the file. The file will contain a transcript of your work.
The commands and their output are blended together like an SPSS output
file rather than the separate log and listing files of SAS.

5. Save your data and any functions you may have written. The data and and
function(s) you created are stored in an area called your workspace. Users
of any operating system can save it by calling the save.image function:

save.image(file = "myWorkspace.RData")

Later, you can read the workspace back in with the function call:

load("myWorkspace.RData")

For details, see Chap. 13, “Managing Your Files and Workspace.”
6. Optionally save your command history. R has a history file that saves all

of the functions you submit in a given session. This is just like the SPSS
journal file. This is similar to the SAS log except that the history contains
input and no output or system messages. If you are using a separate text
editor, this step is usually unnecessary. You can save or load your history
at any time with the savehistory and loadhistory functions:

savehistory(file = "myHistory.Rhistory")

loadhistory(file = "myHistory.Rhistory")

Note that the filename can be anything you like, but the extension should
be “.Rhistory.” In fact the entire filename will be simply “.Rhistory” if you
do not provide one.

7. Quit R by submitting the function quit() or just q(). R offers to save
your workspace automatically on exit. If you are using the save.image

and load functions to tell R where to save/retrieve your workspace as
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recommended previously, you can answer No. If you answer Yes, it will
save your work in the file “.RData” in your default working directory.
The next time you start R, it will load the contents of the .RData file
automatically. Creating an .RData file in this way is a convenient way to
work. However, I prefer naming each project myself as described in step
4 above.

3.4 Running Programs That Include Other Programs

When you find yourself using the same block of code repeatedly in different
programs, it makes sense to save it to a file and include it into the other
programs where it is needed. SAS does this with the form

%INCLUDE 'myprog.sas';

and SPSS does it with

INSERT FILE='myprog.sps'.

or the similar INCLUDE command.
To include a program in R, use the source function:

source("myprog.R")

One catch to keep in mind is that by default R will not display any results
that sourced files may have created. Of course, any objects they create – data,
functions, and so forth – will be available to the program code that follows. If
the program you source creates output that you want to see, you can source
the program in the following manner:

source("myprog.R", echo = TRUE)

This will show you all of the output created by the program. If you prefer
to see only some results, you can wrap the print function around only those
functions whose output you do want displayed. For example, if you sourced
the following R program, it would display the standard deviation, but not the
mean:

x <- c(1, 2, 3, 4, 5)

mean(x) # This result will not display.

print( sd(x) ) # This one will.

An alternative to using the source function is to create your own R pack-
age and load it with the library function. However, that is beyond the scope
of this book.
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3.5 Running R in Batch Mode

You can write a program to a file and run it all at once, routing its results to
another file (or files). This is called batch processing. If you had a program
named myprog.sas, you would run it with the following command:

SAS myprog

SAS would run the program and place the log messages in myprog.log and
the listing of the output in myprog.lis. Similarly, SPSS runs batch programs
with the statisticsb batch command:

statisticsb -f myprog.sps -out myprog.txt

If the SPSS program uses the SPSS-R Integration Package, you must add
the “-i” parameter. See the next section for details. In its GUI versions, SPSS
also offers batch control through its Production Facility.

In R, you can find the details of running batch on your operating system
by starting R and entering the following command. Note that the letters of
BATCH must be all uppercase:

help("BATCH")

In Microsoft Windows batch processing is simplified with a set of batch
files that are available on CRAN at http://cran.\linebreakr-project.

org/other-software.html. Here is an example of using the Rscript.bat file
to run an R program and display the results on your screen:

Rscript myprog.R

If you prefer to route your results to a file, you can do so using

Rscript myprog.R > myprog.Rout

It will route your results to myprog.Rout.
UNIX users can run a batch program with the following command. It will

write your output to myprog.Rout:

R CMD BATCH myprog.R

There are, of course, many options to give you more control over how your
batch programs run. See the help file for details.
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3.6 Running R in SAS and WPS

Neither SAS nor the similar World Programming System (WPS) keeps its
data in your computer’s main memory as R does. So you can use either of
them to read vast amounts data, manage or transform the data, select the
variables and observations you need, and then pass them on to R for analysis.
This approach also lets you make the most of your SAS/WPS know-how,
calling on R only after the data are cleaned up and ready to analyze.

For example, we can read our practice data set, keep only the variables
named q1 through q4, eliminate the missing values using the N function, and
select only the males using

LIBNAME myLib 'C:\myRfolder';

DATA mySubset;

SET myLib.mydata;

* Keep only the variables you need;

KEEP q1-q4;

*Eliminate missing values;

WHERE N(OF q1-q4) = 4 & gender = "m";

RUN;

Now we are ready to send these data on to R. SAS users can run R pro-
grams in four ways:

� Through SAS/IML Studio;
� Through a program called A Bridge to R;
� Through the SAS X command;
� Sequentially, simply using SAS followed by R.

We will discuss these variations in the following sections.

3.6.1 SAS/IML Studio

The most comprehensive approach to running R in SAS is SAS/IML Studio.
The aptly named subroutine ExportDatasetToR sends your data set to R,
and the submit/R; statement tells IML Studio that R code follows.

proc iml;

run ExportDatasetToR("mySubset");

submit/R;

Now we are ready to run any R code we like. For example, to print our
data and perform a linear regression analysis we can use:

print(mydata)

myModel <- lm(q4 ~ q1 + q2 + q3, data = mydata)

summary(myModel)
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We will discuss those R statements later. When you are ready to finish your
R program and return to SAS programming statements, enter the statement:

endsubmit;

For details regarding transferring data or results back and forth between SAS
and R, see Wicklin’s article [75].

3.6.2 A Bridge to R

A similar way to run R programs from within SAS is to use a software pack-
age called A Bridge to R, available from MineQuest, LLC (http://www.
minequest.com). That program adds the ability to run R programs from
either Base SAS or WPS. It sends your data from SAS or WPS to R using a
SAS transport format data set, which only allows for eight-character variable
names. To use it, simply place your R programming statements where our
indented example is below and submit your program as usual.

%Rstart(dataformat = XPT, data = mydata,

rGraphicsViewer = NOGRAPHWINDOW);

datalines4;

print(mydata)

myModel <- lm(q4 ~ q1 + q2 + q3, data = mydata)

summary(myModel)

;;;;

%Rstop(import=);

While this approach uses SAS transport format files behind the scenes, you
do not have to create them yourself nor do you need to import them into R.

3.6.3 The SAS X Command

The third way to run R from within SAS is to use SAS’s X command. This is
less expensive than the previous two approaches, which require you to purchase
additional software. However, it also has a big disadvantage: you must pass
your data back and forth between SAS and R by writing data or results to
files, and you must run R in batch mode. Here are the steps to follow:

1. Read your data into SAS as usual and do whatever data preparation work
you need. Then write your data to a permanent SAS data set.

2. Use SAS’s X command to submit a batch program that runs your R
program. For example:

OPTIONS NOXWAIT;

X 'CD C:\myRfolder' ;

X 'Rscript ReadSAS.R > ReadSAS.Rout';
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The NOXWAIT option tells SAS to close the Windows command window
automatically. The CD command should change to the directory in which
you have your R program. The Rscript.bat file must either be in that
directory or must be on your system’s path. For details regarding running
R in batch mode, see Sec. 3.5.

3. R has now placed its results in a file, in this example, ReadSAS.Rout.
You can use any method you like to see its contents. The Windows type
command is perhaps the easiest:

OPTIONS XWAIT;

X 'type ReadSAS.Rout';

This time I set the XWAIT option so I could read the results before
the command window disappeared. The only things that the ReadSAS.R
program did was read a SAS data set, convert it to R, and print it, as
described in Sec. 6.10,“Reading Data from SAS.”When I was done viewing
the results, I entered the Windows exit command to continue.

4. If you need to return any results to SAS, you must write them to a file as
described in Sec. 6.16. Then read them back into your SAS program and
continue working.

3.6.4 Running SAS and R Sequentially

The fourth way to use SAS and R together is to use them sequentially. That is,
do your initial work in SAS, write your data to a SAS data set and exit SAS.
Then start R, import the data and continue working. For details on reading
SAS data sets in R, see Sec. 6.10. This approach is easy to implement, does not
require additional software, and allows you to explore your data interactively
in R.

3.6.5 Example Program Running R from Within SAS

The program below demonstrates the first three approaches discussed above
to read data, pass it on to R, and run analyses there. The last approach is
described in Sec. 6.10.

* Filename: RunningRinSAS.sas ;

LIBNAME myLib 'C:\myRfolder';

DATA mySubset;

SET myLib.mydata;

* Keep only the variables you need;

KEEP q1-q4;

*Eliminate missing values;

WHERE N(OF q1-q4)=4 & gender="m";

RUN;
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* Using SAS/IML;

proc iml;

run ExportDatasetToR("mySubset");

submit/R;

print(mydata)

myModel <- lm(q4 ~ q1 + q2 + q3, data = mydata)

summary(myModel)

endsubmit;

* Using A Bridge to R;

%Rstart(dataformat = XPT, data = mydata,

rGraphicsViewer = NOGRAPHWINDOW);

datalines4;

print(mydata)

myModel <- lm(q4 ~ q1 + q2 + q3, data = mydata)

summary(myModel)

;;;;

%Rstop(import=);

* Running R with X Command;

OPTIONS NOXWAIT;

X 'CD C:\myRfolder' ;

X 'Rscript ReadSAS.R > ReadSAS.Rout';

* Displaying the results;

OPTIONS XWAIT;

X 'type ReadSAS.Rout';

* Enter "exit" in the command window ;

* when you finish reading it ;

3.7 Running R in SPSS

SPSS has a very useful interface to R that allows you to transfer data back
and forth, run R programs, and get R results back into nicely formatted SPSS
pivot tables. You can even add R programs to SPSS menus so that people can
use R without knowing how to program.

Since SPSS does not need to keep its data in the computer’s main memory
as R does, you can read vast amounts of data into SPSS, select the subset of
variables and/or cases you need and then pass them on to R for analysis. This
approach also lets you make the most of your SPSS know-how, calling on R
only after the data are cleaned up and ready to analyze.

This interface is called the SPSS Statistics-R Integration Package and it
is documented fully in a manual of the same name [52]. The package plug-
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in and its manual are available at http://www.ibm.com/developerworks/

spssdevcentral. Full installation instructions are also at that site, but it is
quite easy as long as you follow the steps in order. First install SPSS (version
16 or later), then the latest version of R that it supports, and finally the plug-
in. The version of R that SPSS supports at the time you download it may
be a version or two behind R’s production release. Older versions of R are
available at http://cran.r-project.org/.

Understanding how the SPSS Statistics-R Integration Package works re-
quires discussing topics that we have not yet covered. If this is your first time
reading this book, you might want to skip this section for now and return to
it when you have finished the book.

To see how to run an R program within an SPSS program, let us step
through an example. First, you must do something to get a data set into
SPSS. We will use our practice data set mydata.sav, but any valid SPSS data
set will do. Open the data by choosing File> Open> Data from the menus
or by running the SPSS programming code below. If you use the commands,
adjust your path specification to match your computer.

CD 'C:\myRfolder'.

GET FILE = 'mydata.sav'.

Now that you have data in SPSS, you can do any type of modifications you
like, perhaps creating new variables or selecting subsets of observations before
passing the data to R. For the next step, you must have an SPSS syntax
window open. So if you used menus to open the file, you must now choose
File> New> Syntax to open a program editor window. Enter the program
statement below.

BEGIN PROGRAM R.

From this command on we will enter R programming statements. To get
the whole current data set and name it mydata in R we can use the following:

mydata <- spssdata.GetDataFromSPSS(missingValueToNA = TRUE)

The argument missingValueToNA = TRUE converts SPSS’s missing values to
R’s standard representation for missing, which is “NA”. Without that argu-
ment, SPSS will convert them to them to “NaN”, Not a Number, a different
kind of missing value in R. Many R procedures treat these two in the same
way, but it is best to use NA unless you have a specific reason not to. When
I created the data set in SPSS, I set a blank to represent missing data for
gender so it would transfer to R as a missing value. I also set the scale of the
workshop variable to be nominal, so it would pass to R as R’s equivalent, a
factor. Getting the data from SPSS to R is a snap, but getting an R data set
to SPSS is more complicated. See the manual for details.

The previous example took all of the variables over to R. However, it is
often helpful to select variables by adding two arguments to this R function.
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The variables argument lets you list variables similar to the way SPSS does
except that it encloses the list within the c function. We will discuss that
function more later. You can use the form c("workshop gender q1 to q4")

or simply c("workshop to q4"). You can also use syntax that is common
to R, such as c(1:6). This syntax uses the fact that workshop is the first
variable and q4 is sixth variable in the data set.

mydata <- spssdata.GetDataFromSPSS(

variables = c("workshop gender q1 to q4"),

missingValueToNA = TRUE,

row.label = "id" )

You can include the optional row.label argument to specify an ID variable
that R will use automatically in procedures that may identify individual cases.
If the data set had SPLIT FILE turned on, this step would have retrieved only
data from the first split group. See the manual for details about the aptly
named function, GetSplitDataFromSPSS.

Now that we have transferred the data to R, we can write any R statements
we like. Below we print all of the data.

> mydata

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

3 1 f 2 2 4 3

4 2 <NA> 3 1 NA 3

5 1 m 3 5 2 4

6 2 m 5 4 5 5

7 1 m 5 3 4 4

8 2 m 4 5 5 5

Notice that the variable ID is not labeled. Its values are used on the far left
to label the rows. If we had not specified the row.label = "id" argument, we
would see the ID variable listed before workshop and labeled “id.” However,
the row labels would still appear the same because R always labels them. If
you do not provide a variable that contains labels to use, it defaults to simply
sequential numbers, 1, 2, 3, etc.

Now let us calculate some descriptive statistics using variables q1 to q4.
There are a number of different ways to select variables in R. One way is to
use mydata[3:6] since q1 is the third variable in the data set and q4 is the
sixth. R can select variables by name, but we will save that topic for later.
The summary function in R gets descriptive statistics.
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summary(mydata[3:6])

q1 q2 q3 q4

Min. :1.000 Min. :1.00 Min. :2.000 Min. :1.00

1st Qu.:2.000 1st Qu.:1.00 1st Qu.:4.000 1st Qu.:2.50

Median :3.000 Median :2.50 Median :4.000 Median :3.50

Mean :3.125 Mean :2.75 Mean :4.143 Mean :3.25

3rd Qu.:4.250 3rd Qu.:4.25 3rd Qu.:5.000 3rd Qu.:4.25

Max. :5.000 Max. :5.00 Max. :5.000 Max. :5.00

NA's :1.000

Next, we will do a linear regression model using standard R commands
that we will discuss in detail much later. Our goal here is just to see what the
spsspivottable.Display function does.

myModel <- lm(q4 ~ q1 + q2 + q3, data = mydata)

myAnova <- anova(myModel)

spsspivottable.Display(myAnova,

title = "My ANOVA table",

format = formatSpec.GeneralStat)

The function call immediately above created Table 3.1 formatted exactly
as you see it. I routinely tell SPSS to put all my output in CompactAca-
demicTimesRoman style. That style draws only horizontal lines in tables, as
most scientific journals prefer. If you copy this table and paste it into a word
processor, it should maintain its nice formatting and be a fully editable table.

When I ran the program, this table appeared first in the SPSS output
window even though it was the last analysis run. SPSS puts its pivot tables
first.

So far we have submitted commands to R and seen the results returned to
SPSS. You can, however, open an R console window using this command:

browser()

From there you can interact with R and see the result in R’s console
window.

Finally, I ended the program with the statement below and exited SPSS
in the usual way:

END PROGRAM.

If your program contains some R code, then some SPSS code, then more R
code, any data sets or variables you created in the earlier R session(s) will still
exist. If the program you submit from SPSS to R uses R’s quit function, it
will cause both R and SPSS to terminate. To learn how to add R functions to
the SPSS GUI, see the SPSS help file topic, Custom Dialog Builder in SPSS
Statistics 17 or later.
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Table 3.1. An example pivot table created by R and transferred to SPSS.

My ANOVA table
Df Sum Sq Mean Sq F value Pr(>F)

q1 1.000 12.659 12.659 34.890 .010
q2 1.000 3.468 3.468 9.557 .054
q3 1.000 .213 .213 .587 .499
Residuals 3.000 1.089 .363

3.7.1 Example Program Running R from Within SPSS

The program below combines all of the steps discussed above to read data,
pass it on to R, and run analyses there.

* Filename: RunningRinSPSS.sps

CD 'C:\myRfolder'.

GET FILE = 'mydata.sav'.

BEGIN PROGRAM R.

mydata <- spssdata.GetDataFromSPSS(

variables = c("workshop gender q1 to q4"),

missingValueToNA = TRUE,

row.label = "id" )

mydata

mydata[3:6]

myModel <- lm(q4 ~ q1 + q2 + q3, data = mydata)

myAnova <- anova(myModel)

spsspivottable.Display(myAnova,

title = "My Anova Table",

format = formatSpec.GeneralStat)

END PROGRAM.

3.8 Running R in Excel

R integrates nicely into Excel, where you can control it using either function
calls or the R Commander menus described in Sect. 3.11.2. As of this writing,
only Excel on Microsoft Windows can control R, and both must be the 32-bit
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versions. However, work is underway to support the 64-bit versions and to
allow similar control from the spreadsheet in the free OpenOffice.org software.

There are several pieces of software – some R packages and some not – that
allow communications to flow between R and Excel. Among these pieces are
Neuwirth’s RExcel [43] and Heiberger and Neuwirth’s R through Excel [27]
and Baier and Neuwirth’s statconnDCOM software [5]. The latter implements
Microsoft’s Distributed Component Object Model (DCOM), which allows R
to communicate with any software that implements that standard.

The easiest way to get R working with Excel is to use the R and Friends
installer available at http://rcom.univie.ac.at/. That installer gives you
R, R Commander, and all the pieces you need to make them work with Excel.

If you already have R installed, you can also install the pieces one at a
time. Start by installing and loading the RExcelInstaller package:

install.packages("RExcelInstaller")

library("RExcelInstaller")

The package will then give you detailed instructions on the steps to follow to
finish the installation.

After installing the software and starting Excel, you will see a new RExcel
menu in the Add-Ins tab (Fig. 3.3, upper left corner). Choosing RExcel> R
Commander> with Excel Menus will activate menus that we will use in a
different way in Sect. 3.11.2. You can see the menus in Fig. 3.3 where I have
selected Statistics> Means from the R Commander menus.

You can use Excel to open any file and then transfer it to R by selecting
its cell range (including a row with variable names) and choosing Add-Ins>
RExcel> Put R Var> Dataframe. With your data frame transferred to R, you
can then analyze it using R commands or R Commander menus. R Comman-
der works on an “active data set”, which you can select by choosing Data>
Active data set> Select active data set. You can save the R data frame by
choosing Data> Active data set> save active data set.

To transfer a data frame from R to Excel, set the one you want to be the
active data set (if you have not already done so) by choosing Data> Active
data set> Select active data set. . . . Then position the cursor in a spreadsheet
cell and choose Add-Ins> RExcel> Get R Value> Active dataframe. The data
frame will appear below and to the right of the chosen cell.

After you run an analysis, you can bring its results into an Excel spread-
sheet by selecting a cell and then choosing Rexcel> Get R output.

For a much more comprehensive demonstration of the various ways to use
R and Excel together, see Richard M. Heiberger and Erich Neuwirth’s book
R Through Excel: A Spreadsheet Interface for Statistics, Data Analysis, and
Graphics [27].
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Fig. 3.3. R and R Commander both integrated into Excel

3.9 Running R from Within Text Editors

Although R offers a basic program editor on Windows and Macintosh, people
who program a lot prefer to use a powerful editor. While any text editor will
do, there are significant advantages in choosing one that is optimized for R.
Since the R versions for Linux and UNIX do not include a text editor, this
approach is a popular way to run R on those systems. The advantages of
running R from a text editor include the following:

� Such editors are connected to R itself and can submit code directly and
interactively without leaving the editor. This greatly speeds your work.

� Such editors understand R syntax and apply color coding to help you
avoid trouble. For example, you have probably been vexed with forgetting
to put a final quotation mark around a character string. Your following
commands become part of that string and you have a mess on your hands!
These editors will keep all following code highlighted as they do character
strings, making problems like that obvious.

� Such editors can deactivate a block of R code by adding the R comment
symbol # to the beginning of each line. That is very helpful in debugging.

� Such editors can automatically open all the programs you were working
on when you exited the software the last time. If you work on several
programs at once, copying and pasting sections among them (as I often
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do), this is much faster than remembering what you were doing before and
finding each file to open.

The following are some good text editors:
EMACS with ESS – Available on all operating systems, EMACS is the

hands-down favorite among hard-core UNIX fans. The Emacs Speaks Statis-
tics (ESS) option is what links it to R and provides its R-specific capabilities.
This editor can do it all, but it is not the easiest to learn. You can download it
at http://ess.r-project.org/. Emacs with ESS pre-packaged is also avail-
able for Windows at http://vgoulet.act.ulaval.ca/en/emacs/.

Komodo Edit with SciViews-K – Komodo Edit from ActiveState is a
full-featured program editor that is free. It makes heavy use of menus and
dialog boxes, making it particularly easy for Windows and Mac users to
learn. Philippe Grosjean’s SciViews-K extension provides the link to R and
it even includes some rudimentary dialog boxes that generate R code for
you. It runs on Windows, Macintosh, Linux, and UNIX and is available at
http://sciviews.org/SciViews-K/.

Notepad++ with NppToR – Windows users usually know the rudimentary
Notepad editor that comes with the operating system. Notepad++ is a full-
featured editor that is modeled after Notepad itself, making it very easy to
learn. Andrew Redd wrote the NppToR part that hooks Notepad++ into R.
It runs the standard R GUI at the same time, letting you use features of both.
This Windows-specific software is available at http://npptor.sourceforge.
net.

Tinn-R – This is another Windows editor that works similarly to Notepad
[58]. Tinn stands for “Tinn Is Not Notepad.” It has frequently used R com-
mands on its toolbar and also includes R reference material to help you pro-
gram. Tinn-R is available at: http://www.sciviews.org/Tinn-R/

3.10 Integrated Development Environments

An integrated development environment (IDE) is a set of tools that work to-
gether to enhance programmer productivity. Since IDEs include text editors
that are optimized for the language you are using, they have all the advantages
discussed in the previous section. For R, IDEs may also include package man-
agers to help you install, load, and manage add-on packages; object managers
to let you view and manage things like data sets; and help or documentation
viewers and even graphics display windows.

3.10.1 Eclipse

The Eclipse IDE has a full suite of debugging tools and supports most pro-
gramming languages. This power comes at a price, however. Its complexity
means that it is used mainly by full-time programmers. If you have been
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using SAS AppDev Studio with the Eclipse plug-in, this is the R equiva-
lent. Stephan Wahlbrink’s StatET plug-in provides the link from Eclipse to
R. It runs on Windows, Macintosh, Linux, and UNIX and is available at
http://www.walware.de/goto/statet.

3.10.2 JGR

JGR [28] (pronounced “jaguar”) stands for the Java GUI for R. It is very
similar to R’s own simple interface, making it very easy to learn. Written by
Helbig, et al., JGR provides some very helpful additions to R, like syntax
checking in its program editor. It also provides the help R files in a way that
lets you execute any part of an example you select. That is very helpful when
trying to understand a complicated example.

JGR is installed differently than most R packages. In Microsoft Window
or Apple Macintosh, you download two programs: an installer and a launcher.
Running the installer installs JGR, and double-clicking the launcher starts it
up. The JGR Web site that contains both programs is http://www.rforge.
net/JGR/. Linux users follow slightly different steps that are described at the
site.

I started JGR by double-clicking on its launcher and opened an R program
using File> Open Document. You can see the program in Fig. 3.4. Note that
the JGR program editor has automatically color-coded my comments, function
names, and arguments, making it much easier to spot errors. In the printed
version of this book, those colors are displayed as shades of gray. If someone
brings you a messy R program, the program editor can format it nicely by
choosing Edit> Format Selection.

In the next example, I typed “cor(” into the bottom of the console area
shown in Fig. 3.5. JGR then displayed a box showing the various arguments
that control the cor function for doing correlations. That is very helpful when
you are learning!

JGR’s Package Manager makes it easier to control which packages you
are using (Fig. 3.6). Simply checking the boxes under “loaded”will load those
packages from your library. If you also check it under “default,” JGR will load
them every time you start JGR. Without JGR’s help, automatically loading
packages would require editing your .Rprofile as described in Appendix C.

JGR’s Object Browser makes it easy to manage your workspace; see
Fig. 3.7. Selecting different tabs across the top enable you to see the dif-
ferent types of objects in your workspace. Double-clicking on a data frame in
Object Browser starts the Data Table editor, which is much nicer than the one
built into R. It lets you rename variables, search for values, sort by clicking
on variable names, cut and paste values, and add or delete rows or columns.

If you have created models, they will appear under the models tab. There
you can do things like review them or sort them by various measures such as
their R-squared values. There are many more useful features in JGR that are
described on its Web site.
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Fig. 3.4. Color-coded editor in JGR helps prevent typing errors

3.10.3 RStudio

RStudio is a free and open source integrated development environment written
by JJ Allaire, Joe Cheng, Josh Paulson, and Paul DiCristina, at RStudio, Inc.
It is easy to install, learn, and use. It runs on Windows, Macintosh, Linux,
and even runs over the Web in a browser window from Linux servers.

The screenshot in Fig. 3.8 shows the program I was editing in the upper
left, the data set I created in the upper right, the program output in the
lower left, and a plot of a linear regression in the lower right. Each of the four
windows is tabbed, allowing you to do many more things including browsing
your files, editing multiple programs, reading documentation, examining your
command history, and installing or loading packages.

RStudio is a big improvement over the default user interfaces on any of
the operating systems that it supports. You can download it for free at http:
//rstudio.org/.

3.11 Graphical User Interfaces

The main R installation provides an interface to help you enter programs. For
Windows and Macintosh users it includes a very minimal GUI. As we have
discussed, that interface allows you to use menus and dialog boxes for a few
tasks, like opening and saving files. However, it does not include a point-and-
click GUI for running analyses. Fortunately, users have written several GUIs
to address this need. You can learn about several at the main R Web site,
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Fig. 3.5. JGR showing arguments that you might choose for the cor function

http://www.r-project.org/, under Related Projects and then R GUIs. We
will discuss the most promising ones in this section.

3.11.1 Deducer

Ian Fellows’ Deducer [18] is a user interface that is similar to SPSS’s point-
and-click menu system (Fig. 3.9). It is also similar to R Commander covered
in Sect. 3.11.2. Having arrived on the scene more recently, Deducer does not
have as many plug-ins as R Commander, nor it does not yet integrate into
Excel.

You can install Deducer using:

install.packages("Deducer")

When you load it from the library with:

library("Deducer")

Your R Console window will gain some menu choices, which you can see
in Figure 3.9. Here are the steps I followed to perform a simple analysis using
Deducer.
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Fig. 3.6. JGR’s Package Manager, which allows you to load packages from the
library on demand or at startup

Fig. 3.7. JGR’s Object Browser shows information about each object in your
workspace

1. I opened mydata by choosing Deducer> Open data, browsed to myRfolder,
and chose mydata.RData to open.

2. To see the data, I chose Deducer> Data viewer. The data popped up as
shown in Fig. 3.10. Using it, you can see and edit the data. Note that it has
a Data View tab and a Variable View tab, just like the SPSS data editor.
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Fig. 3.8. RStudio lets you edit files (upper left) manage objects (upper right), view
output (lower left) and view plots, files or packages (lower right)

Fig. 3.9. The Deducer graphical user interface integrated into the main R console

These allow you to see both the data (shown) and variable information
such as variable names and types.

3. To obtain some descriptive statistics, I chose Analysis> Descriptives. I
selected the q variables and clicked the right-facing arrow icon to move
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Fig. 3.10. Deducer’s Data viewer/editor

them to the Descriptives of: box. You can see this step in Fig. 3.11. I then
chose workshop as my Stratify By: variable and chose Continue.

4. I was offered a list of statistics from which to choose (not shown). I ac-
cepted the defaults and chose Run. The results are shown back in Fig. 3.9.

Deducer also has a powerful Plot Builder (Fig. 3.12) that helps you create
graphs using the flexible Grammar of Graphics approach that we will discuss
in Chap. 16. Plot Builder is very similar to IBM’s SPSS Visualization Designer.
This feature alone makes it worth looking into, even if you do most of your
work using programming or other user interfaces.

Deducer also integrates into the JGR user interface, which is covered in
Sect. 3.10.2. The combination of Deducer and JGR provides a very compre-
hensive set of tools for both R beginners and advanced programmers.

3.11.2 R Commander

Fox’s R Commander [20] looks and works similarly to the SPSS GUI. It pro-
vides menus for many analytic and graphical methods and shows you the R
commands that it enters, making it easy to learn the commands as you use
it. Since it does not come with the main R installation, you have to install it
one time with the install.packages function:

install.packages("Rcmdr", dependencies = TRUE)
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Fig. 3.11. Deducer’s descriptive statistics dialog box

R Commander uses many other packages, and R will download and install
them for you if you use the dependencies = TRUE argument. It also has many
plug-ins available that add even more methods to its menus. They are easy to
find because their names all begin with “RcmdrPlugin.” You install them just
like any other R package. To use them, you start R Commander and choose
Tools> Load Rcmdr plug-in(s). . . . A menu will then appear from which you
can choose the plug-in you need.

Let us examine a basic R Commander session. Below are the steps I fol-
lowed to create the screen image you see in Fig. 3.13.

1. I started R. For details see the section, “Running R Interactively on Win-
dows,” or similarly named sections for other operating systems previously
covered in this chapter.

2. Then, from within R itself I started R Commander by loading its package
from the library using library("Rcmdr"). That brought up the window
similar to the one shown in Fig. 3.13, but relatively empty.

3. I then chose Data>Load a data set, browsed to C:\myRfolder, and selected
mydata.RData.

4. Unlike the SPSS GUI, the data did not appear. So I clicked on the View
data set button. The data appeared, I looked it over, then closed it.
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Fig. 3.12. The Deducer’s powerful and easy-to-use Plot Builder

5. I then chose Statistics> Summaries> Active Data Set. You can see the
output on the bottom of the screen in Fig. 3.13.

6. Finally, I chose Statistics> Means. The menu is still open, showing that I
can choose various t-tests and analysis of variance (ANOVA) procedures.

You can learn more about R Commander at
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/.

3.11.3 rattle

Williams’ rattle package [77] provides a ribbon (tabbed-dialog box) style
of user interface that is similar to that used by Microsoft Office. Although
its emphasis is on data mining, the interface is useful for standard statistical
analyses as well. Its name stands for the R analytical tool to learn easily.
That name fits it well, as it is very easy to learn. Its point-and-click interface
writes and executes R programs for you.

Before you install the rattle package, you must install some other tools.
See the Web site for directions http://rattle.togaware.com. Once it is
installed, you load it from your library in the usual way.
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Fig. 3.13. The R Commander user interface with work in progress

> library("rattle")

Rattle, Graphical interface for data mining

using R, Version 2.2.64.

Copyright (C) 2007 Graham.Williams@togaware.com, GPL

Type "rattle()" to shake, rattle, and roll your data.

As the instructions tell you, simply enter the call to the rattle function
to bring up its interface:

> rattle()

The main Rattle interface shown in Fig. 3.14 will then appear. It shows
the steps it uses to do an analysis on the tabs at the top of its window. You
move from left to right, clicking on each tab to do the following steps. When
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Fig. 3.14. The rattle user interface for data mining

you are ready to run a particular step, click on the Execute icon in the upper
left corner of the screen.

1. Data. Choose your data type from a comma-separated value (CSV)
file, attribute-relation file format (ARFF), open database connectivity
(ODBC), .RData file, R data object already loaded or created before start-
ing Rattle, or even manual data entry.

Here you also choose your variables and the roles they play in the
analysis. I have chosen gender as the target variable (dependent variable)
and the other variables as inputs (independent variables or predictors).

2. Explore. Examine the variables using summary statistics, distributions,
interactive visualization via GGobi, correlation, hierarchical cluster anal-
ysis of variables, and principal components. A very interesting feature in
distribution analysis is the application of Benford’s law, an examination
of the initial digits of data values that people use to detect fraudulent
data (e.g., faked expense account values.)

3. Test. Perform standard analysis such as Kruskal–Wallis, Wilcoxon rank-
sum, t-test, F-test, correlation and Wilcoxon signed-rank.

4. Transform. Here you can perform data tasks such as recoding, rescaling,
taking logarithms, converting to ranks, replacing missing values with rea-
sonable estimates (imputation).

5. Cluster. Perform various types of cluster analyses.
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6. Associate. Perform association rule analysis to find relationships among
observations or variables.

7. Model. Apply models from tree, boost, forest, SVM, regression, neural
networks, or survival analysis.

8. Evaluate. Assess model quality and compare different models using con-
fusion tables, lift charts, ROC curves, and so forth.

9. Log. See the R program that Rattle wrote for you to do all of the steps.

For more details, see Williams’ book Data Mining with Rattle and R [78].

3.11.4 Red-R

Flowchart-style GUIs have been steadily growing in popularity. SAS Enter-
prise Guide and Enterprise Miner both use this approach, as does IBM SPSS
Modeler (formerly Clementine). One implementation of this approach1 for R
is called Red-R [57] and is available at http://www.red-r.org/. Figure 3.15
shows an example analysis using Red-R.

Red-R comes with a set of icons called widgets that represent common
steps in data acquisition, management, graphing, analysis, and presentation.
The left side of the Red-R screen contains a widget toolbar. Clicking on a
widget there makes it appear in its flowchart area or schema where you can
move it to any position. The little “bumps” on either side of the widgets are
called slots. You use your mouse to click and drag to connect the output slot on
the right side of one widget to the input slot on the left side of another. That
causes the data to flow in that direction. Double-clicking on an icon brings up
a dialog box very similar to those in the SPSS, R Commander, and Deducer
GUIs. The main difference is that these dialog boxes save their settings so
you can use the same schema in different ways. Each dialog contains a button
to activate it (often labeled commit). The graphs are interactive, so selecting
points in a graph will cause only those points to be transferred downstream
to the next widget. When you are finished, the whole flowchart is saved with
its settings and the R code that each node used to do its work.

For example, in Fig.3.15 moving from left to right, I read an R data file,
split it by gender, and got summary statistics for each group. Then I did a
scatter plot on the males followed by a linear regression.

While flowchart-style user interfaces take a little longer to learn than those
that focus on menus and dialog boxes, they do offer several important advan-
tages:

� You can get the big picture about an analysis with a quick glance.
� Flowcharts are a time-honored approach to help simplify the construction

of complex programs.

1 Another is AnalyticFlow, but it does not appear to have as much development
support: http://www.ef-prime.com/products/ranalyticflow_en/.
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Fig. 3.15. The Red-R flowchart-style graphical user interface

� You have an audit trail of what was done. I frequently have clients claim
to have done the “same” analysis twice using the menu-and-dialog-box
approach common to SPSS, R Commander and Deducer. However, the
results do not match and they want to know why! Unless they saved the
program generated by that approach, there is no way to know. People using
that type of interface often do not save the program because programming
does not interest them. With the flowchart approach, the audit trail is
maintained and it is in a form its creator understands.

� You can reuse an analysis on new data easily without resorting to pro-
gramming. People use GUIs to avoid programming in the first place; they
do not like to switch to a program even to change the first line and point it
to a new data set. While GUIs may never offer as much power and flexibil-
ity as programming does, at least this approach gives you a considerable
level of control.
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Help and Documentation

R has an extensive array of help files and documentation. However, they can
be somewhat intimidating at first, since many of them assume you already
know a lot about R.

To see how R’s help files differ in style from those of SAS and SPSS, let us
examine the help file for the print function. The help file in R says you can
use the print function to “Print Values,” which is clear enough. However, it
then goes on to say that “print prints its argument and returns it invisibly
(via invisible(x)). It is a generic function which means that new printing
methods can be easily added for new classes.”

That requires a much higher level of knowledge than does the SPSS de-
scription of its similar command: “LIST displays case values for variables in
the active dataset.” However, when you are done with this book, you should
be able to understand most help files well.

4.1 Starting Help

You can start the help system by choosing Help> HTML Help in Windows
or Help> R Help in Mac OS. In any operating system you can submit the
help.start function in the R console:

help.start()

That is how Linux/UNIX users start it since they lack menus. Regardless
of how you start it, you will get a help window that looks something like
Fig. 4.1. To get help for a certain function such as summary, use the form:

help("summary")

or prefix the topic with a question mark:

?"summary"
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Fig. 4.1. R’s main help window

The quotes around your search string are often optional. However, when
requesting help on an operator, you must enclose it in quotes. For example,
to get help on the assignment operator (equivalent to the equal sign in SAS
or SPSS), enter:

help( "<-" )

This also applies to flow-control statements such as if, else, for, in,
repeat, while, break, and next. For example, if we try to get help regarding
the while function without putting it in quotes, we get an error message:

> help(while)

Error: unexpected ')' in "help(while)"

> help("while")

[help will appear]

Although it is a bit of extra typing, you can always put quotes around the
item for which you are searching. If you do not know the name of a command
or operator, use the help.search function to search the help files:

help.search("your search string")

A shortcut to the help.search function is to prefix the term with two
question marks: “??”. For a single word search, use this form:

??"yourstring"
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For a string with more than one term in it, you must enclose it in quotes:

??"your multi-word string"

A particularly useful help file is the one on extracting and replacing parts
of an object. That help file is opened with the following function call (the “E”
in “Extract” is necessary):

help("Extract")

It is best to read that file after you have read Chapter 9, “Selecting Vari-
ables and Observations.”

4.2 Examples in Help Files

Most of R’s help files include examples that will execute. You can cut and
paste them into a script window to submit in easily understood pieces. You
can also have R execute all of the examples at once with the example function.
Here are the examples for the mean function, but do not try to understand
them now. We will cover the mean function later.

> example("mean")

mean> x <- c(0:10, 50)

mean> xm <- mean(x)

mean> c(xm, mean(x, trim = 0.10))

[1] 8.75 5.50

mean> mean(USArrests, trim = 0.2)

Murder Assault UrbanPop Rape

7.42 167.60 66.20 20.16

R changes its prefix of each example command from “>” to “mean>” to let
you know that it is still submitting examples from the mean function’s help
files. Note that when a help file example is labeled “Not run,” it means that
while it is good to study, it will not run unless you adapt it to your needs.

A very nice feature of the JGR GUI is that you can execute most help file
example programs by submitting them directly from the help window. You
simply select the part you wish to run, right-click on the selection, and then
choose “run line or selection.” See Sect. 3.10.2, “JGR Java GUI for R,” for
details.
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In SAS and SPSS, the help files include documentation for add-on packages
that you might not have installed. However, in R you must first install a
package and then load it from your library before you can get help. So you
cannot use help to find things that you do not already know something about.

A popular addition to R is Harrell’s Hmisc package [32]. It has many useful
functions that add SAS-like capabilities to R. One of these is the contents

function. Let us try to get help on it before loading the Hmisc package.

> help("contents")

No documentation for 'contents' in specified packages

and libraries: you could try '??contents'

The help system does not find it, but it does remind you how you might
search the help files. However, that search would find the contents function
only if the Hmisc package were already installed (but not necessarily loaded).
If you did not already know that Hmisc had such a function, you might search
the Internet (or read a good book!) to find it. Let us now load the Hmisc

package from our library.

> library("Hmisc")

R responds with a warning. We will discuss what this means later, but it
does not cause a problem now.

Attaching package: 'Hmisc'

The following object(s) are masked from package:base :

format.pval,

round.POSIXt,

trunc.POSIXt,

units

Now that the Hmisc package is loaded, we can get help on the contents

function with the command help("contents"). We do not need to look at
the actual help file at the moment. We will cover that function much later.

If you want help on a topic and you are not sure of its exact name you can
use the help.search function. Let us use it to find things that relate to the
string “contents.”

> help.search("contents")

Help files with alias or concept or title matching 'contents'...

fuzzy matching:

anchors::replace.list Updating contents of one list using...

ape::GC.content Content in GC from DNA Sequences
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DAAG::ironslag Iron Content Measurements

geoR::ca20 Calcium content in soil samples...

...

Hmisc::contents Metadata for a Data Frame

MASS::abbey Determinations of Nickel Content

MEMSS::Milk Protein content of cows' milk

multcomp::fattyacid Fatty Acid Content of Bacillus...

nlme::Milk Protein content of cows' milk

PASWR::Bac Blood Alcohol Content...

If you knew you wanted to use a function named contents but forgot
which package(s) had a function of that name, this is a good way to find it.

4.3 Help for Functions That Call Other Functions

R has functions that exist to call other functions. These are called generic
functions. In many cases, the help file for the generic function will refer you
to those other functions, providing all of the help you need. However, in some
cases you need to dig for such help in other ways. We will discuss this topic in
Chap. 5 “Programming Language Basics”, Sect. 5.7.4, “Controlling Functions
with an Object’s Class.”We will also examine an example of this in Chap. 15,
“Traditional Graphics,” Sect. 15.10.9, “Scatter Plot Matrices.”

4.4 Help for Packages

Thus far we have examined ways to get help about a specific function. You
can also get help on an entire package. For example, the foreign package [14]
helps you import data from other software. You can get help on a package
itself by using the package argument. Here is a partial listing of its output:

> help(package = "foreign")

Information on package 'foreign'

Description:

Package: foreign

Priority: recommended

Version: 0.8-41

Date: 2010-09-23

Title: Read Data Stored by...SAS, SPSS, Stata,

Depends: R (>= 2.10.0), stats

Imports: methods, utils

Maintainer: R-core <R-core@r-project.org>

Author: R-core members, Saikat DebRoy, Roger Bivand...
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file in the sources.

Description: Functions for reading and writing data stored by

statistical packages...SAS, SPSS, Stata, ...

Index:

read.dta Read Stata Binary Files

read.spss Read an SPSS Data File

read.ssd Obtain a Data Frame from a SAS Perm. Dataset...

read.xport Read a SAS XPORT Format Library

write.foreign Write Text Files and Code to Read Them...

To get help on a package, you must first install it, but you need not load
it. However, not all packages provide help for the package as a whole. Most
do, however, provide help on the functions that the package contains.

4.5 Help for Data Sets

If a data set has a help file associated with it, you can see it with the help

function. For example,

help("esoph")

will tell you that this data set is “data from a case-control study of esophageal
cancer in Ile-et-Vilaine, France.”

4.6 Books and Manuals

Other books on R are available free at http://cran.r-project.org/ under
documentation. We will use a number of functions from the Hmisc package.
Its manual is An Introduction to S and the Hmisc and Design Libraries [2] by
Alzola and Harrell. It is available at http://biostat.mc.vanderbilt.edu/
twiki/pub/Main/RS/sintro.pdf. The most widely recommended advanced
statistics book on R is Modern Applied Statistics with S (abbreviated MASS)
by Venables and Ripley [65]. Note that R is almost identical to the S language
and recently published books on S usually point out what the differences are.

An excellent book on managing data in R is Spector’s Data Manipulation
with R [51]. We will discuss books on graphics in the chapters on that topic.

4.7 E-mail Lists

There are different e-mail discussion lists regarding R that you can read about
and sign up for at http://www.r-project.org/ under Mailing Lists. I rec-
ommend signing up for the one named R-help. There you can learn a lot by
reading answers to the myriad of questions people post there.
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If you post your own questions on the list, you are likely to get an
answer in an hour or two. However, please read the posting guide, http:
//www.R-project.org/posting-guide.html, before sending your first ques-
tion. Taking the time to write a clear and concise question and providing a
descriptive subject line will encourage others to take the time to respond.
Sending a small example that demonstrates your problem clearly is particu-
larly helpful. See Chap. 12, “Generating Data,” for ways to make up a small
data set for that purpose. Also, include the version of R you are using and
your operating system. You can generate all of the relevant details using the
sessionInfo function:

> sessionInfo()

R version 2.12.1 (2010-12-16)

Platform: i386-pc-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=English_United States.1252...

attached base packages:

[1] splines stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] Hmisc_3.8-3 survival_2.36-2 prettyR_1.8-6

loaded via a namespace (and not attached):

[1] cluster_1.13.2 grid_2.12.1 lattice_0.19-17 tools_2.12.1

4.8 Searching the Web

Searching the Web for information on R using generic search engines such as
Google can be frustrating, since the letter R refers to many different things.
However, if you add the letter R to other keywords, it is surprisingly effec-
tive. Adding the word “package” to your search will also narrow it down. For
example, to find packages on cluster analysis, you could search for “R cluster
package” (without the quotes!).

An excellent site that searches just for R topics is Jonathon Barron’s
R Site Search at http://finzi.psych.upenn.edu/search.html. You can
search just the R site while in R itself by entering the RSiteSearch function

RSiteSearch("your search string")

or by going to http://www.r-project.org/ and clicking Search.
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4.9 Vignettes

Another kind of help is a vignette, a short description. People who write
packages can put anything into its vignette. The command

vignette(all = TRUE)

will show you vignettes for all of the packages you have installed. To see the
vignette for a particular package, enter it in the vignette function with its
name in quotes:

vignette("mypackage")

Unfortunately, many packages do not have vignettes.

4.10 Demonstrations

Some packages include demonstrations, or “demos,” that can help you learn
how to use them by showing you actual running examples. You can see a list
of them by entering the demo() function. Not many packages include demos,
but when they do they are usually worth running. See Sect. 14.8 for some
examples.
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Programming Language Basics

5.1 Introduction

In this chapter we will go through the fundamental features in R. It will
be helpful if you can download the book’s files from the Web site http:

//r4stats.com and run each line as we discuss it. Many of our examples
will use our practice data set described in Sect. 1.7.

R is an object-oriented language. Everything that exists in it – variables,
data sets, functions (procedures) – are all objects.

Object names in R can be any length consisting of letters, numbers, un-
derscores “ ,” or periods “.” and should begin with a letter. However, in R if
you always put quotes around a variable or data set name (actually any object
name), it can then contain any characters, including spaces.

Unlike SAS, the period has no meaning in the name of a data set. However,
given that my readers will often be SAS users, I avoid using the period.

Case matters in R, so you can have two variables – one named myvar and
another named MyVar – in the same data set, although that is not a good
idea! Some add-on packages tweak function names like the capitalized “Save”
to represent a compatible, but enhanced, version of a built-in function like
the lowercased “save.” As in any statistics package, it is best to avoid names
that match function names like “mean” or that match logical conditions like
“TRUE.”

While in SAS you perform analyses using procedures and in SPSS you use
commands, in R you perform analyses using functions. When you execute a
function, you are said to call it. The resulting output is what the function call
returns. A few functions do not return output but have side effects such as
writing an external file.

Function calls can begin and end anywhere on a line and R will ignore
any additional spaces. R will try to execute a function call when it reaches
the end of a line. Therefore, to continue a function call on a new line, you
must ensure that the fragment you leave behind is not already a complete
function call by itself. Continuing a function call on a new line after a comma
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is usually a safe bet. As you will see, R functions separate their parameters
or arguments using commas, making them a convenient stopping point. The
R console will tell you that it is continuing a line when it changes the prompt
from “>” to “+”. If you see “+” unexpectedly, you may have simply forgotten
to add the final close parenthesis, “)”. Submitting only that character will
then finish your function call. If you are getting the “+” and cannot figure
out why, you can cancel the pending function call with the Escape key on
Windows or CTRL-C on Macintosh or Linux/UNIX. For CTRL-C, hold the
CTRL key down (Linux/UNIX) or the control key (Macintosh) while pressing
the letter C. You may end any R function call with a semicolon. This is not
required, though, except when entering multiple function calls on a single line.

5.2 Simple Calculations

Although few people would bother to use R just as a simple calculator, you
can do so with commands like

> 2+3

[1] 5

The “[1]” tells you the resulting value is the first result. It is only useful
when your results run across several lines. We can tell R to generate some
data for us to see how the numbering depends on the width of the output.
The form 1:50 will generate the integers from 1 to 50.

> 1:50

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[20] 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

[39] 39 40 41 42 43 44 45 46 47 48 49 50

Now, it is obvious that the numbers in square brackets are counting or
indexing the values. I have set the line width to 63 characters to help things
fit in this book. You can use the options function to change the width to 40
and see how the bracketed numbers change.

> options(width = 40)

> 1:50

[1] 1 2 3 4 5 6 7 8 9 10 11 12

[13] 13 14 15 16 17 18 19 20 21 22 23 24

[25] 25 26 27 28 29 30 31 32 33 34 35 36

[37] 37 38 39 40 41 42 43 44 45 46 47 48

[49] 49 50
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> options(width = 63) # Set it wider again.

In SAS, that setting is done with OPTIONS LINESIZE=63. SPSS uses
SET WIDTH 63.

An important thing to keep in mind is that if you use your computer’s
mouse to shrink the R console window to have fewer columns, it will override
the width setting.

You can assign the values to symbolic variables like x and y using the
assignment operator, a two-character sequence “<-”. You can use the equal
sign as SAS and SPSS do, but there are some rather esoteric advantages1 to
using “<-” instead. Here we use it to assign values to x and y and then do
some simple math.

> x <- 2

> y <- 3

> x + y

[1] 5

> x * y

[1] 6

We have added extra spaces in the above commands and extra lines in the
output for legibility. Additional spaces do not affect the commands.

5.3 Data Structures

SAS and SPSS both use one main data structure, the data set. Instead, R
has several different data structures including vectors, factors, data frames,
matrices, arrays, and lists. The data frame is most like a data set in SAS or
SPSS. R is flexible enough to allow you to create your own data structures,
and some add-on packages do just that.

5.3.1 Vectors

A vector is an object that contains a set of values called elements. You can
think of it as a SAS or SPSS variable, but that would imply that it is a
column in a data set. It is not. It exists by itself and is neither a column nor
a row. For R, it is usually one of two things: a variable or a set of parameter
settings called arguments that you use to control functions. One of the more

1 These are beyond our scope.
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intriguing aspects of R is that its arguments are often more than single static
character strings as they are in SAS and SPSS. The values of arguments are
often vectors that happen to have single values. To SAS and SPSS users that
is a radical idea. It will become clear as you read through this book.

Creating Vectors

Let us create a vector by entering the responses to the first question, “Which
workshop did you take?” without any value labels:

workshop <- c( 1, 2, 1, 2, 1, 2, 1, 2 )

All of the workshop values are numeric, so the vector’s mode is numeric.
SAS and SPSS both refer to that as a variable’s type. As in SAS and SPSS,
if even one value were alphabetic (character or string), then the mode would
be coerced, or forced, to be character. R does all its work with functions,
which are similar to SAS statements and procedures, or SPSS commands and
procedures. Functions have a name followed by its parameters (or keywords
in SPSS jargon), called arguments, in parentheses. The c function’s job is to
combine multiple values into a single vector. Its arguments are just the values
to combine, in this case 1,2,1,2. . . .

To print our vector, we can use the print function. This is R’s equivalent to
the SAS PRINT procedure or SPSS’s LIST or PRINT statements. However,
this function is used so often, it is the default function used when you type
the name of any object! So when working interactively, these two commands
do exactly the same thing:

> print(workshop)

[1] 1 2 1 2 1 2 1 2

> workshop

[1] 1 2 1 2 1 2 1 2

We run all of the examples in this book interactively ; that is, we submit
function calls and see the results immediately. You can also run R in batch
mode, where you would put all your function calls into a file and tell R to
run them all at once, routing the results to a file. In batch mode you must
write out the print function. I will point out a few other instances when you
must write out the print function name in later chapters. Although typing
out the print function for most of our examples is not necessary, I will do it
occasionally when showing how the R code looks in a typical analysis.

Let us create a character variable. Using R jargon, we would say we are
going to create a character vector, or a vector whose mode is character. These
are the genders of our hypothetical students:
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> gender <- c("f", "f", "f", NA, "m", "m", "m", "m")

> gender

[1] "f" "f" "f" NA "m" "m" "m" "m"

NA stands for Not Available, which R uses to represent missing values. Later
I will read data from files whose values are separated by commas. In that case,
R would recognize two commas in a row as having a missing value in between
them. However, the values in the c function are its arguments. R does not
allow its functions to have missing arguments. Entering NA gets around that
limitation.

Even when entering character values for gender, never enclose NA in
quotes. If you did, it would be just those letters rather than a missing value.

Now let us enter the rest of our data:

q1 <- c(1, 2, 2, 3, 4, 5, 5, 4)

q2 <- c(1, 1, 2, 1, 5, 4, 3, 5)

q3 <- c(5, 4, 4,NA, 2, 5, 4, 5)

q4 <- c(1, 1, 3, 3, 4, 5, 4, 5)

Using Vectors

Just as with variables in SAS or SPSS, you can do all kinds of things with
vectors, like add them:

> mySum <- q1 + q2 + q3 + q4

> mySum

[1] 8 8 11 NA 15 19 16 19

That approach works just like SAS or SPSS since R added all the elements
in order simply by using the “+” sign. In many other languages that process
would have required a DO or FOR loop by creating the sums for the first
element, then the second, and so on. You could do it that way in R too, but it
is not necessary. The fact that R functions work on every element of vectors
automatically is called vectorization. R’s functions are vectorized, helping you
to avoid needless and often inefficient DO or FOR loops.

While vectorization typically works just like SAS or SPSS, sometimes it
will surprise you. For example, if you add two variables in SAS or SPSS and
one is shorter than the other, those packages will force the two to match
lengths by filling in missing values. Let us see what happens in R:

> myShortVector <- c(10, 100)

> q1
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[1] 1 2 2 3 4 5 5 4

> mySum <- q1 + myShortVector

> mySum

[1] 11 102 12 103 14 105 15 104

What happened? Rather than set all but the first two values to missing, R
used the 10 and 100 values over and over again. This process is called recycling.
To SAS or SPSS users, recycling appears disastrous at first. Is it not adding
values from the wrong observations? Do not fear, though, as in most cases
vectors on the same set of observations will be padded with missing values.
That will ensure the behavior you expected will indeed happen:

> myVector <- c(10, 100, NA, NA, NA, NA, NA, NA)

> mySum <- q1 + myVector

> mySum

[1] 11 102 NA NA NA NA NA NA

Once you recover from the initial shock of these differing results, you will
find that when you expect SAS- or SPSS-like results in addition or subtrac-
tion, you will have them. Furthermore, recycling offers you a way to simplify
programs that would otherwise require the use of DO or FOR loops.

Most mathematical functions in R are vectorized. For example, the sqrt

function will take the square root of each element in the vector, just as in SAS
or SPSS:

> sqrt(q1)

[1] 1.000 1.414 1.414 1.732 2.000 2.236 2.236 2.000

Statistical functions work on a whole vector at once. To get a simple table
of frequencies, we can use the table function:

> table(workshop)

workshop

1 2

4 4

> table(gender)
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gender

f m

3 4

The first thing you will notice about the output is how plain it is. No
percents are calculated and no lines drawn to form a table. When you first see
a table like the one for workshop, its complete lack of labels may leave you
wondering what it means. There are four people who took workshop 1 and
four people who took workshop 2. It is not hard to understand – just a shock
when you come from a package that labels its output better.

This is a difference in perspective between R and SAS or SPSS. R creates
or returns output that other functions can use immediately. Other functions
exist that provide more output, like percents. Still others format output into
publication-quality form.

Let us get the mean of the responses to question 3:

> mean(q3)

[1] NA

The result is NA, or Not Available! Many R functions handle missing values
in an opposite manner from SAS or SPSS. R will usually provide output
that is NA when performing an operation on data that contains any missing
values. It will typically provide the answer you seek only when you tell it to
override that perspective. There are several ways to do this in R. For the mean
function, you set the NA remove argument, na.rm, equal to TRUE.

> mean(q3, na.rm = TRUE)

[1] 4.142857

R has most of the same mathematical (Table 10.2) and statistical (see
Table 10.1) functions that SAS and SPSS do.

Selecting Vector Elements

So far we have performed a few simple analyses on entire vectors. You can
easily select subsets using a method called subscripting or indexing.2 You
specify which of the vector’s elements you want in square brackets following
the vector’s name. For example, to see the fifth element of q1, you enter

> q1[5]

[1] 4

2 To be more precise, subscripting is done by using index values, logic, or names.
However, people use subscripting and indexing interchangeably.



68 5 Programming Language Basics

When you want to specify multiple elements, you must first combine them
into a vector using the c function. Therefore, to see elements 5 through 8, you
can use

> q1[c(5, 6, 7, 8)]

[1] 4 5 5 4

The colon operator, “:”, can generate vectors directly, so an alternate way
of selecting elements 5 through 8 is

> q1[5:8]

[1] 4 5 5 4

You can also insert logical selections. They generate logical vectors to
perform your selection. R uses “==” for logical equivalence, not the equal sign
or “EQ”:

> q1[gender == "m"]

[1] NA 4 5 5 4

The spaces on either side of the“==”or any other logical operators improve
program legibility. Usually the goal of any of these selection methods is to
perform some analysis on a subset. For example, to get the mean response to
item q1 for the males, we can use

> mean(q1[gender == "m"], na.rm = TRUE)

[1] 4.5

R’s ability to select vector elements is very flexible. I will demonstrate how
to apply these techniques toward selecting parts of other data structures in
the sections that immediately follow. Later I will devote three entire chapters
to showing how to apply these techniques to data sets in Chap. 7, “Selecting
Variables,” through Chap. 9, “Selecting Variables and Observations.”

5.3.2 Factors

Two of the variables we entered above, workshop and gender, are clearly
categorical. R has a special data structure called a factor for such variables.
Regardless of whether a variable’s original values are numeric or character,
when a variable becomes a factor, its mode becomes numeric.
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Creating Factors from Numeric Vectors

Before we create a factor, let us enter workshop again as a numeric vector and
display its values.

> workshop <- c(1, 2, 1, 2, 1, 2, 1, 2)

> workshop

[1] 1 2 1 2 1 2 1 2

Now let us perform two simple analyses.

> table(workshop)

workshop

1 2

4 4

> mean(workshop)

[1] 1.5

We see that four people took each workshop. We also see that the mean

function happily returned the mean of the workshops, which is a fairly non-
sensical measure for a categorical variable. R usually tries to do correct things
statistically, but we have not yet told it that workshop is categorical.

Recall that to select elements of a vector you can use subscripting and
place an index value in square brackets. For example, to choose the third
element of gender, you can use

> gender[3]

[1] f

Levels: f m

To see the first two and the last two elements, you can subscript using
those index values in a vector using the c function like this:

> gender[c(1, 2, 7, 8)]

[1] f f m m

Levels: f m

Let us now see the genders of the people who took the SAS workshop,
which has a value of 2.
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> gender[workshop == 2]

[1] "f" NA "m" "m"

Now let us enter the variable again, convert it to a factor using the factor

function, and display its values.

> workshop <- c(1, 2, 1, 2, 1, 2, 1, 2)

> workshop <- factor(workshop)

> workshop

[1] 1 2 1 2 1 2 1 2

Levels: 1 2

I could have assigned the resulting factor to a new variable name (on the left
side of the <-), of course. However, the name “workshop” that appears within
the parentheses on the factor function call (the right side) must exist already.

After using the factor function, we see that the display of workshop values
has an additional feature, the levels. Let us repeat our two analytic functions:

> table(workshop)

workshop

1 2

4 4

> mean(workshop)

[1] NA

Warning message:

In argument is not numeric or logical: returning NA

The output from the table function is identical, but now the mean function
warns us that this is not a reasonable request and it returns a missing value
of NA.

Now that workshop is a factor, we can check the genders of the people who
took the SAS workshop (workshop 2) in two ways:

> gender[workshop == 2]

[1] "f" NA "m" "m"
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> gender[workshop == "2"]

[1] "f" NA "m" "m"

The second example uses quotes around the 2 and it still works. This is
due to the fact that the original numeric values are now also stored as value
labels.

Now I will enter workshop again, this time using additional arguments in
the factor function call to assign more useful value labels.

workshop <- c(1, 2, 1, 2, 1, 2, 1, 2)

workshop <- factor(

workshop,

levels = c( 1, 2, 3, 4),

labels = c("R", "SAS", "SPSS", "Stata")

)

The factor function call above has three arguments:

1. The name of a vector to convert to a factor.
2. The levels or values that the data can have. This allows you to specify

values that are not yet in the data. In our case, workshop is limited to
the values 1 and 2, but we can include the values 3 and 4 for future
expansion. I spaced the values out just to match the spacing of the labels
below, but that is not required. Notice that these values are contained in
the c function; therefore, they are actually a vector!
The order you list the values in will determine their appearance order
in output like frequency tables and graphs. The first one you list will
determine the comparison level if you use the factor in modeling (see
Sect. 10.8 for details).
If the values have a numeric order like low, medium, or high, then you
can use the ordered function rather than the factor function. It works
almost identically but registers the variable as ordinal rather than simply
categorical.

3. Optionally, the labels for the levels. The factor function will match the
labels to the levels in the order in which they are listed in the function call.
The order of the values in the data set is irrelevant. If you do not provide
the labels argument, R will use the values themselves as the labels. If you
supply them, the values must be nested within a call to the c function,
making them a character vector.

Now when we print the data, they show us that the people in our practice
data set have only taken workshops in R and SAS. It also lists the levels so
you can see what labels are possible:

> workshop
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[1] R SAS R SAS R SAS R SAS

Levels: R SAS SPSS Stata

The table function now displays the workshop labels and how many people
took each:

> table(workshop)

workshop

R SAS SPSS Stata

4 4 0 0

The labels have now replaced the original values. So to check the genders of
the people who took the SAS workshop, we can no longer use the value 2.

> gender[workshop == 2]

factor(0)

Levels: Male Female

When we select based on the value label, it works.

> gender[workshop == "SAS"]

[1] Female <NA> Male Male

Levels: Male Female

Creating Factors from Character Vectors

You can convert character vectors to factors in a similar manner. Let us again
enter gender as a character vector and print its values.

> gender <- c("f", "f", "f", NA, "m", "m", "m", "m")

> gender

[1] "f" "f" "f" NA "m" "m" "m" "m"

Notice that the missing value, NA, does not have quotes around it. R
leaves out the quotes to let you know that it is not a valid character string
that might stand for something like North America.

If we are happy with those labels, we can convert gender to a factor by
using the simplest call to the factor function:
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> gender <- factor(gender)

> gender

[1] f f f NA m m m m

Levels: f m

If, instead, we want nicer labels, we can use the longer form. It uses the
same approach we used for workshop, but the values on the levels argument
need to be in quotes:

> gender <- factor(

+ gender,

+ levels = c("m", "f"),

+ labels = c("Male", "Female")

+ )

> gender

[1] Female Female Female NA Male Male Male Male

Levels: Male Female

> table(gender)

gender

Male Female

4 3

You now need to use the new labels when performing selections on gender.
For example, to see which workshops the males took, this no longer works:

> workshop[gender == "m"]

[1] <NA>

Levels: R SAS SPSS STATA

Instead, specifying the new label of “Male” finds the workshops they took:

> workshop[gender == "Male"]

[1] <NA> R SAS R SAS

Levels: R SAS SPSS Stata
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Note that the last line of output conveniently tells you all of the levels of the
factor even though the males did not take all of the workshops.

We will examine factors and compare them to SPSS value labels and SAS
formats in Sect. 11.1, Value Labels or Formats (and Measurement Level).

For the remainder of the book we will use the shorter labels, “m” and “f.”

5.3.3 Data Frames

The data structure in R that is most like a SAS or SPSS data set is the data
frame. SAS and SPSS data sets are always rectangular, with variables in the
columns and records in the rows. SAS calls these records observations and
SPSS calls them cases. A data frame is also rectangular. In R terminology,
the columns are called vectors, variables, or just columns. The rows are called
observations, cases, or just rows.

A data frame is a generalized matrix, one that can contain both character
and numeric columns. A data frame is also a special type of list, one that
requires each component to have the same length. We will discuss matrices
and lists in the next two sections.

We have already seen that R can store variables in vectors and factors.
Why does it need another data structure? R can generate almost any type of
analysis or graph from data stored in vectors or factors. For example, getting
a scatter plot of the responses to q1 versus q4 is easy. R will pair the first
number from each vector as the first (x,y) pair to plot and so on down the
line. However, it is up to you to make sure that this pairing makes sense. If you
sort one vector independently of the others, or remove the missing values from
vectors independently, the critical information of how the pairs should form is
lost. A plot will still appear, but it will contain a completely misleading view
of the data. Sorting almost any two variables in ascending order independently
will create the appearance of a very strong relationship. The data frame helps
maintain this critical pairing information.

Creating a Data Frame

The most common way to create a data frame is to read it from another source
such as a text file, spreadsheet, or database. You can usually do that with a
single function call. We will do that later in Chap. 6, “Data Acquisition.”
For the moment, I will create one by combining the vectors and factors. The
following is my program so far:

workshop <- c(1, 2, 1, 2, 1, 2, 1, 2)

workshop <- factor(workshop,

levels = c( 1, 2, 3, 4),

labels = c("R", "SAS", "SPSS", "Stata") )
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gender <- c("f", "f", "f", NA, "m", "m", "m", "m")

gender <- factor(gender)

q1 <- c(1, 2, 2, 3, 4, 5, 5, 4)

q2 <- c(1, 1, 2, 1, 5, 4, 3, 5)

q3 <- c(5, 4, 4,NA, 2, 5, 4, 5)

q4 <- c(1, 1, 3, 3, 4, 5, 4, 5)

Now we will use the data.frame function to combine our variables (vectors
and factors) into a data frame. Its arguments are simply the names of the
objects we wish to combine.

> mydata <- data.frame(workshop, gender, q1, q2, q3, q4)

> mydata

workshop gender q1 q2 q3 q4

1 R f 1 1 5 1

2 SAS f 2 1 4 1

3 R f 2 2 4 3

4 SAS <NA> 3 1 NA 3

5 R m 4 5 2 4

6 SAS m 5 4 5 5

7 R m 5 3 4 4

8 SAS m 4 5 5 5

Notice that the missing value for gender is now shown as “<NA>.” When R
prints data frames, it drops the quotes around character values and so must
differentiate missing value NAs from valid character strings that happen to
be the letters “NA.”

If I wanted to rename the vectors as I created the data frame, I could do
so with the following form. Here the vector “gender” will be stored in mydata
with the name “sex” and the others will keep their original names. Of course,
I could have renamed every variable using this approach.

mydata <- data.frame(workshop, sex = gender, q1, q2, q3, q4)

For the remainder of the book I will leave the variable name as “gender.”
Although I had already made gender into a factor, the data.frame func-

tion will coerce all character variables to become factors when the data frame
is created. You do not always want that to happen (for example, when you
have vectors that store people’s names and addresses.) To prevent that from
occurring, you can add the stringsAsFactors = FALSE argument in the call
to the data.frame function.
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In SAS and SPSS, you do not know where variable names are stored or
how. You just know they are in the data set somewhere. In R however, vari-
able names are stored in the names attribute – essentially character vectors –
within data objects. In essence, they are just another form of data that you
can manipulate. We can display the names of a data frame using the names

function:

> names(mydata)

[1] "workshop" "gender" "q1" "q2" "q3" "q4"

R data frames also have a formal place for an ID variable it calls the
row names attribute. These names can be informative text labels like subject
names, but, by default, they are sequential numbers stored as character values.
The row.names function will display them:

> row.names(mydata)

[1] "1" "2" "3" "4" "5" "6" "7" "8"

SAS and SPSS display sequential numbers like this in their data editors.
However, those numbers are reassigned to new observations when you sort
your data. Row names in R are more useful since sorting never changes their
values. You can always use them to return your data to their original state by
sorting on the row names. See Sec. 10.18, “Sorting Data Frames,” for details.

SAS and SPSS users typically enter an ID variable containing an observa-
tion/case number or perhaps a subject’s name. However, this variable is like
any other unless you manually supply it to a procedure that identifies obser-
vations. In R, procedures that identify observations will do so automatically
using row names. If you set an ID variable to be the row names while read-
ing a text file, then variable’s original name (id, subject, SSN, etc.) vanishes.
Since functions that do things like identify outliers will use the information
automatically, you usually do not need the name. We will discuss row names
further when we read text files and in Sect. 10.6, “Renaming Variables (. . . and
Observations).”

Selecting Components of Data Frames

There are several ways to select the components of a data frame. For now,
we will focus on just two: selecting by subscripting and by a method called
$ notation. We will save the other methods for later chapters.

Selecting Data Frame Components by Subscripting

While vectors and factors have only one-dimensional subscripts with which
to select their elements, data frames have two-dimensional ones. These are in
the form
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mydataframe[rows, columns]

For example, you can choose the eighth observation’s value of the sixth
variable, q4, using

> mydata[8, 6]

[1] 5

If you leave out a row or column subscript, R will assume you want them all.
So to select all of the observations for the sixth variable, I can use

> mydata[ ,6]

[1] 1 1 3 3 4 5 4 5

It so happens that the above example is selecting a vector. We saw ealier
that we could add subscripts to the end of a vector to select a subset of it. So
for variable q4, I can choose its fifth through eighth elements using

> q4[5:8]

[1] 4 5 4 5

In our data frame, mydata[ , 6] is the same vector as variable q4. There-
fore, we can make this same selection by appending [5:8] to it:

> mydata[ , 6][5:8]

[1] 4 5 4 5

Selecting Data Frame Components Using $ Notation

Since the components of our data frame have names, I can also select them
by name using the form

myDataFrameName$myComponentName

Therefore, to select q1 from mydata, I can use

> mydata$q1

[1] 1 2 2 3 4 5 5 4

The variable q1 is still a vector, so I can append index values to it to make
further selections. To select the fifth through eighth values (the males), we
can use
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> mydata$q1[ 5:8 ]

[1] 4 5 5 4

As we will soon see, there are many other ways to select subsets of data
frames. We will save the other methods for Chap. 7, “Selecting Variables,”
through Chap. 9, “Selecting Variables and Observations.”

5.3.4 Matrices

A matrix is a two-dimensional data object that looks like a SAS or SPSS
data set, but it is actually one long vector wrapped into rows and columns.
Because of this, its values must be of the same mode, (e.g., all numeric or all
character). This constraint makes matrices more efficient than data frames for
some types of analyses, but their main advantage is that they lend themselves
to the use of matrix algebra.

To use matrices in SAS, you could run PROC IML, transfer a data set from
SAS into an IML matrix, and then begin working in a whole new syntax. When
finished, you would transfer the results back into the main SAS environment.
Alternatively, you could run a whole different program: SAS/IML Studio.

SPSS has its similar MATRIX environment, with its separate syntax.
Unlike with SAS and SPSS, matrices are an integral part of R. There is

no special matrix procedure to activate. This tight level of integration is one
of the things that attracts developers to R.

Creating a Matrix

The cbind function takes columns and binds them together into a matrix:

> mymatrix <- cbind(q1, q2, q3, q4)

> mymatrix

q1 q2 q3 q4

[1,] 1 1 5 1

[2,] 2 1 4 1

[3,] 2 2 4 3

[4,] 3 1 NA 3

[5,] 4 5 2 4

[6,] 5 4 5 5

[7,] 5 3 4 4

[8,] 4 5 5 5

As you can see, a matrix is a two-dimensional array of values. The numbers
on the left side in brackets are the row numbers. The form [1, ] means that it



5.3 Data Structures 79

is row number one and the lack of a number following the comma means that
R has displayed all of the columns.

We can get the dimensions of the matrix with the dim function:

> dim(mymatrix)

[1] 8 4

The first dimension is the number of rows, 8, and the second is the number
of columns, 4.

To create a matrix, you do not need to start with separate vectors as I did;
you can create one directly with the matrix function. The matrix function
call below has four arguments. The first argument is data, which you must
enclose in a call to the c function. The next three specify the number of rows,
columns, and whether or not you are entering the data by rows. If you leave
the byrow = TRUE argument off, you would enter the data turned on its side.
I prefer to enter it by rows since it looks more like the layout of SAS and SPSS
data sets.

> mymatrix <- matrix(

+ c(1, 1, 5, 1,

+ 2, 1, 4, 1,

+ 2, 2, 4, 3,

+ 3, 1, NA,3,

+ 4, 5, 2, 4,

+ 5, 4, 5, 5,

+ 5, 3, 4, 4,

+ 4, 5, 5, 5),

+ nrow = 8, ncol = 4, byrow = TRUE)

> mymatrix

[,1] [,2] [,3] [,4]

[1,] 1 1 5 1

[2,] 2 1 4 1

[3,] 2 2 4 3

[4,] 3 1 NA 3

[5,] 4 5 2 4

[6,] 5 4 5 5

[7,] 5 3 4 4

[8,] 4 5 5 5

You can see that the result is the same as before, except that the columns
are no longer named q1, q2, q3, q4. Now let us see what the table, mean, and
cor functions do with matrices. I will use the earlier version of the matrix, so
you will see the variable names.



80 5 Programming Language Basics

> table(mymatrix)

mymatrix

1 2 3 4 5

6 4 4 8 9

> mean( mymatrix, na.rm = TRUE )

[1] 3.266667

> cor( mymatrix, use = "pairwise" )

q1 q2 q3 q4

q1 1.0000000 0.7395179 -0.1250000 0.9013878

q2 0.7395179 1.0000000 -0.2700309 0.8090398

q3 -0.1250000 -0.2700309 1.0000000 -0.2182179

q4 0.9013878 0.8090398 -0.2182179 1.0000000

The table function counts the responses across all survey questions at
once! That is not something SAS or SPSS would usually do. It is odd, but
not useless. We can see that nine times people strongly agreed (a value of 5)
with any of the questions on our survey.

The mean function gets the mean response of them all. Again, it is not of
much interest in our situation, but you might find cases where it would be of
value.3

The cor function correlates each item with the others, which is a very
common statistical procedure. The fact that the names q1, q1, etc. appear
shows that we are using the version of the matrix we created by combining
the vectors with those names.

If you put a matrix into a data frame, its columns will become individual
vectors. For example, now that we have mymatrix, we can create our practice
data frame in two ways. Both have an identical result:

mydata <- data.frame( workshop, gender, q1, q2, q3, q4 )

or

mydata <- data.frame( workshop, gender, mymatrix )

In our case, there is not much difference between the two approaches. However,
if you had 100 variables already in a matrix, the latter would be much easier
to do.

3 For example, sensor arrays commonly measure a single variable, such as CO2
levels, across an latitude-longitude grid. It is convenient to store such data in a
matrix and the mean CO2 level across that area would be a useful measure.
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Selecting Subsets of Matrices

Like data frames, matrices have two dimensions. You can select a subset of a
matrix by specifying the two index values in the form

mymatrix[rows, columns]

For example, I can choose the eighth row and the fourth column using

> mymatrix[8, 4]

q4

5

I can choose the males, rows five through eight, and variables q3 and q4 using:

> mymatrix[5:8, 3:4]

[,1] [,2]

[1,] 2 4

[2,] 5 5

[3,] 4 4

[4,] 5 5

In our discussion of vectors, you learned that you could select parts of a
vector using only one-dimensional indices. For example, q4[1:4] selects the
first four elements of vector q4. When you leave out one of the two index
values for a matrix, you are selecting a vector. Therefore, I can do this very
same example by appending [1:4] to mymatrix[ ,4] as in

> mymatrix[ ,4][1:4]

[1] 1 1 3 3

Most of the other methods we have used for selecting elements of vectors
or factors work in a similar manner with matrices. An important one that does
not work with matrices is the dollar format that we used with data frames.
Even using the form of mymatrix that contained the column names this does
not work:

> mymatrix$q4 # No good!

Error in mymatrix$q4 : $ operator is invalid for atomic vectors

A similar form places one name, or vectors of names, in the subscripts:

> mymatrix[ ,"q4"]

[1] 1 1 3 3 4 5 4 5

Since this latter form works with both matrices and data frames, people
who frequently work with both tend to prefer it over the dollar format.
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Table 5.1. Matrix functions

R SAS SPSS

Add a + b a + b a + b

Determinant det(a)$values DET(a) DET(a)

Diagonal diag(a) DIAG(a) DIAG(a)

Eigenvalues eigen(x)$values EIGENVAL(x) EVAL(a)

Eigenvectors eigen(a)$vectors EIGENVEC(a) Not a function
Inverse solve(a) INV(a) INV(a)

Multiply a %*% b a * b a * b

Transpose t(a) a' or T(a) T(a)

Matrix Algebra

Matrix algebra is a powerful tool for data analysis. It is used inside most of
the functions that come with R. R users most often use matrix algebra when
writing their own functions. Even if you do not plan to write your own complex
functions, the fact that R has matrix algebra capabilities tightly integrated
into it draws developers to R, resulting in a vast array of add-on packages
that everyone can use.

You can use matrix algebra at any time using the same syntax as you
would for any other part of your program. The function names are different
of course, but that is all. For example, if I wish to swap the row and column
positions in mymatrix, I can use the t function to transpose it:

> mymatrixT <- t(mymatrix)

> mymatrixT

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

q1 1 2 2 3 4 5 5 4

q2 1 1 2 1 5 4 3 5

q3 5 4 4 NA 2 5 4 5

q4 1 1 3 3 4 5 4 5

There are many packages available from CRAN that extend R’s substantial
built-in capabilities. Bates and Maechler’s Matrix package [6] is particularly
useful when dealing with sparse or dense matrices. Although further use of
matrix algebra is beyond the scope of this book, Table 5.1 contains a list of
commonly used matrix algebra functions.

5.3.5 Arrays

Just as a matrix is a two-dimensional extension of a vector, an array is a
multidimensional extension of a matrix. A three-dimensional array is a set of
matrices layered like pages in a book. Each matrix layer has the same number
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of rows and columns. A four dimensional array would be like a set of books
on a shelf, each containing the same number of pages, and so on.

Our practice data set is artificially balanced. Four people took the R work-
shop and four took the SAS workshop. Therefore, we could take the answers
to their survey questions – the data must all be the same type, in this case
numeric – and store them in an array. There would be two layers, one for each
workshop. The first layer would be a matrix of the four people who took the
R workshop, and the second layer would contain the four who took the SAS
workshop.

However, in observational studies, people choose their own workshops, and
so each set of data would have a different number of people. Therefore, we
could not store the data in an array. The data would instead be stored in a
typical data set (an R data frame) and could be viewed as a “ragged” array.

The use of arrays is beyond the scope of this book, except for the “ragged”
kind, data frames.

5.3.6 Lists

A list is a very flexible data structure. You can use it to store combinations of
any other objects, even other lists. The objects stored in a list are called its
components. That is a broader term than variables, or elements of a vector,
reflecting the wider range of objects possible.

You can use a list to store related sets of data stored in different formats
like vectors and matrices (example below). R often uses lists to store different
bits of output from the same analysis. For example, results from a linear
regression would have equation parameters, residuals, and so on. See Chap. 17,
“Statistics,” for details.

You can also use lists to store sets of arguments to control functions. We
will do that later when reading multiple lines of data per case from a text
file. Since each record we read will contain a different set of variables – each
with a different set of column widths – a list is a perfect way to store them.
For an example, see Sect. 6.7, “Reading Fixed-Width Text Files, Two or More
Records Per Case.”

We will also store arguments when aggregating data by workshop and
gender in Sect. 10.12, “Creating Summarized or Aggregated Data Sets.”

Creating a List

Now let us store some data in a list. We can combine our variables (vectors)
and our matrix into a list using the list function.

> mylist <- list(workshop, gender, q1, q2, q3, q4, mymatrix)

Now let us print it.



84 5 Programming Language Basics

> mylist

[[1]]

[1] R SAS R SAS R SAS R SAS

Levels: R SAS SPSS Stata

[[2]]

[1] f f f <NA> m m m m

Levels: f m

[[3]]

[1] 1 2 2 3 4 5 5 4

[[4]]

[1] 1 1 2 1 5 4 3 5

[[5]]

[1] 5 4 4 NA 2 5 4 5

[[6]]

[1] 1 1 3 3 4 5 4 5

[[7]]

q1 q2 q3 q4

[1,] 1 1 5 1

[2,] 2 1 4 1

[3,] 2 2 4 3

[4,] 3 1 NA 3

[5,] 4 5 2 4

[6,] 5 4 5 5

[7,] 5 3 4 4

[8,] 4 5 5 5

Notice how the vector components of the list print sideways now. That
allows each component to have a different length, or even to have a totally
different structure, like a matrix. Also notice that it counts the components of
the list with an additional index value in double brackets [[1]], [[2]], etc. Then
each component has its usual index values in single brackets.

Previously, when I added mymatrix to a data frame, the structure of the
matrix vanished and the matrix columns became variables in the data frame.
Here, though, the matrix is able to maintain its separate identity within the
list.

Let us create the list again, this time naming each component. Another
term for these optional component names are tags.
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> mylist <- list(

+ workshop = workshop,

+ gender = gender,

+ q1 = q1,

+ q2 = q2,

+ q3 = q3,

+ q4 = q4,

+ mymatrix = mymatrix)

Now when I print it, the names [[1]], [[2]], etc. are replaced by the names (or
tags) I supplied.

> mylist

$workshop

[1] R SAS R SAS R SAS R SAS

Levels: R SAS

$gender

[1] f f f <NA> m m m m

Levels: f m

$q1

[1] 1 2 2 3 4 5 5 4

$q2

[1] 1 1 2 1 5 4 3 5

$q3

[1] 5 4 4 NA 2 5 4 5

$q4

[1] 1 1 3 3 4 5 4 5

$mymatrix

q1 q2 q3 q4

[1,] 1 1 5 1

[2,] 2 1 4 1

[3,] 2 2 4 3

[4,] 3 1 NA 3

[5,] 4 5 2 4

[6,] 5 4 5 5

[7,] 5 3 4 4

[8,] 4 5 5 5
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Selecting Components of a List

A data frame is a specific type of list, one whose components must all be
of the same length. Therefore any method of selecting components that we
discussed for data frames will also apply here. However, since the types of
objects lists can store are broader, so too are the techniques for selecting their
components.

Selecting Components of a List by Subscripting

To select the components from a list, you can always use the double-bracketed
subscripts. For example, to select the vector containing gender, you can use:

> mylist[[2]]

[1] f f f <NA> m m m m

Levels: f m

Back when we first learned about vectors and factors, we selected parts
of them by adding index values or logical selections in bracketed subscripts.
Since we have selected a factor from our list, we can add those, too. Here we
select observations 5 through 8:

> mylist[[2]][5:8]

[1] m m m m

Levels: f m

We can also select parts of a list using single brackets, but when we do so,
the result will be a list with a single component, not just a factor !

> mylist[2]

$gender

[1] f f f <NA> m m m m

Levels: f m

Note that it lists the name “$gender,” which does look exactly like the way
lists name their components. So what would happen now if we tried to select
observations 5 through 8?

> mylist[2][5:8] # Bad!
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$<NA>

NULL

$<NA>

NULL

$<NA>

NULL

$<NA>

NULL

We got NULL results because mylist[2] is a list containing a single com-
ponent – the factor gender – and we are asking for components 5 through 8.
They do not exist!

If you wish to select multiple components from a list, you use the single
brackets. Here we select the first three:

> mylist[1:3]

$workshop

[1] R SAS R SAS R SAS R SAS

Levels: R SAS

$gender

[1] f f f <NA> m m m m

Levels: f m

$q1

[1] 1 2 2 3 4 5 5 4

R’s subscripting approach starts looking pretty confusing at this point,
but do not worry. In future chapters you will see that selections usually look
far more natural with variable names used to select columns and with logical
selections choosing rows.

Selecting Components of a List Using $ Notation

Since I have named our list’s components, I can make the same selections by
using the form

myListName$myComponentName

Therefore, to select the component named q1, I can use:
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> mylist$q1

[1] 1 2 2 3 4 5 5 4

You can also append index values in square brackets to our selections to
choose subsets. Here I select mymatrix, then choose the fifth through eighth
rows and third and fourth columns:

> mylist$mymatrix[ 5:8, 3:4 ]

q3 q4

[1,] 2 4

[2,] 5 5

[3,] 4 4

[4,] 5 5

5.4 Saving Your Work

When learning any new computer program, always do a small amount of work,
save it, and get completely out of the software. Then go back in and verify
that you really did know how to save your work.

This is a good point at which to stop, clean things up, and save your work.
Until you save your work, everything resides in the computer’s main random
access memory. You never know when a power outage might erase it. R calls
this temporary work area its workspace. You want to transfer everything we
have created from this temporary workspace to a permanent file on your
computer’s hard drive.

R’s workspace is analogous to the SAS work library, except that it is in
memory rather than in a temp space on your hard drive. In SPSS jargon it
would simply be your unsaved data sets.

You can use the ls function to see all of the data objects you have created.
If you put no arguments between the ls function’s parentheses, you will get
a list of all your objects. Another, more descriptive name for this function
is objects. I use ls below instead of objects because it is more popular.
That may be due to the fact that Linux and UNIX have a “ls” command that
performs a similar function by listing your files.

If you have done the examples from the beginning of this chapter, here are
the objects you will see in your workspace.

> ls()

[1] "gender" "mydata" "mylist" "mymatrix" "q1"

[6] "q2" "q3" "q4" "workshop" "x"

[11] "y"
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You want to save some of these objects to your computer’s hard drive, but
where will they go? The directory or folder that R will store files in is called
its working directory. Unless you tell it otherwise, R will put any file you save
into that directory. On Windows XP or earlier, this is: C:\Documents and
Settings\username\My Documents. On Windows Vista or later, this is:
C:\Users\Username\Documents. On Macintosh, the default working directory
is /Users/username.

The setwd function sets your working d irectory, telling R where you would
like your files to go. This is the equivalent to“X CD C:\myRfolder” in SAS and
“CD C:\myRfolder” in SPSS. The getwd function gets your working d irectory
for you to see.

> getwd()

[1] "C:/Users/Bob/Documents"

> setwd("C:/myRfolder")

> getwd()

[1] "C:/myRfolder"

Notice that R uses a forward slash in “C:/myRfolder.” R can use forward
slashes in filenames even on computers running Windows ! The usual back-
slashes used in Windows file specifications have a different meaning in R, and
in this context will generate an error message:

> setwd("C:\myRfolder") # backslashes are bad in filenames!

Error in setwd("myRfolder") : cannot change working directory

In addition: Warning messages:

1: '\m' is an unrecognized escape in a character string

2: unrecognized escape removed from "\myRfolder"

The message warns you that R is trying to figure out what “\m” means. We
will discuss why later.

So now you know what is in your workspace and where your working
directory resides. You are ready to save your work. However, which objects
should you save? Once you have combined the vectors into a data frame, you
no longer need the individual vectors. I will save just our data frame, mydata,
and the matrix of survey questions, mymatrix.

The save function writes the objects you specify, to the file you list as its
last argument.

save(mydata, mymatrix, file = "mydata.RData")
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While SAS and SPSS users typically only save one data set to a file (SAS
has exceptions that are used by experts), R users often save multiple objects
to a single file using this approach.

Rather than tell R what you do want to save, you could remove the objects
that you do not want to save and then save everything that remains. We can
remove the ones we do not want by listing them as arguments separated by
commas on the remove function. It also has a more popular shorter name, rm.

> rm(x, y, workshop, gender, q1, q2, q3, q4, mylist)

> ls()

[1] "mydata" "mymatrix"

The save.image function will save all objects in your workspace to the file
you specify:

save.image(file = "myWorkspace.RData")

When you exit R, it will ask if you want to save your workspace. Since you
saved it to a file you yourself have named, you can tell it no. The next time
you start R, you can load your work with the load function:

> load("mydata.RData")

If you want to see what you have loaded, use the ls function:

> ls()

[1] "mydata" "mymatrix"

For more details, see Chap. 13, “Managing Your Files and Workspace.”

5.5 Comments to Document Your Programs

No matter how simple you may think a program is when you write it, it is
good to sprinkle in comments liberally to remind yourself later what you did
and why you did it.

SAS and SPSS both use the COMMENT command or the * operator
to begin a comment. SAS ends them with semicolons and SPSS ends with
periods. The /*. . . */ style comments in SAS and SPSS allow you to place
comments in the middle of a line between keywords or to block off many lines
of programming that you want to “turn off” for debugging purposes.

As we have discussed briefly, R uses the # operator to begin a comment. R
comments continue until the end of the line. No special character is required
to end a comment. You can make your comments easier to read if you skip
one space after each # character. If you add a comment to the end of a
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programming line, it also improves legibility if you skip two spaces before
each # character. You can put comments in the middle of statements, but
only if they continue to the end of the line:

# This comment is on its own line, between functions.

workshop <- c(1, 2, 1, 2, # This comment is within arguments.

1, 2, 1, 2) # And this is at the end.

Unlike the SAS and SPSS /*. . . */ style comments, there is no way to
comment out a whole block of code that you want to ignore. However, any
text editor that works well with R can easily add the # character to (and
later remove from) the front of each line in a selected block of code. For some
examples, see Sect. 3.9, “Running R From Within Text Editors.”

An alternative is to turn off a block of code by pretending to define a
function. For example:

BigComment <- function(x)

{

# Here is code I do not want to run,

# but I might need to run it later.

mean(x, na.rm = TRUE)

sd(x, na.rm = TRUE)

}

This is not a very good approach, though, since R is actually creating the
function, so the code within it must be correct. Since the need to turn off
blocks of code often arises from the need to debug the code, this is usually
not very helpful!

5.6 Comments to Document Your Objects

Another helpful way to document your work is to store comments in the R
objects you create. This is analogous to the SAS LABEL option on the DATA

statement. That option provides a single location for all comments regarding
the data set.

R’s comment capability is more like SPSS’s. In SPSS, to comment the
whole data set, you would use the DOCUMENT or ADD DOCUMENT commands, or
even the older FILE LABEL command. To comment an individual variable, you
would create a custom variable attribute.

To store a comment in an object, you use the comment function:

comment(mydata) <- "Example data from R for SAS and SPSS Users"

Later you can view it using the comment function:
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> comment(mydata)

[1] "Example data for R for SAS and SPSS Users"

Other functions that display object attributes will also display this com-
ment. You can assign comments to vectors as well, but they do not display
automatically in the output like variable labels, so I would not normally do
so. We will discuss variable labels later in Sect. 11.2.

5.7 Controlling Functions (Procedures)

SAS and SPSS both control the output of their procedures through statements
like GLM and related substatements such as CLASS to specify which variables
are factors (categorical). Those statements have options that control exactly
what appears in the output. Modeling statements have a formula syntax.

R has analogs to these options to control the output of its functions, plus
a few unique ones. The output itself is called what the function returns.

5.7.1 Controlling Functions with Arguments

SAS and SPSS use options to control what procedures do. R does, too, using
slightly different terminology. R uses arguments to control functions. Let us
look at the help file for the mean function. The following command will call
up its help file:

> help("mean")

mean package:base R Documentation

Arithmetic Mean

Description: Generic function for the (trimmed)

arithmetic mean.

Usage:

mean(x, ...)

## Default S3 method:

mean(x, trim = 0, na.rm = FALSE, ...)

Arguments:

x: An R object. Currently there are methods for numeric/logical

vectors and date, date-time and time interval objects, and

for data frames all of whose columns have a method...
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trim: the fraction (0 to 0.5) of observations to be trimmed

from each end of 'x' before the mean is computed...

na.rm: a logical value indicating whether 'NA' values should

be stripped before the computation proceeds.

...: further arguments passed to or from other methods.

Value:

For a data frame, a named vector with the appropriate method

being applied column by column. If 'trim' is non-zero,...

References: Becker, R. A., Chambers, J. M. and Wilks,...

See Also: 'weighted.mean', 'mean.POSIXct', 'colMeans' for row...

Examples:

x <- c(0:10, 50)

xm <- mean(x)

c(xm, mean(x, trim = 0.10))

mean(USArrests, trim = 0.2)

In the section labeled Usage, the help file tells us that the overall form of
the function is mean(x, ...). That means you have to provide an R object
represented by x, followed by arguments represented by “...”. The Default
S3 Method section tells us the arguments used by the mean function itself
as well as their initial, or default, settings. So if you do not tell it other-
wise, it will not trim any data (trim = 0) and will not remove missing values
(na.rm = FALSE). Therefore, the presence of any missing values will result in
the mean being missing or NA, too. The “...” is called the triple dot argu-
ment. It means that more arguments are possible, but the mean function will
pass those along to other functions that it calls. We will see examples of that
later.

The Arguments section gets into the details. It tells you that x can be a
numeric data frame, numeric vector, or date vector. The trim argument tells
R the percent of the extreme values to exclude before calculating the mean.
It goes on to define what na.rm and “...” do.

We can run the mean function on our q3 variable by naming each argument.
We deleted it previously with the rm function, but imagine that we had not
done that. Here we call the function, naming its arguments in the order they
appear in the help file and setting their values:

mean(x = q3, trim = .25, na.rm = TRUE)
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The spaces around the equal signs and after each comma are optional, but
they make the program easier to read. If you name all of the arguments, you
can use them in any order:

mean(na.rm = TRUE, x = q3, trim = .25)

You can also run it by listing every argument in their proper positions but
without the argument names:

mean(q3, .25, TRUE)

All of these approaches work equally well. However, people usually run R
functions by listing the object to analyze first without saying x =, followed by
the names and values of only those arguments they want to change:

mean(q3, trim = .25, na.rm = TRUE)

You can also abbreviate some argument names, but I strongly recommend
against doing so. Some functions pass on arguments they do not recognize to
other functions they control. As mentioned earlier in this section, this is indi-
cated by “...” as a function’s last argument in the help file. Once a function
has started passing arguments on to other functions, it will pass them all on
unless it sees the full name of an argument it uses!

People sometimes abbreviate the values TRUE or FALSE as T or F. This
is a bad idea, as you can define T or F to be anything you like, leading to
undesired results. You may avoid that trap yourself, but if you write a function
that others will use, they may use those variable names. R will not allow you
to redefine what TRUE and FALSE mean, so using those is safe.

The following is an example function call that uses several abbreviations.
It will run, but I do not recommend using abbreviations.

mean(q3, t = .25, na = T)

A common error for R beginners is to try to call a function using just a
set of comma-separated values, as in

> mean(1, 2, 3)

[1] 1

Clearly the means of those values is not 1! What is happening is those
numbers are being supplied as values to the arguments in order. Therefore, it
is the same as

mean(x = 1, trim = 2, na.rm = 3)

The values for trim and na.rm are invalid and ignored, so we have asked R
to get the mean of the single value “1”! The solution is to combine the values
into a vector before calling the mean function or by nesting one call within the
other:
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> mean( c(1, 2, 3) )

[1] 2

Since the colon operator creates a vector directly, the use of the c function
would be redundant, and this works fine:

> mean( 1:3 )

[1] 2

5.7.2 Controlling Functions with Objects

In the previous section we viewed arguments as single values. That is what
SAS and SPSS users are accustomed to. However, in R, arguments can be
much more than that: they can be entire objects. The data are usually one
of the arguments, and they are obviously more than a single value. However,
objects can be used as other arguments, too. Let us return to our previous
example where we first created workshop as a factor:

workshop <- c(1, 2, 1, 2, 1, 2, 1, 2)

workshop <- factor(

workshop,

levels = c( 1, 2, 3, 4),

labels = c("R", "SAS", "SPSS", "Stata")

)

Notice how the levels and labels use the c function. The c function cre-
ates vectors, of course, so we are in fact providing vectors for those arguments.
Therefore, we could do this just as easily in two steps:

myLevels = c( 1, 2, 3, 4)

myLabels = c("R", "SAS", "SPSS", "Stata")

workshop <- factor(

workshop,

levels = myLevels,

labels = myLabels

)

The last part could be shortened to,

workshop <- factor(workshop, myLevels, myLabels)

In SAS and SPSS this type of control is called macro substitution and it
involves a different syntax with different rules. In R, though, you can see that
there is no different syntax. We were using a vector to supply those arguments
before and we are doing so now, just in two steps.
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5.7.3 Controlling Functions with Formulas

An important type of argument is the formula. It is the first parameter in
functions that do modeling. For example, we can do linear regression, predict-
ing q4 from the others with the following call to the lm function for l inear
models:

lm( q4 ~ q1 + q2 + q3, data = mydata )

Some modeling functions accept arguments in the form of both formulas
and vectors. For example, both of these function calls will compare the genders
on the mean of the variable q1:

t.test( q1 ~ gender, data = mydata )

t.test( q1[ which(gender == "Female") ],

q1[ which(gender == "Male") ],

data = mydata) # Data ignored!

However, there is one very important difference. When using a formula,
the data argument can supply the name of a data frame that R will search
before looking elsewhere for variables. When not using a formula, as in the
second example, the data argument is ignored! If q1 does not exist as a vector
in your workspace or if you have not attached mydata, R will not find it. This
approach maintains R’s extreme flexibility while helping to keep formulas
short.

The symbols that R uses for formulas are somewhat different from those
used by SAS or SPSS. Table 17.1 shows some common examples.

5.7.4 Controlling Functions with an Object’s Class

As we have seen, R has various kinds of data structures: vectors, factors, data
frames, etc. The kind of structure an object is, is known as its class. Each
data structure stores its class as an attribute, or stored setting, that functions
use to determine how to process the object. In other words, R sees what you
are giving it and it tries to do the right thing with it.

For objects whose mode is numeric, character, or logical, an object’s class
is the same as its mode. However, for matrices, arrays, factors, lists, or data
frames, other values are possible (Table 5.2).

You can display an object’s class with the class function:

> workshop <- c(1, 2, 1, 2, 1, 2, 1, 2)

> class(workshop)

[1] "numeric"
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Table 5.2. Modes and classes of various R objects

Object Mode Class

Numeric vector numeric numeric
Character vector character character
Factor numeric factor
Data frame list data.frame
List list list
Numeric matrix numeric matrix
Character matrix character matrix
Model list lm. . .
Table numeric table

> summary(workshop)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.0 1.0 1.5 1.5 2.0 2.0

The class numeric indicates that this version of workshop is a numeric
vector, not yet a factor. The summary function provided us with inappropriate
information (i.e., the median workshop is nonsensical) because we have not
yet told it it that workshop is a factor. Note that when we convert workshop
into a factor, we are changing its class to factor, and then summary gives us
the more appropriate counts instead:

> workshop <- factor(workshop,

+ levels = c( 1, 2, 3, 4),

+ labels = c("R","SAS","SPSS","Stata") )

> class(workshop)

[1] "factor"

> summary(workshop)

R SAS SPSS Stata

4 4 0 0

When we first created gender, it was a character vector, so its class was
character. Later we made its class factor. Numeric vectors like q1 have a class
of numeric. The names of some other classes are obvious: factor, data.frame,
matrix, list, and array. Objects created by functions have many other classes.
For example, the linear model function, lm, stores its output in lists with a
class of lm.

R has some special functions called generic functions. They accept multiple
classes of objects and change their processing accordingly. These functions are
tiny. Their task is simply to determine the class of the object and then pass it
off to another that will do the actual work. The methods function will tell you
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what other functions a generic function will call. Let us look at the methods
that the summary function uses.

> methods(summary)

[1] summary.aov summary.aovlist

[3] summary.connection summary.data.frame

[5] summary.Date summary.default

[7] summary.ecdf* summary.factor

[9] summary.glm summary.infl

[11] summary.lm summary.loess*

[13] summary.manova summary.matrix

[15] summary.mlm summary.nls*

[17] summary.packageStatus* summary.POSIXct

[19] summary.POSIXlt summary.ppr*

[21] summary.prcomp* summary.princomp*

[23] summary.stepfun summary.stl*

[25] summary.table summary.tukeysmooth*

Non-visible functions are asterisked

So when we enter summary(mydata), the summary function sees that my-
data is a data frame and then passes it on to the function named
summary.data.frame. The functions marked with asterisks above are“nonvis-
ible.” They are meant to be used by a package’s developer, not its end users.
Visible functions can be seen by typing their name (without any parentheses).
That makes it easy to copy and change them.

When we discussed the help files, we saw that the mean function ended with
an argument of “...”. That indicates that the function will pass arguments on
to other functions. While it is very helpful that generic functions automatically
do the “right thing”when you give it various objects to analyze, this flexibility
complicates the process of using help files.

When written well, the help file for a generic function will refer you to
other functions, providing a clear path to all you need to know. However,
it does not always go so smoothly. We will see a good example of this in
Chap. 15, “Traditional Graphics.” The plot function is generic. When we
call it with our data frame, it will give us a scatter plot matrix. However,
to find out all of the arguments we might use to improve the plot, we have
to use methods(plot) to find that plot.data.frame exists. We could then
use help("plot.data.frame") to find that plot.data.frame calls the pairs
function, then finally help("pairs") to find the arguments we seek. This is
a worst-case scenario, but it is important to realize that this situation does
occasionally arise.

As you work with R, you may occasionally forget the mode or class of an
object you created. This can result in unexpected output. You can always use
the mode or class functions to remind yourself.
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5.7.5 Controlling Functions with Extractor Functions

Procedures in SAS and SPSS typically display all their output at once.4 R
has simple functions, like the mean function, that display all their results all
at once. However, R functions that model relationships among variables (e.g.,
regression, ANOVA, etc.) tend to show you very little output initially. You
save the output to a model object and then use extractor functions to get more
information when you need it.

This section is poorly named from an R expert’s perspective. Extractor
functions do not actually control other functions the way parameters control
SAS or SPSS output. Instead they show us what the other functions have
already done. In essence, most modeling in R is done through its equivalent
to the SAS Output Delivery System (ODS) or the SPSS Output Manage-
ment System (OMS). R’s output is in the form of data that can be readily
manipulated and analyzed by other functions.

Let us look at an example of predicting q4 from q1 with linear regression
using the lm function:

> lm( q4 ~ q1 + q2 + q3, data = mydata)

Call:

lm(formula = q4 ~ q1 + q2 + q3, data = mydata)

Coefficients:

(Intercept) q1 q2 q3

-1.3243 0.4297 0.6310 0.3150

The output is extremely sparse, lacking the usual tests of significance. Now,
instead, I will store the results in a model object called myModel and check
its class:

> myModel <- lm( q4 ~ q1 + q2 + q3, data = mydata )

> class(myModel)

[1] "lm"

The class function tells us that myModel has a class of “lm” for l inear model.
We have seen that R functions offer different results (methods) for different
types (classes) of objects. So let us see what the summary function does with
this class of object:

> summary(myModel)

4 SAS has some interactive procedures that let you request additional output once
you have seen the initial output, but SAS users rarely use it that way.
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Call:

lm(formula = q4 ~ q1 + q2 + q3, data = mydata)

Residuals:

1 2 3 5 6 7

-0.31139 -0.42616 0.94283 -0.17975 0.07658 0.02257

8

-0.12468

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.3243 1.2877 -1.028 0.379

q1 0.4297 0.2623 1.638 0.200

q2 0.6310 0.2503 2.521 0.086

q3 0.3150 0.2557 1.232 0.306

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

Residual standard error: 0.6382 on 3 degrees of freedom

(1 observation deleted due to missingness)

Multiple R-squared: 0.9299, Adjusted R-squared: 0.8598

F-statistic: 13.27 on 3 and 3 DF, p-value: 0.03084

This is the type of output that SAS and SPSS prints immediately. There
are many other extractor functions that we might use, including anova to
extract an analysis of variance table, plot for diagnostic plots, predict to
get predicted values, resid to get residuals, and so on. We will discuss those
in Chap. 17, “Statistics.”

What are the advantages of the extractor approach?

� You get only what you need, when you need it.
� The output is in a form that is very easy to use in further analysis. Essen-

tially the output itself is data!
� You use methods that are consistent across functions. Rather than having

to learning different ways of saving residuals or predicted values in every
procedure SAS and SPSS do, you learn one approach that works with all
modeling functions.

5.8 How Much Output There?

In the previous section we discussed saving output and using extractor func-
tions to get more results. However, how do we know what an output object
contains? Previously, the print function showed us what was in our objects,
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so let us give that a try. We can do that by simply typing an object’s name
or by explicitly using the print function. To make it perfectly clear that we
are using the print function, let us actually type out its name.

> print(myModel)

Call:

lm(formula = q4 ~ q1 + q2 + q3, data = mydata)

Coefficients:

(Intercept) q1 q2 q3

-1.3243 0.4297 0.6310 0.3150

We see that the object contains the original function call complete with its
arguments and the linear model coefficients. Now let us check the mode, class,
and names of myModel.

> mode(myModel)

[1] "list"

> class(myModel)

[1] "lm"

> names(myModel)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "na.action" "xlevels" "call" "terms"

[13] "model"

So we see that myModel is a list, or collection, of objects. More specifically,
it is a list with a class of “lm.” The names function shows us the names of
all of the objects in it. Why did the print function not show them to us?
Because the print function has a predetermined method for displaying lm
class objects. That method says, basically, “If an object’s class is lm, then
print only the original formula that created the model and its coefficients.”

When we put our own variables together into a list, it had a class of simply
“list” (its mode was list also). The print function’s method for that class tells
it to print all of the list’s components. We can strip away the class attribute
of any object with the unclass function. In this case, it resets its class to
“list.” If we do that, then the print function will indeed print all of the list’s
components.

> print( unclass(mymodel) )

$coefficients
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(Intercept) q1 q2 q3

-1.3242616 0.4297468 0.6310127 0.3149789

$residuals

1 2 3 5 6

-0.31139241 -0.42616034 0.94282700 -0.17974684 0.07658228

7 8

0.02257384 -0.12468354

$effects

(Intercept) q1 q2 q3

-8.6931829 3.6733345 -1.4475844 0.7861009 0.2801541

0.7929917 -0.7172223

$rank

[1] 4

$fitted.values

1 2 3 5 6 7

1.311392 1.426160 2.057173 4.179747 4.923418 3.977426

8

5.124684

$assign

[1] 0 1 2 3

$qr

$qr

(Intercept) q1 q2 q3

1 -2.6457513 -8.6931829 -7.9372539 -10.9609697

2 0.3779645 3.9279220 3.3096380 -0.3273268

3 0.3779645 0.1677124 -2.6544861 0.7220481

5 0.3779645 -0.3414626 0.4356232 2.4957256

6 0.3779645 -0.5960502 -0.3321400 -0.1051645

7 0.3779645 -0.5960502 -0.7088608 0.4471879

8 0.3779645 -0.3414626 0.4356232 -0.4186885

attr(,"assign")

[1] 0 1 2 3

$qraux

[1] 1.377964 1.167712 1.087546 1.783367

$pivot

[1] 1 2 3 4
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$tol

[1] 1e-07

$rank

[1] 4

attr(,"class")

[1] "qr"

$df.residual

[1] 3

$na.action

4

4

attr(,"class")

[1] "omit"

$xlevels

list()

$call

lm(formula = q4 ~ q1 + q2 + q3, data = mydata)

$terms

q4 ~ q1 + q2 + q3

attr(,"variables")

list(q4, q1, q2, q3)

attr(,"factors")

q1 q2 q3

q4 0 0 0

q1 1 0 0

q2 0 1 0

q3 0 0 1

attr(,"term.labels")

[1] "q1" "q2" "q3"

attr(,"order")

[1] 1 1 1

attr(,"intercept")

[1] 1

attr(,"response")

[1] 1

attr(,".Environment")

<environment: R_GlobalEnv>
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attr(,"predvars")

list(q4, q1, q2, q3)

attr(,"dataClasses")

q4 q1 q2 q3

"numeric" "numeric" "numeric" "numeric"

$model

q4 q1 q2 q3

1 1 1 1 5

2 1 2 1 4

3 3 2 2 4

5 4 4 5 2

6 5 5 4 5

7 4 5 3 4

8 5 4 5 5

It looks like the print function was doing us a big favor by not printing
everything! When you explore the contents of any object, you can take this
approach or, given just the names, explore things one at a time. For example,
we saw that myModel contained the object named “$coefficients.”One way to
print one component of a list is to refer to it as mylist$mycomponent. So in
this case we can see just the component that contains the model coefficients
by entering

> myModel$coefficients

(Intercept) q1 q2 q3

-1.3242616 0.4297468 0.6310127 0.3149789

That looks like a vector. Let us use the class function to check:

> class( myModel$coefficients )

[1] "numeric"

Yes, it is a numeric vector. So we can use it with anything that accepts such
data. For example, we might get a bar plot of the coefficients with the following
(plot not shown). We will discuss bar plots more in Chap. 15, “Traditional
Graphics.”

> barplot( myModel$coefficients )

For many modeling functions, it is very informative to perform a similar
exploration on the objects created by them.
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5.9 Writing Your Own Functions (Macros)

In SAS or SPSS, if you wanted to use the same set of commands repeatedly,
you would write a macro. In SPSS, you might instead write a macro-like
Python program. Those approaches entail using languages that are separate
from their main programming statements, and the resulting macros operate
quite differently from the procedures that come with SAS or SPSS. In R,
you write functions using the same language you use for anything else. The
resulting function is used in exactly the same way as a function that is built
into R.

I will show you some variations of a simple function, one that calculates
the mean and standard deviation at the same time. For this example, I will
apply it to just the numbers 1, 2, 3, 4, and 5.

> myvar <- c(1, 2, 3, 4, 5)

I will begin the function called mystats and tell it that it is a function of x.
What follows in curly brackets is the function itself. I will create this with an
error to see what happens.

# A bad function.

mystats <- function(x) {

mean(x, na.rm = TRUE)

sd(x, na.rm = TRUE)

}

Now let us apply it like any other function.

> mystats(myvar)

[1] 1.5811

We got the standard deviation, but what happened to the mean? When I
introduced the print function, I mentioned that usually you can type an
object’s name rather than, say, print(myobject). Well, this is one of those
cases where we need to explicitly tell R to print the result. I will add that to
the function.

# A good function that just prints.

mystats <- function(x) {

print( mean(x, na.rm = TRUE) )

print( sd(x, na.rm = TRUE) )

}

Now let us run it.

> mystats(myvar)

[1] 3

[1] 1.5811
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That looks better. Next I will do it in a slightly different way, so that it will
write our results to a vector for further use. I will use the c function to combine
the results into a vector.

# A function with vector output.

mystats <- function(x) {

mymean <- mean(x, na.rm = TRUE)

mysd <- sd(x, na.rm = TRUE)

c( mean = mymean, sd = mysd )

}

Now when I run it, we get the results in vector form.

> mystats(myvar)

mean sd

3.0000 1.5811

As with any R function that creates a vector, you can assign the result to
a variable to use in any way you like.

> myVector <- mystats(myvar)

> myVector

mean sd

3.0000 1.5811

This simple result is far more interesting than it first appears. The vector
has a name, “myVector,” but what are the strings “mean” and “sd”? At first
they seem like value labels, but if we had another value 3.0 appear, it would
not automatically get the label of“mean.”In addition, this is a numeric vector,
not a factor, so they cannot be value labels.

These are names, stored in the names attribute, just like variable names
in a data frame. But then what is “myVector”? That is just the vector’s name.
To reduce confusion about names, these “value names” are called tags and
this type of vector is called a tagged vector. I hardly ever create such names
unless, as in this example, I am storing output.

Many R functions return their results in the form of a list. Recall that
each member of a list can be any data structure. I will use a list to save the
original data, as well as the mean and standard deviation:

# A function with list output.

mystats <- function(x) {

myinput <- x

mymean <- mean(x, na.rm = TRUE)

mysd <- sd(x, na.rm = TRUE)
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list(data = myinput, mean = mymean, sd = mysd)

}

Now I will run it to see how the results look.

mystats(myvar)

$data

[1] 1 2 3 4 5

$mean

[1] 3

$sd

[1] 1.5811

You can save the result to mylist and then print just the data.

> myStatlist <- mystats(myvar)

> myStatlist$data

[1] 1 2 3 4 5

If you want to see the function itself, simply type the name of the function
without any parentheses following.

> mystats

function(x) {

myinput <- x

mymean <- mean(x, na.rm = TRUE)

mysd <- sd(x, na.rm = TRUE)

list(data = myinput, mean = mymean, sd = mysd)

}

You could easily copy this function into a script editor window and change it.
You can see and change many R functions in this way.

Coming from SAS or SPSS, function is perhaps the most unusual of all
R functions. Its input is several functions and its output is one function. It is
as if it is using functions as its data.

R has an ability to use a function without naming it. I show how to use
these anonymous functions in Section10.2.4, “Applying Your Own Functions.”

5.10 Controlling Program Flow

R is a complete programming language with all the usual commands to control
the flow of a program. These include the functions if, else, for, in, repeat,
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while, break, and next. So your programs and functions you write can get
as complex as necessary. However, controlling the flow of commands is needed
far less in R than in SAS or SPSS. That is because R has a way to apply
functions automatically across variables or observations. For the purposes of
this book, that type of flow control is all we need, and we get a lot done within
those constraints! For details on applying functions repeatedly to variables or
observations, see Sect. 10.2

5.11 R Program Demonstrating Programming Basics

Most of the chapters in this book end with equivalent example programs in
SAS, SPSS, and R. However, this chapter focuses so much on R that I will
end it only with the program for R.

# Filename: ProgrammingBasics.R

# ---Simple Calculations---

2 + 3

x <- 2

y <- 3

x + y

x * y

# ---Data Structures---

# Vectors

workshop <- c(1, 2, 1, 2, 1, 2, 1, 2)

print(workshop)

workshop

gender <- c("f", "f", "f", NA, "m", "m", "m", "m")

q1 <- c(1, 2, 2, 3, 4, 5, 5, 4)

q2 <- c(1, 1, 2, 1, 5, 4, 3, 5)

q3 <- c(5, 4, 4,NA, 2, 5, 4, 5)

q4 <- c(1, 1, 3, 3, 4, 5, 4, 5)

# Selecting Elements of Vectors

q1[5]

q1[ c(5, 6, 7, 8) ]

q1[5:8]

q1[gender == "m"]

mean( q1[ gender == "m" ], na.rm = TRUE)
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# ---Factors---

# Numeric Factors

# First, as a vector

workshop <- c(1, 2, 1, 2, 1, 2, 1, 2)

workshop

table(workshop)

mean(workshop)

gender[workshop == 2]

# Now as a factor

workshop <- c(1, 2, 1, 2, 1, 2, 1, 2)

workshop <- factor(workshop)

workshop

table(workshop)

mean(workshop) #generates error now.

gender[workshop == 2]

gender[workshop == "2"]

# Recreate workshop, making it a factor

# including levels that don't yet exist.

workshop <- c(1, 2, 1, 2, 1, 2, 1, 2)

workshop <- factor(

workshop,

levels = c( 1, 2, 3, 4),

labels = c("R", "SAS", "SPSS", "Stata")

)

# Recreate it with just the levels it

# curently has.

workshop <- c(1, 2, 1, 2, 1, 2, 1, 2)

workshop <- factor(

workshop,

levels = c( 1, 2),

labels = c("R","SAS")

)

workshop

table(workshop)

gender[workshop == 2]

gender[workshop == "2"]

gender[workshop == "SAS"]

# Character factors
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gender <- c("f", "f", "f", NA, "m", "m", "m", "m")

gender <- factor(

gender,

levels = c("m", "f"),

labels = c("Male", "Female")

)

gender

table(gender)

workshop[gender == "m"]

workshop[gender == "Male"]

# Recreate gender and make it a factor,

# keeping simpler m and f as labels.

gender <- c("f", "f", "f", NA, "m", "m", "m", "m")

gender <- factor(gender)

gender

# Data Frames

mydata <- data.frame(workshop, gender, q1, q2, q3, q4)

mydata

names(mydata)

row.names(mydata)

# Selecting components by index number

mydata[8, 6] #8th obs, 6th var

mydata[ , 6] #All obs, 6th var

mydata[ , 6][5:8] #6th var, obs 5:8

# Selecting components by name

mydata$q1

mydata$q1[5:8]

# Example renaming gender to sex while

# creating a data frame (left as a comment)

#

# mydata <- data.frame(workshop, sex = gender,

# q1, q2, q3, q4)

# Matrices

# Creating from vectors
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mymatrix <- cbind(q1, q2, q3, q4)

mymatrix

dim(mymatrix)

# Creating from matrix function

# left as a comment so we keep

# version with names q1, q2...

#

# mymatrix <- matrix(

# c(1, 1, 5, 1,

# 2, 1, 4, 1,

# 2, 2, 4, 3,

# 3, 1, NA,3,

# 4, 5, 2, 4,

# 5, 4, 5, 5,

# 5, 3, 4, 4,

# 4, 5, 5, 5),

# nrow = 8, ncol = 4, byrow = TRUE)

# mymatrix

table(mymatrix)

mean(mymatrix, na.rm = TRUE)

cor(mymatrix, use = "pairwise")

# Selecting Subsets of Matrices

mymatrix[8, 4]

mymatrix[5:8, 3:4]

mymatrix[ ,4][1:4]

mymatrix$q4 # No good!

mymatrix[ ,"q4"]

# Matrix Algebra

mymatrixT <- t(mymatrix)

mymatrixT

# Lists

mylist <- list(workshop, gender,

q1, q2, q3, q4, mymatrix)

mylist

# List, this time adding names

mylist <- list(

workshop = workshop,
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gender = gender,

q1 = q1,

q2 = q2,

q3 = q3,

q4 = q4,

mymatrix = mymatrix)

mylist

# Selecting components by index number.

mylist[[2]]

mylist[[2]][5:8]

mylist[2]

mylist[2][5:8] # Bad!

# Selecting components by name.

mylist$q1

mylist$mymatrix[5:8, 3:4]

# ---Saving Your Work---

ls()

objects() #same as ls()

save.image("myall.RData")

save(mydata, file = "mydata.RData")

# The 2nd approach is commented to keep

# the q variables for following examples.

# rm(x, y, workshop, gender, q1, q2, q3, q4, mylist)

# ls()

# save.image(file = "mydata.RData")

# ---Comments to Document Your Programs---

# This comment is on its own line, between functions.

workshop <- c(1, 2, 1, 2, #This comment is within the arguments.

1, 2, 1, 2) #And this is at the end.

# ---Comments to Document Your Objects---

comment(mydata) <- "Example data from R for SAS and SPSS Users"
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comment(mydata)

# ---Controlling Functions---

# Controlling Functions with Arguments

help("mean")

mean(x = q3, trim = .25, na.rm = TRUE)

mean(na.rm = TRUE, x = q3, trim = .25)

mean(q3, .25, TRUE)

mean(q3, t = .25, na.rm = TRUE)

mean(1, 2, 3)

mean( c(1, 2, 3) )

mean( 1:3 )

# Controlling Functions With Formulas

lm( q4 ~ q1 + q2 + q3, data = mydata )

t.test(q1 ~ gender, data = mydata)

t.test( q1[ which(gender == "Female") ],

q1[ which(gender == "Male") ],

data = mydata) # Data ignored!

# Controlling Functions with Extractor Functions

lm( q4 ~ q1 + q2 + q3, data = mydata )

myModel <- lm( q4 ~ q1 + q2 + q3, data = mydata )

class(myModel)

summary(myModel)

# How Much Output Is There?

print(mymodel)

mode(myModel)

class(myModel)

names(myModel)

print( unclass(myModel) )

myModel$coefficients

class( myModel$coefficients )
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barplot( myModel$coefficients )

# ---Writing Your Own Functions (Macros)---

myvar <- c(1, 2, 3, 4, 5)

# A bad function.

mystats <- function(x) {

mean(x, na.rm = TRUE)

sd(x, na.rm = TRUE)

}

mystats(myvar)

# A good function that just prints.

mystats <- function(x) {

print( mean(x, na.rm = TRUE) )

print( sd(x, na.rm = TRUE) )

}

mystats(myvar)

# A function with vector output.

mystats <- function(x) {

mymean <- mean(x, na.rm = TRUE)

mysd <- sd(x, na.rm = TRUE)

c(mean = mymean, sd = mysd )

}

mystats(myvar)

myVector <- mystats(myvar)

myVector

# A function with list output.

mystats <- function(x) {

myinput <- x

mymean <- mean(x, na.rm = TRUE)

mysd <- sd(x, na.rm = TRUE)

list(data = myinput, mean = mymean, sd = mysd)

}

mystats(myvar)

myStatlist <- mystats(myvar)

myStatlist

mystats

save(mydata, mymatrix, mylist, mystats,

file = "myWorkspace.RData")
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Data Acquisition

You can enter data directly into R, and you can read data from a wide range
of sources. In this chapter I will demonstrate R’s data editor as well as read-
ing and writing data in text, Excel, SAS, SPSS and ODBC formats. For
other topics, especially regarding relational databases, see the R Data Im-
port/Export manual [46]. If you are reading data that contain dates or times,
see Sect. 10.21.

6.1 Manual Data Entry Using the R Data Editor

R has a simple spreadsheet-style data editor. Unlike SAS and SPSS, you can-
not use it to create a new data frame. You can only edit an existing one.
However, it is easy to create an empty data frame, which you can then fill in
using the editor. Simply submit the following command:

mydata <- edit( data.frame() )

Fig. 6.1. Adding a new variable in the R data editor

DOI 10.1007/978-1-4614-0685-3_6, © Springer Science+Business Media, LLC 2011
, Statistics and Computing,R.A. Muenchen, R for SAS and SPSS Users 115
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Fig. 6.2. The R data editor with practice data entered

The window in Fig. 6.1 will appear.1 Initially the variables are named
var1, var2, and so on. You can easily change these names by clicking on them.
I clicked on the variable name var1, which brought up the Variable editor
window shown in the center of Fig. 6.1. I then changed it to “id” and left the
“numeric” button selected so that it would remain a numeric variable. I then
closed the variable editor window by clicking the usual X in the upper right
corner.

Follow the steps above until you have created the data frame shown in
Fig. 6.2. Make sure to click “character” when defining a character variable.
When you come to the NA values for observation 4, leave them blank. You
could enter the two-character string “NA” for numeric variables, but R will
not recognize that as a missing value for character variables here. Exit the
editor and save changes by choosing File> Close or by clicking the Windows
X button. There is no File> Save option, which feels quite scary the first time
you use it, but R does indeed save the data.

Notice that the variable in our ID variable matches the row names on the
leftmost edge of Fig. 6.2. R went ahead and created row names of “1,” “2,”
etc. so why did I bother to enter them into the variable id? Because while the
data editor allows us to easily change variable names, it does not allow us to
change row names. If you are happy with its default names, you do not need
to create your own id variable. However, if you wanted to enter your own row
names using the data editor, you can enter them instead into a variable like id
and then later set that variable to be row names with the following command:

row.names(mydata) <- mydata$id

1 These steps are for the Windows version. The Macintosh version is different but
easy to figure out. The Linux version does not include even this basic GUI.
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This command selects id from mydata using the form dataframe$variable,
which we will discuss further in Sect. 7.7, “Selecting Variables Using $ Nota-
tion.”

Before using these data, you would also want to use the factor function
to make workshop and gender into factors.

mydata$workshop <- factor(mydata$workshop)

mydata$gender <- factor(mydata$gender)

To see how to do this with value labels, see our discussion in Sect. 11.1,
“Value Labels or Formats (and Measurement Level).”

We now have a data frame that we can analyze, save as a permanent R
data file, or write out in text, Excel, SAS, or SPSS format.

When we were initially creating the empty data frame, we could have
entered the variable names with the following function call:

mydata <- data.frame(id = 0., workshop = 0.,

gender = " ", q1 = 0., q2 = 0., q3 = 0., q4 = 0.)

Since this approach allows you to name all the variables, it is a major time
saver when you have to create more than one copy of the data or if you create
a similar data set in the future.

R has a fix function that actually calls the more aptly named edit func-
tion and then writes the data back to your original data frame. So

fix(mydata)

does the same thing as

mydata <- edit(mydata)

I recommend not using the edit function on existing data frames as I find it
all too easy to begin editing with just:

edit(mydata) # Do NOT do this!

It will look identical on the screen, but this does not tell edit where to save
your work. When you exit, your work will appear to be lost. However, R stores
the last value you gave it in an object named .Last.value, so you can retrieve
the data with this command.

mydata <- .Last.value

We will use the edit function later when renaming variables.

6.2 Reading Delimited Text Files

Delimited text files use special characters, such as commas, spaces, or tabs to
separate each data value. R can read a wide range of such files. In this section
I will show you how to read the most popular types.
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6.2.1 Reading Comma-Delimited Text Files

Let us begin by reading a comma-separated value (CSV) file like:

workshop,gender,q1,q2,q3,q4

1,1,f,1,1,5,1

2,2,f,2,1,4,1

3,1,f,2,2,4,3

4,2, ,3,1, ,3

5,1,m,4,5,2,4

6,2,m,5,4,5,5

7,1,m,5,3,4,4

8,2,m,4,5,5,5

There are several important things to notice about these data.

1. The top row contains variable names. This is called the file’s header line.
2. ID numbers are in the leftmost column, but the header line does not

contain a name like “ID” for it.
3. Values are separated by commas.
4. Spaces (blanks) represent missing values.
5. There are no blanks before or after the character values of “m” and “f.”
6. Each line in the file ends with a single stroke of the Enter key, not with

a final tab. Your operating system stores either a line feed character or a
carriage return and a line feed. R will treat them the same.

You can read this file using the read.csv function call below. If you have
already set your working directory in your current R session, you do not need
to set it again.

> setwd("c:/myRfolder")

> mydata <- read.csv("mydata.csv")

> mydata

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

3 1 f 2 2 4 3

4 2 3 1 NA 3

5 1 m 4 5 2 4

6 2 m 5 4 5 5

7 1 m 5 3 4 4

8 2 m 4 5 5 5
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Notice that it read the id variable and stored it automatically in the row
names position on the left side of the data frame. It did that because R found
seven columns of data but only six names. Whenever R finds one fewer names
than columns, it assumes the first column must be an id variable.

If your CSV file does not have a header line and all your data values
are numeric, R will automatically name the variables “V1,”“V2,” and so on,
similar to SAS’s and SPSS’s “VAR1,”“VAR2,” etc. default names. 2 However,
our file has both numeric data and character data. R will have trouble figuring
out if the first line in the file contains names or data. You can tell it to not
try and interpret the first line as variable names by adding the argument
header = FALSE to the read.csv function call.

Let us see what happens when the header line does contain a name for
the first column, like the following, which is the beginning of the file named
mydataID.csv:

id,workshop,gender,q1,q2,q3,q4

1,1,f,1,1,5,1

2,2,f,2,1,4,1

...

If we read the file exactly as before, we would have an additional variable
named“id.”R would also create row names of“1,”“2,”etc., but our ID variable
might have contained more useful information. Not getting your identifying
variable into the row names attribute does not cause any major problems, but
R will automatically identify observations by their row names, so if you have
an ID variable, it makes sense to get it into the row names attribute.

To tell R which variable contains the row names, you simply add the
row.names argument.

> mydata <- read.csv("mydataID.csv",

+ row.names = "id")

> mydata

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

...

When we let R figure out that there was an ID variable, it had to be the
first column. That is usually where ID variables reside, but if you ever have
one in another location, then you will have to use the row.names argument
to store it in the row names attribute.

2 Note the inconsistency with R’s own data editor, which uses the default names,
“var1,”“var2,” etc.
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6.2.2 Reading Tab-Delimited Text Files

Reading tab-delimited files in R is done very similarly to reading comma-
delimited files, but using the read.delim function.

The following is the tab-delimited text file we will read:

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

3 1 f 2 2 4 3

4 2 3 1 3

5 1 m 4 5 2 4

6 2 m 5 4 5 5

7 1 m 5 3 4 4

8 2 m 4 5 5 5

There are several important things to notice about these data.

1. The top row contains variable names. This is called the file’s header line.
Note that your header line should never begin nor end with tab char-
acters! That would cause R to think you have more variables than you
actually do. If you leave the names out, you should specify the argument
header = FALSE. In that case R will name the variables “V1,”“V2,” etc.

2. ID numbers are in the leftmost column, but the header line does not
contain a name like “ID” for it.

3. Values are separated by single tab characters.
4. Two consecutive tab characters represent missing values, although a blank

space would work, too.
5. There are no blanks before or after the character values “m” and “f.”
6. Each line of data ends with a single stroke of the Enter key, not with a final

tab. Your operating system ends lines with either a line feed character, or
a carriage return and a line feed. R will treat them the same.

We can use the read.delim function to read this file:

> setwd("c:/myRfolder")

> mydata <- read.delim("mydata.tab")

> mydata

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

3 1 f 2 2 4 3

4 2 3 1 NA 3
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5 1 m 4 5 2 4

6 2 m 5 4 5 5

7 1 m 5 3 4 4

8 2 m 4 5 5 5

We see that two consecutive tabs for variable q3 was correctly identified as a
missing value (NA).

To read a file whose header does name the variable in the first column,
add the row.names argument:

> mydata <- read.delim("mydataID.tab",

+ row.names = "id")

> mydata

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

...

If you need to read a file that has multiple tabs or spaces between values,
use the read.table function. The read.csv and read.delim functions both
call read.table with some arguments preset to helpful values. It is a good
idea to read the help files of any of these functions to see how they relate
to each other and to see the many additional parameters you can control by
using read.table.

The read.table function actually does its work by calling the powerful
and complex scan function.

6.2.3 Reading Text from a Web Site

You can use any of the methods described above to read data stored on a
Web site. To do so, simply enter the site’s URL in place of the filename. I
have uploaded the file mydata.csv to this book’s Web site, so you can try it.
While you may access the book’s Web site at the URL http://r4stats.com,
that URL is actually an easy-to-remember pointer to the real site used in the
code below:3

myURL <- "http://sites.google.com/site/r4statistics/mydata.csv"

mydata <- read.csv(myURL)

mydata

3 As of this writing, I am planning a change in Web servers. If the code does not
work try http://r4stats.com/mydata.csv or check the book’s Corrections &
Clarifications file on the download site.
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6.2.4 Reading Text from the Clipboard

In virtually all software that has a spreadsheet data editor, you can copy data
from another program and paste it in. But not in R! However, the Windows
version of R does have a way to read from the clipboard using functions. You
do begin the process in your other software as usual, by selecting the data you
wish to copy and then pressing CTRL-c.

If it is a single column of data, you can then read it with

myvector <- readClipboard()

If it is a single row of data, you can paste it into a text editor, press Enter
at the end of each line, and copy it again from there. Otherwise, a row of
values will end up as single-character vector.

If you have copied a whole set of columns (hopefully with column names),
you can read it with:

mydata <- read.delim("clipboard", header = TRUE)

If you have problems using this approach, try pasting the data into a text
editor so you can check to see if there are extraneous spaces or tabs in the data.
All the rules that apply to reading data from a file apply here as well. For
example, if you copied comma-separated values to the clipboard, read.csv
would be the function to use. I frequently see data discussed on R-help or
Web pages that are separated by multiple spaces, so I use read.table to read
them from the clipboard.

Unfortunately, this approach copies only the number of decimal places that
you had displayed at the time. Therefore, almost any other method is better
for reading numbers with many digits after the decimal point.

6.2.5 Missing Values for Character Variables

In the previous two subsections, we ignored a potential problem. The missing
value for variable q3 was always displayed as NA, Not Available. However,
the missing value for gender was displayed as a blank.

If we had entered R’s standard missing value, “NA,”where we had missing
values, then even the character data would have shown up as missing. However,
few other programs write out NA as missing.

Just as in SAS or SPSS, you can read blanks as character values, and R
will not set them to missing unless you specifically tell it to do so. Often, it is
not very important to set those values to missing. A person’s mailing address
is a good example. You would never use it in an analysis, so there is little
need to set it to missing.

However, when you need to use a character variable in an analysis, setting
it to missing is, of course, very important. Later in the book we will use gender
in analyses, so we must make sure that blank values are set to missing.
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In our comma-delimited file, the missing value for gender was entered as
a single space. Therefore, the argument na.char = " " added to any of the
comma-delimited examples will set the value to missing. Note there is a single
space between the quotes in that argument.

In our tab-delimited file, the missing value for gender was entered as noth-
ing between two tabs (i.e., just two consecutive tabs). Therefore, the argument
na.char = "" added to any of the tab-delimited examples will set the value to
missing. Note that there is now no space between the quotes in that argument.

However, in both comma- and tab-delimited files, it is very easy to acci-
dentally have blanks where you think there are none or to enter more than
you meant to. Then your na.char setting will be wrong for some cases.

It is best to use a solution that will get rid of all trailing blanks. That is
what the argument strip.white = TRUE does. When you use that argument,
na.char = "" will work regardless of how many blanks may have been there
before.

Let us try it with our comma-delimited file, since it contains a blank we
can get rid of:

> mydata <- read.csv("mydataID.csv",

+ row.names = "id",

+ strip.white = TRUE,

+ na.strings = "" )

> mydata

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

3 1 f 2 2 4 3

4 2 <NA> 3 1 NA 3

5 1 m 4 5 2 4

6 2 m 5 4 5 5

7 1 m 5 3 4 4

8 2 m 4 5 5 5

The only difference between this output and the last one we read for my-
dataID.csv is that gender is shown as <NA> now instead of blank. R adds angle
brackets, “<>”, around the value so you can tell NA stands for Not Available
(missing) rather than something meaningful, such as North America. The NA
value in the q3 variable is not in angle brackets because it cannot possibly be
a valid numeric value.

The strip.white = TRUE argument also provides the benefit of getting
rid of trailing blanks that would set some genders equal to "m" and others
to "m " or "m ". We do not want trailing blanks to accidentally split the
males into different groups!
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Finally, getting rid of trailing blanks saves space. Since R stores its data
in your computer’s main memory, saving space is very important.

6.2.6 Trouble with Tabs

In many text editors, including R’s, tabs are invisible. That makes it easy to
enter an additional tab or two, throwing R off track. A helpful tool to count
the number of fields is the count.fields function. This function looks by
default for items separated by any amount of spaces or tabs. Therefore, you
must specify sep = "\t" because that is what R uses to represent the tab
character:

> count.fields("mydata.tab", sep = "\t")

[1] 6 7 7 7 7 7 7 7 7

We see that all the lines in the file contain seven items except for the
header row. The header row has 6. That is the clue that R needs to determine
that the first column of the data contains an ID variable that it will then store
as row names.

If R complains of too many names in the header line, or not enough values
on data lines, or if it creates more variables than you expected, often you have
an inconsistent number of tabs in your file.

Check the header line that contains your variable names and the first few
lines of data for extra tabs, especially at the beginning or end of a line. If you
have an ID variable in the first column and it is not named in your header
line, it is very tempting to put a tab before the first variable name. That will
get it to line up over the first column, but it will also tell R that your first
variable name is missing!

If you have a data file that has some short values and some very long
values in the same column, the person who entered it may have put two tabs
after the short values to get the following column to line up again. In that
case, you can read it with the read.table function. That function has greater
flexibility for reading delimited files.

When a file has varying numbers of tabs between values, read.table can
read it because its default delimiter is any number of tabs or spaces! However,
this also means that you cannot represent missing values by entering two
consecutive tabs, or even by putting a space between two tabs. With our
practice tabbed data set, read.table would generate the error message “line
4 did not have 7 elements.” In that case, you must enter some code to represent
“missing.” The value “NA” is the one that R understands automatically, for
both numeric and character values. If you use any other codes, such as “.” or
“999,” specify the character as missing by using the na.char argument. See
also Sect. 10.5 to learn a wider range of approaches to handling missing values.
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With read.table, if you specify the argument, delim = "\t", then it
uses one single tab as a delimiter. That is one thing read.delim does for you
automatically.

6.2.7 Skipping Variables in Delimited Text Files

R must hold all its data in your computer’s main memory. This makes skipping
columns while reading data particularly important. The following is the R
function call to read data while skipping the fourth and fifth columns. If you
have already set your working directory in your current R session, you do not
need to set it again.

> setwd("c:/myRfolder")

> myCols <- read.delim("mydata.tab",

+ strip.white = TRUE,

+ na.strings = "",

+ colClasses = c("integer", "integer", "character",

+ "NULL", "NULL", "integer", "integer") )

> myCols

workshop gender q3 q4

1 1 f 5 1

2 2 f 4 1

3 1 f 4 3

4 2 <NA> NA 3

5 1 m 2 4

6 2 m 5 5

7 1 m 4 4

8 2 m 5 5

>

> # Clean up and save workspace.

> rm(myCols)

We used the name myCols to avoid overwriting mydata. You use the
colClasses argument to specify the class of each column. The classes include
logical (TRUE/FALSE), integer (whole numbers), numeric (can include dec-
imals), character (alphanumeric string values), and factor (categorical values
like gender). See the help file for other classes like dates. The class we need
for this example is NULL. We use it to drop variables.

However, colClasses requires you to specify the classes of all columns,
including any initial ID or row names variable. The classes must be included
within quotes since they are character strings.
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6.2.8 Reading Character Strings

Many of R’s functions for reading text are related. For example, read.csv
and read.delim both call the read.table function with some arguments set
to useful defaults. The read.table function, in turn, calls the scan function,
again with reasonable arguments set to save you the work of understanding
all of scan’s flexibility. So if you have problems reading a text file, check the
help file of the function you are using first. If you do not find a solution, read
the help file of the function it calls, often read.table. Save the help file for
the complex scan function for last.

For example, when you read string variables, R will usually convert them
to factors. However, you do not always want that to happen. Mailing addresses
are a common type of data that will never be used as a factor. To prevent the
conversion of all strings to factors, you can set stringsAsFactors = FALSE.
You could instead use as.is = "x" or as.is = c("x","y") to prevent just
the variables x or x and y from becoming factors.

6.2.9 Example Programs for Reading Delimited Text Files

SAS Program for Reading Delimited Text Files

The parts of this program to read CSV and tab-delimited files was written by
SAS itself using File> Import Data. I only had to write the last one, which
reads data from a Web site.

* Filename: ReadDelimited.sas ;

LIBNAME myLib 'C:\myRfolder';

* ---Comma Delimited Files---;

PROC IMPORT OUT=myLib.mydata

DATAFILE="C:\myRfolder\mydataID.csv"

DBMS=CSV REPLACE;

GETNAMES=YES;

DATAROW=2;

RUN;

PROC PRINT; RUN;

* ---Tab Delimited Files---;

PROC IMPORT OUT= myLib.mydata

DATAFILE= "C:\myRworkshop\mydataID.tab"

DBMS=TAB REPLACE;

GETNAMES=YES;

DATAROW=2;

RUN;

PROC PRINT; RUN;
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* ---Reading from a Web Site---;

FILENAME myURL URL

"http://sites.google.com/site/r4statistics/mydataID.csv";

PROC IMPORT DATAFILE= myURL

DBMS=CSV REPLACE

OUT= myLib.mydata;

GETNAMES=YES;

DATAROW=2;

RUN;

PROC PRINT; RUN;

SPSS Program for Reading Delimited Text Files

Notice that SPSS does not actually use the variable names that are embedded
within the data file. We must skip these and begin reading the data on the
second line. The VARIABLES keyword provides the names. This program
was written by SPSS itself using File> Open> Data. SPSS cannot read text
files from a URL directly, so that part of our steps is not replicated in this
program. (It can read SPSS, SAS, Excel, and Stata files from a URL through
the SPSSINC GETURI DATA extension.)

* Filename: ReadDelimited.SPS

CD 'C:\myRfolder'.

* ---Comma Delimited Files---.

GET DATA /TYPE=TXT

/FILE='mydataID.csv'

/DELCASE=LINE

/DELIMITERS=","

/ARRANGEMENT=DELIMITED

/FIRSTCASE=2

/IMPORTCASE=ALL

/VARIABLES=id F1.0 workshop F1.0 gender A1.0

q1 F1.0 q2 F1.0 q3 F1.0 q4 F1.0 .

LIST.

SAVE OUTFILE='C:\myRfolder\mydata.sav'.

* ---Tab Delimited Files---.

GET DATA

/TYPE=TXT

/FILE="C:\myRfolder\mydataID.tab"

/DELCASE=LINE

/DELIMITERS="\t"
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/ARRANGEMENT=DELIMITED

/FIRSTCASE=2

/IMPORTCASE=ALL

/VARIABLES = id F1.0 workshop F1.0 gender A1.0

q1 F1.0 q2 F1.0 q3 F1.0 q4 F1.0 .

LIST.

EXECUTE.

DATASET NAME DataSet1 WINDOW=FRONT.

R Program for Reading Delimited Text Files

# Filename: ReadDelimited.R

setwd("c:/myRfolder")

#---Comma Delimited Files---

# Read comma delimited file.

# With id variable not named.

mydata <- read.csv("mydata.csv")

mydata

# This time with id named in the header

mydata <- read.csv("mydataID.csv",

row.names = "id")

mydata

#---Tab Delimited Files---

# Read a tab delimited file with named ID column.

mydata <- read.delim("mydata.tab")

mydata

count.fields("mydata.tab", sep = "\t")

# Again with ID named in the header

mydata <- read.delim("mydataID.tab",

row.names = "id")

mydata

# ---Reading Text from a Web Site---

myURL <- "http://sites.google.com/site/r4statistics/mydata.csv"
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mydata <- read.csv(myURL)

mydata

# ---Reading Text from the Clipboard---

# Copy a column of numbers or words, then:

myvector <- readClipboard()

myvector

# Open mydata.csv, select & copy contents, then:

mydata <- read.delim("clipboard", header = TRUE)

mydata

#---Missing Values for Character Variables---

mydata <- read.csv("mydataID.csv",

row.names = "id",

strip.white = TRUE,

na.strings = "" )

mydata

#---Skipping Variables in Delimited Text Files---

myCols <- read.delim("mydata.tab",

strip.white = TRUE,

na.strings = "",

colClasses = c("integer", "integer", "character",

"NULL", "NULL", "integer", "integer") )

myCols

# Clean up and save workspace.

rm(myCols)

save.image(file = "mydata.RData")

6.3 Reading Text Data Within a Program

It is often useful to have a small data set entered inside a program. SAS does
this using the DATALINES or CARDS statements. SPSS uses the BEGIN DATA

and END DATA commands to accomplish this task.
This approach is popular when teaching or for an example when you post

a question on Internet discussion lists. You only have one file, and anyone can
copy it and run it without changing it to locate a data file.
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Although beginners are often drawn to this approach due to its simplicity,
it is not a good idea to use this for more than a few dozen observations. To
see the top and bottom of your program requires scrolling past all of the data,
which is needlessly time consuming. As we will soon see, R also displays data
in the console, scrolling potential error messages offscreen if there is more than
a screen’s worth of data.

We will discuss two ways to read data within an R program: one that is
easy and one that is more generally applicable.

6.3.1 The Easy Approach

The easy approach is to nest the stdin function within any other R function
that reads data. It tells R that the data are coming from the same place the
program is, which is called the standard input.

In our next example, we will use CSV format, so we will nest a call to the
stdin function within a call to the read.csv function.

mydata <- read.csv( stdin() )

workshop,gender,q1,q2,q3,q4

1,1,f,1,1,5,1

2,2,f,2,1,4,1

3,1,f,2,2,4,3

4,2,NA,3,1,NA,3

5,1,m,4,5,2,4

6,2,m,5,4,5,5

7,1,m,5,3,4,4

8,2,m,4,5,5,5

# Blank line above ends input.

Note that I actually typed “NA” in for missing values, and I was careful to
never add any spaces before or after the gender values of “m” or “f.” That let
us dispense with any additional arguments for the read.csv function. I could
instead have used spaces as delimiters and used the read.table function in
place of read.csv.

With this approach, it is important to avoid tabs as delimiters. They are
not recognized by stdin, and your values would be read as if they were not
delimited at all. You could avoid this by using R’s “\t” character to represent
tab characters, but that makes your data quite a mess!

Let us run our comma-delimited example and see what the output looks
like.

> mydata <- read.csv( stdin() )

0: workshop,gender,q1,q2,q3,q4

1: 1,1,f,1,1,5,1
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2: 2,2,f,2,1,4,1

3: 3,1,f,2,2,4,3

4: 4,2,NA,3,1,NA,3

5: 5,1,m,4,5,2,4

6: 6,2,m,5,4,5,5

7: 7,1,m,5,3,4,4

8: 8,2,m,4,5,5,5

9:

> # Blank line above ends input.

> mydata

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

3 1 f 2 2 4 3

4 2 <NA> 3 1 NA 3

5 1 m 4 5 2 4

6 2 m 5 4 5 5

7 1 m 5 3 4 4

8 2 m 4 5 5 5

I often add blank lines between sections of output to make it easier to
read, but given that a blank line is actually used to end the data, I did not
do so with this output.

You can see that R displays the data itself, and it prefixes each line with
“0:”, “1:”, “2:”, etc. With all of the data displayed, this is obviously not some-
thing you would want to do with hundreds of observations! When we read
data from files, we saw that R did not display them in the console.

The ninth line shows that it is blank and the numeric prefixing stops as R
returns to its usual “>” prompt. It is the blank line that tells R that there are
no more data. If you forget this, R will read your next program lines as data,
continuing until it finds a blank line!

Printing the data by entering mydata shows us that the row names were
correctly assigned and the two missing values are also correct.

6.3.2 The More General Approach

The previous subsection showed how to read data in the middle of an R
program, and it required only a minor change. It had one important limitation
however: you cannot use stdin to read data in programs that are sourced
(included) from files.

Since putting data in the middle of a file is often done for interactive
demonstrations, that is not often a serious limitation. However, there are
times when you want to put the whole program, including data, in a separate
file like “myprog.R” and bring it into R with the command

source("myprog.R")
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To do this, we can place the whole data set into a character vector with a
single value named “mystring”:

mystring <-

"workshop,gender,q1,q2,q3,q4

1,1,f,1,1,5,1

2,2,f,2,1,4,1

3,1,f,2,2,4,3

4,2,NA,3,1,NA,3

5,1,m,4,5,2,4

6,2,m,5,4,5,5

7,1,m,5,3,4,4

8,2,m,4,5,5,5"

mydata <- read.csv( textConnection(mystring) )

> mydata

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

3 1 f 2 2 4 3

4 2 <NA> 3 1 NA 3...

Note that the c function is not used to combine all of those values into
a vector. At the moment, the whole data set is one single character value!
The textConnection function converts mystring into the equivalent of a file,
which R then processes as it would a file.

This approach still has problems with tab-delimited data since strings
do not hold tab characters unless you enter them using R’s “\t” character.
Therefore, it is best to use commas or spaces as delimiters.

6.3.3 Example Programs for Reading Text Data Within a Program

SAS Program for Reading Text Data Within a Program

* Filename: ReadWithin.sas ;

LIBNAME myLib 'C:\myRfolder';

DATA myLib.mydata;

INFILE DATALINES DELIMITER = ','

MISSOVER DSD firstobs=2 ;

INPUT id workshop gender $ q1 q2 q3 q4;

DATALINES;

id,workshop,gender,q1,q2,q3,q4

1,1,f,1,1,5,1

2,2,f,2,1,4,1
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3,1,f,2,2,4,3

4,2, ,3,1, ,3

5,1,m,4,5,2,4

6,2,m,5,4,5,5

7,1,m,5,3,4,4

8,2,m,4,5,5,5

PROC PRINT; RUN;

SPSS Program for Reading Text Data Within a Program

* Filename: ReadWithin.sps .

DATA LIST / id 2 workshop 4 gender 6 (A)

q1 8 q2 10 q3 12 q4 14.

BEGIN DATA.

1,1,f,1,1,5,1

2,2,f,2,1,4,1

3,1,f,2,2,4,3

4,2, ,3,1, ,3

5,1,m,4,5,2,4

6,2,m,5,4,5,5

7,1,m,5,3,4,4

8,2,m,4,5,5,5

END DATA.

LIST.

SAVE OUTFILE='C:\myRfolder\mydata.sav'.

R Program for Reading Text Data Within a Program

# Filename: ReadWithin.R

# The stdin approach.

mydata <- read.csv( stdin() )

workshop,gender,q1,q2,q3,q4

1,1,f,1,1,5,1

2,2,f,2,1,4,1

3,1,f,2,2,4,3

4,2,NA,3,1,NA,3

5,1,m,4,5,2,4

6,2,m,5,4,5,5

7,1,m,5,3,4,4

8,2,m,4,5,5,5

# Blank line above ends input.

mydata
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# The textConnection approach

# that works when sourcing files.

mystring <-

"workshop,gender,q1,q2,q3,q4

1,1,f,1,1,5,1

2,2,f,2,1,4,1

3,1,f,2,2,4,3

4,2,NA,3,1,NA,3

5,1,m,4,5,2,4

6,2,m,5,4,5,5

7,1,m,5,3,4,4

8,2,m,4,5,5,5"

mydata <- read.csv( textConnection(mystring) )

mydata

# Set working directory & save workspace.

setwd("c:/myRfolder")

save.image(file = "mydata.RData")

6.4 Reading Multiple Observations per Line

With small data sets it can be convenient to enter the data with more than
one observation per line. This is most often done with examples for teaching
or for demonstrating problems when asking for help on the R-help e-mail list.
I will be extending the technique covered in the previous section, so if you did
not read it just now, please go back and review it.

To read multiple observations per line in SAS, you would use the trailing
@@ symbol to read it as in

INPUT ID GENDER $ Q1-Q4 @@;

SPSS would simply use the FREE format.
In the following example, I am reading our practice data set with two

observations per line. However, the example works with any number of obser-
vations per line.

mylist <- scan( stdin(),

what = list(id = 0, workshop = 0, gender = "",

q1 = 0, q2 = 0, q3 = 0, q4 = 0) )

1 1 f 1 1 5 1 2 2 f 2 1 4 1

3 1 f 2 2 4 3 4 2 NA 3 1 NA 3
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5 1 m 4 5 2 4 6 2 m 5 4 5 5

7 1 m 5 3 4 4 8 2 m 4 5 5 5

# Blank line above ends input.

I am reading the data into mylist by calling the scan function, with two
arguments:

1. The first argument is the “file” to scan. If the data were in a file, we would
list its name here in quotes. We are using the standard input (i.e., the same
source as the programming statements themselves), so I put the stdin()
call there. The textConnection approach would work here as well. The
example program at the end of this section includes that approach.

2. What to scan. This is the type of data to scan such as numeric or character.
Since we have various types to scan, I am giving it a list of variables that
are all initialized with zero for numeric variables and an empty character
string, "", for character variables.

Let us see what it has read:

> mylist

$id

[1] 1 2 3 4 5 6 7 8

$workshop

[1] 1 2 1 2 1 2 1 2

$gender

[1] "f" "f" "f" NA "m" "m" "m" "m"

$q1

[1] 1 2 2 3 4 5 5 4...

We see that it read the data just fine, but it is in a list. We can convert
that to a data frame using

> mydata <- data.frame(mylist)

> mydata

id workshop gender q1 q2 q3 q4

1 1 1 f 1 1 5 1

2 2 2 f 2 1 4 1

3 3 1 f 2 2 4 3

...
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I did the above example in two steps to make it easy to understand. How-
ever, it would be more efficient to do both steps at once:

mydata <- data.frame(

scan( stdin(),

what = list(id = 0, workshop = 0, gender = "",

q1 = 0, q2 = 0, q3 = 0, q4 = 0) )

1 1 f 1 1 5 1 2 2 f 2 1 4 1

3 1 f 2 2 4 3 4 2 NA 3 1 NA 3

5 1 m 4 5 2 4 6 2 m 5 4 5 5

7 1 m 5 3 4 4 8 2 m 4 5 5 5

# Blank line above ends input.

6.4.1 Example Programs for Reading Multiple Observations per
Line

Example SAS Program for Reading Multiple Observations per
Line

* Filename: ReadMultipleObs.sas ;

DATA mydata;

INPUT id workshop gender $ q1-q4 @@;

DATALINES;

1 1 f 1 1 5 1 2 2 f 2 1 4 1

3 1 f 2 2 4 3 4 2 . 3 1 . 3

5 1 m 4 5 2 4 6 2 m 5 4 5 5

7 1 m 5 3 4 4 8 2 m 4 5 5 5

;

PROC PRINT; RUN;

Example SPSS Program for Reading Multiple Observations per
Line

SPSS must use the FREE format to read multiple observations per line.
With that format, it cannot read missing values without a nonblank delim-
iter. Therefore, I use commas in the example below, so that two consecutive
commas will tell SPSS that the value is missing.

* Filename: ReadMultipleObs.SPS.

DATA LIST FREE/ id (f1.0) workshop (f1.0) gender (A)

q1 (f1.0) q2 (f1.0) q3 (f1.0) q4 (f1.0).
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BEGIN DATA.

1,1,f,1,1,5,1, 2,2,f,2,1,4,1

3,1,f,2,2,4,3, 4,2, ,3,1, ,3

5,1,m,4,5,2,4, 6,2,m,5,4,5,5

7,1,m,5,3,4,4, 8,2,m,4,5,5,5

END DATA.

LIST.

Example R Program for Reading Multiple Observations per Line

# Filename: ReadMultipleObs.R

mylist <- scan( stdin(),

what = list(id = 0, workshop = 0, gender = "",

q1 = 0, q2 = 0, q3 = 0, q4 = 0))

1 1 f 1 1 5 1 2 2 f 2 1 4 1

3 1 f 2 2 4 3 4 2 NA 3 1 NA 3

5 1 m 4 5 2 4 6 2 m 5 4 5 5

7 1 m 5 3 4 4 8 2 m 4 5 5 5

# Blank line above ends input.

mylist

mydata <- data.frame(mylist)

head(mydata)

# The textConnection approach

mystring <-

"1 1 f 1 1 5 1 2 2 f 2 1 4 1

3 1 f 2 2 4 3 4 2 NA 3 1 NA 3

5 1 m 4 5 2 4 6 2 m 5 4 5 5

7 1 m 5 3 4 4 8 2 m 4 5 5 5

"

mystring

mylist <- scan( textConnection(mystring),

what = list(id = 0, workshop = 0, gender = "",

q1 = 0, q2 = 0, q3 = 0, q4 = 0) )

mydata <- data.frame(mylist)

head(mydata)
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6.5 Reading Data from the Keyboard

If you want to enter data from the keyboard line by line using SAS or SPSS,
you would do so as we did in the previous two sections. They do not have
a special data entry mode outside of their data editors. You can put R’s
scan function into a special data entry mode by not providing it with any
arguments. It then prompts you for data one line at a time, but once you hit
the Enter key, you cannot go back and change it in that mode.

Although you can do this on any operating system, its main use may be
on Linux or UNIX computers, which lack the R GUI. Since this approach
requires only the console command prompt, you can use it even without the
R GUI. The following is an example.

> id <- scan()

1: 1 2 3 4 5 6 7 8

9:

Read 8 items

R prompts with “1:” indicating that you can type the first observation.
When I entered the first line (just the digits 1 through 8), it prompted with
“9:” indicating that I had already entered 8 values. When I entered a blank
line, scan stopped reading and saved the vector named id.

To enter character data, we have to add the what argument. Since spaces
separate the values, to enter a value that includes a space, you would enclose
it in quotes like “R.A. Fisher.”

> gender <- scan(what = "character")

1: f f f f m m m m

9:

Read 8 items

When finished with this approach, we could use the data.frame function
to combine the vectors into a data frame:

mydata <- data.frame(id, workshop, gender, q1, q2, q3, q4)

6.6 Reading Fixed-Width Text Files, One Record
per Case

Files that separate data values with delimiters such as spaces or commas are
convenient for people to work with, but they make a file larger. So many text
files dispense with such conveniences and instead keep variable values locked
into the exact same column(s) of every record.

If you have a nondelimited text file with one record per case, you can read
it using the following approach. R has nowhere near the flexibility in reading
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fixed-width text files that SAS and SPSS have. As you will soon see, making
an error specifying the width of one variable will result in reading the wrong
columns for all those that follow. While SAS and SPSS offer approaches that
would do that, too, I do not recommend their use. In R, though, it is your
only option which is fine so long as you carefully check your results.

Other languages such as Perl or Python are extremely good at reading
text files and converting them to a form that R can easily read.

Below are the same data that we used in other examples but now it is in
fixed-width format (Table 9.5).

011f1151

022f2141

031f2243

042 31 3

051m4524

062m5455

071m5344

082m4555

Important things to notice about this file.

1. No names appear on first line.
2. Nothing separates values.
3. The first value of each record is two columns wide; the remainder take

only one column each. I made ID wider just to demonstrate how to read
a variable that is more than one column wide.

4. Blanks represent missing values, but we could use any other character that
would fit into the fixed number of columns allocated to each variable.

5. The last line of the file contains data. That is what SAS and SPSS expect,
but R generates a warning that there is an “incomplete final line found.”
It works fine though. If the warning in R bothers you, simply edit the file
and press Enter once at the end of the last line.

The R function that reads fixed-width files is read.fwf. The following is
an example of it reading the file above:

> setwd("c:/myRfolder")

> mydata <- read.fwf(

+ file = "mydataFWF.txt",

+ width = c(2, -1, 1, 1, 1, 1, 1),

+ col.names = c("id", "gender", "q1", "q2", "q3", "q4"),

+ row.names = "id",

+ na.strings = "",

+ fill = TRUE,

+ strip.white = TRUE)
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Warning message:

In readLines(file, n = thisblock) :

incomplete final line found on 'mydataFWF.txt'

> mydata

gender q1 q2 q3 q4

1 f 1 1 5 1

2 f 2 1 4 1

3 f 2 2 4 3

4 <NA> 3 1 NA 3

5 m 3 5 2 4

6 m 5 4 5 5

7 m 5 3 4 4

8 m 4 5 5 5

The read.fwf function call above uses seven arguments:

1. The file argument lists the name of the file. It will read it from
your current working directory. You can set the working directory with
setwd("path") or you can specify a path as part of the file specification.

2. The width argument provides the width, or number of columns, required
by each variable in order. The widths we supplied as a numeric vector are
created using the c function. The first number, 2, tells R to read ID from
columns 1 and 2. The next number, −1, tells R to skip one column. In our
next example, we will not need to read the workshop variable, so I have
put in a −1 to skip it now. The remaining pattern of 1, 1, 1, 1, tells R
that each of the remaining four variables will require one column each. Be
very careful at this step! If you made an error and told R that ID was one
column wide, then read.fwf would read all of the other variables from
the wrong columns.

When you are reading many variables, specifying their length by listing
them all like this is tedious. You can make this task much easier by using
R’s ability to generate vectors of repetitive patterns. For an example, see
the Chap. 12.4, “Generating Values for Reading Fixed Width Files.”

3. The col.names argument provides the column or variable names. Those,
too, we provide in a character vector. We create it using the c function,
c("id","gender","q1","q2","q3","q4"). Since the names are charac-
ter (string) data, we must enclose them in quotes.

Names can also be tedious to enter. R’s ability to generate vectors of
repetitive patterns, combined with the paste function, can generate long
sets of variable names. For details, see Chap. 12, “Generating Data.”

4. The row.names argument tells R that we have a variable that stores a
name or identifier for each row. It also tells it which of the variable names
from the col.names argument that is: “id.”
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5. The na.strings ="" argument tells R that an empty field is a missing
value. It already is for numeric data, but, as in SAS or SPSS, a blank is
a valid character value. Note that there is no blank between the quotes!
That is because we set the strip.white option to strip out extra blanks
from the end of strings (below). As you see, R displays missing data for
character data within angle brackets as <NA>.

6. The fill argument tells R to fill in blank spaces if the file contains lines
that are not of full length (like the SAS MISSOVER option). Now is a
good time to stop and enter help("read.fwf"). Note that there is no
fill argument offered. It does, however, list its last argument as “. . . ”.
This is called the triple dot argument. It means that it accepts addi-
tional unnamed arguments and will pass them on to another function that
read.fwf might call. In this case, it is the read.table function. Clicking
the link in the help file to that function will reveal the fill argument and
what it does.

7. The strip.white argument tells R to remove any additional blanks it
finds in character data values. Therefore, if we were reading a long text
string like "Bob ", it would delete the additional spaces and store
just "Bob". That saves space and makes logical comparisons easier. It is
all too easy to count the number of blanks incorrectly when making a
comparison like, name == "Bob ".

The file was read just fine. The warning message about an “incomplete
final line” is caused by an additional line feed character at the end of the last
line of the file. Neither SAS nor SPSS would print a warning about such a
condition.

The read.fwf function calls the read.table function to do its work, so
you can use any of those arguments here as well.

6.6.1 Reading Data Using Macro Substitution

In Sect. 5.7.2 we first discussed how R can store the values of its arguments in
vectors. That is essentially what SAS and SPSS call macro substitution. Let
us now use that idea to simplify our program, making it easier to write and
maintain.

Since file paths often get quite long, we will store the file name in a char-
acter vector named myfile. This approach also lets you put all of the file ref-
erences you use at the top of your programs, so you can change them easily.
We do this with the command:

myfile <- "mydataFWF.txt"

Next, we will store our variable names in another character vector, my-
VariableNames. This makes it much easier to manage when you have a more
realistic data set that may contain hundreds of variables:
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myVariableNames <- c("id", "gender", "q1", "q2", "q3", "q4")

Now we will do the same with our variable widths. This makes our next
example, which reads multiple records per case, much easier:

myVariableWidths <- c(2, -1, 1, 1, 1, 1, 1)

Now we will put it all together in a call to the read.fwf function:

mydata <- read.fwf(

file = myfile,

width = myVariableWidths,

col.names = myVariableNames,

row.names = "id",

na.strings = "",

fill = TRUE,

strip.white = TRUE)

Running this code will read the file in exactly the same was as in the
previous example where we filled in all the values directly into the argument
fields.

6.6.2 Example Programs for Reading Fixed-Width Text Files, One
Record per Case

These programs do not save the data as they skip the workshop variable for
demonstration purposes.

SAS Program for Fixed-Width Text Files, One Record per Case

* Filename: ReadFWF1.sas ;

LIBNAME myLib 'C:\myRfolder';

DATA myLib.mydata;

INFILE '\myRfolder\mydataFWF.txt' MISSOVER;

INPUT id 1-2 workshop 3 gender $ 4

q1 5 q2 6 q3 7 q4 8;

RUN;

SPSS Program for Fixed-Width Text Files, One Record per Case

* Filename: ReadFWF1.sps .

CD 'C:\myRfolder'.

DATA LIST FILE='mydataFWF.txt' RECORDS=1

/1 id 1-2 workshop 3 gender 4 (A) q1 5 q2 6 q3 7 q4 8.

LIST.
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R Program for Fixed-Width Text Files, One Record per Case

# Filename: ReadFWF1.R

setwd("c:/myRfolder")

mydata <- read.fwf(

file = "mydataFWF.txt",

width = c(2, -1, 1, 1, 1, 1, 1),

col.names = c("id", "gender", "q1", "q2", "q3", "q4"),

row.names = "id",

na.strings = "",

fill = TRUE,

strip.white = TRUE)

mydata

# Again using "macro substitution".

myfile <- "mydataFWF.txt"

myVariableNames <- c("id", "gender", "q1", "q2", "q3", "q4")

myVariableWidths <- c(2, -1, 1, 1, 1, 1, 1)

mydata <- read.fwf(

file = myfile,

width = myVariableWidths,

col.names = myVariableNames,

row.names = "id",

na.strings = "",

fill = TRUE,

strip.white = TRUE)

mydata

6.7 Reading Fixed-Width Text Files, Two or More
Records per Case

It is common to have to read several records per case. In this section we
will read two records per case, but it is easy to generalize from here to any
number of records. This section builds on the section above, so if you have
not just finished reading it, you will want to now. We will only use the macro
substitution form in this example.

First, we will store the filename in the character vector named myfile:

myfile <- "/mydataFWF.txt"

Next, we will store the variable names in another character vector. We will
pretend that our same file now has two records per case with q1 to q4 on the
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first record and q5 to q8 in the same columns on the second. Even though id,
workshop, and gender appear on every line, we will not read them again from
the second line. Here are our variable names:

myVariableNames <- c("id", "workshop", "gender",

"q1", "q2", "q3", "q4",

"q5", "q6", "q7", "q8" )

Now we need to specify the columns to read. We must store the column
widths for each line of data (per case) in their own vectors. Note that on
record 2 we begin with −2, −1, −1 to skip the values for id, workshop, and
gender.

myRecord1Widths <- c( 2, 1, 1, 1, 1, 1, 1)

myRecord2Widths <- c(-2,-1,-1, 1, 1, 1, 1)

Next, we need to store both of the above variables in a list. The list

function below combines the two record width vectors into one list named
myVariableWidths:

myVariableWidths <- list(myRecord1Widths, myRecord2Widths)

Let us look at the new list:

> myVariableWidths

[[1]]

[1] 2 1 1 1 1 1 1

[[2]]

[1] -2 -1 -1 1 1 1 1

You can see that the component labeled [[1]] is the first numeric vector and
the one labeled [[2]] is the second. In SAS you would tell it that there are two
records per case by using “#2” to move to the second record. Similarly, SPSS
uses “/2”. R uses a very different approach to change records! It is the fact
that the list of record lengths contains two components that tells R we have
two records per case. When it finishes using the record widths stored in the
first component of the list, it will automatically move to the second record,
and so on.

Now we are ready to use the read.fwf function to read the data file:

> mydata <- read.fwf(

+ file = myfile,

+ width = myVariableWidths,

+ col.names = myVariableNames,

+ row.names = "id",

+ na.strings = "",
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+ fill = TRUE,

+ strip.white = TRUE)

Warning message:

In readLines(file, n = thisblock) :

incomplete final line found on 'mydataFWF.txt'

workshop gender q1 q2 q3 q4 q5 q6 q7 q8

1 1 f 1 1 5 1 2 1 4 1

3 1 f 2 2 4 3 3 1 NA 3

5 1 m 3 5 2 4 5 4 5 5

7 1 m 5 3 4 4 4 5 5 5

You can see we now have only four records and eight q variables, so it
has worked well. It is also finally obvious that the row names do not always
come out as simple sequential numbers. It just so happened that that is what
we have had until now. Because we are setting our row names from our id
variable, and we are reading two records per case, we end up with only the
odd-numbered values. However, if we had let R create its own row names, they
would have ended up,“1,”“2,”“3,”and“4.”The odd-numbered row names also
help us understand why no value of gender is now missing: we did not read
gender from the fourth record in the file.

I did not press the Enter key at the end of the last line of data, causing R
to think that the final line was incomplete. That does not cause problems.

6.7.1 Example Programs to Read Fixed-Width Text Files with
Two Records per Case

SAS Program to Read Two Records per Case

* Filename: ReadFWF2.sas ;

DATA temp;

INFILE '\myRfolder\mydataFWF.txt' MISSOVER;

INPUT

#1 id 1-2 workshop 3 gender 4 q1 5 q2 6 q3 7 q4 8

#2 q5 5 q6 6 q7 7 q8 8;

PROC PRINT;

RUN;

SPSS Program to Read Two Records per Case

* Filename: ReadFWF2.sps .
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DATA LIST FILE='\myRfolder\mydataFWF.txt' RECORDS=2

/1 id 1-2 workshop 3 gender 4 (A) q1 5 q2 6 q3 7 q4 8

/2 q5 5 q6 6 q7 7 q8 8.

LIST.

R Program to Read Two Records per Case

# Filename: ReadFWF2.R

setwd("C:/myRfolder")

# Set all the values to use.

myfile <- "mydataFWF.txt"

myVariableNames <- c("id", "workshop", "gender",

"q1", "q2", "q3", "q4",

"q5", "q6", "q7", "q8")

myRecord1Widths <- c( 2, 1, 1, 1, 1, 1, 1)

myRecord2Widths <- c(-2,-1,-1, 1, 1, 1, 1)

myVariableWidths <- list(myRecord1Widths, myRecord2Widths)

#Now plug them in and read the data:

mydata <- read.fwf(

file = myfile,

width = myVariableWidths,

col.names = myVariableNames,

row.names = "id",

na.strings = "",

fill = TRUE,

strip.white = TRUE )

mydata

6.8 Reading Excel Files

The easiest way to read or write Excel files is to use Hans-Peter Suter’s aptly
named xlsReadWrite package [53]. You begin its installation as usual:

install.packages("xlsReadWrite")

However, when you load the package from your library for the first time, it
will tell you that you need an additional command to complete the installation:

library("xlsReadWrite")

xls.getshlib()
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The xls.getshlib gets a binary file that is not distributed through
CRAN. You only need to run that function once when you first install
xlsReadWrite.

Using xlsReadWrite is very easy. You can read a file using:

> setwd("c:/myRfolder")

> mydata <- read.xls("mydata.xls")

> mydata

id workshop gender q1 q2 q3 q4

1 1 1 f 1 1 5 1

2 2 2 f 2 1 4 1

...

If you have an id variable in the first column and you do not name it,
unlike other R functions, it will not assume that it should go in the row
names attribute. Instead, it will name the variable V1. You can transfer the
values from any variable to the row names attribute by adding the rowNames
argument.

As of this writing, the package is not able to read or write files in Excel’s
newer XLSX format. You can read such files using ODBC as shown in the next
section. You can also read XLSX files and save them as XLS files using Ex-
cel or the free OpenOffice.org (http://www.openoffice.org/) or LibreOffice
(http://www.documentfoundation.org/).

There is a “Pro” version of xlsReadWrite that has added features, such as
the ability to read specific cell ranges or to to append what it writes to the
bottom of an existing Excel file. It also has more functions to convert Excel
date and time variables. It is available at http://www.swissr.org/.

6.8.1 Example Programs for Reading Excel Files

SAS Program for Reading Excel Files

* Filename: ReadExcel.sas;

LIBNAME myLib "c:\myRfolder";

PROC IMPORT OUT = mylib.mydata

DATAFILE = "C:\myRfolder\mydata.xls"

DBMS = EXCELCS REPLACE;

RANGE = "Sheet1$";

SCANTEXT = YES;

USEDATE = YES;

SCANTIME = YES;

RUN;



148 6 Data Acquisition

SPSS Program for Reading Excel Files

* Filename: ReadExcel.sps.

GET DATA

/TYPE=XLS

/FILE='C:\myRfolder\mydata.xls'

/SHEET=name 'Sheet1'

/CELLRANGE=full

/READNAMES=on

/ASSUMEDSTRWIDTH=32767.

EXECUTE.

R Program for Reading Excel Files

# Filename: ReadExcel.R

# Do this once:

install.packages("xlsReadWrite")

library("xlsReadWrite")

xls.getshlib()

# Do this each time:

library("xlsReadWrite")

setwd("c:/myRfolder")

mydata <- read.xls("mydata.xls")

mydata

save(mydata, "mydata.RData")

6.9 Reading from Relational Databases

R has the ability to access data in most popular database programs. The R
Data Import/Export manual that appears in the Help> Manuals (in PDF)
menu covers this area thoroughly. I will give a brief overview of it by using
Ripley and Lapsley’s RODBC package [47]. This package comes with the main
R installation. However, it requires Microsoft’s Open Database Connectivity
standard (ODBC). That comes standard with Windows, but you must add it
yourself if you use Macintosh, Linux, or UNIX.

Accessing a database normally requires installing one on your computer
and then using your operating system to establish a connection to it. Instead,
we will simulate this process by using ODBC to access our practice Excel file.
You do not have to have Excel installed for this to work, but if you are not a
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Windows user, you will have to install an ODBC driver to use this approach.
Here is how to read an Excel file using ODBC:

library("RODBC")

myConnection <- odbcConnectExcel("mydata.xls")

Now that the connection is established, we can read it using the sqlFetch
function and then close the connection:

> mydata <- sqlFetch(myConnection, "Sheet1")

> close(myConnection)

> mydata

id workshop gender q1 q2 q3 q4

1 1 1 f 1 1 5 1

2 2 2 f 2 1 4 1

3 3 1 f 2 2 4 3

4 4 2 3 1 NA 3

5 5 1 m 4 5 2 4

6 6 2 m 5 4 5 5

7 7 1 m 5 3 4 4

8 8 2 m 4 5 5 5

If you do not name the id variable, R will not assume the first column is
an id variable and so will not transfer its contents to the row names attribute.
Instead, it will name the first column “F1.”

6.10 Reading Data from SAS

If you have SAS installed on your computer, you can read SAS data sets from
within R. If you have Revolution R Enterprise, a commercial version of R
from Revolution Analytics, you can read SAS data sets without having SAS
installed. Finally, without having SAS or Revolution R Enterprise, R can still
read SAS XPORT files.

If you do have SAS installed on your machine, you can use SAS itself to
help read and translate any SAS data set using the read.ssd function in the
foreign package that comes with the main R distribution:

> library("foreign")

> mydata <- read.ssd("c:/myRfolder", "mydata",

+ sascmd = "C:/Program Files/SAS/SASFoundation/9.2/sas.exe")

> mydata
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ID WORKSHOP GENDER Q1 Q2 Q3 Q4

1 1 1 f 1 1 5 1

2 2 2 f 2 1 4 1

...

The read.ssd function call above uses three arguments:

1. The libname, or path where your SAS data set is stored. In this example,
the file is stored in myRfolder on my C: drive.

2. The member name(s). In this example, I am reading mydata.sas7bdat.
You do not list the file extension along with the member name.

3. The sascmd argument. This shows the full path to the sas.exe command.

If you do not have SAS installed, you can read SAS data sets in XPORT
format. Although the foreign package reads XPORT files too, it lacks im-
portant capabilities. Functions in Harrell’s Hmisc package add the ability to
read formatted values, variable labels, and lengths.

SAS users rarely use the LENGTH statement, accepting the default storage
method of double precision. This wastes a bit of disk space but saves program-
ming time. However, since R saves all its data in memory, space limitations
are far more important. If you use the SAS LENGTH statement to save space,
the sasxport.get function in Hmisc will take advantage of it. However, un-
less you know a lot about how computers store data, it is probably best to
only shorten the length used to store integers. The Hmisc package does not
come with R but it is easy to install. For instructions, see Sect. 2.1, “Installing
Add-on Packages.”

The example below loads the two packages we need and then translates
the data.

library("foreign")

library("Hmisc")

mydata <- sasxport.get("mydata.xpt")

The sasxport.get function has many arguments to control its actions. It
is documented in An Introduction to S and the Hmisc and Design Libraries
[2].

Another way to read SAS files is via the SAS ODBC Driver. It lets you
read files using the RODBC package described in Sec. 6.9.

6.10.1 Example Programs to Write Data from SAS
and Read It into R

Unlike most of our example programs, the SAS and R code here do opposite
things rather than the same thing. The first program writes the data from
SAS, and the second reads into R both the original SAS data set and the
XPORT file created by the SAS program.
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SAS Program to Write Data from SAS

* Filename: WriteXPORT.sas ;

LIBNAME myLib 'C:\myRfolder';

LIBNAME To_R xport '\myRfolder\mydata.xpt';

DATA To_R.mydata;

SET myLib.mydata;

RUN;

R Program to Read a SAS Data Set

# Filename: ReadSAS.R

setwd("c:/myRfolder")

# Reads ssd or sas7bdat if you have SAS installed.

library("foreign")

mydata <- read.ssd("c:/myRfolder", "mydata",

sascmd = "C:/Program Files/SAS/SASFoundation/9.2/sas.exe")

mydata

# Reads SAS export format without installing SAS

library("foreign")

library("Hmisc")

mydata <- sasxport.get("mydata.xpt")

mydata

6.11 Reading Data from SPSS

If you have SPSS 16 or later, the best way to read data into R from SPSS is by
using the SPSS-R Integration Plug-in. It includes support of recent features
such as long file names. For details, see Sect. 3.7.

You can also install a free ODBC driver in the IBM SPSS Data Access
Pack that will let you read SPSS files using the RODBC package described in
Sec. 6.9.

If you do not have SPSS, you can read an SPSS save file using the spss.get
function in the foreign package:

> library("foreign")
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> mydata <- read.spss("mydata.sav",

+ use.value.labels = TRUE,

+ to.data.frame = TRUE)

> mydata

id workshop gender q1 q2 q3 q4

1 1 1 f 1 1 5 1

2 2 2 f 2 1 4 1

3 3 1 f 2 2 4 3

4 4 2 3 1 NA 3

...

Setting to.data.frame to TRUE gets the data into a data frame rather
than as a list. Setting the use.value.labels argument to TRUE causes it
to convert any variable with value labels to R factors with those labels. That
keeps the labels but turns them into categorical variables. This is the default
value, so I list it here only to point out its importance. Setting it to FALSE
will leave your variables numeric, allowing you to calculate means and stan-
dard deviations more easily. SPSS users often have Likert scale 1 through
5 items stored as scale variables (numeric vectors in R) and have labels as-
signed to them. For more details about factors, Read Sect. 11.1, “Value Labels
or Formats (and Measurement Level).”

See help("read.spss") when the foreign package is loaded for many
more arguments that control the way the file is read.

Note that it left gender with a blank value instead of setting that to miss-
ing. You could fix that with:

mydata[mydata == " "] <- NA

or any of the other methods discussed in Section10.5, “Missing Values”.
If you have an SPSS portable file, you can read that using the spss.get

function in the Hmisc package. For instructions on installing Hmisc, see
Sect. 2.1, “Installing Add-on Packages”.

Here is an example:

library("Hmisc")

mydata <- spss.get("mydata.por")

It also has a use.value.labels argument, but I did not use it here.
Other useful arguments include lowernames = TRUE to convert all names

to lowercase and datevars to tell R about date variables to convert. After
you have loaded the Hmisc package, you can use help("spss.get") for more
information.

6.11.1 Example Programs for Reading Data from SPSS

Unlike most of our example programs, the SPSS and R code here do opposite
things rather than the same thing.
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SPSS Program to Write a Portable Format File

* Filename: WritePortable.sps

CD 'C:\myRfolder'.

GET FILE='mydata.sav'.

EXPORT OUTFILE='C:\myRfolder\mydata.por'.

R Program to Read an SPSS Data File

# Filename: ReadSPSS.R

setwd("c:/myRfolder")

library("foreign")

mydata <- read.spss("mydata.sav",

use.value.labels = TRUE,

to.data.frame = TRUE)

mydata

mydata[mydata == " "] <- NA

library("Hmisc")

mydata <- spss.get("mydata.por",

use.value.labels = TRUE)

mydata

save(mydata, "mydata.RData")

6.12 Writing Delimited Text Files

Writing text files from R is generally much easier than reading them because
you know exactly what you already have. You have no worries about extra-
neous commas or tab characters causing trouble.

Writing a comma-delimited file is as simple as:

write.csv(mydata, "mydataFromR.csv")

Of course you have to consider who is likely to read the file and what their
concerns are. For example, an American sending a file to Europe might want
to look at the help files for read.csv2, which uses commas for decimal points
and semicolons for delimiters.

To write a tab-delimited file, there is no direct equivalent to read.delim.
Instead, you use write.table. Accepting all the defaults will give you a space-
delimited file with “NA” written for missing values. Many packages, SAS and
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SPSS included, will print warnings when they read “NA” strings in numeric
variables and then set them to missing. Here is how it works:

write.table(mydata, "mydata.txt")

If necessary, you can specify many different arguments to control what
write.table does. Here is a more complicated example:

write.table(mydata,

file = "mydataFromR.tab",

quote = FALSE,

sep = "\t",

na = "",

row.names = TRUE,

col.names = TRUE)

This function call uses seven arguments:

1. The name of the R data frame to write out.
2. The file argument names the output text data file. R will write it to the

working directory.
3. The quote = FALSE argument tells R not to write quotes around character

data like “m” and “f.” By default, it will write the quotes.
4. The sep = "\t" that tells it the separator (delimiter) to use between

values is one single tab. Changing that to sep = "," would write out a
comma-delimited file instead. If you did that, you would want to change
the filename to “mydata2.csv.”

5. The na = "" argument tells R not to write anything to represent missing
values. By default, it will write out “NA” instead. That is what you want
only if you plan to read the data back into R. Few other packages recognize
NA as a code for missing values. SAS and SPSS will convert it to missing,
but they will generate a lot of irritating messages, so it is probably best
to use a blank.

6. The row.names = TRUE argument tells R to write row names in the first
column of the file. In other words, it will write out an ID-type variable.
This is the default value, so you do not actually need to list it here. If you
do not want it to write row names, then you must use row.names = FALSE.

7. The col.names = TRUE argument tells R to write variable names in the
first row of the file. This is the default value, so you do not actually need
to list it here. If you do not want it to write variable names, then you
must use col.names = FALSE. Unlike most programs, R will not write
out a name for an ID variable.

6.12.1 Example Programs for Writing Delimited Text Files

SAS Program for Writing Delimited Text Files

* Filename: WriteDelimited.sas;
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LIBNAME myLib 'C:\myRfolder';

PROC PRINT DATA=myLib.mydata; run;

PROC EXPORT DATA= MYLIB.MYDATA

OUTFILE= "C:\myFolder\mydataFromSAS.csv"

DBMS=CSV REPLACE;

PUTNAMES=YES;

RUN;

PROC EXPORT DATA= MYLIB.MYDATA

OUTFILE= "C:\myFolder\mydataFromSAS.txt"

DBMS=TAB REPLACE;

PUTNAMES=YES;

RUN;

SPSS Program for Writing Delimited Text Files

* Filename: WriteDelimited.sps

GET

FILE='C:\myRfolder\mydata.sav'.

DATASET NAME DataSet2 WINDOW=FRONT.

SAVE TRANSLATE OUTFILE='C:\myRfolder\mydataFromSPSS.csv'

/TYPE=CSV

/MAP

/REPLACE

/FIELDNAMES

/CELLS=VALUES.

SAVE TRANSLATE OUTFILE='C:\myRfolder\mydataFromSPSS.dat'

/TYPE=TAB

/MAP

/REPLACE

/FIELDNAMES

/CELLS=VALUES.

R Program for Writing Delimited Text Files

# Filename: WriteDelimited.R

setwd("c:/myRfolder")
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write.csv(mydata, "mydataFromR.csv")

write.table(mydata, "mydataFromR.txt")

write.table(mydata,

file = "mydataFromR.txt",

quote = FALSE,

sep = "\t",

na = " ",

row.names = TRUE,

col.names = TRUE)

# Look at the contents of the last file.

file.show("mydataFromR.txt")

6.13 Viewing a Text File

When you are writing data from R, it is helpful to be able to open the file(s)
under program control. That way you can adjust the arguments until you get
what you need.

To look at the contents of any text file in R, you can use the file.show

function. On Windows or Macintosh, it will open a read-only window showing
you the file’s contents. On Linux or UNIX it will simply list the file’s contents.

Here is an example. Note that it did not write out a name for the row
names variable, so the name workshop appears in the first column:

> file.show("mydataFromR.csv")

workshop gender q1 q2 q3 q4

1 R f 1 1 5 1

2 SAS f 2 1 4 1

...

6.14 Writing Excel Files

Writing an Excel file is easy using the xlsReadWrite package described in
Sect. 6.8.

library("xlsReadWrite")

write.xls(mydata, "mydataFromR.xls")

As of this writing, xlsReadWrite is not able to write files in Excel’s newer
XLSX format. However, since almost any package can read the older XLS
format, it is not a cause for concern as it was when we read Excel files.
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6.14.1 Example Programs for Writing Excel Files

SAS Program for Writing Excel Files

* Filename: WriteExcel.sas;

LIBNAME mylib "c:\myRfolder";

PROC EXPORT DATA= MYLIB.MYDATA

OUTFILE= "C:\myRfolder\mydata.xls"

DBMS=EXCELCS LABEL REPLACE;

SHEET="mydata";

RUN;

SPSS Program for Writing Excel Files

* Filename: WriteExcel.sps .

GET FILE = 'C:\myRfolder\mydata.sav'.

DATASET NAME DataSet2 WINDOW=FRONT.

SAVE TRANSLATE OUTFILE='C:\myRfolder\mydataFromSPSS.xls'

/TYPE=XLS

/VERSION=2

/MAP

/REPLACE

/FIELDNAMES.

EXECUTE.

R Program for Writing Excel Files

# Filename: WriteExcel.R

# Do this once:

install.packages("xlsReadWrite")

library("xlsReadWrite")

xls.getshlib()

# Do this each time:

library("xlsReadWrite")

setwd("c:/myRfolder")

load("mydata.RData")

write.xls(mydata, "mydataFromR.xls")
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6.15 Writing to Relational Databases

Writing to databases is done in a very similar manner to reading them.
See Sect. 6.9 for the software requirements. The main difference is the
readonly = FALSE argument on the odbcConnectExcel function call:

library("RODBC")

myConnection <- odbcConnectExcel("mydataFromR.xls",

readOnly = FALSE)

sqlSave(myConnection, mydata)

close(myConnection)

The SAS and SPSS approaches to writing to relational databases are be-
yond our scope.

6.16 Writing Data to SAS and SPSS

In Sect. 6.12, “Writing Delimited Text Files,” we examined several ways to
write text files. In this section we will use the write.foreign function to write
out a comma-delimited text file along with either a SAS or SPSS program file
to match. To complete the importation into SAS or SPSS, you must edit the
program file in SAS or SPSS and then execute it to read the text file and
finally create a data set. To begin the process, you must load the foreign
package that comes with the main R distribution.

library("foreign")

write.foreign(mydata,

datafile = "mydataFromR.csv",

codefile = "mydata.sas",

package = "SAS")

This function call uses four arguments:

1. The name of the R data frame you wish to write out.
2. The datafile argument tells R the name of the text data file. R will write

it to the current working directory unless you specify the full path in the
filename.

3. The codefile argument tells R the filename of a program that SAS or
SPSS can use to read the text data file. You will have to use this file in
SAS or SPSS to read the data file and create a SAS- or SPSS-formatted
file. R will write it to the current working directory unless you specify the
full path in the filename.

4. The package argument takes the values “SAS” or “SPSS” to determine
which type of program R writes to the codefile location. Note that these
two examples write out the gender values as 1 and 2 for “f” and “m,”
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respectively. It then creates SAS formats or SPSS value labels for those
values, so they will display as f and m when you read them into your other
package. Some people prefer other values, or they prefer converting factors
to character variables before writing the file out. To change those values,
read Sect. 11.1, “Value Labels or Formats (and Measurement Level).”

Here is the SAS program that R wrote:

* Written by R;

* write.foreign(mydata, datafile = "mydataFromR.txt",

codefile = "mydataFromR.sas", ;

PROC FORMAT;

value gender

1 = " "

2 = "f"

3 = "m"

;

DATA rdata ;

INFILE "mydataFromR.txt"

DSD

LRECL= 15 ;

INPUT

workshop

gender

q1

q2

q3

q4

;

FORMAT gender gender. ;

RUN;

You can see it needs a bit of work, but you could use this to read the
data into R fairly quickly and you would have the formats that you would
otherwise have lacked using the other approaches to write text files.

6.16.1 Example Programs to Write Data to SAS and SPSS

This section presents programs to write a text file from R for use in any
program. They can also be used to write text files and matching SAS and
SPSS programs to read them.
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R Program to Write Data to SAS

This program writes data to one file and a SAS program to another file. You
run the SAS program in SAS to read the data into that package.

# Filename: WriteSAS.R

setwd("c:/myRfolder")

library("foreign")

write.foreign(mydata,

datafile = "mydataFromR.txt",

codefile = "mydataFromR.sas",

package = "SAS")

# Look at the contents of our new files.

file.show("mydataFromR.txt")

file.show("mydataFromR.sas")

R Program to Write Data to SPSS

This program exports data to one file and an SPSS program to another file.
You run the SPSS program in SPSS to read the data into that package.

# Filename: WriteSPSS.R

setwd("c:/myRfolder")

library("foreign")

write.foreign(mydata,

datafile = "mydataFromR.txt",

codefile = "mydataFromR.sps",

package = "SPSS")

# Look at the contents of our new files.

file.show("mydataFromR.txt")

file.show("mydataFromR.sps")
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Selecting Variables

In SAS and SPSS, selecting variables for an analysis is simple, while selecting
observations is often much more complicated. In R, these two processes can be
almost identical. As a result, variable selection in R is both more flexible and
quite a bit more complex. However, since you need to learn that complexity
to select observations, it does not require much added effort.

Selecting observations in SAS or SPSS requires the use of logical conditions
with commands like IF, WHERE, SELECT IF, or FILTER. You do not usually
use that logic to select variables. It is possible to do so, through the use of
macros or, in the case of SPSS, Python, but it is not a standard approach.
If you have used SAS or SPSS for long, you probably know dozens of ways
to select observations, but you did not see them all in the first introductory
guide you read. With R, it is best to dive in and see all of the methods of
selecting variables because understanding them is the key to understanding
other documentation, especially the help files and discussions on the R-help
mailing list. Even though you select variables and observations in R using
almost identical methods, I will describe them in two different chapters, with
different example programs. This chapter focuses only on selecting variables.
In the next chapter I will use almost identical descriptions with very similar
examples for selecting observations. I do so to emphasize the similarity of the
two tasks, as this is such an alien concept to SAS and SPSS users. In the
relatively short Chap. 9, I will combine the methods and show how to select
variables and observations simultaneously.

7.1 Selecting Variables in SAS and SPSS

Selecting variables in SAS or SPSS is quite simple. It is worth reviewing their
basic methods before discussing R’s approach. Our example data set contains
the following variables: workshop, gender, q1, q2, q3, and q4. SAS lets you
refer to them by individual name or in contiguous order separated by double
dashes, “--,” as in
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PROC MEANS DATA=myLib.mydata; VAR workshop--q4;

SAS also uses a single dash, “-,” to request variables that share a numeric
suffix, even if they are not next to each other in the data set:

PROC MEANS DATA=myLib.mydata; VAR q1-q4;

You can select all variables beginning with the letter “q” using the colon
operator.

PROC MEANS DATA=myLib.mydata; VAR q: ;

Finally, if you do not tell it which variable to use, SAS uses them all.
SPSS allows you to list variables names individually or with contiguous

variables separated by “TO,” as in

DESCRIPTIVES VARIABLES=gender to q4.

If you want SPSS to analyze all variables in a data set, you use the keyword
ALL.

DESCRIPTIVES VARIABLES=ALL.

SPSS’s main command language does not offer a built-in way to easily
select variables that begin with a common root like“q”. However, the company
provides the SPSS extension command SPSSINC SELECT VARIABLES that
can make this type of selection.

Now let us turn our attention to how R selects variables.

7.2 Subscripting

In Chap. 5, “Programming Language Basics,” I described how you could select
the elements (values) of a vector or matrix or the components (often variables)
of a data frame or list using subscripting. Subscripting allows you to follow an
object’s name with selection information in square brackets:

vector[elements]

matrix[rows, columns]

data[rows, columns]

list[[component]]

As you will see throughout this chapter and the next, the selection infor-
mation you place in the subscript brackets can be index values (e.g., 1, 2, 3,
etc.), logical selections (e.g., gender == “f”), or names (e.g., “gender”).
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If you leave the subscripts out, R will process all rows and all columns.
Therefore, the following three statements have the same result, a summary
of all the rows (variables) and all the columnns (observations or cases) of
mydata:

summary( mydata )

summary( mydata[ ] )

summary( mydata[ , ] )

This chapter focuses on the second parameter, the columns (variables).

7.3 Selecting Variables by Index Number

Coming from SAS or SPSS, you would think a discussion of selecting variables
in R would begin with variable names. R can use variable names, of course,
but column index numbers are more fundamental to the way R works. That is
because objects in R do not have to have names for the elements or components
they contain, but they always have index numbers.

Our data frame has six variables or columns, which are automatically given
index numbers, or indices, of 1, 2, 3, 4, 5, and 6. You can select variables by
supplying one index number or a vector of indices in subscript brackets. For
example,

summary( mydata[ ,3] )

selects all rows of the third variable or column, q1. If you leave out a subscript,
it will assume you want them all. If you leave the comma out completely, R
assumes you want a column, so

summary( mydata[3] )

is almost the same as

summary( mydata[ ,3] )

Both refer to our third variable, q1. While the summary function treats the
presence or absence of the comma in the same way, some functions will have
problems. That is because with a comma, the variable selection passes a vector
and without a comma, it passes a data frame that contains only one vector.
To the summary function the result is the same, but some functions prefer one
form or the other. See Chap. 10.19, “Converting Data Structures,” for details.

To select more than one variable using indices, you combine the indices
into a vector using the c function. Therefore, this will analyze variables 3
through 6.

summary( mydata[ c(3,4,5,6) ] )
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You will see the c function used in many ways in R. Whenever R requires
one object and you need to supply it several, it combines the several into one.
In this case, the several index numbers become a single numeric vector.

The colon operator “:” can generate a numeric vector directly, so

summary( mydata[3:6] )

will use the same variables.
Unlike SAS’s use of

workshop--q4

or SPSS’s use of

workshop TO q4

the colon operator is not just shorthand. We saw in an earlier chapter that
entering 1:N causes R to generate the sequence, 1, 2, 3,. . . N. If you use a
negative sign on an index, you will exclude those columns. For example,

summary( mydata[ -c(3,4,5,6) ] )

will analyze all variables except for variables 3, 4, 5, and 6. Your index values
must be either all positive or all negative. Otherwise, the result would be
illogical. You cannot say, “include only these” and “include all but these” at
the same time. Index values of zero are accepted but ignored.

The colon operator can abbreviate patterns of numbers, but you need to
be careful with negative numbers. If you want to exclude columns 3:6, the
following approach will not work:

> -3:6

[1] -3 -2 -1 0 1 2 3 4 5 6

This would, of course, generate an error since you cannot exclude 3 and include
3 at the same time. Adding parentheses will clarify the situation, showing R
that you want the minus sign to apply to just the set of numbers from +3
through +6 rather than –3 through +6:

> -(3:6)

[1] -3 -4 -5 -6

Therefore, we can exclude variables 3 through 6 with

summary( mydata[ -(3:6) ] )

If you find yourself working with a set of variables repeatedly, you can
easily save a vector of indices so you will not have to keep looking up index
numbers:

myQindices <- c(3, 4, 5, 6)

summary( mydata[myQindices] )
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You can list indices individually or, for contiguous variables, use the colon
operator. For a large data set, you could use variables 1, 3, 5 through 20, 25,
and 30 through 100 as follows:

myindices <- c(1, 3, 5:20, 25, 30:100)

This is an important advantage of this method of selecting variables. Most
of the other variable selection methods do not easily allow you to select mixed
sets of contiguous and noncontiguous variables, as you are used to doing in
either SAS or SPSS. For another way to do this, see“Selecting Variables Using
the subset Function”, Sect. 7.9.

If your variables follow patterns such as every other variable or every tenth,
see Chap. 12 for ways to generate other sequences of index numbers.

The names function will extract a vector of variable names from a data
frame. The data.frame function, as we have seen, combines one or more
vectors into a data frame and creates default row names of “1,”“2,”“3,” etc.
Combining these two functions is one way to quickly generate a numbered list
of variable names that you can use to look up index values:

> data.frame( names(mydata) )

names.mydata.

1 workshop

2 gender

3 q1

4 q2

5 q3

6 q4

It is easy to rearrange the variables to put the four q variables in the be-
ginning of the data frame. In that way, you will easily remember, for example,
that q3 has an index value of 3 and so on.

Storing them in a separate data frame is another way to make indices easy
to remember for sequentially numbered variables like these. However, that
approach runs into problems if you sort one data frame, as the rows then no
longer match up in a sensible way. Correlations between the two sets would
be meaningless.

The ncol function will tell you the number of columns in a data frame.
Therefore, another way to analyze all your variables is

summary( mydata[ 1:ncol(mydata) ] )

If you remember that q1 is the third variable and you want to analyze all
of the variables from there to the end, you can use

summary( mydata[ 3:ncol(mydata) ] )
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7.4 Selecting Variables by Column Name

Variables in SAS and SPSS are required to have names, and those names
must be unique. In R, you do not need them since you can refer to variables
by index number as described in the previous section. Amazingly enough, the
names do not have to be unique, although having two variables with the same
name would be a terrible idea! R data frames usually include variable names,
as does our example data: workshop, gender, q1, q2, q3, q4.

Both SAS and SPSS store their variable names within their data sets.
However, you do not know exactly where they reside within the data set.
Their location is irrelevant. They are in there somewhere, and that is all you
need to know. However, in R, they are stored within a data frame in a place
called the names attribute. The names function accesses that attribute, and
you can display them by entering

> names(mydata)

[1] "workshop" "gender" "q1" "q2" "q3" "q4"

To select a column by name, you put it in quotes, as in

summary( mydata["q1"] )

R still uses the form

mydata[row, column]

However, when you supply only one index value, it assumes it is the column.
So

summary( mydata[ ,"q1"] )

works as well. Note that the addition of the comma before the variable name
is the only difference between the two examples above. While the summary

function treats the presence or absence of a comma the same, some functions
will have problems. That is because with a comma, the selection results in a
vector, and without a comma, the selection is a data frame containing only
that vector. See Sect. 10.19 for details.

If you have more than one name, combine them into a single character
vector using the c function. For example,

summary( mydata[ c("q1","q2","q3","q4") ] )

Since it is tedious to write out so many variables repeatedly, sets of variable
names are often stored in character vectors. This allows you to easily use the
vector as what SAS or SPSS would call macro substitution. For example, we
can make that same selection with:
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myQnames <- c("q1", "q2", "q3", "q4")

summary( mydata[myQnames] )

When I start working with a new data set, I often create several sets of
variables like that and use them throughout my analysis. I usually try to make
them as short and descriptive as possible For example, “Qs” for questions and
“demos” for demographics. However, throughout this chapter I have selected
the questions using several methods and I want the names longer to clarify
the examples.

In that last example, the q variable names all ended in numbers, which
would have allowed SAS users to refer to them as q1-q4. Although we have
seen that R’s colon operator can use 1:4 to generate 1, 2, 3, 4, it does not
work directly with character prefixes. So the form q1:q4 does not work in this
context. However, you can paste the letter “q” onto the numbers you generate
using the paste function:

myQnames <- paste( "q", 1:4, sep = "")

summary( mydata[myQnames] )

The paste function call above has three arguments:

1. The string to paste, which for this example is just the letter “q.”
2. The object to paste it to, which is the numeric vector 1, 2, 3, 4 generated

by the colon operator 1:4.
3. The separator character to paste between the two. Since this is set to "",

the function will put nothing between “q” and “1,” then “q” and “2,” and
so on.

R will store the resulting names “q1,” “q2,” “q3,” “q4” in the character
vector myQnames. You can use this approach to generate variable names to
use in a variety of circumstances. Note that merely changing the 1:4 above to
1:400 would generate the sequence from q1 to q400.

R can easily generate other patterns of repeating values that you can use
to create variable names. For details, see Chap. 12, “Generating Data.”

For another way to select variables by name using the colon operator, see
“Selecting Variables Using the Subset Function,” Sect. 7.9.

7.5 Selecting Variables Using Logic

You can select a column by using a logical vector of TRUE/FALSE values.
You can enter one manually or create one by specifying a logical condition.
Let us begin by entering one manually. For example,

summary( mydata[ c(FALSE, FALSE, TRUE, FALSE, FALSE, FALSE) ] )



168 7 Selecting Variables

will select the third column, q1, because the third value is TRUE and the third
column is q1. In SAS or SPSS, the digits 1 and 0 can represent TRUE and
FALSE, respectively. They can do this in R, but they first require processing
by the as.logical function. Therefore, we could also select the third variable
with

summary( mydata[ as.logical( c(0, 0, 1, 0, 0, 0) ) ] )

If we had not converted the 0/1 values to logical FALSE/TRUE, the above
function call would have asked for two variables with index values of zero. Zero
is a valid value, but it is ignored. It would have then asked for the variable
in column 1, which is workshop. Finally, it would have asked for three more
variables in column zero. The result would have been an analysis only for the
first variable, workshop. It would have been a perfectly valid, if odd, request!

Luckily, you do not have to actually enter logical vectors like those above.
Instead, you will generate a vector by entering a logical statement such as

names(mydata) == "q1"

That logical comparison will generate the following logical vector for you:

FALSE, FALSE, TRUE, FALSE, FALSE, FALSE

Therefore, another way of analyzing q1 is

summary( mydata[ names(mydata) == "q1" ] )

While that example is good for educational purposes, in actual use you
would prefer one of the shorter approaches using variable names:

summary( mydata["q1"] )

Once you have mastered the various approaches of variable selection, you
will find yourself alternating among the methods, as each has its advantages
in different circumstances.

The “==” operator compares every element of a vector to a value and
returns a logical vector of TRUE/FALSE values. The vector length will match
the number of variables, not the number of observations, so we cannot store
it in our data frame. So if we assigned it to an object name, it would just
exist as a vector in our R workspace. As we will see in the next chapter, a
similar selection on observations can be stored in the data frame very much
like SPSS’s filter variables.

The “!” sign represents NOT, so you can also use that vector to get all of
the variables except for q1 using the form

summary( mydata[ !names(mydata) == "q1" ] )
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To use logic to select multiple variable names, we can use the OR operator,
“|”. For example, select q1 through q4 with the following approach. Complex
selections like this are much easier when you do it in two steps. First, create
the logical vector and store it; then use that vector to do your selection. In
the name myQtf below, I use the “tf” part to represent TRUE/FALSE. That
will help us remind that this is a logical vector.

myQtf <- names(mydata) == "q1" |

names(mydata) == "q2" |

names(mydata) == "q3" |

names(mydata) == "q4"

Then we can get summary statistics on those variables using

summary( mydata[myQtf] )

Whenever you are making comparisons to many values, you can use the
%in% operator. This will generate exactly the same logical vector as the OR
example above:

myQtf <- names(mydata) %in% c("q1","q2","q3","q4")

summary( mydata[myQtf] )

You can easily convert a logical vector into an index vector that will select
the same variables. For details, see “Converting Data Structures,” Sect. 10.19.

7.6 Selecting Variables by String Search (varname: or
varname1-varnameN)

You can select variables by searching all of the variable names for strings of
text. This approach uses the methods of selection by index number, name,
and logic as discussed above, so make sure you have mastered them before
trying this.

SAS uses the form:

VAR q: ;

to select all of the variables that begin with the letter q. SAS also lets you
select variables in the form

PROC MEANS; VAR q1-q4;

which gets only the variables q1, q2, q3, and q4 regardless of where they occur
in the data set or how many variables may lie in between them. The searching
approach we will use in R handles both cases.
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The main SPSS syntax does not offer this type of selection but it can do
full string searches via Python using the SPSS extension command SPSSINC
SELECT VARIABLES.

R searches variable names for patterns using the grep function. The name
grep itself stands for g lobal regular expression print. It is just a fancy name
for a type of search.

The grep function creates a vector containing variable selection criteria
we need in the form of indices, names, or TRUE/FALSE logical values. The
grep function and the rules that it follows, called regular expressions, appear
in many different software packages and operating systems.

SAS implements this type of search in the PRX function (Perl Regular
eXpressions), although it does not need it for this type of search. Below we
will use the grep function to find the index numbers for names for those that
begin with the letter q:

myQindices <- grep("^q", names(mydata), value = FALSE)

The grep function call above uses three arguments.

1. The first is the command string, or regular expression, “^p”, which means,
“find strings that begin with lowercase p.” The symbol “^” represents “be-
gins with.”You can use any regular expression here, allowing you to search
for a wide range of patterns in variable names. We will discuss using wild-
card patterns later.

2. The second argument is the character vector that you wish to search,
which, in our case, is our variable names. Substituting names(mydata)

here will extract those names.
3. The value argument tells it what to return when it finds a match. The

goal of grep in any computer language or operating system is to find
patterns. A value of TRUE here will tell it to return the variable names
that match the pattern we seek. However, in R, indices are more important
than names, so the default setting is FALSE to return indices instead. We
could leave it off in this particular case, but we will use it the other way
in the next example, so we will list it here for educational purposes.

The contents of myQindices will be 3, 4, 5, 6. In all our examples that use
that name, it will have those same values.

To analyze those variables, we can then use

summary( mydata[myQindices] )

Now let us do the same thing but have the grep function save the actual
variable names. All we have to do is set value = TRUE.

myQnames <- grep("^q", names(mydata), value = TRUE)

The character vector myQnames now contains the variable names “q1,”“q2,”
“q3,” and “q4,” and we can analyze those variables with
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summary( mydata[myQnames] )

This approach gets what we expected: variable names. Since it uses names,
it makes much more sense to a SAS or SPSS user. So, why did I not do this
first? Because in R, indices are more flexible than variable names.

Finally, let us see how we would use this search method to select variables
using logic. The %in% operator works just like the IN operator in SAS. It finds
things that occur in a set of character strings. We will use it to find when a
member of all our variable names (stored in mynames) appears in the list of
names beginning with “q” (stored in myQnames). The result will be a logical
set of TRUE/FALSE values that indicate that the q variables are the last
four:

FALSE, FALSE, TRUE, TRUE, TRUE, TRUE

We will store those values in the logical vector myQtf:

myQtf <- names(mydata) %in% myQnames

Now we can use the myQtf vector in any analysis we like:

summary( mydata[myQtf] )

It is important to note that since have been searching for variables that
begin with the letter “q,” our program would have also found variables qA
and qB if they had existed. We can narrow our search with a more complex
search expression that says the letter “q” precedes at least one digit. This
would give us the ability to simulate SAS’s ability to refer to variables that
have a numeric suffix, such as “var1-var100.”

This is actually quite easy, although the regular expression is a bit cryptic.
It requires changing the myQnames line in the example above to the following:

myQnames <- grep("^q[1-9]", names(mydata), value = TRUE)

This regular expression means“any string that begins with ‘q,’ and is followed
by one or more numerical digits.” Therefore, if they existed, this would select
q1, q27, and q1old but not qA or qB. You can use it in your programs by
simply changing the letter q to the root of the variable name you are using.

You may be more familiar with the search patterns using wildcards in Mi-
crosoft Windows. That system uses “*” to represent any number of characters
and “?” to represent any single character. So the wildcard version of any vari-
able name beginning with the letter q is“q*.”Computer programmers call this
type of symbol a “glob,” short for global. R lets you convert globs to regular
expressions with the glob2rx function. Therefore, we could do our first grep
again in the form

myQindices <- grep(glob2rx("q*"), names(mydata), value = FALSE)

Unfortunately, wildcards or globs are limited to simple searches and cannot
do our example of q ending with any number of digits.
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7.7 Selecting Variables Using $ Notation

You can select a column using $ notation, which combines the name of the
data frame and the name of the variable within it, as in

summary( mydata$q1 )

This is referred to in several ways in R, including “$ prefixing,”“prefixing by
dataframe$,” or “$ notation.” When you use this method to select multiple
variables, you need to combine them into a single object like a data frame, as
in

summary( data.frame( mydata$q1, mydata$q2 ) )

Having seen the c function, your natural inclination might be to use it for
multiple variables as in

summary( c( mydata$q1, mydata$q2 ) ) # Not good!

This would indeed make a single object, but certainly not the one a SAS or
SPSS user expects. The c function would combine them both into a single
variable with twice as many observations! The summary function would then
happily analyze the new variable. When the data.frame function combines
vectors into a single data frame, they remain separate vectors within that data
frame. That is what we want here.

An important limitation of dollar notation is that you cannot use it with
a matrix. Recall that in Sect. 5.3.4 we put our q variables into mymatrix. The
variable names went along with the vectors. Therefore, this form would work:

mymatrix[ ,"q1"] # Good

but this would not:

mymatrix$q1 # Not good!

As a result, some R users who use matrices that contain row and column
names tend to prefer using names in subscripts since this works with matrices
and data frames.

7.8 Selecting Variables by Simple Name

This section introduces the use of short names for variables stored in a data
frame, like gender instead of mydata$gender. I will cover the technical details
in Chap. 13, “Managing Your Files and Workspace.”

In SAS and SPSS, you refer to variables by short names like gender or q1.
You might have many data sets that contain a variable named gender, but
there is no confusion since you have to specify the data set in advance. In SAS,
you can specify the data set by adding the DATA= option on every procedure.
Alternatively, since SAS will automatically use the last data set you created,
you can pretend you just created a data set by using:
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OPTIONS _LAST_=myLib.mydata;

Every variable selection thereafter would use that data set.
In SPSS, you clarify which data set you want to use by opening it with

GET FILE. If you have multiple data sets open, you instead use DATASET
NAME.

In R, the potential for confusing variable names is greater because it is
much more flexible. For example, you can actually correlate a variable stored
in one data frame with a variable stored in a different data frame! All of the
variable selection methods discussed above made it perfectly clear which data
frame to use, but they required extra typing. You can avoid this extra typing
in several ways.

7.8.1 The attach Function

One approach R offers to simplify the selection of variables is the attach

function. You attach a data frame using the following function call:

attach(mydata)

Once you have done that, you can refer to just q1, and R will know which one
you mean. With this approach, getting summary statistics might look like

summary(q1)

or

summary( data.frame(q1, q2, q3, q4) )

If you finish with that data set and wish to use another, you can detach it
with

detach( mydata )

Objects will detach automatically when you quit R, so using detach is
not that important unless you need to use those variable names stored in a
different data frame. In that case, detach one file before attaching the next.

The attach function works well when selecting existing variables, but it is
best avoided when creating them. An attached data frame can be thought of as
a temporary copy, so changes to existing variables will be lost. Therefore, when
adding new variables to a data frame, you need to use any of the other above
methods that make it absolutely clear where to store the variable. Afterward,
you can detach the data and attach it again to gain access to the modified
or new variables. We will look at the attach function more thoroughly in
Chap. 13, “Managing Your Files and Workspace.”
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7.8.2 The with Function

The with function is another way to use short variable names. It is similar
to using the attach function, followed by any other single function, and then
followed by a detach function. The following is an example:

with( mydata, summary( data.frame(q1, q2, q3, q4) ) )

It lets you use simple names and even lets you create variables safely. The
downside is that you must repeat it with every function, whereas you might
need the attach function only once at the beginning of your program. The
added set of parentheses also increases your odds of making a mistake. To
help avoid errors, you can type this as

with( mydata,

summary( data.frame(q1, q2, q3, q4) )

)

7.8.3 Using Short Variable Names in Formulas

A third way to use short variable names works only with modeling functions.
Modeling functions use formulas to perform analyses like linear regression or
analysis of variance. They also have a data argument that specifies which data
frame to use. This keeps formulas much shorter.

At first glance, R’s data argument looks just like SAS’s DATA option. How-
ever, while each SAS procedure has a DATA option, R’s data argument is found
usually only in modeling functions. In addition, R’s data argument applies
only to the modeling formula itself!

Here are two ways to perform a linear regression. First, using dollar nota-
tion:

lm( mydata$q4 ~ mydata$q1 + mydata$q2 + mydata$q3 )

The following is the same regression, using the data argument to tell the
function which data frame to use:

lm(q4 ~ q1 + q2 + q3, data = mydata)

As formulas get longer, this second approach becomes much easier. For
functions that feature a data argument, this is the approach I recommend. It
is easier to use than either the attach or with functions. It also offers other
benefits when making predictions from a model. We will defer that discussion
to Chap. 17, “Statistics.”

To use this approach, all of the data must reside in the same data frame,
making it less flexible. However, it is usually a good idea to have all of the
variables in the same data frame anyway.

That rule has important implications that may not occur to you at first.
Recall that we initially created our variables as vectors and then combined
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them into a data frame. Until we deleted the redundant vectors, they existed
in our workspace both in and outside of the data frame. Any nonmodeling
function would choose a vector if you referred to it by its short name. But in a
modeling function, using the data argument would force R to use the variable
in the data frame instead. If you used a modeling function and did not use
the data argument, then the function would use the variables stored outside
the data frame. In this example, the two sets of variables were identical, but
that is not always the case.

It is also important to know that the data = mydata argument applies only
to the variables specified in the formula argument. Some modeling functions
can specify which variables to use without specifying a formula. In that case,
you must use an alternate approach (attach or with) if you wish to use shorter
variable names. We will see an example of this when doing t-tests in Chap. 17.

7.9 Selecting Variables with the subset Function

R has a subset function that you can use to select variables (and observa-
tions). It is the easiest way to select contiguous sets of variables by name such
as in SAS

PROC MEANS; VAR q1--q4;

or in SPSS

DESCRIPTIVES VARIABLES=q1 to q4.

It follows the form

subset(mydata, select = q1:q4)

For example, when used with the summary function, it would appear as

summary( subset(mydata, select = q1:q4 ) )

or

summary( subset(mydata, select = c(workshop, q1:q4) ) )

The second example above contains three sets of parentheses. It is very easy
to make mistakes with so many nested functions. A syntax-checking editor will
help. Another thing that helps is to split them across multiple lines:

summary(

subset(mydata, select = c(workshop, q1:q4) )

)

It is interesting to note that when using the c function within the subset
function’s select argument, it combines the variable names, not the vectors
themselves. So the following example will analyze the two variables separately:
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summary(

subset(mydata, select = c(q1,q2) ) # Good

)

That is very different from

summary( c(mydata$q1, mydata$q2) ) # Not good

which combines the two vectors into one long one before analysis.
While the form 1:N works throughout R, the form var1:varN is unique

to the subset function. That and its odd use of the c function in combining
variable names irritates some R users. I find that its usefulness outweighs its
quirks.

7.10 Selecting Variables by List Subscript

Our data frame is also a list. The components of the list are vectors that
form the columns of the data frame. You can address these components of the
list using a special type of subscripting. You place an index value after the
list’s name enclosed in two square brackets. For example, to select our third
variable, we can use

summary( mydata[[3]] )

With this approach, the colon operator will not extract variables 3 through 6:

mydata[[3:6]] # Will NOT get variables 3 through 6.

7.11 Generating Indices A to Z from Two
Variable Names

We have discussed various variable selection techniques. Now we are ready to
examine a method that blends several of those methods together. If you have
not mastered the previous examples, now would be a good time to review
them.

We have seen how the colon operator can help us analyze variables 3
through 6 using the form

summary( mydata[3:6] )

With that method, you have to know the index numbers, and digging
through lists of variables can be tedious work. However, we can have R do
that work for us, finding the index value for any variable name we like. This
call to the names function,

names(mydata) == "q1"
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will generate the logical vector

FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE

because q1 is the third variable. The which function will tell us the index
values of any TRUE values in a logical vector, so

which( names(mydata) == "q1" )

will yield a value of 3. Putting these ideas together, we can find the index
number of the first variable we want, store it in myqA, then find the last
variable, store it in myqZ, and then use them with the colon operator to
analyze our data from A to Z:

myqA <- which( names(mydata) == "q1" )

myqZ <- which( names(mydata) == "q4" )

summary( mydata[ ,myqA:myqZ ] )

7.11.1 Selecting Numeric or Character Variables

When a data frame contains both numeric and character variables, it can be
helpful to select all of one or the other. SAS does this easily; SPSS would
require a Python program to do it. For example, in SAS to print only the
numeric variables followed by only the character ones you could use:

PROC PRINT; VAR _NUMERIC_;

PROC PRINT; VAR _CHARACTER_;

If you wanted to limit your selection to the specific type of variables that
fall between variables A and Z, you would use:

PROC PRINT; VAR A-NUMERIC-Z;

PROC PRINT; VAR A-CHARACTER-Z;

This is easy to do in R, since the class function can check the type of
variable. There is a series of functions that test if a variable’s class is numeric,
character, factor, or logical. Let us use the is.numeric function to see if some
variables are numeric:

> is.numeric( mydata$workshop )

[1] FALSE

> is.numeric( mydata$q1 )

[1] TRUE
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So we see that workshop is not numeric (it is a factor) but q1 is. We would
like to apply that test to each variable in our data frame. Unfortunately, that
puts us into territory that we will not fully cover until Sect. 10.2. However, it
is not much of a stretch to discuss some of it here. The sapply function will
allow us to use the is.numeric function with each variable using the following
form:

> myNums <- sapply(mydata, is.numeric)

> myNums

workshop gender q1 q2 q3 q4

FALSE FALSE TRUE TRUE TRUE TRUE

Since myNums is a logical vector that contains the selection we seek, we
can now easily perform any analysis we like on only those variables using the
form:

> print( mydata[myNums] )

q1 q2 q3 q4

1 1 1 5 1

2 2 1 4 1

3 2 2 4 3

...

This example could easily be changed to select only character variables
using the is.character function or factors using the is.factor function.

We can also extend this idea to selecting only numeric variables that appear
between any two other variables. To do so, we need to refer back to the
previous section. Let us assume we want to get all the numeric variables that
lie between gender and q3.

First we need to determine the index numbers for the variables that de-
termine our range of interest.

> myA <- which( names(mydata) == "gender" )

> myA

[1] 2

> myZ <- which( names(mydata) == "q3" )

> myZ

[1] 5
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So we see that part of our goal is to focus on variables 2 through 5. In
our simple data set, that is obvious, but in a more realistic example we would
want to be able to extract the values.

Next we need to create a logical vector that shows when the full range of
index values falls within the range we seek. We can do this with:

> myRange <- 1:length(mydata) %in% myA:myZ

> myRange

[1] FALSE TRUE TRUE TRUE TRUE FALSE

Recall that the length of a data frame is the number of variables it contains,
and the %in% function finds when the elements of one vector are contained
within another. Knowing the values in our data set, we could have written
that statement as:

myRange <- 1:6 %in% 2:5

We now have two logical vectors: myNums, which shows us which are
numeric, and myRange which shows the range of variables in which we are
interested. We can now combine them and perform an analysis on the numeric
variables between gender and q3 with the following:

> print( mydata[ myNums & myRange ] )

q1 q2 q3

1 1 1 5

2 2 1 4

3 2 2 4

...

Here is a warning that will remain cryptic until you read Sect. 10.2. The
following will not work as you might expect it to:

> apply(mydata, 2, is.numeric)

workshop gender q1 q2 q3 q4

FALSE FALSE FALSE FALSE FALSE FALSE

Why? Because the apply function coerces a data frame into becoming
a matrix. A matrix that contains any factors or character variables will be
coerced into becoming a character matrix!

> apply(mydata, 2, class)

workshop gender q1 q2 q3...

"character" "character" "character" "character" "character"...
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7.12 Saving Selected Variables to a New Data Set

You can use any variable selection method to create a new data frame that
contains only those variables. If we wanted to create a new data frame that
contained only the q variables, we could do so using any method described
earlier. Here are a few variations:

myqs <- mydata[3:6]

myqs <- mydata[ c("q1","q2","q3","q4") ]

This next example will work, but R will name the variables “mydata.q1,”
“mydata.q2,” and so forth, showing the data frame from which they came:

myqs <- data.frame(mydata$q1, mydata$q2,

mydata$q3, mydata$q4)

You can add variable name indicators to give them any name you like. With
this next one, we are manually specifying original names:

myqs <- data.frame(q1 = mydata$q1, q2 = mydata$q2,

q3 = mydata$q3, q4 = mydata$q4)

Using the attach function, the data.frame function leaves the variable names
in their original form:

attach(mydata)

myqs <- data.frame(q1, q2, q3, q4)

detach(mydata)

Finally, we have the subset function with its unique and convenient use of
the colon operator directly on variable names:

myqs <- subset(mydata, select = q1:q4)

7.13 Example Programs for Variable Selection

In the examples throughout this chapter, we used the summary function to
demonstrate how a complete analysis request would look. However, here we
will use the print function to make it easier to see the result of each selection
when you run these programs. Even though

mydata["q1"]

is equivalent to

print( mydata["q1"] )
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because print is the default function, we will use the longer form because it
is more representative of its look with most functions. As you learn R, you
will quickly choose the shorter approach when printing.

For most of the programming examples in this book, the SAS and SPSS
programs are shorter because the R programs demonstrate R’s greater flexibil-
ity. However, in the case of variable selection, SAS and SPSS have a significant
advantage in ease of use. These programs demonstrate roughly equivalent fea-
tures.

7.13.1 SAS Program to Select Variables

* Filename: SelectingVars.sas;

LIBNAME myLib 'C:\myRfolder';

OPTIONS _LAST_=myLib.mydata;

PROC PRINT; RUN;

PROC PRINT; VAR workshop gender q1 q2 q3 q4; RUN;

PROC PRINT; VAR workshop--q4; RUN;

PROC PRINT; VAR workshop gender q1-q4; RUN;

PROC PRINT; VAR workshop gender q: ;

PROC PRINT; VAR _NUMERIC_; RUN;

PROC PRINT; VAR _CHARACTER_; RUN;

PROC PRINT; VAR workshop-NUMERIC-q4; RUN;

PROC PRINT; VAR workshop-CHARACTER-q4; RUN;

* Creating a data set from selected variables;

DATA myLib.myqs;

SET myLib.mydata(KEEP=q1-q4);

RUN;

7.13.2 SPSS Program to Select Variables

* Filename: SelectingVars.sps .

CD 'C:\myRfolder'.

GET FILE='mydata.sav'.

LIST.

LIST VARIABLES=workshop,gender,q1,q2,q3,q4.

LIST VARIABLES=workshop TO q4.

* Creating a data set from selected variables.

SAVE OUTFILE='C:\myRfolder\myqs.sav' /KEEP=q1 TO q4.
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7.13.3 R Program to Select Variables

# Filename: SelectingVars.R

# Uses many of the same methods as selecting observations.

setwd("c:/myRfolder")

load(file = "myData.RData")

# This refers to no particular variables,

# so all are printed.

print(mydata)

# ---Selecting Variables by Index Number---

# These also select all variables by default.

print( mydata[ ] )

print( mydata[ , ] )

# Select just the 3rd variable, q1.

print( mydata[ ,3] ) #Passes q3 as a vector.

print( mydata[3] ) #Passes q3 as a data frame.

# These all select the variables q1,q2,q3 and q4 by indices.

print( mydata[ c(3, 4, 5, 6) ] )

print( mydata[ 3:6 ] )

# These exclude variables q1,q2,q3,q4 by indices.

print( mydata[ -c(3, 4, 5, 6) ] )

print( mydata[ -(3:6) ] )

# Using indices in a numeric vector.

myQindices <- c(3, 4, 5, 6)

myQindices

print( mydata[myQindices] )

print( mydata[-myQindices] )

# This displays the indices for all variables.

print( data.frame( names(mydata) ) )

# Using ncol to find the last index.

print( mydata[ 1:ncol(mydata) ] )

print( mydata[ 3:ncol(mydata) ] )
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# ---Selecting Variables by Column Name---

# Display all variable names.

names(mydata)

# Select one variable.

print( mydata["q1"] ) #Passes q1 as a data frame.

print( mydata[ ,"q1"] ) #Passes q1 as a vector.

# Selecting several.

print( mydata[ c("q1", "q2", "q3", "q4") ] )

# Save a list of variable names to use.

myQnames <- c("q1", "q2", "q3", "q4")

myQnames

print( mydata[myQnames] )

# Generate a list of variable names.

myQnames <- paste( "q", 1:4, sep = "")

myQnames

print( mydata[myQnames] )

# ---Selecting Variables Using Logic---

# Select q1 by entering TRUE/FALSE values.

print( mydata[ c(FALSE,FALSE,TRUE,FALSE,FALSE,FALSE) ] )

# Manually create a vector to get just q1.

print( mydata[ as.logical( c(0, 0, 1, 0, 0, 0) ) ] )

# Automatically create a logical vector to get just q1.

print( mydata[ names(mydata) == "q1" ] )

# Exclude q1 using NOT operator "!".

print( mydata[ !names(mydata) == "q1" ] )

# Use the OR operator, "|" to select q1 through q4,

# and store the resulting logical vector in myqs.

myQtf <- names(mydata) == "q1" |

names(mydata) == "q2" |

names(mydata) == "q3" |

names(mydata) == "q4"

myQtf

print( mydata[myQtf] )
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# Use the %in% operator to select q1 through q4.

myQtf <- names(mydata) %in% c("q1", "q2", "q3", "q4")

myQtf

print( mydata[myQtf] )

# ---Selecting Variables by String Search---

# Use grep to save the q variable indices.

myQindices <- grep("^q", names(mydata), value = FALSE)

myQindices

print( mydata[myQindices] )

# Use grep to save the q variable names (value = TRUE now).

myQnames <- grep("^q", names(mydata), value = TRUE)

myQnames

print( mydata[myQnames] )

# Use %in% to create a logical vector

# to select q variables.

myQtf <- names(mydata) %in% myQnames

myQtf

print( mydata[myQtf] )

# Repeat example above but searching for any

# variable name that begins with q, followed

# by one digit, followed by anything.

myQnames <- grep("^q[[:digit:]]\{1\}",

names(mydata), value = TRUE)

myQnames

myQtf <- names(mydata) %in% myQnames

myQtf

print( mydata[myQtf] )

# Example of how glob2rx converts q* to ^q.

glob2rx("q*")

# ---Selecting Variables Using $ Notation---

print( mydata$q1 )

print( data.frame(mydata$q1, mydata$q2) )
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# ---Selecting Variables by Simple Name---

# Using the "attach" function.

attach(mydata)

print(q1)

print( data.frame(q1, q2, q3, q4) )

detach(mydata)

# Using the "with" function.

with( mydata,

summary( data.frame(q1, q2, q3, q4) )

)

# ---Selecting Variables with subset Function---

print( subset(mydata, select = q1:q4) )

print( subset(mydata,

select = c(workshop, q1:q4)

) )

# ---Selecting Variables by List Subscript---

print( mydata[[3]] )

# ---Generating Indices A to Z from Two Variables---

myqA <- which( names(mydata) == "q1" )

myqA

myqZ <- which( names(mydata) == "q4" )

myqZ

print( mydata[myqA:myqZ] )

# ---Selecting Numeric or Character Variables---

is.numeric( mydata$workshop )

is.numeric( mydata$q1 )

# Find numeric variables

myNums <- sapply(mydata, is.numeric)

myNums
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print( mydata[myNums] )

myA <- which( names(mydata) == "gender" )

myA

myZ <- which( names(mydata) == "q3" )

myZ

myRange <- 1:length(mydata) %in% myA:myZ

myRange

print( mydata[ myNums & myRange ] )

apply(mydata, 2, is.numeric)

apply(mydata, 2, class)

as.matrix(mydata)

# ---Creating a New Data Frame of Selected Variables---

myqs <- mydata[3:6]

myqs

myqs <- mydata[ c("q1", "q2", "q3", "q4") ]

myqs

myqs <- data.frame(mydata$q1, mydata$q2,

mydata$q3, mydata$q4)

myqs

myqs <- data.frame(q1 = mydata$q1, q2 = mydata$q2,

q3 = mydata$q3, q4 = mydata$q4)

myqs

attach(mydata)

myqs <- data.frame(q1, q2, q3, q4)

myqs

detach(mydata)

myqs <- subset(mydata, select = q1:q4)

myqs
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Selecting Observations

It bears repeating that the approaches that R uses to select observations are,
for the most part, the same as those discussed in the previous chapter for
selecting variables. This chapter builds on that one, so if you have not read it
recently, now would be a good time to do so.

Here I focus only on selecting observations. The amount of repetition be-
tween this chapter and the last may seem tedious, but, I have found from
teaching that people learn much more easily when these topics are presented
separately.

If you followed the last chapter easily, feel free to skip this one until you
have problems using one of the approaches for selecting observations. The
next chapter will cover the selection of variables and observations at the same
time but will do so in much less detail.

8.1 Selecting Observations in SAS and SPSS

There are many ways to select observations in SAS and SPSS, and it is beyond
our scope to discuss them all here. However, we will look at some approaches
for comparison purposes. For both SAS and SPSS, if you do not select obser-
vations, they assume you want to analyze all of the data. So in SAS

PROC MEANS;

RUN;

will analyze all of the observations, and in SPSS

DESCRIPTIVES VARIABLES=ALL.

will also use all observations.
To select a subset of observations (e.g., the males), SAS uses the WHERE

statement.
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PROC MEANS;

WHERE gender="m";

RUN;

It is also common to create a logical 0/1 value in the form

female = gender='f';

which you could then apply with

PROC MEANS;

WHERE female;

RUN;

SPSS does the same selection using both the TEMPORARY and the
SELECT IF commands:

TEMPORARY.

SELECT IF(gender EQ "m").

DESCRIPTIVES VARIABLES=ALL.

If we had not used the TEMPORARY command, the selection would have
deleted the females from the data set. We would have had to open the data
set again if we wanted to analyze both groups in a later step. R has no similar
concept. Alternatively, we could create a variable that has a value of 1 for
observations we want and zero otherwise. Using that variable on the FILTER
command leaves a selection in place until a USE ALL brings the data back.
As we will see, R uses a similar filtering approach.

COMPUTE male=(gender="m").

FILTER BY male.

DESCRIPTIVES VARIABLES=workshop TO q4.

* more stats could follow for males.

USE ALL.

8.2 Selecting All Observations

In R, if you perform an analysis without selecting any observations, the func-
tion will use all of the observations it can. That is how both SAS and SPSS
work. For example, to get summary statistics on all observations (and all
variables), we could use

summary(mydata)

The methods to select observations apply to all R functions that accept
variables (vectors and so forth) as input. We will use the summary function so
you will see the selection in the context of an analysis.
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8.3 Selecting Observations by Index Number

Although it is as easy to use subscripting to select observations by index
number, you need to be careful doing it. This is because sorting a data frame
is something you do often, and sorting changes the index number of each row
(if you save the sorted version, of course). Variables rarely change order, so
this approach is much more widely used to select them. That said, let us dive
in and see how R does it.

Since this chapter focuses on selecting observations, we will now discuss
just the first subscript, the rows. Our data frame has eight observations or
rows, which are automatically given index numbers, or indices, of 1, 2, 3, 4,
5, 6, 7, and 8. You can select observations by supplying one index number or
a vector of indices. For example,

summary( mydata[5, ] )

selects all of the variables for only row 5. There is not much worth analyzing
with that selection! Note that when selecting observations, the comma is very
important, even though we request no columns in the example above. If you
leave the comma out, R will assume that any index values it sees are column
indices, and you will end up selecting variables instead of observations!

As long as you include the comma, this selection goes across columns of a
data frame, so it must return a one-row data frame. A data frame can contain
numeric, character, or factor variables. Only a data frame could store such a
mixture. That is the opposite of selecting the fifth variable with mydata[ ,5]

because that would select a vector. In many cases, this distinction might not
matter, but in some cases it will. The difference will become clear as we work
through the rest of the book.

To select more than one observation using indices, you must combine them
into a numeric vector using the c function. Therefore, this will select rows 5
through 8, which happen to be the males:

summary( mydata[ c(5, 6, 7, 8), ] )

You will see the c function used in many ways in R. Whenever R requires
one object and you need to supply it several, it combines the several into
one. In this case, the several index numbers become a single numeric vector.
Again, take note of the comma that precedes the right square bracket. If we
left that comma out, R would try to analyze variables 5 through 8 instead of
observations 5 through 8! Since we have only six variables, that would generate
an error message. However, if we had more variables, the analysis would run,
giving us the wrong result with no error message. I added extra spaces in this
example to help you notice the comma. You do not need additional spaces in
R, but you can have as many as you like to enhance legibility.

The colon operator “:” can generate a numeric vector directly, so

summary( mydata[5:8, ] )
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selects the same observations.
The colon operator is not just shorthand. Entering 1:N in an R program

will cause it to generate the sequence, 1,2,3,. . . ,N.
If you use a negative sign on an index, you will exclude those observations.

For example,

summary( mydata[ -c(1,2,3,4) , ] )

will exclude the first four records, three females and one with a gender of NA.
R will then analyze the males.

Your index values must be either all positive or all negative. Otherwise,
the result would be illogical. You cannot say “include only these observations”
and “include all but these observations” at the same time.

The colon operator can abbreviate sequences of numbers, but you need to
be careful with negative numbers. If you want to exclude rows 1 through 4,
the following sequence will not work:

> -1:4

[1] -1 0 1 2 3 4

This would, of course, generate an error because they must all have the same
sign. Adding parentheses will clarify the situation, showing R that you want
the minus sign to apply to just the set of numbers from +1 through +4 rather
than –1 through +4:

> -(1:4)

[1] -1 -2 -3 -4

> summary( mydata[ -(1:4) , ] )

If you find yourself working with a set of observations repeatedly, you
can easily save a vector of indices so you will not have to keep looking up
index numbers. In this example, we are storing the indices for the males in
myMindices (M for male). If I were not trying to make a point about indices,
I would choose a simpler name like just “males.”

myMindices <- c(5,6,7,8)

From now on, we can use that variable to analyze the males:

summary( mydata[myMindices, ] )

For a more realistic data set, typing all of the observation index numbers
you need would be absurdly tedious and error prone. We will use logic to create
that vector in Sect. 8.6. You can list indices individually or, for contiguous
observations, use the colon operator. For a larger data set, you could use
observations 1, 3, 5 through 20, 25, and 30 through 100 as follows:
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mySubset <- c(1, 3, 5:20, 25, 30:100)

See Chap. 12, “Generating Data,” for ways to generate other sequences of
index numbers.

It is easy to have R list the index for each observation in a data frame.
Simply create an index using the colon operator and append it to the front of
the data frame.

> data.frame(myindex = 1:8, mydata)

myindex workshop gender q1 q2 q3 q4

1 1 R f 1 1 5 1

2 2 SAS f 2 1 4 1

3 3 R f 2 2 4 3

4 4 SAS <NA> 3 1 NA 3

5 5 R m 4 5 2 4

6 6 SAS m 5 4 5 5

7 7 R m 5 3 4 4

8 8 SAS m 4 5 5 5

Note that the unlabeled column on the left contains the row names. In our
case, the row names look like indices. However, the row names could have
been descriptive strings like “Bob,” so there is no guarantee of a relationship
between row names and indices. Index values are dynamic, like the case num-
bers displayed in the SAS or SPSS data editors. When you sort or rearrange
the data, they change. Row names, on the other hand, are fixed when you
create the data frame. Sorting or rearranging the rows will not change row
names.

You can use the nrow function to find the number of rows in a data frame.
Therefore, another way to analyze all your observations is

summary( mydata[ 1:nrow(mydata) , ] )

If you remember that the first male is the fifth record and you want to
analyze all of the observations from there to the end, you can use

summary( mydata[ 5:nrow(mydata) , ] )

8.4 Selecting Observations Using Random Sampling

Selecting random samples of observations in SAS and SPSS is done in two to
three steps:

1. Create a variable whose values are uniformly random between zero and
one.
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2. Select observations whose values on that variable fall at or below the pro-
portion you seek. If an approximate number of observations is sufficient,
you are done.

3. If you seek an exact number of observations, you can assure that by sorting
on the random variable and then choosing the first n you want. Alterna-
tively, you might count each observation as you select it and stop selecting
when your goal is met. SPSS will even write the latter steps out for you
if you use the Data> Select Cases dialog box.

R uses an approach that takes advantage of the topic we just learned in
the previous section: subscripting by index value. The sample function will
select n values at random from any vector. If that vector holds the numbers 1,
2, 3. . . ,N, where N is the number of observations in our data set, then we end
up sampling the index values for our rows. All that remains is to use those
values to select the observations.

Let us do an example where we want to select 25% of our data, a massive
data set of two whole records! The index values to sample are the values 1:8,
or, more generally, 1:nrow(mydata). To ensure that you get the same selection
as I do, I will use the set.seed function:

> set.seed(123)

> myindices <- sample( 1:nrow(mydata), 2 )

> myindices

[1] 3 6

The sample function call used just two arguments, the vector to sample
and how many to get: 2. We see the two index values are 3 and 6. Let us now
use them to select our sample from the main data set. I will put myindices in
the row position and leave the column position empty so that I will select all
the variables:

> mySample <- mydata[myindices, ]

> print(mySample)

workshop gender q1 q2 q3 q4

3 R f 2 2 4 3

6 SAS m 5 4 5 5

We see that our sample consists of one female who took the R workshop and
a male who took the SAS one.
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8.5 Selecting Observations by Row Name

SAS and SPSS data sets have variable names but not observation or case
names. In R, data frames always name the observations and store those names
in the row names attribute. When we read our data set from a text file, we
told it that the first column would be our row names. The row.names function
will display them:

row.names(mydata)

R will respond with

"1", "2", "3", "4", "5", "6", "7", "8"

The quotes show that R treats these as characters, not as numbers. If you
do not provide an ID or name variable for R to use as row names, it will
always create them in this form. Therefore, if we had not had an ID variable,
we would have ended up in exactly the same state. I included an ID variable
because it emphasizes the need to be able to track your data back to its most
original source when checking for data entry errors. With such boring row
names, there is little need to use them. indices are numerically more useful.
So let us change the names; we will then have an example that makes more
sense.

I will use common first names to keep the example easy to follow. First,
let us create a new character vector of names:

> mynames <- c("Ann", "Cary", "Sue", "Carla",

"Bob", "Scott", "Mike", "Rich")

Now we will write those names into the row names attribute of our data frame:

row.names(mydata) <- mynames

This is a very interesting command! It shows that the row.names function
does not just show you the names, it provides access to the names attribute
itself. Assigning mynames to that vector renames all of the rows! In Sect. 10.6,
“Renaming Variables (and Observations),” we will see this again with several
variations.

Let us see how this has changed our data frame.

> mydata

workshop gender q1 q2 q3 q4

Ann R f 1 1 5 1

Cary SAS f 2 1 4 1

Sue R f 2 2 4 3

Carla SAS <NA> 3 1 NA 3

Bob R m 4 5 2 4
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Scott SAS m 5 4 5 5

Mike R m 5 3 4 4

Rich SAS m 4 5 5 5

Now that we have some interesting names to work with, let us see what
we can do with them. If we wanted to look at the data for “Ann,” we could
use

mydata["Ann", ]

You might think that if we had several records per person, we could use
row names to select all of the rows for any person. R, however, requires that
row names be unique, which is a good idea.1 You could always use an ID
number that is unique for row names, then have the subjects’ names on each
record in their set and a counter like time 1, 2, 3, 4. We will look at just that
structure in Sect. 10.17, “Reshaping Variables to Observations and Back.”

To select more than one row name, you must combine them into a single
character vector using the c function. For example, we could analyze the
females using

summary( mydata[ c("Ann","Cary","Sue","Carla"), ] )

With a more realistically sized data frame, we would probably want to save
the list of names to a character vector that we could use repeatedly. Here, I
use F to represent females and names to remind me of what is in the vector:

myFnames <- c("Ann","Cary","Sue","Carla")

Now we will analyze the females again using this vector:

summary( mydata[ myFnames, ] )

8.6 Selecting Observations Using Logic

You can select observations by using a logical vector of TRUE/FALSE values.
You can enter one manually or create one by specifying a logical condition.
Let us begin by entering one manually. For example, the following will print
the first four rows of our data set:

> myRows <- c(TRUE, TRUE, TRUE, TRUE,

+ FALSE, FALSE, FALSE, FALSE)

> print( mydata[myRows, ] )

1 Recall that R does allow for duplicate variable names, although that is a bad
idea.
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workshop gender q1 q2 q3 q4

1 R f 1 1 5 1

2 SAS f 2 1 4 1

3 R f 2 2 4 3

4 SAS <NA> 3 1 NA 3

In SAS or SPSS, the digits 1 and 0 can represent TRUE and FALSE,
respectively. Let us see what happens when we try this in R.

> myBinary <- c(1, 1, 1, 1, 0, 0, 0, 0)

> print( mydata[myBinary, ] )

workshop gender q1 q2 q3 q4

1 R f 1 1 5 1

1.1 R f 1 1 5 1

1.2 R f 1 1 5 1

1.3 R f 1 1 5 1

What happened? Remember that putting a 1 in for the row subscript asks for
row 1. So our request asked for row 1 four consecutive times and then asked
for row 0 four times. Index values of zero are ignored. We can get around this
problem by using the as.logical function:

> myRows <- as.logical(myBinary)

Now, myRows contains the same TRUE/FALSE values it had in the previous
example and would work fine.

While the above examples make it clear how R selects observations using
logic, they are not very realistic. Hundreds of records would require an absurd
amount of typing. Rather than typing such logical vectors, you can generate
them with a logical statement such as

> mydata$gender == "f"

[1] TRUE TRUE TRUE NA FALSE FALSE FALSE FALSE

The“==”operator compares every value of a vector, like gender, to a value,
like “f”, and returns a logical vector of TRUE/FALSE values. These logical
conditions can be as complex as you like, including all of the usual logical
conditions. See Table 10.3, “Logical operators,” for details.

The length of the resulting logical vector will match the number of obser-
vations in our data frame. Therefore, we could store it in our data frame as a
new variable. That is essentially the same as the SPSS filter variable approach.

Unfortunately, we see that the fourth logical value is NA. That is because
the fourth observation has a missing value for gender. Up until this point, we
have been mirroring Chap. 7,“Selecting Variables.”There, logical comparisons
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of variable names did not have a problem with missing values. Now, however,
we must take a different approach. First, let us look at what would happen if
we continued down this track.

> print( mydata[ mydata$gender == "f", ] )

workshop gender q1 q2 q3 q4

1 R f 1 1 5 1

2 SAS f 2 1 4 1

3 R f 2 2 4 3

NA <NA> <NA> NA NA NA NA

What happened to the fourth observation? It had missing values only for
gender and q3. Now all of the values for that observation are missing. R has
noticed that we were selecting rows based on only gender. Not knowing what
we would do with the selection, it had to make all of the other values missing,
too. Why? Because we might have been wanting to correlate q1 and q4. Those
two had no missing values in the original data frame. If we want to correlate
them only for the females, even their values must be set to missing.

We could select observations using this logic and then count on R’s other
functions to remove the bad observations as they would any others with miss-
ing values. However, there is little point in storing them. Their presence could
also affect future counts of missing values for other analyses, perhaps when
females are recombined with males.

Luckily, there is an easy way around this problem. The which function
gets the index values for the TRUE values of a logical vector. Let us see what
it does.

> which( mydata$gender == "f" )

[1] 1 2 3

It has ignored both the NA value and the FALSE values to show us that only
the first three values of our logical statement were TRUE. We can save these
index values in myFemales.

> myFemales <- which( mydata$gender == "f" )

> myFemales

[1] 1 2 3

We can then analyze just the females with the following function call:

summary( mydata[ myFemales , ] )

Negative index values exclude those rows, so we could analyze the non-
females (males and missing) with the following function call:
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summary( mydata[-myFemales , ] )

We could, of course, get males and exclude missing the same way we got the
females.

We can select observations using logic that is more complicated. For exam-
ple, we can use the AND operator “&” to analyze subjects who are both male
and who “strongly agree” that the workshop they took was useful. Compound
selections like this are much easier when you do it in two steps. First, create
the logical vector and store it; then use that vector to do your selection.

> HappyMales <- which(mydata$gender == "m"

+ & mydata$q4 == 5)

> HappyMales

[1] 6 8

So we could analyze these observations with

summary( mydata[HappyMales , ] )

Whenever you are making comparisons to many values, you can use
the %in% operator. Let us select observations who have taken the R or
SAS workshop. With just two target workshops, you could use a simple
workshop == "R" | workshop == "SPSS", but the longer the target list, the
happier you will be to save all of the repetitive typing.

> myRsas <-

+ which( mydata$workshop %in% c("R","SAS") )

> myRsas

[1] 1 3 5 7

Then we can get summary statistics on those observations using

summary( mydata[myRsas, ] )

The various methods we described in Chap. 7,“Selecting Variables,”make a
big difference in how complicated the logical commands to select observations
appear. Here are several different ways to analyze just the females:

myFemales <- which( mydata$gender == "f")

myFemales <- which( mydata[2] == "f")

myFemales <- which( mydata["gender"] == "f")

with(mydata,

myFemales <- which(gender == "f")
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)

attach(mydata)

myFemales <- which(gender == "f")

detach(mydata)

You could then use any of these to analyze the data using

summary( mydata[ myFemales, ] )

You can easily convert a logical vector into an index vector that will select
the same observations. For details, see Sect. 10.19, “Converting Data Struc-
tures.”

8.7 Selecting Observations by String Search

If you have character variables, or useful row names, you can select obser-
vations by searching their values for strings of text. This approach uses the
methods of selection by indices, row names, and logic discussed earlier, so
make sure you have mastered them before trying these.

R searches variable names for patterns using the grep function. We pre-
viously replaced our original row names, “1,”“2,” etc., with more interesting
ones, “Ann”, “Cary,” and so forth. Now we will use the grep function to search
for row names that begin with the letter “C”:

myCindices <- grep("^C", row.names(mydata), value = FALSE)

This grep function call uses three arguments.

1. The first is the command string, or regular expression, “^C,” which means
“find strings that begin with a capital letter C.”The symbol “^” represents
“begins with.” You can use any regular expression here, allowing you to
search for a wide range of patterns in variable names. We will discuss
using wildcard patterns later.

2. The second argument is the character vector that you wish to search.
In our case, we want to search the row names of mydata, so I call the
row.names function here.

3. The value argument tells it what to store when it finds a match. The goal
of grep in any computer language or operating system is to find patterns.
A value of TRUE here will tell it to save the row names that match the
pattern we seek. However, in R, indices are more fundamental than names,
which are optional, so the default setting is FALSE to save indices instead.
We could leave it off in this particular case, but we will use it in the other
way in the next example, so we will list it here for educational purposes.
The contents of myCindices will be 2 and 4 because Cary and Carla are
the second and fourth observations, respectively. If we wanted to save this
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variable, it does not match the eight values of our other variables, so we
cannot store it in our data frame. We would instead just store it in the
workspace as a vector outside our data frame.

To analyze those observations, we can then use

summary( mydata[myCindices , ] )

Now let us do the same thing but have grep save the actual variable names.
All we have to do is change to value = TRUE:

myCnames <- grep("^C", row.names(mydata), value = TRUE)

The character vector myCnames now contains the row names “Cary” and
“Carla,” and we can analyze those observations with

summary( mydata[myCnames , ] )

Finally, let us do a similar search using the %in% function. In R, it works
just like the IN operator in SAS. It finds matches between two sets of values.
We will use it to find which of our row names appears in this set of target
names:

myTargetNames <- ("Carla","Caroline","Cary","Cathy","Cynthia")

myMatches <- row.names(mydata) %in% myTargetNames

The result will be a logical set of TRUE/FALSE values that indicate that the
names that match are in the second and fourth positions:

FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE

Now we can use the myMatches vector in any analysis like summary:

summary( mydata[myMatches, ] )

You may be more familiar with the search patterns using wildcards in
Microsoft Windows. They use “*” to represent any number of characters and
“?” to represent any single character. So the wildcard version of any variable
name beginning with the letter “C” is “C*.” Computer programmers call this
type of symbol a “glob,” short for global. R lets you convert globs to regular
expressions with the glob2rx function. Therefore, we could do our first grep
again in the form

myCindices <- grep( glob2rx("C*"),

row.names(mydata), value = FALSE)
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8.8 Selecting Observations with the subset Function

You can select observations using the subset function. You simply list your
logical condition under the subset argument, as in

subset(mydata, subset = gender == "f")

Note that an equal sign follows the subset argument because that is what
R uses to set argument values. The gender == "f" comparison is still done
using “==” because that is the symbol R uses for logical comparisons. You can
use subset to analyze your selection using the form

summary(

subset(mydata, subset = gender == "f")

)

The following selection, in which we select the males who were happy with
their workshop, is slightly more complicated . In R, the logic is a single object,
a logical vector, regardless of its complexity.

summary(

subset( mydata, subset = gender == "m" & q4 == 5 )

)

Since the first argument to the subset function is the data frame to use,
you do not have to write out the longer forms of names like mydata$q1 or
mydata$gender. Also, its logical selections automatically exclude cases for
which the logic would be missing. So it acts like the which function that is
built into every selection. That is a very helpful function!

8.9 Generating Indices A to Z from Two Row Names

This method uses several of the approaches from the previous examples. We
have seen how the colon operator can help us analyze the males, who are
observations 5 through 8, using the form

summary( mydata[5:8, ] )

However, you had to know the index numbers, and digging through lists of
observation numbers can be tedious work. However, we can use the row.names
function and the which function to get R to find the index values we need.
The function call

row.names(mydata) == "Bob"

will generate the logical vector

FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
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because Bob is the fifth observation. The which function will tell us the index
values of any TRUE values in a logical vector, so

which(FALSE, FALSE, FALSE, FALSE,

TRUE, FALSE, FALSE, FALSE)

will yield a value of 5. Putting these ideas together, we can find the index
number of the first observation we want, store it in myMaleA, then find the last
observation, store it in myMaleZ, and then use them with the colon operator
to analyze our data from A to Z:

myMaleA <- which( names(mydata) == "Bob" )

myMaleZ <- which( names(mydata) == "Rich" )

summary( mydata[ myMaleA:myMaleZ , ] )

8.10 Variable Selection Methods with No Counterpart
for Selecting Observations

As we have seen, the methods that R uses to select variables and observa-
tions are almost identical. However, there are several techniques for selecting
variables that have no equivalent in selecting observations:

� The $ prefix form (e.g., mydata$gender),
� The attach function’s approach to short variable names,
� The with function’s approach to short variable names,
� The use of formulas.
� The list form of subscripting that uses double brackets (e.g., mydata[[2]]),
� Using variable types to select only numeric variables, character variables,

or factors.

We also had one method of selecting observations, random sampling, that
we used to select observations but not variables. That would be a most unusual
approach to selecting variables, but one that might be useful in an area such
as genetic algorithms.

8.11 Saving Selected Observations to a New Data Frame

You can create a new data frame that is a subset of your original one by using
any of the methods for selecting observations. You simply assign the data to
a new data frame. The examples below all select the males and assign them
to the myMales data frame:
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myMales <- mydata[5:8, ]

myMales <- mydata[ which(mydata$gender == "m") , ]

myMales <- subset( mydata, subset = gender == "m" )

8.12 Example Programs for Selecting Observations

The SAS and SPSS programs in this section demonstrate standard ways to se-
lect observations in those packages, and they match each other. The R program
uses different methods, especially subscripting, and is much more detailed.

8.12.1 SAS Program to Select Observations

* Filename: SelectingObs.sas ;

LIBNAME myLib 'C:\myRfolder';

* Ways to Select Males and Females;

PROC PRINT DATA=myLib.mydata;

WHERE gender="m";

RUN;

PROC PRINT DATA=myLib.mydata;;

WHERE gender="m" & q4=5;

DATA myLib.males;

SET myLib.mydata;

WHERE gender="m";

RUN;

PROC PRINT; RUN;

DATA myLib.females;

SET myLib.mydata;

WHERE gender="f";

RUN;

PROC PRINT; RUN;

* Random Sampling;

DATA myLib.sample;

SET myLib.mydata;

WHERE UNIFORM(123) <= 0.25;

RUN;

PROC PRINT; RUN;
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8.12.2 SPSS Program to Select Observations

Note that the UNIFORM function in SPSS is quite different from that of SAS.
Its only parameter is its highest value (usually 1), not the random generator
seed.

* Filename: SelectingObs.sps .

CD 'c:\myRfolder'.

GET FILE='mydata.sav'.

* Ways to Select Males and Females.

COMPUTE male=(gender="m").

COMPUTE female=(gender="f").

FILTER BY male.

LIST.

* analyses of males could follow here.

FILTER BY female.

LIST.

* analyses of females could follow here.

USE ALL.

DO IF male.

XSAVE OUTFILE='males.sav'.

ELSE IF female.

XSAVE OUTFILE='females.sav'.

END IF.

* Selecting a Random Sample.

SET SEED=123.

DO IF uniform(1) LE 0.25.

XSAVE OUTFILE='sample.sav'.

END IF.

LIST.

8.12.3 R Program to Select Observations

Throughout this chapter we have used the summary function to demonstrate
how a complete analysis request would look. Here we will instead use the
print function to make it easier to see the result of each selection when you
run the programs. Even though

mydata[5:8, ]
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is equivalent to

print( mydata[5:8, ] )

because print is the default function, we will use the longer form because it
is more representative of its look with most functions. As you learn R, you
will quickly opt for the shorter approach when you only want to print data.

# Filename: SelectingObs.R

setwd("c:/myRfolder")

load(file = "myWorkspace.RData")

print(mydata)

# ---Selecting Observations by Index---

# Print all rows.

print( mydata[ ] )

print( mydata[ , ] )

print( mydata[1:8, ] )

# Just observation 5.

print( mydata[5 , ] )

# Just the males:

print( mydata[ c(5, 6, 7, 8) , ] )

print( mydata[ 5:8, ] )

# Excluding the females with minus sign.

print( mydata[ -c(1, 2, 3, 4), ] )

print( mydata[ -(1:4), ] )

# Saving the Male (M) indices for reuse.

myMindices <- c(5, 6, 7, 8)

summary( mydata[myMindices, ] )

# Print a list of index numbers for each observation.

data.frame(myindex = 1:8, mydata)

# Select data using length as the end.

print( mydata[ 1:nrow(mydata), ] )

print( mydata[ 5:nrow(mydata), ] )

# ---Selecting Observations by Row Name---
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# Display row names.

row.names(mydata)

# Select rows by their row name.

print( mydata[ c("1", "2", "3", "4"), ] )

# Assign more interesting names.

mynames <- c("Ann", "Cary", "Sue", "Carla",

"Bob", "Scott", "Mike", "Rich")

print(mynames)

# Store the new names in mydata.

row.names(mydata) <- mynames

print(mydata)

# Print Ann's data.

print( mydata["Ann" , ] )

mydata["Ann" , ]

# Select the females by row name.

print( mydata[ c("Ann", "Cary", "Sue", "Carla"), ] )

# Save names of females to a character vector.

myFnames <- c("Ann", "Cary", "Sue", "Carla")

print(myFnames)

# Use character vector to select females.

print( mydata[ myFnames, ] )

# ---Selecting Observations Using Logic---

#Selecting first four rows using TRUE/FALSE.

myRows <- c(TRUE, TRUE, TRUE, TRUE,

FALSE, FALSE, FALSE, FALSE)

print( mydata[myRows, ] )

# Selecting first four rows using 1s and 0s.

myBinary <- c(1, 1, 1, 1, 0, 0, 0, 0)

print( mydata[myBinary, ] )

myRows <- as.logical(myBinary)

print( mydata[ myRows, ] )

# Use a logical comparison to select the females.
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mydata$gender == "f"

print( mydata[ mydata$gender == "f", ] )

which( mydata$gender == "f" )

print( mydata[ which(mydata$gender == "f") , ] )

# Select females again, this time using a saved vector.

myFemales <- which( mydata$gender == "f" )

print(myFemales)

print( mydata[ myFemales , ] )

# Excluding the females using the "!" NOT symbol.

print( mydata[-myFemales , ] )

# Select the happy males.

HappyMales <- which(mydata$gender == "m"

& mydata$q4 == 5)

print(HappyMales)

print( mydata[HappyMales , ] )

# Selecting observations using %in%.

myRsas <-

which( mydata$workshop %in% c("R", "SAS") )

print(myRsas)

print( mydata[myRsas , ] )

# Equivalent selections using different

# ways to refer to the variables.

print( subset(mydata, gender == 'f') )

attach(mydata)

print( mydata[ which(gender == "f") , ] )

detach(mydata)

with(mydata,

print ( mydata[ which(gender == "f"), ] )

)

print( mydata[ which(mydata["gender"] == "f") , ] )

print( mydata[ which(mydata$gender == "f") , ] )

# ---Selecting Observations by String Search---
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# Search for row names that begin with "C".

myCindices <- grep("^C", row.names(mydata), value = FALSE)

print( mydata[myCindices , ] )

# Again, using wildcards.

myCindices <- grep( glob2rx("C*") ,

row.names(mydata), value = FALSE)

print( mydata[myCindices , ] )

# ---Selecting Observations by subset Function---

subset(mydata, subset=gender == "f")

summary(

subset( mydata, subset = gender == "m" & q4 == 5 )

)

# ---Generating indices A to Z from Two Row Names---

myMaleA <- which( row.names(mydata) == "Bob" )

print(myMaleA)

myMaleZ <- which( row.names(mydata) == "Rich" )

print(myMaleZ)

print( mydata[myMaleA:myMaleZ , ] )

# ---Creating a New Data Frame of Selected Observations---

# Creating a new data frame of only males (all equivalent).

myMales <- mydata[5:8, ]

print(myMales)

myMales <- mydata[ which( mydata$gender == "m" ) , ]

print(myMales)

myMales <- subset( mydata, subset = gender == "m" )

print(myMales)

# Creating a new data frame of only females (all equivalent).

myFemales <- mydata[1:3, ]

print(myFemales)
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myFemales <- mydata[ which( mydata$gender == "f" ) , ]

print(myFemales)

myFemales <- subset( mydata, subset = gender == "f" )

print(myFemales)
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Selecting Variables and Observations

In SAS and SPSS, variable selection is done using a very simple yet flexible
set of commands using variable names, and the selection of observations is
done using logic. Combining the two approaches is quite simple. For example,
selecting the variables workshop and q1 to q4 for the males only is done in
SAS with

PROC PRINT;

VAR workshop q1-q4;

WHERE gender="m";

SPSS uses a very similar approach:

TEMPORARY.

SELECT IF (gender EQ "m").

LIST workshop q1 TO q4.

In the previous two chapters, we focused on selecting variables and obser-
vations separately, and we examined a very wide range of ways to do both.
Different books and help files use various approaches, so it is important to
know the range of options to perform these basic tasks in R. However, you
can still use the approach that is already most familiar to you: using names
to select variables and logic to select observations.

As an example, we will use the various methods to select the variables
workshop and q1 to q4 for only the males.

The explanations in this chapter are much sparser. If you need clarification,
see the detailed discussions of each approach in the previous two chapters.

9.1 The subset Function

Although you can use any of the methods introduced in the previous two
chapters to select both variables and observations, variables are usually chosen
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by name and observations by logic. The subset function lets you use that
combination easily.

When selecting variables, subset allows you to use the colon operator on
lists of contiguous variables, like gender:q4. Variable selections that are more
complex than a single variable or two contiguous variables separated by a
colon must be combined with the c function.

When selecting observations, you perform logic like gender == "m" with-
out having to use which(gender == "m") to get rid of the observations
that have missing values for gender. The logic can be as complex as you
like, so we can select the males who are happy with their workshop using
gender == "m" & q4 == 5. Note that the result of a logical condition is al-
ways a single logical vector, so you never need the c function for logic. See
Table 10.3, “Logical Operators,” for details.

We can perform our selection by nesting the subset function directly
within other functions:

summary(

subset(mydata,

subset = gender == "m",

select = c(workshop, q1:q4) )

)

Since R allows you to skip the names of arguments as long as you have
them in proper order, you often see subset used in the form

summary(

subset(mydata, gender == "m",

c(workshop, q1:q4) )

)

If you plan to use a subset like this repeatedly, it would make more sense
to save the subset in a new data frame. Here we will add the print function
just to make the point that selection is done once and then used repeatedly
with different functions. Here I am using the name myMalesWQ to represent
the males with workshop and the q variables.

myMalesWQ <- subset(mydata,

subset = gender == "m",

select = c(workshop,q1:q4)

)

print(myMalesWQ)

summary(myMalesWQ)

Performing the task in two steps like that often makes the code easier to
read and less error prone.
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9.2 Subscripting with Logical Selections and
Variable Names

Another very useful approach is to use subscripting with logic to select obser-
vations and names to select variables. For example:

summary(

mydata[ which(gender == "m") ,

c("workshop","q1","q2","q3","q4") ]

)

This is very similar to what we did with the subset function, but we cannot
use the form q1:q4 to choose contiguous variables. That shortcut works only
with subset. So if you had many variables, you could instead use the shortcut
described in Sect. 7.11,“Generating indices A to Z from Two Variable Names.”

We could make our example more legible by defining the row and column
indices in a separate step:

myMales <- which(gender == "m")

myVars <- c("workshop", "q1", "q2", "q3", "q4")

Since the q variables make up most of the list and we have seen how to
paste the letter q onto the numeric list of 1:4, we can make the same variable
list using

myVars <- c("workshop", paste(q, 1:4, sep = "") )

I used the c function to combine just workshop with the results of the
paste function, q1, q2, etc. Regardless of how you choose to create myVars,
you can then make the selection with:

summary( mydata[ myMales, myVars ] )

This has the added benefit of allowing us to analyze just the males, for all
variables (we are not selecting any specifically) with

summary( mydata[ myMales, ] )

We can also analyze males and females (by not choosing only males) for just
myVars:

summary( mydata[ , myVars ] )

If we did not need that kind of flexibility and we planned to use this subset
repeatedly, we would save it to a data frame:

myMalesWQ <- mydata[ myMales, myVars ]

summary(myMalesWQ)
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9.3 Using Names to Select Both Observations
and Variables

The above two approaches usually make the most sense. You usually know
variable names and the logic you need to make your selection. However, for
completeness’ sake, we will continue on with additional combinations, but if
you feel you understood the previous two chapters and the examples above,
feel free to skip these examples and go to Sect. 9.6, “Saving and Loading
Subsets.”

Since the males have character row names of “5” through “8,”we could use
both row names and column with

summary( mydata[

c("5","6","7","8"),

c("workshop","q1","q2","q3","q4")

] )

This is an odd approach for selecting rows. We do not often bother to learn
such meaningless row names. If we had row names that made more sense, like
“Ann,” “Bob,” “Carla,”. . . , this approach would make more sense. However,
we can at least be assured that the row names will not be affected by the
addition of new observations or by sorting. Such manipulations do not change
row names as they do numeric index values for rows.

If you plan on using these character index vectors often or if you have
many values to specify, it is helpful to store them separately. This also helps
document your program, since a name like myMales will remind you, or your
colleagues, what you were selecting.

myMales <- c("5","6","7","8")

myVars <- c("workshop","q1","q2","q3","q4")

Now we can repeat the exact same examples that we used in the section
immediately above. Once you have a vector of index values, it does not matter
if they are character names, numeric indices, or logical values.

Here we analyze our chosen observations and variables:

summary( mydata[ myMales, myVars] )

Here we analyze only the males, but include all variables:

summary( mydata[ myMales, ] )

Here we select all of the observations but analyze only our chosen variables:

summary( mydata[ , myVars] )
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9.4 Using Numeric Index Values to Select Both
Observations and Variables

The males have numeric index values of 5 through 8, and we want the first
variable and the last four, so we can use numeric index vectors to choose them
as in either of these two equivalent approaches:

summary( mydata[ c(5, 6, 7, 8), c(1, 3, 4, 5, 6) ] )

summary( mydata[ 5:8, c(1, 3:6) ] )

This selection is impossible to interpret without a thorough knowledge
of the data frame. When you are hard at work on an analysis, you may well
recall these values. However, such knowledge fades fast, so you would do well to
add comments to your programs reminding yourself what these values select.
Adding new variables or observations to the beginning of the data frame, or
sorting it, would change these index values. This is a risky approach!

As we discussed in the last section, we can save the numeric index vectors
for repeated use.

myMales <- c(5, 6, 7, 8)

myVars <- c(1, 3:6)

Again, we can repeat the exact same examples that we used in the sections
above. Once you have a vector of index values, it does not matter if they are
character names or numeric indices.

Here we analyze our chosen observations and variables:

summary( mydata[ myMales, myVars ] )

Here we analyze only the males but include all variables:

summary( mydata[ myMales, ] )

Here we select all of the observations but analyze only our chosen variables:

summary( mydata[ , myVars ] )

9.5 Using Logic to Select Both Observations
and Variables

Selecting observations with logic makes perfect sense, but selecting variables
using logic is rarely worth the effort. Here is how we would use this combina-
tion for our example:
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summary(

mydata[which(gender == "m"),

names(mydata) %in% c("workshop", "q1", "q2", "q3", "q4") ]

)

Let us reconsider using variable names directly. For this example, it is clearly
simpler:

summary(

mydata[ which(gender == "m") ,

c("workshop", "q1", "q2", "q3", "q4") ]

)

However, once we save these values, we use them with no more work than
earlier.

myMales <- which(gender == "m")

myVars <- names(mydata) %in%

c("workshop","q1","q2","q3","q4")

Here we analyze our chosen observations and variables:

summary( mydata[ myMales, myVars ] )

Here we analyze only the males but include all variables:

summary( mydata[ myMales, ] )

Here we select all of the observations but analyze only our chosen variables:

summary( mydata[ , myVars] )

9.6 Saving and Loading Subsets

Every method you use to create a subset results in a temporary copy that
exists only in your workspace. To use it in future R sessions, you need to
write it out to your computer’s hard drive using the save or save.image

functions. The more descriptive a name you give it, the better.

myMalesWQ <- subset(mydata,

subset = gender == "m",

select = c(workshop,q1:q4)

)

If your files are not too large, you can save your original data and your
subset with

save(mydata, myMalesWQ, file = "mydata.RData")
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The next time you start R, you can load both data frames with

load("mydata.RData")

If you are working with large files, you might save only the subset.

save(myMalesWQ, file = "myMalesWQ.RData")

Now when you start R, you can load and work with just the subset to save
space.

load("myMalesWQ.RData")

summary(myMalesWQ)

9.7 Example Programs for Selecting Variables
and Observations

9.7.1 SAS Program for Selecting Variables and Observations

* Filename: SelectingVarsAndObs.sas;

LIBNAME myLib 'C:\myRfolder';

OPTIONS _LAST_=myLib.mydata;

PROC PRINT; VAR workshop q1 q2 q3 q4;

WHERE gender="m";

RUN;

* Creating a data set from selected variables;

DATA myLib.myMalesWQ;

SET myLib.mydata;

WHERE gender="m";

KEEP workshop q1-q4;

RUN;

PROC PRINT DATA=myLib.myMalesWQ; RUN;

9.7.2 SPSS Program for Selecting Variables and Observations

* Filename: SelectVarsAndObs.sps.

CD 'c:\myRfolder'.

GET FILE='mydata.sav'.
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SELECT IF (gender EQ "m").

LIST workshop q1 TO q4.

SAVE OUTFILE='myMalesWQ.sav'.

EXECUTE.

9.7.3 R Program for Selecting Variables and Observations

# Filename: SelectingVarsAndObs.R

setwd("c:/myRfolder")

load(file = "mydata.RData")

attach(mydata)

print(mydata)

# ---The subset Function---

print(

subset(mydata,

subset = gender == "m",

select = c(workshop, q1:q4) )

)

myMalesWQ <- subset(mydata,

subset = gender == "m",

select = c(workshop, q1:q4)

)

print(myMalesWQ)

summary(myMalesWQ)

# ---Logic for Obs, Names for Vars---

print(

mydata[ which(gender == "m") ,

c("workshop", "q1", "q2", "q3", "q4") ]

)

myMales <- which(gender == "m")

myVars <- c("workshop", "q1", "q2", "q3", "q4")

myVars

myVars <- c("workshop", paste(q, 1:4, sep="") )

myVars

print( mydata[myMales, myVars] )
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print( mydata[myMales, ] )

print( mydata[ , myVars] )

myMalesWQ <- mydata[myMales, myVars]

print(myMalesWQ)

# ---Row and Variable Names---

print( mydata[

c("5", "6", "7", "8"),

c("workshop", "q1", "q2", "q3", "q4")

] )

myMales <- c("5", "6", "7", "8")

myVars <- c("workshop", "q1", "q2", "q3", "q4")

print( mydata[myMales, myVars] )

print( mydata[myMales, ] )

print( mydata[ , myVars] )

# ---Numeric Index Vectors---

print( mydata[ c(5, 6, 7, 8), c(1, 3, 4, 5, 6) ] )

print( mydata[ 5:8, c(1, 3:6) ] )

myMales <- c(5,6,7,8)

myVars <- c(1,3:6)

print( mydata[myMales, myVars] )

print( mydata[myMales, ] )

print( mydata[ , myVars] )

# ---Saving and Loading Subsets---

myMalesWQ <- subset(mydata,

subset = gender == "m",

select = c(workshop,q1:q4)

)

save(mydata, myMalesWQ, file = "myBoth.RData")

load("myBoth.RData")

save(myMalesWQ, file = "myMalesWQ.RData")

load("myMalesWQ.RData")

print(myMalesWQ)
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Data Management

An old rule of thumb says that 80% of your data analysis time is spent trans-
forming, reshaping, merging, and otherwise managing your data. SAS and
SPSS have a reputation of being more flexible than R for data management.
However, as you will see in this chapter, R can do everything SAS and SPSS
can do on these important tasks.

10.1 Transforming Variables

Unlike SAS, R has no separation of phases for data modification (data step)
and analysis (proc step). It is more like SPSS where as long as you have data
read in, you can modify it using COMPUTE commands, or, via the Python
plug-in, the SPSSINC TRANSFORM extension command. Anything that you
have read into or created in your R workspace you can modify at any time.

R performs transformations such as adding or subtracting variables on the
whole variable at once, as do SAS and SPSS. It calls that vector arithmetic.
R has loops, but you do not need them for this type of manipulation. R
can nest one function call within another within any other. This applies to
transformations as well. For example, taking the logarithm of our q4 variable
and then getting summary statistics on it, you have a choice of a two-step
process like

mydata$q4Log <- log(mydata$q4)

summary( mydata$q4Log )

or you could simply nest the log function: within the summary function

summary( log(mydata$q4) )

If you planned to do several things with the transformed variable, saving it
under a new name would lead to less typing and quicker execution. Table 10.1

DOI 10.1007/978-1-4614-0685-3_10, © Springer Science+Business Media, LLC 2011
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Table 10.1. Mathematical operators and functions

R SAS SPSS

Addition x + y x + y x + y

Antilog, base 10 10^x 10**x 10**x

Antilog, base 2 2^x 2**x 2**x

Antilog, natural exp(x) exp(x) exp(x)

Division x / y x / y x / y

Exponentiation x^2 x**2 x**2

Logarithm, base 10 log10(x) log10(x) lg10(x)

Logarithm, base 2 log2(x) log2(x) lg10(x)*3.3212

Logarithm, natural log(x) log(x) ln(x)

Multiplication x * y x * y x * y

Round off round(x) round(x) rnd(x)

Square root sqrt(x) sqrt(x) sqrt(x)

Subtraction x - y x - y x - y

shows basic transformations in both packages. In Chap. 7, “Selecting Vari-
ables,” we chose variables using various methods: by index, by column name,
by logical vector, using the style mydata$myvar, by simply using the variable
name after you have attached a data frame, and by using the subset or with
functions.

Here are several examples that perform the same transformation using
different variable selection approaches. The within function is a variation of
the with function that has some advantages for variable creation that are
beyond our scope. We have seen that R has a mean function, but we will
calculate the mean the long way just for demonstration purposes.

mydata$meanQ <- (mydata$q1 + mydata$q2

+ mydata$q3 + mydata$q4) / 4

mydata[,"meanQ"] <- (mydata[ ,"q1"] + mydata[ ,"q2"]

+ mydata[ ,"q3"] + mydata[ ,"q4"] ) / 4

within( mydata,

meanQ <- (q1 + q2 + q3 + q4) / 4

)

Another way to use the shorter names is with the transform function. It
is similar to attaching a data frame, performing as many transformations as
you like using short variable names, and then detaching the data (we do that
example next). It looks like this:

mydata <- transform(mydata, meanQ=(q1 + q2 + q3 + q4) / 4)

It may seem strange to use the “=” now in an equation instead of “<-,” but
in this form, meanQ is the name of an argument, and arguments are always
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specified using “=.” If you have many transformations, it is easier to read them
on separate lines:

mydata <- transform(mydata,

score1=(q1 + q2) / 2,

score2=(q3 + q4) / 2

)

Before beginning, the transform function reads the data, so if you want
to continue to transform variables you just created, you must do it in a second
call to that function. For example, to get the means of score1 and score2, you
cannot do the following:

mydata <- transform(mydata,

score1=(q1 + q2) / 2,

score2=(q3 + q4) / 2,

meanscore=score1 + score2 / 2 # Does not work!

)

It will not know what score1 and score2 are for the creation of meanscore.
You can do that in two steps:

mydata <- transform(mydata,

score1=(q1 + q2) / 2,

score2=(q3 + q4) / 2

)

mydata <- transform(mydata,

meanscore=score1 + score2 / 2 # This works.

)

Wickham’s plyr package [73] has a mutate function that is very similar
to transform, but it can use variables that it just created.

You can create a new variable using the index method, but it requires a bit
of extra work. Let us load the data set again since we already have a variable
named meanQ in the current one:

load(file = "mydata.RData")

Now we will add a variable at index position 7 (we currently have six vari-
ables). Using the index approach, it is easier to initialize a new variable by
binding a new variable to mydata. Otherwise, R will automatically give it a
column name of V7 that we would want to rename later. We used the column
bind function, cbind, to create mymatrix earlier. Here we will use it to name
the new variable, meanQ, initialize it to zero, and then bind it to mydata:

mydata <- data.frame( cbind( mydata, meanQ = 0.) )

Now we can add the values to column 7.
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mydata[7] <- (mydata$q1 + mydata$q2 +

mydata$q3 + mydata$q4)/4

Let us examine what happens when you create variables using the attach
function. You can think of the attach function as creating a temporary copy
of the data frame, so changing that is worthless. See Sect.13.3 for details.
However, you can safely use the attach method to simplify naming variables
on the right side of the equation. This is a safe example because the variable
being created is clearly going into our data frame since we are using the long
dataframe$varname style:

attach(mydata)

mydata$meanQ <- (q1 + q2 + q3 + q4) / 4

detach(mydata)

If you were to modify an existing variable in your data frame, you would
have to reattach it before you would see it. In the following example, we attach
mydata and look at q1:

> attach(mydata)

> q1

[1] 1 2 2 3 4 5 5 4

So we see what q1 looks like. Next, we will see what it looks like squared and
then write it to mydata$q1 (choosing a new name would be wiser but would
not make this point clear). By specifying the full name mydata$q1, we know
R will write it to the original data frame, not the temporary working copy:

> mydata$q1^2

[1] 1 4 4 9 16 25 25 16

> mydata$q1 <- q1^2

However, what does the short name of q1 show us? The unmodified tem-
porary version!

> q1

[1] 1 2 2 3 4 5 5 4

If we attach the file again, it will essentially make a new temporary copy and
q1 finally shows that we did indeed square it:
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> attach(mydata)

The following object(s) are masked from mydata (position 3):

gender q1 q2 q3 q4 workshop

> q1

[1] 1 4 4 9 16 25 25 16

The message warning about masked objects is telling you that there were
other objects with those names that are now not accessible. Those are just the
ones we attached earlier, so that is fine. We could have avoided this message
by detaching mydata before attaching it a second time. The only problem that
confronts us now is a bit of wasted workspace.

Just like SAS or SPSS, R does all of its calculations in the computer’s
main memory. You can use them immediately, but they will exist only in your
current session unless you save your workspace. You can use either the save

or the save.image function to write your work to a file:

setwd("c:/myRfolder")

save.image("mydataTransformed.RData")

See Chap. 13, “Managing Your Files and Workspace,” for more ways to
save new variables.

10.1.1 Example Programs for Transforming Variables

SAS Program for Transforming Variables

* Filename: Transform.sas ;

LIBNAME myLib 'C:\myRfolder';

DATA myLib.mydataTransformed;

SET myLib.mydata;

totalq = (q1 + q2 + q3 + q4);

logtot = log10(totalq);

mean1 = (q1 + q2 + q3 + q4) / 4;

mean2 = mean(of q1-q4);

PROC PRINT; RUN;

SPSS Program for Transforming Variables

* Filename: Transform.sps .
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CD 'C:\myRfolder'.

GET FILE='mydata.sav'.

COMPUTE Totalq = q1 + q2 + q3 + q4.

COMPUTE Logtot = lg10(totalq).

COMPUTE Mean1 = (q1 + q2 + q3 + q4) / 4.

COMPUTE Mean2 = MEAN(q1 TO q4).

SAVE OUTFILE='C:\myRfolder\mydataTransformed.sav'.

LIST.

R Program for Transforming Variables

# Filename: Transform.R

setwd("c:/myRfolder")

load(file = "mydata.RData")

mydata

# Transformation in the middle of another function.

summary( log(mydata$q4) )

# Creating meanQ with dollar notation.

mydata$meanQ <- (mydata$q1 + mydata$q2

+ mydata$q3 + mydata$q4) / 4

mydata

# Creating meanQ using attach.

attach(mydata)

mydata$meanQ <- (q1 + q2 + q3 + q4) / 4

detach(mydata)

mydata

# Creating meanQ using transform.

mydata <- transform(mydata,

meanQ=(q1 + q2 + q3 + q4) / 4 )

mydata

# Creating two variables using transform.

mydata <- transform(mydata,

score1 = (q1 + q2) / 2,

score2 = (q3 + q4) / 2 )

mydata

# Creating meanQ using index notation on the left.
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load(file = "mydata.RData")

mydata <- data.frame( cbind( mydata, meanQ = 0.) )

mydata[7] <- (mydata$q1 + mydata$q2 +

mydata$q3 + mydata$q4) / 4

mydata

10.2 Procedures or Functions?
The apply Function Decides

The last section described simple data transformations, using mathematics
and algebra. We applied functions like logarithms to one variable at a time. I
avoided the use of statistical functions.

SAS and SPSS each have two independent ways to calculate statistics:
functions and procedures. Statistical functions work within each observation
to calculate a statistic like the mean of our q variables for each observation.
Statistical procedures work within a variable to calculate statistics like the
mean of our q4 variable across all observations. Mathematical transformations
affect one variable at a time, unless you use a DO loop to apply the same
function to variable after variable.

R, on the other hand, has only one way to calculate: functions. What
determines if a function is working on variables or observations is how you
apply it! How you apply a function also determines how many variables or
observations a function works on, eliminating much of the need for DO loops.
This is a very different perspective!

Let us review an example from the previous section:

mydata$meanQ <- (mydata$q1 + mydata$q2

mydata$q3 + mydata$q4) / 4

This approach gets tedious with long lists of variables. It also has a problem
with missing values. The meanQ variable will be missing if any of the variables
has a missing value. The mean function solves that problem.

10.2.1 Applying the mean Function

We saw previously that R has both a mean function and a summary function.
For numeric objects, the mean function returns a single value, whereas the
summary function returns the minimum, first quartile, median, mean, third
quartile, and maximum. We could use either of these functions to create a
meanQ variable. However, the mean function returns only the value we need,
so it is better for this purpose.

Let us first call the mean function on mydata while selecting just the q
variables:
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> mean(mydata[3:6], na.rm = TRUE)

q1 q2 q3 q4

3.250000 2.750000 4.142857 3.250000

We see that the mean function went down the columns of our data frame
like a SAS procedure or SPSS command would do.

To try some variations, let us put our q variables into a matrix. Simply
selecting the variables with the command below will not convert them into
matrix form. Even though variables 3 through 6 are all numeric, the selection
will maintain its form as a data frame:

mymatrix <- mydata[ ,3:6] # Not a matrix!

The proper way to convert the data is with the as.matrix function:

> mymatrix <- as.matrix( mydata[3:6] )

> mymatrix

q1 q2 q3 q4

[1,] 1 1 5 1

[2,] 2 1 4 1

[3,] 2 2 4 3

[4,] 3 1 NA 3

[5,] 4 5 2 4

[6,] 5 4 5 5

[7,] 5 3 4 4

[8,] 4 5 5 5

Let us review what happens if we use the mean function on mymatrix:

> mean(mymatrix, na.rm = TRUE)

[1] 3.322581

This is an interesting ability, but it is not that useful in our case. What is
of much more interest is the mean of each variable, as a SAS/SPSS procedure
would do, or the mean of each observation, as a SAS/SPSS function would
do. We can do either by using the apply function. Let us start by getting the
means of the variables:

> apply(mymatrix, 2, mean, na.rm = TRUE)

q1 q2 q3 q4

3.250000 2.750000 4.142857 3.250000
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That is the same result as we saw from simply using the mean function on the
q variables.

The apply function call above has three arguments and passes a fourth on
to the mean function.

1. The name of the matrix (or array) you wish to analyze. If you supply
a data frame instead, it will coerce it into a matrix if possible (i.e., if
all its variables are of the same type). In our case we could have used
mydata[ ,3:6] since apply would have coerced it into a matrix on the
fly. I coerced it into a matrix manually to emphasize that that is what R
is doing behind the scenes. It also clarifies the call to the apply function.

2. The margin you want to apply the function over, with 1 representing
rows and 2 representing columns. This is easy to remember since R uses
the subscript order of [rows, columns], so the margin values are [1, 2],
respectively.

3. The function you want to apply to each row or column. In our case, this is
the mean function. It is important to note that you can only apply only a
single function. If you wish to apply a formula, perhaps involving multiple
functions, you must first create a new function that does what you need,
and then apply it.

4. The apply function passes any other arguments on to the function you are
applying. In our case, na.rm = TRUE is an argument for the mean function,
not the apply function. If you look at the help file for the apply function,
you will see its form is apply(X, MARGIN, FUN, ...). That means it only
uses three arguments, but the triple dot argument shows that it will pass
other arguments, indicated by the ellipsis “. . . ”, to the function “FUN”
(mean in our case).

Applying the mean function to rows is as easy as changing the value 2,
representing columns, to 1, representing rows:

> apply(mymatrix, 1, mean, na.rm = TRUE)

1 2 3 4 5

2.000000 2.000000 2.750000 2.333333 3.750000

6 7 8

4.750000 4.000000 4.750000

Since means and sums are such popular calculations, there are special-
ized functions to get them: rowMeans, colMeans, rowSums, and colSums. For
example, to get the row means of mymatrix, we can do

> rowMeans(mymatrix, na.rm = TRUE)

1 2 3 4 5

2.000000 2.000000 2.750000 2.333333 3.750000

6 7 8
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4.750000 4.000000 4.750000

To add a new variable to our data frame that is the mean of the q variables,
we could any one of the following forms:

> mydata$meanQ <- apply(mymatrix, 1, mean, na.rm = TRUE)

> mydata$meanQ <- rowMeans(mymatrix, na.rm = TRUE)

> mydata <- transform(mydata,

+ meanQ = rowMeans(mymatrix, na.rm = TRUE)

+ )

> mydata

workshop gender q1 q2 q3 q4 meanQ

1 R f 1 1 5 1 2.000000

2 SAS f 2 1 4 1 2.000000

3 R f 2 2 4 3 2.750000

4 SAS <NA> 3 1 NA 3 2.333333

5 R m 4 5 2 4 3.750000

6 SAS m 5 4 5 5 4.750000

7 R m 5 3 4 4 4.000000

8 SAS m 4 5 5 5 5.750000

Finally, we can apply a function to each vector in a data frame by using the
lapply function. A data frame is a type of list, and the letter “l” in lapply

stands for l ist. The function applies other functions to lists, and it returns
its results in a list. Since it is clear we want to apply the function to each
component in the list, there is no need for a row/column margin argument.

> lapply(mydata[ ,3:6], mean, na.rm = TRUE)

$q1

[1] 3.25

$q2

[1] 2.75

$q3

[1] 4.1429

$q4

[1] 3.25

Since the output is in the form of a list, it takes up more space when
printed than the vector output from the apply function. You can also use
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the sapply function on a data frame. The “s” in sapply means it simplifies
its output whenever possible to vector, matrix, or array form. Its simplified
vector output would be much more compact:

> sapply(mydata[ ,3:6], mean, na.rm = TRUE)

q1 q2 q3 q4

3.250000 2.750000 4.142857 3.250000

Since the result is a vector, it is very easy to get the mean of the means:

> mean(

+ sapply(mydata[ ,3:6], mean, na.rm = TRUE)

+ )

[1] 3.3482

Other statistical functions that work very similarly are shown in Table 10.2.
The length function is similar to the SAS N function or SPSS NVALID function,
but different enough to deserve its own section (below).

10.2.2 Finding N or NVALID

In SAS, saying, N(q1, q2, q3, q4) or in SPSS saying, NVALID(Q1 TO Q4)

would count the valid values of those variables for each observation. Running
descriptive statistical procedures would give you the number of valid obser-
vations for each variable. R has several variations on this theme. First, let us
look at the length function:

> length( mydata[ ,"q3"] )

[1] 8

The variable q3 has seven valid values and one missing value. The length

function tells us the number of total responses. Oddly enough, it does not
have an na.rm argument to get rid of that missing value.

Since every variable in a data frame must have the same length, the nrow
function will give us the same answer as the previous function call:

> nrow(mydata)

[1] 8

If you were seeking the number of observations on the data frame, that would
be the best way to do it. However, we are after the number of valid observations
per variable. One approach is to ask for values that are not missing. The “!”
sign means “not,” so let us try the following:
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> !is.na( mydata[ ,"q3"] )

[1] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE

This identifies them logically. Since statistical functions will interpret TRUE
as 1 and FALSE as 0, summing them will give us the number of valid values:

> sum( !is.na( mydata[ ,"q3"] ) )

[1] 7

It boggles my mind that such complexity is considered the standard ap-
proach to calculating such a simple and frequently needed measure! Luckily,
Lemon and Grosjean’s prettyR package has a valid.n function that does
that very calculation. Let us load that package from our library and apply the
function to our data frame using sapply:

> library("prettyR")

> sapply(mydata, valid.n)

workshop gender q1 q2 q3 q4

8 7 8 8 7 8

That is the kind of output we would get from descriptive statistics procedures
in SAS or SPSS. In Chap. 17, “Statistics,” we will see functions that provide
that information and much more, like means and standard deviations.

What about applying it across rows, like the SAS N function or the SPSS
NVALID function? Let us create a myQn variable that contains the number of
valid responses in q1 through q4. First, we will pull those variables out into a
matrix. That will let us use the apply function on the rows:

> mymatrix <- as.matrix( mydata[ ,3:6] )

> mymatrix

q1 q2 q3 q4

1 1 1 5 1

2 2 1 4 1

3 2 2 4 3

4 3 1 NA 3

5 4 5 2 4

6 5 4 5 5

7 5 3 4 4

8 4 5 5 5

Now we use the apply function with the margin argument set to 1, which
asks it to go across rows:
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> apply(mymatrix, 1, valid.n)

1 2 3 4 5 6 7 8

4 4 4 3 4 4 4 4

So we see that all of the observations have four valid values except for the
fourth. Now let us do that again, but this time save it in our data frame as
the variable myQn.

> mydata$myQn <- apply(mymatrix, 1, valid.n)

> mydata

workshop gender q1 q2 q3 q4 myQn

1 1 f 1 1 5 1 4

2 2 f 2 1 4 1 4

3 1 f 2 2 4 3 4

4 2 <NA> 3 1 NA 3 3

5 1 m 4 5 2 4 4

6 2 m 5 4 5 5 4

7 1 m 5 3 4 4 4

8 2 m 4 5 5 5 4

Another form of the apply function is tapply. It exists to create tables
by applying a function repeatedly to groups in the data. For details, see
Sect. 10.12, “Creating Summarized or Aggregated Data Sets.”

There is also the mapply function, which is a multivariate version of
sapply. See help("mapply") for details. Wickham’s plyr package has a com-
plete set of applying functions that are very popular.

The functions we have examined in this section are very basic. Their sparse
output is similar to the output from SAS and SPSS functions. For R functions
that act more like SAS or SPSS procedures, see Chap. 17, “Statistics.” Still,
R does not differentiate one type of function from another as SAS and SPSS
do for their functions and procedures.

10.2.3 Standardizing and Ranking Variables

The previous section showed how to apply functions to matrices and data
frames. To convert our variables to Z scores, we could subtract the mean
of each variable and divide by its standard deviation. However, the built-in
scale function will do that for us:

> myZs <- apply(mymatrix, 2, scale)

> myZs
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Table 10.2. Basic statistical functions. Note that valid.n is in the prettyR package.

R SAS SPSS

Maximum max(x) MAX(varlist) MAX(varlist)

Mean mean(x) MEAN(varlist) MEAN(varlist)

Median median(x) MEDIAN(varlist) MEDIAN(varlist)

Minimum min(x) MIN(varlist) MIN(varlist)

N valid.n(x) N(varlist) NVALID(varlist)

Range range(x) RANGE(varlist) Not equivalent
Rank scale(x) PROC RANK RANK Command

Std. dev. sd(x) STD(varlist) SD(varlist)

Variance var(x) VAR(varlist) VARIANCE(varlist)

Z scores scale(x) PROC STANDARD DESCRIPTIVES Cmd.

q1 q2 q3 q4

[1,] -1.5120484 -0.9985455 0.8017837 -1.4230249

[2,] -0.8400269 -0.9985455 -0.1336306 -1.4230249

[3,] -0.8400269 -0.4279481 -0.1336306 -0.1581139

[4,] -0.1680054 -0.9985455 NA -0.1581139

[5,] 0.5040161 1.2838442 -2.0044593 0.4743416

[6,] 1.1760376 0.7132468 0.8017837 1.1067972

[7,] 1.1760376 0.1426494 -0.1336306 0.4743416

[8,] 0.5040161 1.2838442 0.8017837 1.1067972

If you wanted to add these to mydata, you could rename the variables (see
Sect. 10.6) and then merge them with mydata (see Sect. 10.11).

Converting the variables to ranks is also easy using the built-in rank

function:

> myRanks <- apply(mymatrix, 2, rank)

> myRanks

q1 q2 q3 q4

[1,] 1.0 2.0 6 1.5

[2,] 2.5 2.0 3 1.5

[3,] 2.5 4.0 3 3.5

[4,] 4.0 2.0 8 3.5

[5,] 5.5 7.5 1 5.5

[6,] 7.5 6.0 6 7.5

[7,] 7.5 5.0 3 5.5

[8,] 5.5 7.5 6 7.5

If you need to apply functions like these by groups, Wickham’s plyr pack-
age makes the task particularly easy.
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10.2.4 Applying Your Own Functions

We have seen throughout this book that R has an important feature: Its
functions are controlled by arguments that accept only a single value. When
we provided value labels for a factor, we had to first combine them into a single
character vector. When we read two records per case, the field widths of each
record were stored in two numeric vectors. We had to combine them into a
single list before supplying the information. When using the apply family of
functions, this rule continues: You can apply only a single function. If that
does not meet your needs, you must create a new function that does, then
apply it.

Let us try to apply two functions, mean and sd:

> apply(mymatrix, 2, mean, sd) # No good!

Error in mean.default(newX[, i], ...) :

'trim' must be numeric of length one

R warns us that only one is possible. Previously in Sect. 5.9 “Writing Your
Own Functions (Macros),” we created several versions of a function called
mystats. It returned both the mean and standard deviation. Let us recreate
a simple version of it here:

mystats <- function(x) {

c( mean = mean(x, na.rm = TRUE),

sd = sd (x, na.rm = TRUE) )

}

Now we can apply it:

> apply(mymatrix, 2, mystats)

q1 q2 q3 q4

mean 3.250000 2.750000 4.142857 3.250000

sd 1.488048 1.752549 1.069045 1.581139

That worked well.
The apply family of functions also lets you do something unusual: create

a function on the fly and use it without even naming it. Functions without
names are called anonymous functions.

Let us run the example again using an anonymous function:

> apply(mymatrix, 2, function(x){

+ c( mean=mean(x, na.rm = TRUE),

+ sd=sd(x, na.rm = TRUE) )

+ } )

q1 q2 q3 q4
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mean 3.250000 2.750000 4.142857 3.250000

sd 1.488048 1.752549 1.069045 1.581139

We have essentially nested the creation of the function within the call to
the apply function and simply left off its name.

This makes for dense code, so I seldom use this approach. However, you
will see it in other books and help files, so it is important to know how it
works.

10.2.5 Example Programs for Applying Statistical Functions

SAS Program for Applying Statistical Functions

* Filename: ApplyingFunctions.sas;

LIBNAME myLib 'C:\myRfolder';

DATA myLib.mydata;

SET myLib.mydata;

myMean = MEAN(OF q1-q4);

myN = N(OF q1-q4);

RUN;

PROC MEANS;

VAR q1-q4 myMean myN;

RUN;

* Get Z Scores;

PROC STANDARD DATA=mylib.mydata

MEAN=0 STD=1 out=myZs;

RUN;

PROC PRINT;

RUN;

* Get Ranks;

PROC RANK DATA=mylib.mydata OUT=myRanks;

RUN;

PROC PRINT;

RUN;

SPSS Program for Applying Statistical Functions

* Filename: ApplyingFunctions.SPS.

CD 'C:\myRfolder'.
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GET FILE='mydata.sav'.

* Functions work for each observation (row).

COMPUTE myMean = Mean(q1 TO q4).

COMPUTE mySum = Sum(q1 TO q4).

COMPUTE myN = mySum / myMean.

* Procedures work for all observations (column).

DESCRIPTIVES VARIABLES=q1 q2 q3 q4 myMean myN.

* Get Z Scores.

DESCRIPTIVES VARIABLES=q1 q2 q3 q4

/SAVE

/STATISTICS=MEAN STDDEV MIN MAX.

* Get Ranks.

RANK VARIABLES=q1 q2 q3 q4 (A)

/RANK

/PRINT=YES

/TIES=MEAN.

EXECUTE.

R Program for Applying Statistical Functions

# Filename: ApplyingFunctions.R

setwd("c:/myRfolder")

load(file = "mydata.RData")

mydata

attach(mydata)

# Mean of the q variables

mean(mydata[3:6], na.rm = TRUE)

# Create mymatrix.

mymatrix <- as.matrix( mydata[ ,3:6] )

mymatrix

# Get mean of whole matrix.

mean(mymatrix, na.rm = TRUE)

# Get mean of matrix columns.

apply(mymatrix, 2, mean, na.rm = TRUE)

# Get mean of matrix rows.
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apply(mymatrix, 1, mean, na.rm = TRUE)

rowMeans(mymatrix, na.rm = TRUE)

# Add row means to mydata.

mydata$meanQ <- apply(mymatrix, 1, mean, na.rm = TRUE)

mydata$meanQ <- rowMeans(mymatrix, na.rm = TRUE)

mydata <- transform(mydata,

meanQ = rowMeans(mymatrix, na.rm = TRUE)

)

mydata

# Means of data frames & their vectors.

lapply(mydata[ ,3:6], mean, na.rm = TRUE)

sapply(mydata[ ,3:6], mean, na.rm = TRUE)

mean(

sapply(mydata[ ,3:6], mean, na.rm = TRUE)

)

# Length of data frames & their vectors.

length(mydata[ ,"q3"] )

nrow(mydata)

is.na( mydata[ ,"q3"] )

!is.na( mydata[ ,"q3"] )

sum( !is.na( mydata[ ,"q3"] ) )

# Like the SAS/SPSS n from stat procedures.

library("prettyR")

sapply(mydata, valid.n)

apply(myMatrix, 1, valid.n)

mydata$myQn <- apply(myMatrix, 1, valid.n)

mydata

# Applying Z Transformation.

myZs <- apply(mymatrix, 2, scale)

myZs

myRanks <- apply(mymatrix, 2, rank)

myRanks

# Applying Your Own Functions.

apply(mymatrix, 2, mean, sd) # No good!
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mystats <- function(x) {

c( mean=mean(x, na.rm = TRUE),

sd=sd (x, na.rm = TRUE) )

}

apply(mymatrix, 2, mystats)

apply(mymatrix, 2, function(x){

c( mean = mean(x, na.rm = TRUE),

sd = sd( x, na.rm = TRUE) )

} )

10.3 Conditional Transformations

Conditional transformations apply different formulas to various groups in your
data. For example, the formulas for recommended daily allowances of vitamins
differ for males and females. Conditional transformations are also used to chop
up continuous variables into categories like low and high, or grades like A, B,
C, D, F. Such transformations can be useful in understanding and explaining
relationships in our data, but they also result in a dramatic loss of information.
Your chance of finding a significant relationship when using such simplified
variables is shockingly worse than with the original variables. Analyses should
always be done using the most continuous form of your measures, saving
chopped-up versions for simplifying explanations of the results.

R’s ifelse function does conditional transformations in a way that is
virtually identical to what SAS and SPSS do. R also has a variety of cutting
functions that are very useful for chopping up variables into groups. We will
consider both in this section. Sect. 10.7,“Recoding Variables,”offers a different
solution to similar problems.

10.3.1 The ifelse Function

The general form of the ifelse function is:

ifelse(logic, true, false)

where “logic” is a logical condition to test, “true” is the value to return when
the logic is true, and “false” is the value to return when the logic is false. For
example, to create a variable that has a value of 1 for people who strongly
agree with question 4 on our survey, we could use

> mydata$q4Sagree <- ifelse( q4 == 5, 1, 0 )

> mydata$q4Sagree

[1] 0 0 0 0 0 1 0 1
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Table 10.3. Logical operators. See also help("Logic") and help("Syntax").

R SAS SPSS

Equals == = or EQ = or EQ

Less than < < or LT < or LT

Greater than > > or GT > or GT

Less than or equal <= <= or LE <= or LE

Greater than or equal >= >= or GE >= or GE

Not equal != ^=, <> or NE ~= or NE

And & &, AND &, AND

Or | |, OR |, OR

0<=x<=1 (0<=x) & (x<=1) 0<=x<=1 (0<=x) & (x<=1)

Missing value size Missing values
have no size

Minus infinity Missing values
have no size

Identify missing
values

is.na(x)==TRUE

(x==NA can never
be true.)

x=. MISSING(x)=1

This is such a simple outcome that we can also do this using

mydata$q4Sagree <- as.numeric(q4 == 5)

However, the latter approach only allows the outcomes of 1 and 0, whereas
the former version allows for any value. The statement q4 == 5 will result in
a vector of logical TRUE/FALSE values. The as.numeric function converts
it into zeros and ones.

R uses some different symbols for logical comparisons, such as the “==” for
logical equality. Table 10.3 shows the different symbols used by each package.

If we want a variable to indicate when people agree with question 4, (i.e.,
they responded with agree or strongly agree), we can use

> mydata$q4agree <- ifelse(q4 >= 4, 1, 0)

> mydata$q4agree

[1] 0 0 0 0 1 1 1 1

The logical condition can be as complicated as you like. Here is one that
creates a score of 1 when people took workshop 1 (abbreviated ws1) and agreed
that it was good:

> mydata$ws1agree <- ifelse(workshop == 1 & q4 >=4 , 1, 0)

> mydata$ws1agree

[1] 0 0 0 0 1 0 1 0
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We can fill in equations that will supply values under the two conditions.
The following equations for males and females are a bit silly, but they make
the point obvious. SAS users might think that if gender were missing, the
second equation would apply. Luckily, R is more like SPSS in this regard, and
if gender is missing, it sets the result to missing.

mydata$score <- ifelse(gender == "f",

(2 * q1) + q2,

(3 * q1) + q2

)

What follows is our resulting data frame:

> mydata

workshop gender q1 q2 q3 q4 q4Sagree q4agree ws1agree score

1 1 f 1 1 5 1 0 0 0 3

2 2 f 2 1 4 1 0 0 0 5

3 1 f 2 2 4 3 0 0 0 6

4 2 <NA> 3 1 NA 3 0 0 0 NA

5 1 m 4 5 2 4 0 1 1 17

6 2 m 5 4 5 5 1 1 0 19

7 1 m 5 3 4 4 0 1 1 18

8 2 m 4 5 5 5 1 1 0 17

Let us now consider conditional transformations that divide or cut a con-
tinuous variable into a number of groups. One of the most common examples
of this is cutting test scores into grades. Our practice data set mydata100
is just like mydata, but it has 100 observations and includes a pretest and
posttest score. Let us read it in and cut posttest into groups:

detach(mydata)

load("mydata100.RData")

attach(mydata100)

> head(mydata100)

gender workshop q1 q2 q3 q4 pretest posttest

1 Female R 4 3 4 5 72 80

2 Male SPSS 3 4 3 4 70 75

3 <NA> <NA> 3 2 NA 3 74 78

4 Female SPSS 5 4 5 3 80 82

5 Female Stata 4 4 3 4 75 81

6 Female SPSS 5 4 3 5 72 77

First we will use elseif in a form that is not very efficient but easy to
understand:
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> postGroup <- posttest

> postGroup <- ifelse(posttest< 60 , 1, postGroup)

> postGroup <- ifelse(posttest>=60 & posttest<70, 2, postGroup)

> postGroup <- ifelse(posttest>=70 & posttest<80, 3, postGroup)

> postGroup <- ifelse(posttest>=80 & posttest<90, 4, postGroup)

> postGroup <- ifelse(posttest>=90 , 5, postGroup)

> table(postGroup)

postGroup

1 2 3 4 5

1 3 31 52 13

The very first statement, postGroup <- posttest, is important just to
give postGroup some initial values. It must exist and have the same length as
posttest (the initial values are not important) since it is used at the end of
the very first ifelse.

A much more efficient approach nests each ifelse in the FALSE position
of the previous ifelse call:

> postGroup <-

+ ifelse(posttest < 60 , 1,

+ ifelse(posttest >= 60 & posttest < 70, 2,

+ ifelse(posttest >= 70 & posttest < 80, 3,

+ ifelse(posttest >= 80 & posttest < 90, 4,

+ ifelse(posttest >= 90 , 5, posttest)

+ ))))

> table(postGroup)

postGroup

1 2 3 4 5

1 3 31 52 13

With this approach, as soon as the TRUE state of a value is determined,
the following ifelse function calls are not checked. Note now that posttest
itself appears only one time, in the final FALSE position. Therefore, we did
not need to initialize postGroup with postGroup <- posttest.

You can also perform this transformation by taking advantage of a logical
TRUE being equivalent to a mathematical 1. Each observation gets a 1, and
then another 1 is added for every condition that is true:

> postGroup <- 1+

+ (posttest >= 60)+

+ (posttest >= 70)+

+ (posttest >= 80)+
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+ (posttest >= 90)

> table(postGroup)

postGroup

1 2 3 4 5

1 3 31 52 13

These examples use code that is quite long, so I have avoided using the
even longer form of mydata100$postGroup. When you do this type of trans-
formation, remember to save your new variable in your data frame with:

mydata100$postGroup <- postGroup

or an equivalent command.

10.3.2 Cutting Functions

R has a more convenient approach to cutting continuous variables into groups.
They are called cutting functions. R’s built-in function for this is named cut,
but the similar cut2 function from Harrell’s Hmisc package has some advan-
tages. To use it, you simply provide it with the variable to cut and a vector
of cut points:

> library("Hmisc")

> postGroup <- cut2(posttest, c(60, 70, 80, 90) )

> table(postGroup)

postGroup

59 [60,70) [70,80) [80,90) [90,98]

1 3 31 52 13

It creates a factor with default labels that indicate where the data got
cut. The labels even show you that 59 was the smallest score and 98 was the
largest.

SAS and SPSS do not offer the approach just presented, but they do offer
a way to cut a variable up into groups determined by percentiles using their
rank procedures (see example programs at the end of this section).

The cut2 function can do this, too.1 To cut a variable up into equal-sized
groups, you specify the number of groups you want using the g (for group)
argument:

1 R’s built-in cut function cannot do this directly, but you could nest a call to
quantile within it.
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> postGroup <- cut2(posttest, g = 5)

> table(postGroup)

postGroup

[59,78) [78,82) [82,85) [85,89) [89,98]

26 22 17 19 16

Previously we had equally spaced intervals. You can see that cut2 has
tried instead to create groups of equal size.

If you know in advance the size of groups you would like, you can also use
cut2 and specify the minimum number of observations in each group using
the m (for minimum) argument:

> postGroup <- cut2(posttest, m = 25)

> table(postGroup)

postGroup

[59,78) [78,83) [83,87) [87,98]

26 27 23 24

Another method of cutting is to form the groups into naturally occurring
clusters. Williams’ Rattle package includes a binning function that does
that.

10.3.3 Example Programs for Conditional Transformations

SAS Program for Conditional Transformations

* Filename: TransformIF.sas ;

LIBNAME myLib 'C:\myRfolder';

DATA myLib.mydataTransformed;

SET myLib.mydata;

IF q4 = 5 then x1 = 1; else x1 = 0;

IF q4 >= 4 then x2 = 1; else x2 = 0;

IF workshop = 1 & q4 >= 5 then x3 = 1;

ELSE x3 = 0;

IF gender = "f" then scoreA = 2 * q1 + q2;

Else scoreA = 3 * q1 + q2;

IF workshop = 1 and q4 >= 5

THEN scoreB = 2 * q1 + q2;

ELSE scoreB = 3 * q1 + q2;

RUN;
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PROC PRINT; RUN;

DATA myLib.mydataTransformed;

SET myLib.mydata100;

IF (posttest < 60) THEN postGroup = 1;

ELSE IF (posttest >= 60 & posttest < 70) THEN postGroup = 2;

ELSE IF (posttest >= 70 & posttest < 80) THEN postGroup = 3;

ELSE IF (posttest >= 80 & posttest < 90) THEN postGroup = 4;

ELSE IF (posttest >= 90) THEN postGroup = 5;

RUN;

PROC FREQ; TABLES postGroup; RUN;

PROC RANK OUT=myLib.mydataTransformed GROUPS=5;

VAR posttest;

RUN;

PROC FREQ; TABLES posttest; RUN;

SPSS Program for Conditional Transformations

*Filename: TransformIF.sps .

CD 'C:\myRfolder'.

GET FILE = 'mydata.sav'.

DO IF (Q4 eq 5).

+ COMPUTE X1 = 1.

ELSE.

+ COMPUTE X1 = 0.

END IF.

DO IF (Q4 GE 4).

+ COMPUTE X2 = 1.

ELSE.

+ COMPUTE X2 = 0.

END IF.

DO IF (workshop EQ 1 AND q4 GE 4).

+ COMPUTE X3 = 1.

ELSE.

+ COMPUTE X3 = 0.

END IF.
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DO IF (gender = 'f').

+ COMPUTE scoreA = 2 * q1 + q2.

ELSE.

+ COMPUTE scoreA = 3 * q1 + q2.

END IF.

DO IF (workshop EQ 1 AND q4 GE 5).

+ COMPUTE scoreB = 2 * q1 + q2.

ELSE.

+ COMPUTE scoreB = 3 * q1 + q2.

END IF.

EXECUTE.

GET FILE='mydata100.sav'.

DATASET NAME DataSet2 WINDOW=FRONT.

DO IF (posttest LT 60).

+ COMPUTE postGroup = 1.

ELSE IF (posttest GE 60 AND posttest LT 70).

+ COMPUTE postGroup = 2.

ELSE IF (posttest GE 70 AND posttest LT 80).

+ COMPUTE postGroup = 3.

ELSE IF (posttest GE 80 AND posttest LT 90).

+ COMPUTE postGroup = 4.

ELSE IF (posttest GE 90).

+ COMPUTE postGroup = 5.

END IF.

EXECUTE.

DATASET ACTIVATE DataSet2.

FREQUENCIES VARIABLES=postGroup

/ORDER=ANALYSIS.

DATASET ACTIVATE DataSet1.

RANK VARIABLES=posttest (A)

/NTILES(5)

/PRINT=YES

/TIES=MEAN.

FREQUENCIES VARIABLES=Nposttes

/ORDER=ANALYSIS.

R Program for Conditional Transformations

# Filename: TransformIF.R
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setwd("c:/myRfolder")

load(file = "mydata.RData")

mydata

attach(mydata)

mydata$q4Sagree <- ifelse(q4 == 5, 1, 0)

mydata$q4Sagree

mydata$q4Sagree <- as.numeric(q4 == 5 )

mydata$q4Sagree

mydata$q4agree <- ifelse(q4 >= 4, 1, 0)

mydata$q4agree

mydata$ws1agree <- ifelse(workshop == 1 & q4 >=4 , 1, 0)

mydata$ws1agree

mydata$score <- ifelse(gender == "f",

(2 * q1) + q2,

(3 * q1) + q2

)

mydata

# ---Cutting posttest---

detach(mydata)

load("mydata100.RData")

attach(mydata100)

head(mydata100)

# An inefficient approach:

postGroup <- posttest

postGroup <- ifelse(posttest< 60 , 1, postGroup)

postGroup <- ifelse(posttest>=60 & posttest<70, 2, postGroup)

postGroup <- ifelse(posttest>=70 & posttest<80, 3, postGroup)

postGroup <- ifelse(posttest>=80 & posttest<90, 4, postGroup)

postGroup <- ifelse(posttest>=90 , 5, postGroup)

table(postGroup)

# An efficient approach:

postGroup <-

ifelse(posttest < 60 , 1,

ifelse(posttest >= 60 & posttest < 70, 2,
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ifelse(posttest >= 70 & posttest < 80, 3,

ifelse(posttest >= 80 & posttest < 90, 4,

ifelse(posttest >= 90 , 5, posttest)

))))

table(postGroup)

# Logical approach:

postGroup <- 1+

(posttest >= 60)+

(posttest >= 70)+

(posttest >= 80)+

(posttest >= 90)

table(postGroup)

# ---Cutting Functions---

# Hmisc cut2 function

library("Hmisc")

postGroup <- cut2(posttest, c(60, 70, 80, 90) )

table(postGroup)

postGroup <- cut2(posttest, g = 5)

table(postGroup)

postGroup <- cut2(posttest, m = 25)

table(postGroup)

10.4 Multiple Conditional Transformations

Conditional transformations apply different formulas to different subsets of
your data. If you have only a single formula to apply to each group, read
Sect. 10.3, “Conditional Transformations.”SAS and SPSS both offer distinctly
different approaches to single conditional transformations and multiple condi-
tional transformations. However, R uses the same approach regardless of how
many transformations you need to apply to each group. It does, however, let
us look at some interesting variations in R.

The simplest approach is to use the ifelse function a few times. Let
us create two scores, cleverly named score1 and score2, which are calculated
differently for the males and the females. Here are the two scores for the
females:

mydata$score1 <- ifelse( gender == "f",

(2 * q1) + q2, # Score 1 for females.

(20* q1) + q2 # Score 1 for males.
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)

mydata$score2 <- ifelse( gender == "f",

(3 * q1) + q2, # Score 2 for females.

(30 * q1) + q2 # Score 2 for males.

)

As earlier, the calls to the ifelse functions have three arguments.

1. The gender == "f" argument provides the logical condition to test.
2. The first formula applies to the TRUE condition, for the females.
3. The second formula applies to the FALSE condition, for the males.

We can do the same thing using the index approach, but it is a bit trickier.
First, let us add the new score names to our data frame so that we can refer
to the columns by name:

> mydata <- data.frame(mydata, score1 = NA, score2 = NA)

> mydata

workshop gender q1 q2 q3 q4 score1 score2

1 R f 1 1 5 1 NA NA

2 SAS f 2 1 4 1 NA NA

3 R f 2 2 4 3 NA NA

4 SAS <NA> 3 1 NA 3 NA NA

5 R m 4 5 2 4 NA NA

6 SAS m 5 4 5 5 NA NA

7 R m 5 3 4 4 NA NA

8 SAS m 4 5 5 5 NA NA

This initializes the scores to missing. We could also have initialized them to
zero by changing “score1=NA, score2=NA” to “score1=0, score2=0”.

Next, we want to differentiate between the genders. We can use the form
gender == "f", but we do not want to use it directly as indices to our
data frame because gender has a missing value. What would R do with
mydata[NA, ]? Luckily, the which function only cares about TRUE values,
so we will use that to locate the observations we want:

> gals <- which( gender == "f" )

> gals

[1] 1 2 3

> guys <- which( gender == "m" )
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> guys

[1] 5 6 7 8

We can now use the gals and guys variables to make the actual formula
with the needed indices much shorter:

> mydata[gals, "score1"] <- 2 * q1[gals] + q2[gals]

> mydata[gals, "score2"] <- 3 * q1[gals] + q2[gals]

> mydata[guys, "score1"] <- 20 * q1[guys] + q2[guys]

> mydata[guys, "score2"] <- 30 * q1[guys] + q2[guys]

> mydata

workshop gender q1 q2 q3 q4 score1 score2

1 R f 1 1 5 1 3 4

2 SAS f 2 1 4 1 5 7

3 R f 2 2 4 3 6 8

4 SAS <NA> 3 1 NA 3 NA NA

5 R m 4 5 2 4 85 125

6 SAS m 5 4 5 5 104 154

7 R m 5 3 4 4 103 153

8 SAS m 4 5 5 5 85 125

We can see that this approach worked, but look closely at the index val-
ues. We are selecting observations based on the rows. So where is the required
comma? When we attached the data frame, variables q1 and q2 became acces-
sible by their short names. In essence, they are vectors now, albeit temporary
ones. Vectors can use index values, too, but since they only have one dimen-
sion, they only use one index. If we had not attached the file, we would have
had to write the formulas as:

2* mydata[gals, "q1"] + mydata[gals, "q2"]

We no longer need the guys and gals variables, so we can remove them
from our workspace.

rm(guys,gals)

10.4.1 Example Programs for Multiple
Conditional Transformations

SAS Program for Multiple Conditional Transformations

* Filename: TransformIF2.sas ;

LIBNAME myLib 'C:\myRfolder';



10.4 Multiple Conditional Transformations 249

DATA myLib.mydata;

SET myLib.mydata;

IF gender="f" THEN DO;

score1 = (2 * q1) + q2;

score2 = (3 * q1) + q2;

END;

ELSE IF gender="m" THEN DO;

score1 = (20 * q1) + q2;

score2 = (30 * q1) + q2;

END;

RUN;

SPSS Program for Multiple Conditional Transformations

* Filename: TransformIF2.sps .

CD 'C:\myRfolder'.

GET FILE = 'mydata.sav'.

DO IF (gender EQ 'm').

+ COMPUTE score1 = (2*q1) + q2.

+ COMPUTE score2 = (3*q1) + q2.

ELSE IF (gender EQ 'f').

+ COMPUTE score1 = (20*q1) + q2.

+ COMPUTE score2 = (30*q1) + q2.

END IF.

EXECUTE.

R Program for Multiple Conditional Transformations

# Filename: TransformIF2.R

setwd("c:/myRfolder")

load(file = "mydata.RData")

attach(mydata)

mydata

# Using the ifelse approach.

mydata$score1 <- ifelse( gender == "f",

(2 * q1) + q2, # Score 1 for females.
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(20* q1) + q2 # Score 1 for males.

)

mydata$score2 <- ifelse( gender == "f",

(3 * q1) + q2, # Score 2 for females.

(30 * q1) + q2 # Score 2 for males.

)

mydata

# Using the index approach.

load(file = "mydata.RData")

# Create names in data frame.

detach(mydata)

mydata <- data.frame(mydata, score1 = NA, score2 = NA)

mydata

attach(mydata)

# Find which are males and females.

gals <- which( gender == "f" )

gals

guys <- which( gender == "m" )

guys

mydata[gals, "score1"] <- 2 * q1[gals] + q2[gals]

mydata[gals, "score2"] <- 3 * q1[gals] + q2[gals]

mydata[guys, "score1"] <- 20 * q1[guys] + q2[guys]

mydata[guys, "score2"] <- 30 * q1[guys] + q2[guys]

mydata

# Clean up.

rm(guys, gals)

10.5 Missing Values

We discussed missing values briefly in several previous chapters. Let us bring
those various topics together to review and expand on them. R represents
missing values with NA, for Not Available. The letters NA are also an object
in R that you can use to assign missing values. Unlike SAS, the value used
to store NA is not the smallest number your computer can store, so logical
comparisons such as x < 0 will result in NA when x is missing. SAS would
give a result of TRUE instead, while the SPSS result would be missing.

When importing numeric data, R reads blanks as missing (except when
blanks are delimiters). R reads the string NA as missing for both numeric and
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character variables. When importing a text file, both SAS and SPSS would
recognize a period as a missing value for numeric variables. R will, instead,
read the whole variable as a character vector! If you have control over the
source of the data, it is best not to write them out that way. If not, you can
use a text editor to replace the periods with NA, but you have to be careful
to do so in a way that does not also replace valid decimal places. Some editors
make that easier than others. A safer method would be to fix it in R, which
we do below.

When other values represent missing, you will, of course, have to tell R
about them. The read.table function provides an argument, na.strings,
that allows you to provide a set of missing values. However, it applies that
value to every variable, so its usefulness is limited. Here is a data set that we
will use to demonstrate the various ways to set missing values. The data frame
we use, mydataNA, is the same as mydata in our other examples, except that
it uses several missing-value codes:

> mydataNA <- read.table("mydataNA.txt")

> mydataNA

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 99

3 . f 9 2 4 3

4 2 . 3 9 99 3

5 1 m 4 5 2 4

6 . m 9 9 5 5

7 1 . 5 3 99 4

8 2 m 4 5 5 99

In the data we see that workshop and gender have periods as missing val-
ues, q1 and q2 have 9’s, and q3 and q4 have 99s. Do not be fooled by the
periods in workshop and gender; they are not already set to missing! If so,
they would have appeared as NA instead. R has seen the periods and has con-
verted both variables to character (string) variables. Since read.table con-
verts string variables to factors unless the as.is = TRUE argument is added,
both workshop and gender are now factors. We can set all three codes to miss-
ing by simply adding the na.strings argument to the read.table function:

> mydataNA <- read.table("mydataNA.txt",

+ na.strings = c(".", "9", "99") )

> mydataNA

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1
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2 2 f 2 1 4 NA

3 NA f NA 2 4 3

4 2 <NA> 3 NA NA 3

5 1 m 4 5 2 4

6 NA m NA NA 5 5

7 1 <NA> 5 3 NA 4

8 2 m 4 5 5 NA

If the data did not come from a text file, we could still easily scan every
variable for 9 and 99 to replace with missing values using:

mydata[mydata == " "] <- NA

Both of the above approaches treat all variables alike. If any variables, like
age, had valid values of 99, each approach would set them to missing too!
For how to handle that situation, see Sect. 10.5.3, “When “99”Has Meaning.”
Of course “.” never has meaning by itself, so getting rid of them all with
na.strings = "." is usually fine.

10.5.1 Substituting Means for Missing Values

There are several methods for replacing missing values with estimates of what
they would have been. These methods include simple mean substitution, re-
gression, and – the gold standard– multiple imputation. We will just do mean
substitution. For a list of R packages that do missing value imputation, see
the table “R-SAS-SPSS Add-on Module Comparison” under “Missing Value
Analysis” available at http://r4stats.com.

Any logical comparison on NAs results in an NA outcome, so q1 == NA

will never be TRUE, even when q1 is indeed NA. Therefore, if you wanted to
substitute another value such as the mean, you would need to use the is.na
function. Its output is TRUE when a value is NA. Here is how you can use it
to substitute missing values (this assumes the data frame is attached):

mydataNA$q1[ is.na(q1) ] <- mean( q1, na.rm = TRUE )

On the left-hand side, the statement above selects mydataNA$q1 as a vec-
tor and then finds its missing elements with is.na(mydata$q1). On the right,
it calculates the mean of q1 across all observations to assign to those NA val-
ues on the left. We are attaching mydata so we can use short variables names
to simplify the code, but we are careful to use the long form, mydataNA$q1,
where we write the result. This ensures that the result will be stored within
the data frame, mydata, rather than in the attached copy. See Sect. 13.3,
“Attaching Data Frames,” for details.



10.5 Missing Values 253

10.5.2 Finding Complete Observations

You can omit all observations that contain any missing values with the
na.omit function. The new data frame, myNoMissing, contains no missing
values for any variables.

> myNoMissing <- na.omit(mydataNA)

> myNoMissing

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

5 1 m 4 5 2 4

Yikes! We do not have much data left. Thank goodness this is not our
dissertation data. The complete.cases function returns a value of TRUE
when a case is complete – that is, when an observation has no missing values:

> complete.cases(mydataNA)

[1] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

Therefore, we can use this to get the cases that have no missing values (the
same result as the na.omit function) by doing

> myNoMissing <- mydataNA[ complete.cases(mydataNA), ]

> myNoMissing

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

5 1 m 4 5 2 4

Since we already saw na.omit do that, it is of greater interest to do the
reverse. If we want to see which observations contain any missing values, we
can use “!” for NOT:

> myIncomplete <- mydataNA[ !complete.cases(mydataNA), ]

> myIncomplete

workshop gender q1 q2 q3 q4

2 2 f 2 1 4 NA

3 NA f NA 2 4 3

4 2 <NA> 3 NA NA 3

6 NA m NA NA 5 5

7 1 <NA> 5 3 NA 4

8 2 m 4 5 5 NA
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10.5.3 When “99” Has Meaning

Occasionally, data sets use different missing values for different sets of vari-
ables. In that case, the methods described earlier would not work because
they assume every missing value code applies to all variables.

Variables often have several missing value codes to represent things like
“not applicable,”“do not know,” and “refused to answer.” Early statistics pro-
grams used to read blanks as zeros, so researchers got used to filling their
fields with as many 9’s as would fit. For example, a two-column variable such
as years of education would use 99, to represent missing. The data set might
also have a variable like age, for which 99 is a valid value. Age, requiring three
columns, would have a missing value of 999. Data archives like the Interuni-
versity Consortium of Political and Social Research (ICPSR) have many data
sets coded with multiple values for missing.

We will use conditional transformations, covered earlier in this chapter, to
address this problem. Let us read the file again and put NAs in for the values
9 and 99 independently:

> mydataNA <- read.table("mydataNA.txt", na.strings = ".")

> attach(mydataNA)

> mydataNA$q1[q1 == 9 ] <- NA

> mydataNA$q2[q2 == 9 ] <- NA

> mydataNA$q3[q3 == 99] <- NA

> mydataNA$q4[q4 == 99] <- NA

> mydataNA

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 NA

3 NA f NA 2 4 3

4 2 <NA> 3 NA NA 3

5 1 m 4 5 2 4

6 NA m NA NA 5 5

7 1 <NA> 5 3 NA 4

8 2 m 4 5 5 NA

That approach can handle any values we might have and assign NAs only
where appropriate, but it would be quite tedious with hundreds of variables.
We have used the apply family of functions to execute the same function
across sets of variables. We can use that method here. First, we need to create
some functions, letting x represent each variable. We can do this using the
index method:
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my9isNA <- function(x) { x[x == 9 ] <- NA; x}

my99isNA <- function(x) { x[x == 99 ] <- NA; x}

or we could use the ifelse function:

my9isNA <- function(x) { ifelse( x == 9, NA, x) }

my99isNA <- function(x) { ifelse( x == 99, NA, x) }

Either of these approaches creates functions that will return a value of NA
when x == 9 or x == 99 and will return a value of just x if they are false. If
you leave off that last “...x}” above, what will the functions return when the
conditions are false? That would be undefined, so every value would become
NA!

Now we need to apply each function where it is appropriate, using the
lapply function.

> mydataNA <- read.table("mydataNA.txt", na.strings = ".")

> attach(mydataNA)

> mydataNA[3:4] <- lapply( mydataNA[3:4], my9isNA )

> mydataNA[5:6] <- lapply( mydataNA[5:6], my99isNA )

> mydataNA

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 NA

3 NA f NA 2 4 3

4 2 <NA> 3 NA NA 3

5 1 m 4 5 2 4

6 NA m NA NA 5 5

7 1 <NA> 5 3 NA 4

8 2 m 4 5 5 NA

The sapply function could have done this, too. With our small data frame,
this has not saved us much effort. However, to handle thousands of variables,
all we would need to change are the above indices from 3:4 and 5:6 to perhaps
3:4000 and 4001:6000.

10.5.4 Example Programs to Assign Missing Values

SAS Program to Assign Missing Values

* Filename: MissingValues.sas ;
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LIBNAME myLib 'C:\myRfolder';

DATA myLib.mydata;

SET myLib.mydata;

*Convert 9 to missing, one at a time.

IF q1=9 THEN q1=.;

IF q2=9 THEN q2=.;

IF q3=99 THEN q2=.;

IF q4=99 THEN q4=.;

* Same thing but is quicker for lots of vars;

ARRAY q9 q1-q2;

DO OVER q9;

IF q9=9 THEN q=.;

END;

ARRAY q99 q3-q4;

DO OVER q99;

IF q=99 THEN q99=.;

END;

SPSS Program to Assign Missing Values

* Filename: MissingValues.sps .

CD 'C:\myRfolder'.

GET FILE=('mydata.sav').

MISSING q1 TO q2 (9) q3 TO q4 (99).

SAVE OUTFILE='mydata.sav'.

R Program to Assign Missing Values

# Filename: MissingValues.R

setwd("c:/myRfolder")

mydataNA <- read.table("mydataNA.txt")

mydataNA

# Read it so that ".", 9, 99 are missing.

mydataNA <- read.table("mydataNA.txt",

na.strings = c(".", "9", "99") )
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mydataNA

# Convert 9 and 99 manually

mydataNA <- read.table("mydataNA.txt",

na.strings=".")

mydataNA[mydataNA == 9 | mydataNA == 99] <- NA

mydataNA

# Substitute the mean for missing values.

mydataNA$q1[is.na(mydataNA$q1)] <-

mean(mydataNA$q1, na.rm = TRUE)

mydataNA

# Eliminate observations with any NAs.

myNoMissing <- na.omit(mydataNA)

myNoMissing

# Test to see if each case is complete.

complete.cases(mydataNA)

# Use that result to select complete cases.

myNoMissing <- mydataNA[ complete.cases(mydataNA), ]

myNoMissing

# Use that result to select incomplete cases.

myIncomplete <- mydataNA[ !complete.cases(mydataNA), ]

myIncomplete

# When "99" Has Meaning...

mydataNA <- read.table("mydataNA.txt", na.strings = ".")

mydataNA

attach(mydataNA)

# Assign missing values for q variables.

mydataNA$q1[q1 == 9] <- NA

mydataNA$q2[q2 == 9] <- NA

mydataNA$q3[q3 == 99] <- NA

mydataNA$q4[q4 == 99] <- NA

mydataNA

detach(mydataNA)

# Read file again, this time use functions.

mydataNA <- read.table("mydataNA.txt", na.strings = ".")

mydataNA

attach(mydataNA)
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Fig. 10.1. Renaming a variable using R’s data editor

#Create a functions that replaces 9, 99 with NAs.

my9isNA <- function(x) { x[x == 9] <- NA; x}

my99isNA <- function(x) { x[x == 99] <- NA; x}

# Now apply our functions to the data frame using lapply.

mydataNA[3:4] <- lapply( mydataNA[3:4], my9isNA )

mydataNA[5:6] <- lapply( mydataNA[5:6], my99isNA )

mydataNA

10.6 Renaming Variables (and Observations)

In SAS and SPSS, you do not know where variable names are stored or how.
You just know they are in the data set somewhere. Renaming is simply a
matter of matching the new name to the old name with a RENAME statement.
In R however, both row and column names are stored in attributes – essentially
character vectors – within data objects. In essence, they are just another form
of data that you can manipulate.

If you use Microsoft Windows, you can see the names in R’s data editor,
and changing them there manually is a very easy way to rename them. The
function call fix(mydata) brings up the data editor. Clicking on the name of
a variable opens a box that enables you to change its name. In Fig. 10.1, I
am in the midst of changing the name of the variable q1 (see the name in the
spreadsheet) to x1.

Closing the variable editor box, the data editor completes your changes.
If you use Macintosh or Linux, the fix function does not work this way.
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However, on any operating system, you can use functions to change variable
names.

The programming approach to changing names that feels the closest to
SAS or SPSS is the rename function in Wickham’s reshape2 package [70]. It
works with the names of data frames or lists. To use it, install the package
and then load it with the library function. Then create a character vector
whose values are the new names. The names of the vector elements are the old
variable names. This approach makes it particularly easy to to rename only a
subset of your variables. It also feels very familiar to SAS or SPSS users since
it follows the old-name = new-name style of their RENAME commands.

> library("reshape2")

> myChanges <- c(q1 = "x1", q2 = "x2", q3 = "x3", q4 = "x4")

> myChanges

q1 q2 q3 q4

"x1" "x2" "x3" "x4"

Now it is very easy to change names with

> mydata <- rename(mydata, myChanges)

> mydata

workshop gender x1 x2 x3 x4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

3 1 f 2 2 4 3

4 2 <NA> 3 1 NA 3

5 1 m 4 5 2 4

6 2 m 5 4 5 5

7 1 m 5 3 4 4

8 2 m 4 5 5 5

R’s built-in approach to renaming variables is very different. It takes ad-
vantage of the fact that the variable names are simply stored as a character
vector. Therefore, any method for manipulating vectors or character strings
will work with them. You just have to know how to access the name vector.
That is what the names function does. Simply entering names(mydata) causes
R to print out the names vector:

> names(mydata)

[1] "workshop" "gender" "q1" "q2" "q3" "q4"
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Fig. 10.2. Renaming variables using the edit function

The names function works for data frames, lists, and vectors. You can also
assign a character vector of equal length to that function call, which renames
the variables. With this approach, you supply a name for every variable.

> names(mydata) <- c("workshop","gender","x1","x2","x3","x4")

> mydata

workshop gender x1 x2 x3 x4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

...

If you work with matrices, use the very similar rownames and colnames

functions. You access the names of arrays via the dimnames function.
You can also use subscripting for this type of renaming. Since gender is

the second variable in our data frame, you could change just the name gender
to sex as follows:

names(mydata)[2] <- "sex"

The edit function, described in Sect. 6.1, “The R Data Editor,” will gen-
erate a character vector of variable names, complete with the c function and
parentheses. In Fig. 10.2, you can see the command I entered and the window
that it opened. I have changed the name of the variable “gender” to “sex.”
When I finish my changes, closing the box will execute the command.

10.6.1 Advanced Renaming Examples

The methods shown above are often sufficient to rename your variables. You
can view this section either as beating the topic to death, or as an opportunity
to gain expertise in vector manipulations that will be helpful well outside the
topic at hand. The approach used in Sect. 10.6.4, “Renaming Many Sequen-
tially Numbered Variable Names,” can be a real time saver.
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10.6.2 Renaming by Index

Let us extract the names of our variables using the names function.

> mynames <- names(mydata)

> mynames

[1] "workshop" "gender" "q1" "q2" "q3" "q4"

Now we have a character vector whose values we can change using the R
techniques we have covered elsewhere. This step is not really necessary since
the names are already stored in a vector inside our data frame, but it will make
the examples easier to follow. We would like to obtain the index value of each
variable name. Recall that whenever a data frame is created, row names are
added that are sequential numbers by default. So we can use the data.frame
function to number our variable names:

> data.frame(mynames)

mynames

1 workshop

2 gender

3 q1

4 q2

5 q3

6 q4

We see from the above list that q1 is the third name and q4 is the sixth.
We can now use that information to enter new names directly into this vector
and print the result so that we can see if we made any errors:

> mynames[3] <- "x1"

> mynames[4] <- "x2"

> mynames[5] <- "x3"

> mynames[6] <- "x4"

> mynames

[1] "workshop" "gender" "x1" "x2" "x3" "x4"

That looks good, so let us place those new names into the names attribute of
our data frame and look at the results:

> names(mydata) <- mynames

> mydata
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workshop gender x1 x2 x3 x4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

...

As you will see in the program below, each time we use another method
of name changes, we need to restore the old names to demonstrate the new
techniques. We can accomplish this by either reloading our original data frame
or using

names(mydata) <- c("workshop", "gender", "q1", "q2", "q3", "q4")

10.6.3 Renaming by Column Name

If you prefer to use variable names instead of index numbers, that is easy to
do. We will make another copy of mynames:

> mynames <- names(mydata)

> mynames

[1] "workshop" "gender" "q1" "q2" "q3" "q4"

Now we will make the same changes but using a logical match to find where
mynames == "q1" and so on and assigning the new names to those locations:

> mynames[ mynames == "q1" ] <- "x1"

> mynames[ mynames == "q2" ] <- "x2"

> mynames[ mynames == "q3" ] <- "x3"

> mynames[ mynames == "q4" ] <- "x4"

> mynames

[1] "workshop" "gender" "x1" "x2" "x3" "x4"

Finally, we put the new set mynames into the names attribute of our data
frame, mydata:

> names(mydata) <- mynames

> mydata

workshop gender x1 x2 x3 x4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

...
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You can combine all these steps into one, but it can be very confusing to read
at first:

names(mydata)[names(mydata) == "q1"] <- "x1"

names(mydata)[names(mydata) == "q2"] <- "x2"

names(mydata)[names(mydata) == "q3"] <- "x3"

names(mydata)[names(mydata) == "q4"] <- "x4"

10.6.4 Renaming Many Sequentially Numbered Variable Names

Our next example works well if you are changing many variable names, like
100 variables named x1, x2, etc. over to similar names like y1, y2, and so
forth. You occasionally have to make changes like this when you measure
many variables at different times and you need to rename the variables in
each data set before joining them all.

In Sect. 7.4, “Selecting Variables by Column Name,” we learned how the
paste function can append sequential numbers onto any string. We will use
that approach here to create the new variable names:

> myXs <- paste( "x", 1:4, sep = "")

> myXs

[1] "x1" "x2" "x3" "x4"

Now we need to find out where to put the new names. We already know this
of course, but we found that out in the previous example by listing all of the
variables. If we had thousands of variables, that would not be a very good
method. We will use the method we covered previously (and in more detail)
in the Sect. 7.11, “Generating indices A to Z from Two Variable Names”:

> myA <- which( names(mydata) == "q1" )

> myA

[1] 3

> myZ <- which( names(mydata) == "q4" )

> myZ

[1] 6

Now we know the indices of the variable names to replace; we can replace
them with the following command:
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> names(mydata)[myA:myZ] <- myXs

> mydata

workshop gender x1 x2 x3 x4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

...

10.6.5 Renaming Observations

R has row names that work much the same as variable names, but they apply
to observations. These names must be unique and often come from an ID vari-
able. When reading a text file using functions like read.csv, the row.names

argument allows you to specify an ID variable. See Sect. 6.2, “Reading Delim-
ited Text Files,” for details.

Row names are stored in a vector called the row names attribute. Therefore,
when renaming rows using a variable, you must select it so that it will pass
as a vector. In the examples below, the first three select a variable named “id”
as a vector, so they work. The last approach looks almost like the first, but it
selects id as a data frame, which will not fit in the row names attribute. Recall
that leaving out the comma in mydata["id"] makes R select a variable as a
data frame. The moral of the story is that when renaming observations using
index values, keep the comma!

> row.names(mydata) <- mydata[ ,"id"] # This works.

> row.names(mydata) <- mydata$id # This works too.

> row.names(mydata) <- mydata[["id"]] # This does too.

> row.names(mydata) <- mydata["id"] # This does not.

Error in 'row.names<-.data.frame'('*tmp*',

value = list(id = c(1, 2, 3, :

invalid 'row.names' length

10.6.6 Example Programs for Renaming Variables

For many of our programming examples, the R programs are longer because
they demonstrate a wider range of functionality. In this case, renaming vari-
ables is definitely easier in SAS and SPSS. R does have a greater flexibility in
this area, but it is an ability that only a fanatical programmer could love!
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SAS Program for Renaming Variables

* Filename: Rename.sas ;

LIBNAME myLib 'C:\myRfolder';

DATA myLib.mydata;

RENAME q1-q4=x1-x4;

*or;

*RENAME q1=x1 q2=x2 q3=x3 q4=x4;

RUN;

SPSS Program for Renaming Variables

* Filename: Rename.sps .

CD 'C:\myRfolder'.

GET FILE='mydata.sav'.

RENAME VARIABLES (q1=x1)(q2=x2)(q3=x3)(q4=x4).

* Or...

RENAME VARIABLES (q1 q2 q3 q4 = x1 x2 x3 x4).

* Or...

RENAME VARIABLES (q1 TO q4 = x1 TO x4).

R Program for Renaming Variables

# Filename: Rename.R

setwd("c:/myRfolder")

load(file = "mydata.RData")

mydata

# Using the data editor.

fix(mydata)

mydata

# Restore original names for next example.

names(mydata) <- c("workshop", "gender",

"q1", "q2", "q3", "q4")

# Using the reshape2 package.

library("reshape2")
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myChanges <- c(q1 = "x1", q2 = "x2", q3 = "x3", q4="x4")

myChanges

mydata <- rename(mydata, myChanges)

mydata

# Restore original names for next example.

names(mydata) <- c("workshop", "gender",

"q1", "q2", "q3", "q4")

# The standard R approach.

names(mydata) <- c("workshop", "gender",

"x1", "x2", "x3", "x4")

mydata

# Restore original names for next example.

names(mydata) <- c("workshop", "gender",

"q1", "q2", "q3", "q4")

# Using the edit function.

names(mydata) <- edit( names(mydata) )

mydata

# Restore original names for next example.

names(mydata) <- c ("workshop", "gender",

"q1", "q2", "q3", "q4")

#---Selecting Variables by Index Number---

mynames <- names(mydata)

# Data.frame adds index numbers to names.

data.frame(mynames))

# Then fill in index numbers in brackets.

mynames[3] <- "x1"

mynames[4] <- "x2"

mynames[5] <- "x3"

mynames[6] <- "x4"

# Finally, replace old names with new.

names(mydata) <- mynames

mydata

# Restore original names for next example.
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names(mydata) <- c("workshop", "gender",

"q1", "q2", "q3", "q4")

#---Selecting Variables by Name---

# Make a copy to work on.

mynames <- names(mydata)

mynames

# Replace names in copy.

mynames[ mynames == "q1" ] <- "x1"

mynames[ mynames == "q2" ] <- "x2"

mynames[ mynames == "q3" ] <- "x3"

mynames[ mynames == "q4" ] <- "x4"

mynames

# Then replace the old names.

names(mydata) <- mynames

mydata

# Restore original names for next example.

names(mydata) <- c ("workshop", "gender",

"q1", "q2", "q3", "q4")

#---Same as Above, but Confusing!---

names(mydata)[names(mydata) == "q1"] <- "x1"

names(mydata)[names(mydata) == "q2"] <- "x2"

names(mydata)[names(mydata) == "q3"] <- "x3"

names(mydata)[names(mydata) == "q4"] <- "x4"

print(mydata)

# Restore original names for next example.

names(mydata) <- c("workshop", "gender",

"q1", "q2", "q3", "q4")

#---Replacing Many Numbered Names---

# Examine names

names(mydata)

# Generate new numbered names.

myXs <- paste( "x", 1:4, sep = "")

myXs
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# Find out where to put the new names.

myA <- which( names(mydata) == "q1" )

myA

myZ <- which( names(mydata) == "q4" )

myZ

# Replace names at index locations.

names(mydata)[myA:myZ] <- myXs(mydata)

#remove the unneeded objects.

rm(myXs, myA, myZ)

10.7 Recoding Variables

Recoding is just a simpler way of doing a set of related IF/THEN conditional
transformations. Survey researchers often collapse five-point Likert-scale items
into simpler three-point Disagree/Neutral/Agree scales to summarize results.
This can also help when a cross-tabulation (or similar analysis) with other
variables creates tables that are too sparse to analyze.

Recoding can also reverse the scale of negatively worded items so that
a large numeric value has the same meaning across all items. It is easier to
reverse scales by subtracting each score from 6 as in

mydata$qr1 <- 6-mydata$q1

That results in 6-5=1, 6-4=2, and so on.
There are two important issues to consider when recoding data. First,

collapsing a scale loses information and power. You will lessen your ability to
find significant, and hopefully useful, relationships. Second, recoding nominal
categorical variables like race can be disastrous. For example, inexperienced
researchers often recode race into Caucasian and Other without checking to
see how reasonable that is beforehand. You should do an analysis to see if the
groups you are combining show similar patterns with regard to your dependent
variable of interest. Given how much time that can add to the overall analysis,
it is often far easier to set values to missing. Simply focus your analysis on the
groups for which you have sufficient data rather than combine groups without
justification.

SAS does not have a separate recode procedure as SPSS does, but it does
offer a similar capability using its value label formats. That has the useful
feature of applying the formats in categorical analyses and ignoring them oth-
erwise. For example, PROC FREQ will use the format but PROC MEANS
will ignore it. You can also recode the data with a series of IF/THEN state-
ments. I show both methods below. For simplicity, I leave the value labels out
of the SPSS and R programs. I cover those in Sect. 11.1, “Value Labels or
Formats (and Measurement Level).”
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For recoding continuous variables into categorical ones, see the cut func-
tion in base R and the cut2 function in Frank Harrell’s Hmisc package. For
choosing optimal cut points with regard to a target variable, see the rpart

function in the rpart package or the tree function in the Hmisc package.
It is wise to avoid modifying your original data, so recoded variables are

typically stored under new names. If you named your original variables q1, q2,
etc. then you might name the recoded ones qr1, qr2, etc. with ”r” representing
recoded.

10.7.1 Recoding a Few Variables

We will work with the recode function from John Fox’s car package, which
you will have to install before running this. See Chap. 2, “Installing and
Updating R,” for details. We will apply it below to collapse our five-point
scale down to a three-point one representing just disagree, neutral, and agree:

> library("car")

> mydata$qr1 <- recode(q1, "1=2; 5=4")

> mydata$qr2 <- recode(q2, "1=2; 5=4")

> mydata$qr3 <- recode(q3, "1=2; 5=4")

> mydata$qr4 <- recode(q4, "1=2; 5=4")

> mydata

workshop gender q1 q2 q3 q4 qr1 qr2 qr3 qr4

1 1 f 1 1 5 1 2 2 4 2

2 2 f 2 1 4 1 2 2 4 2

3 1 f 2 2 4 3 2 2 4 3

4 2 <NA> 3 1 NA 3 3 2 NA 3

5 1 m 4 5 2 4 4 4 2 4

6 2 m 5 4 5 5 4 4 4 4

7 1 m 5 3 4 4 4 3 4 4

8 2 m 4 5 5 5 4 4 4 4

The recode function needs only two arguments: the variable you wish to
recode and a string of values in the form “old1=new1; old2=new2;...”.

10.7.2 Recoding Many Variables

The above approach worked fine with our tiny data set, but in a more realistic
situation, we would have many variables to recode. So let us scale this example
up. We learned how to rename many variables in Sect. 10.6.4, so we will use
that knowledge here.



270 10 Data Management

> myQnames <- paste( "q", 1:4, sep = "")

> myQnames

[1] "q1" "q2" "q3" "q4"

> myQRnames <- paste( "qr", 1:4, sep = "")

> myQRnames

[1] "qr1" "qr2" "qr3" "qr4"

Now we will use the original names to extract the variables we want to recode
to a separate data frame:

> myQRvars <- mydata[ ,myQnames]

> myQRvars

q1 q2 q3 q4

1 1 1 5 1

2 2 1 4 1

3 2 2 4 3

4 3 1 NA 3

5 4 5 2 4

6 5 4 5 5

7 5 3 4 4

8 4 5 5 5

We will use our other set of variable names to rename the variables we just
selected:

> names(myQRvars) <- myQRnames

> myQRvars

qr1 qr2 qr3 qr4

1 1 1 5 1

2 2 1 4 1

3 2 2 4 3

4 3 1 NA 3

5 4 5 2 4

6 5 4 5 5

7 5 3 4 4

8 4 5 5 5

Now we need to create a function that will allow us to apply the recode
function to each of the selected variables. Our function only has one argument,
x, which will represent each of our variables:
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myRecoder <- function(x) { recode(x,"1=2;5=4") }

Here is how we can use myRecoder on a single variable. Notice that the
qr1 variable had a 1 for the first observation, which myRecoder made a 2. It
also had values of 5 for the sixth and seventh observations, which became 4s:

> myQRvars$qr1

[1] 1 2 2 3 4 5 5 4

> myRecoder(myQRvars$qr1)

[1] 2 2 2 3 4 4 4 4

To apply this function to our whole data frame, myQRvars, we can use the
sapply function:

> myQRvars <- sapply( myQRvars, myRecoder)

> myQRvars

qr1 qr2 qr3 qr4

[1,] 2 2 4 2

[2,] 2 2 4 2

[3,] 2 2 4 3

[4,] 3 2 NA 3

[5,] 4 4 2 4

[6,] 4 4 4 4

[7,] 4 3 4 4

[8,] 4 4 4 4

The sapply function has converted our data frame to a matrix, but that is
fine. We will use the cbind function to bind these columns to our original
data frame:

> mydata <- cbind(mydata,myQRvars)

> mydata

workshop gender q1 q2 q3 q4 qr1 qr2 qr3 qr4

1 1 f 1 1 5 1 2 2 4 2

2 2 f 2 1 4 1 2 2 4 2

3 1 f 2 2 4 3 2 2 4 3

4 2 <NA> 3 1 NA 3 3 2 NA 3

5 1 m 4 5 2 4 4 4 2 4

6 2 m 5 4 5 5 4 4 4 4

7 1 m 5 3 4 4 4 3 4 4

8 2 m 4 5 5 5 4 4 4 4
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Now we can use either the original variables or their recoded counterparts in
any analysis we choose. In this simple case, it was not necessary to create the
myRecoder function. We could have used the form,

sapply(myQRvars, recode, "1=2;5=4")

However, you can generalize the approach we took to far more situations.

10.7.3 Example Programs for Recoding Variables

SAS Program for Recoding Variables

* Filename: Recode.sas ;

LIBNAME myLib 'C:\myRfolder';

DATA myLib.mydata;

INFILE 'Š\myRfolder\mydata.csv' csvŠ delimiter = 'Š,' Ś

MISSOVER DSD LRECL=32767 firstobs=2 ;

INPUT id workshop gender $ q1 q2 q3 q4;

PROC PRINT; RUN;

PROC FORMAT;

VALUE Agreement 1="Disagree" 2="Disagree"

3="Neutral"

4="Agree" 5="Agree"; run;

DATA myLib.mydata;

SET myLib.mydata;

ARRAY q q1-q4;

ARRAY qr qr1-qr4; *r for recoded;

DO i=1 to 4;

qr{i}=q{i};

if q{i}=1 then qr{i}=2;

else

if q{i}=5 then qr{i}=4;

END;

FORMAT q1-q4 q1-q4 Agreement.;

RUN;

* This will use the recoded formats automatically;

PROC FREQ; TABLES q1-q4; RUN;

* This will ignore the formats;

* Note high/low values are 1/5;
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PROC UNIVARIATE; VAR q1-q4; RUN;

* This will use the 1-3 codings, not a good idea!;

* High/Low values are now 2/4;

PROC UNIVARIATE; VAR qr1-qr4;

RUN;

SPSS Program for Recoding Variables

* Filename: Recode.sps .

CD 'C:\myRfolder'.

GET FILE='mydata.sav'.

RECODE q1 to q4 (1=2) (5=4).

SAVE OUTFILE='myleft.sav'.

R Program for Recoding Variables

# Filename: Recode.R

setwd("c:/myRfolder")

load(file = "myWorkspace.RData")

mydata

attach(mydata)

library("car")

mydata$qr1 <- recode(q1, "1=2; 5=4")

mydata$qr2 <- recode(q2, "1=2; 5=4")

mydata$qr3 <- recode(q3, "1=2; 5=4")

mydata$qr4 <- recode(q4, "1=2; 5=4")

mydata

# Do it again, stored in new variable names.

load(file = "mydata.RData")

attach(mydata)

# Generate two sets of var names to use.

myQnames <- paste( "q", 1:4, sep = "")

myQnames

myQRnames <- paste( "qr", 1:4, sep = "")

myQRnames

# Extract the q variables to a separate data frame.
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myQRvars <- mydata[ ,myQnames]

myQRvars

# Rename all of the variables with R for Recoded.

names(myQRvars) <- myQRnames

myQRvars

# Create a function to apply the labels to lots of variables.

myRecoder <- function(x) { recode(x,"1=2; 5=4") }

# Here's how to use the function on one variable.

myQRvars$qr1

myRecoder(myQRvars$qr1)

#Apply it to all of the variables.

myQRvars <- sapply( myQRvars, myRecoder)

myQRvars

# Save it back to mydata if you want.

mydata <- cbind(mydata,myQRvars)

mydata

summary(mydata)

10.8 Indicator or Dummy Variables

When modeling with categorical variables like workshop, it is often useful to
create a series of indicator variables (also called dummy variables) that have
the value of one when true and zero when false. We have four workshops, so we
would usually need three indicator variables. You often need one less indicator
variable than there are categories because if someone took a workshop and it
was not SAS, SPSS, or Stata, then it must have been R. So there are only
k−1 unique pieces of information contained in a factor with k levels. However,
it is occasionally useful to include all k variables in a model with restrictions
on the corresponding parameter estimates.

Let us create indicator variables using mydata100 since it has all four
workshops:

> setwd("c:/myRfolder")

> load("mydata100.RData")

> attach(mydata100)

> head(mydata100)
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gender workshop q1 q2 q3 q4 pretest posttest

1 Female R 4 3 4 5 72 80

2 Male SPSS 3 4 3 4 70 75

3 <NA> <NA> 3 2 NA 3 74 78

4 Female SPSS 5 4 5 3 80 82

5 Female Stata 4 4 3 4 75 81

6 Female SPSS 5 4 3 5 72 77

You can create indicator variables using the ifelse function (Sect. 10.3)
or using the recode function (Sect. 10.7), but the easiest approach is the same
as in SAS or SPSS: using logic to generate a series of zeros and ones:

> r <- as.numeric(workshop == "R" )

> sas <- as.numeric(workshop == "SAS" )

> spss <- as.numeric(workshop == "SPSS" )

> stata <- as.numeric(workshop == "Stata")

In each command the logical comparison resulted in TRUE if the person
took that workshop or FALSE if not. Then the as.numeric function converted
that to one or zero, respectively.

To see the result, let us use the data.frame function just to line up the
variables neatly and then call head to print the top six observations:

> head( data.frame(

+ workshop, r, sas, spss, stata) )

workshop r sas spss stata

1 R 1 0 0 0

2 SPSS 0 0 1 0

3 <NA> NA NA NA NA

4 SPSS 0 0 1 0

5 Stata 0 0 0 1

6 SPSS 0 0 1 0

Now that we have the variables, let us use them in a model. To keep it
simple, we will do a linear regression that only allows the y-intercepts of each
group to differ:

> lm(posttest ~ pretest + sas + spss + stata)

Call:

lm(formula = posttest ~ pretest + sas + spss + stata)

Coefficients:

(Intercept) pretest sas spss stata

16.3108 0.9473 -8.2068 -7.4949 -7.0646
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I left out the r variable, so the intercept is for the people in the r workshop;
all the other weights would be multiplied against their zero values. We will
consider linear regression in more detail in Chap. 17.

While knowing how to create indicator variables is useful in R, we did not
need to do it in this case. R, being object oriented, tries to do the right thing
with your data. Once you have told it that workshop is a factor, it will create
the indicator variables for you. Here I use workshop directly in the model:

> lm(posttest ~ pretest + workshop)

Call:

lm(formula = posttest ~ pretest + workshop)

Coefficients:

(Intercept) pretest workshopSAS workshopSPSS workshopStata

16.3108 0.9473 -8.2068 -7.4949 -7.0646

So you see that the result is the same except that in our first example we got
to choose the variable names while in the second, R chose reasonable names
for us.

It is clear in the first example why the R workshop is the “all zeros” level
to which the others are being compared because I chose to leave out the
variable r. But why did R choose to do that, too? Let us print a few workshop
values and then count them:

> head(workshop)

[1] R SPSS <NA> SPSS Stata SPSS

Levels: R SAS SPSS Stata

> table(workshop)

workshop

R SAS SPSS Stata

31 24 25 19

Notice in both cases that when the levels of the factor are displayed that they
are in the same order and “R” is the first level. This is caused by their order
on the levels and matching labels arguments when the factor was created.
You can change that by using the relevel function:

> workshop <- relevel(workshop, "SAS")

This relevel function call used only two arguments, the factor to relevel
and the level that we want to make first in line. Now let us see how it changed
things:
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> table(workshop)

workshop

SAS R SPSS Stata

24 31 25 19

> coef( lm(posttest ~ pretest + workshop) )

(Intercept) pretest workshopR workshopSPSS workshopStata

8.1039484 0.9472987 8.2068027 0.7119439 1.1421791

We see that the order in the table output has SAS first, and we see that
the equation now includes a parameter for all workshops except for SAS. If a
person took a workshop and it was not for R, SPSS, or Stata, well, then it
was for SAS.

If we did a more realistic model and included the interaction between
pretest and workshop, R would have generated another three parameters to
allow the slopes of each group to differ.

There is a function in the built-in nnet package called class.ind that
creates indicator variables. However, it assigns missing values on a factor to
zeros on the indicator variables. That is not something I typically want to
have happen.

If you have a factor that is ordinal, that is, created using the ordered

function rather than factor, then the dummy variables will be coded using
polynomial contrasts. For more details on contrasts, see help("contrast").

10.8.1 Example Programs for Indicator or Dummy Variables

SAS Program for Indicator or Dummy Variables

* Filename: IndicatorVars.sas ;

LIBNAME myLib 'C:\myRfolder';

DATA temp; SET myLib.mydata100;

r = workshop = 1;

sas = workshop = 2;

spss = workshop = 3;

stata = workshop = 4;

RUN;

PROC REG;

MODEL posttest = pretest sas spss stata;

RUN;
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SPSS Program for Indicator or Dummy Variables

This program uses standard SPSS syntax. An alternative approach is to in-
stall the Python plug-in and use the SPSSINC CREATE DUMMIES extension
command. It will discover the values and generate and label the indictor vari-
ables automatically. Its dialog appears on the Transform> Create Dummy
Variables menu after installation.

* Filename: IndicatorVars.sps.

CD 'C:\myRfolder'.

GET FILE='mydata100.sav'.

DATASET NAME DataSet2 WINDOW=FRONT.

COMPUTE r = workshop EQ 1.

COMPUTE sas = workshop EQ 2.

COMPUTE spss = workshop EQ 3.

COMPUTE stata = workshop EQ 4.

EXECUTE.

REGRESSION

/DEPENDENT posttest

/METHOD=ENTER pretest sas spss stata.

EXECUTE.

R Program for Indicator or Dummy Variables

# Filename: IndicatorVars.R

setwd("c:/myRfolder")

load("mydata100.RData")

attach(mydata100)

head(mydata100)

r <- as.numeric(workshop == "R" )

sas <- as.numeric(workshop == "SAS" )

spss <- as.numeric(workshop == "SPSS" )

stata <- as.numeric(workshop == "Stata")

head( data.frame(

workshop, r, sas, spss, stata) )

lm(posttest ~ pretest + sas + spss + stata)

lm(posttest ~ pretest + workshop)

head(workshop)

table(workshop)
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workshop <- relevel(workshop, "SAS")

table(workshop)

coef( lm(posttest ~ pretest + workshop) )

library("nnet")

head( class.ind(workshop) )

10.9 Keeping and Dropping Variables

In SAS, you use the KEEP and DROP statements to determine which vari-
ables to save in your data set. The SPSS equivalent is the DELETE VARI-
ABLES command. In R, the main methods to do this within a data frame are
discussed in Chap. 7, “Selecting Variables.” For example, if we want to keep
variables on the left side of our data frame, workshop through q2 (variables 1
through 4), an easy way to do this is with

myleft <- mydata[ ,1:4]

We will strip off the ones on the right side in a future example on merging
data frames.

Another way to drop variables is to assign the NULL object to them:

mydata$varname <- NULL

This has the advantage of removing a variable without having to make a
copy of the data frame. That may come in handy with a data frame so large
that your workspace will not hold a copy, but it is usually much safer to work
on copies when you can. Mistakes happen! You can apply NULL repeatedly
with the form

myleft <- mydata

myleft$q3 <- myleft$q4 <- NULL

NULL is only used to remove components from data frames and lists. You
cannot use it to drop elements of a vector, nor can you use it to remove a
vector by itself from your workspace.

In Sect. 13.6, “Removing Objects from Your Workspace,” we will discuss
removing objects using the rm function. That function removes only whole
objects; it cannot remove variables from within a data frame:

rm( mydata$q4 ) # This does NOT work.



280 10 Data Management

10.9.1 Example Programs for Keeping and Dropping Variables

SAS Program for Keeping and Dropping Variables

* Filename: DropKeep.sas ;

LIBNAME myLib 'C:\myRfolder';

DATA myleft; SET mydata;

KEEP id workshop gender q1 q2;

PROC PRINT;

RUN;

*or equivalently;

DATA myleft; SET mydata;

DROP q3 q4;

PROC PRINT;

RUN;

SPSS Program for Keeping and Dropping Variables

* Filename: DropKeep.sps ;

CD 'C:\myRfolder'.

GET FILE='mydata.sav'.

DELETE VARIABLES q3 to q4.

LIST.

SAVE OUTFILE='myleft.sav'.

R Program for Keeping and Dropping Variables

# Filename: DropKeep.R

setwd("c:/myRfolder")

load(file = "mydata.RData")

# Using variable selection.

myleft <- mydata[ ,1:4]

myleft

# Using NULL.

myleft <- mydata

myleft$q3 <- myleft$q4 <- NULL

myleft
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10.10 Stacking/Concatenating/Adding Data Sets

Often we find data divided into two or more sets due to collection at different
times or places. Combining them is an important step prior to analysis. SAS
calls this concatenation and accomplishes this with the SET statement. SPSS
calls it adding cases and does it using the ADD FILES statement. R, with its
row/column orientation, calls it binding rows.

To demonstrate this, let us take our practice data set and split it into
separate ones for females and males. Then we will bind the rows back together.
A split function exists to do this type of task, but it puts the resulting data
frames into a list, so we will use an alternate approach.

First, let us get the females:

> females <- mydata[ which(gender == "f"), ]

> females

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

3 1 f 2 2 4 3

Now we get the males:

> males <- mydata[ which(gender == "m"), ]

> males

workshop gender q1 q2 q3 q4

5 1 m 4 5 2 4

6 2 m 5 4 5 5

7 1 m 5 3 4 4

8 2 m 4 5 5 5

We can put them right back together by binding their rows with the rbind

function. The “r” in rbind stands for row.

> both <- rbind(females, males)

> both

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

3 1 f 2 2 4 3

5 1 m 4 5 2 4

6 2 m 5 4 5 5

7 1 m 5 3 4 4

8 2 m 4 5 5 5
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This works fine when the two data frames share the exact same variables.
Often the data frames you will need to bind will have a few variables missing.
We will drop variable q2 in the males data frame to create such a mismatch:

> males$q2 <- NULL

> males

workshop gender q1 q3 q4

5 1 m 4 2 4

6 2 m 5 5 5

7 1 m 5 4 4

8 2 m 4 5 5

Note that variable q2 is indeed gone. Now let us try to put the two data frames
together again:

> both <- rbind(females, males)

Error in match.names(clabs, names(xi)) :

names do not match previous names

It fails because the rbind function needs both data frames to have the ex-
act same variable names. Luckily, Wickham’s plyr package has a function,
rbind.fill, that binds whichever variables it finds that match and then fills
in missing values for those that do not. This next example assumes that you
have installed the plyr package. See Chap. 2, “Installing and Updating R,”
for details.

> library("plyr")

> both <- rbind.fill(females, males)

> both

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

3 1 f 2 2 4 3

5 1 m 4 NA 2 4

6 2 m 5 NA 5 5

7 1 m 5 NA 4 4

8 2 m 4 NA 5 5

We can do the same thing with the built-in rbind function, but we have to
first determine which variables we need to add and then add them manually
with the data.frame function and set them to NA:
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> males <- data.frame( males, q2=NA )

> males

workshop gender q1 q3 q4 q2

5 1 m 4 2 4 NA

6 2 m 5 5 5 NA

7 1 m 5 4 4 NA

8 2 m 4 5 5 NA

The males data frame now has a variable q2 again, and so we can bind the
two data frames using rbind. The fact that q2 is now on at the end will not
matter. The data frame you list first on the rbind function call will determine
the order of the final data frame. However, if you use index values to refer to
your variables, you need to be aware of the difference!

> both <- rbind(females, males)

> both

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

3 1 f 2 2 4 3

5 1 m 4 NA 2 4

6 2 m 5 NA 5 5

7 1 m 5 NA 4 4

8 2 m 4 NA 5 5

With such a tiny data frame, this is an easy way to address the mismatched
variables problem. However, in situations that are more realistic, rbind.fill
is usually a great time saver.

10.10.1 Example Programs for Stacking/Concatenating/Adding
Data Sets

SAS Program for Stacking/Concatenating/Adding
Data Sets

* Filename: Stack.sas ;

LIBNAME myLib 'C:\myRfolder';

DATA males;

SET mydata;

WHERE gender='m';

RUN;



284 10 Data Management

PROC PRINT; RUN;

DATA females;

SET mydata;

WHERE gender='f';

RUN;

PROC PRINT; RUN;

DATA both;

SET males females;

RUN;

PROC PRINT; RUN;

SPSS Program for Stacking/Concatenating/Adding
Data Sets

* Filename: Stack.sps .

CD 'C:\myRfolder'.

GET FILE='mydata.sav'.

SELECT IF(gender = "f").

LIST.

SAVE OUTFILE='females.sav'.

EXECUTE .

GET FILE='mydata.sav'.

SELECT IF(gender = "m").

LIST.

SAVE OUTFILE='males.sav'.

EXECUTE .

GET FILE='females.sav'.

ADD FILES /FILE=*

/FILE='males.sav'.

LIST.

EXECUTE .

R Program for Stacking/Concatenating/Adding Data Sets

# Filename: Stack.R

setwd("c:/myRfolder")

load(file = "mydata.RData")

mydata

attach(mydata)
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# Create female data frame.

females <- mydata[ which(gender == "f"), ]

females

# Create male data frame.

males <- mydata[ which(gender == "m"), ]

males

#Bind their rows together with the rbind function.

both <- rbind(females, males)

both

# Drop q2 to see what happens.

males$q2 <- NULL

males

# See that row bind will not work.

both <- rbind(females, males)

# Use plyr rbind.fill.

library("plyr")

both <- rbind.fill(females, males)

both

# Add a q2 variable to males.

males <- data.frame(males, q2 = NA)

males

# Now rbind can handle it.

both <- rbind(females, males)

both

10.11 Joining/Merging Data Sets

One of the most frequently used data manipulation methods is joining or merg-
ing two data sets, each of which contains variables that the other lacks. SAS
does this with its MERGE statement, and SPSS uses its ADD VARIABLES
command.

If you have a one-to-many join, it will create a row for every possible
match. A common example is a short data frame containing household-level
information such as family income joined to a longer data set of individual
family member variables. A complete record of each family member along
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with his or her household income will result. Duplicates in more than one
data frame are possible, but you should study them carefully for errors.

So that we will have an ID variable to work with, let us read our practice
data without the row.names argument. That will keep our ID variable as is
and fill in row names with 1, 2, 3, etc.

> mydata <- read.table("mydata.csv",

+ header = TRUE, sep = ",", na.strings = " ")

> mydata

id workshop gender q1 q2 q3 q4

1 1 1 f 1 1 5 1

2 2 2 f 2 1 4 1

3 3 1 f 2 2 4 3

4 4 2 <NA> 3 1 NA 3

5 5 1 m 4 5 2 4

6 6 2 m 5 4 5 5

7 7 1 m 5 3 4 4

8 8 2 m 4 5 5 5

Now we will split the left half of the data frame into one called myleft:

> myleft <- mydata[ c("id", "workshop", "gender", "q1", "q2") ]

> myleft

id workshop gender q1 q2

1 1 1 f 1 1

2 2 2 f 2 1

3 3 1 f 2 2

4 4 2 <NA> 3 1

5 5 1 m 4 5

6 6 2 m 5 4

7 7 1 m 5 3

8 8 2 m 4 5

We then do the same for the variables on the right, but we will keep id and
workshop to match on later:

> myright <- mydata[ c("id", "workshop", "q3", "q4") ]

> myright

id workshop q3 q4

1 1 1 5 1

2 2 2 4 1
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3 3 1 4 3

4 4 2 NA 3

5 5 1 4 4

6 6 2 5 5

7 7 1 4 4

8 8 2 5 5

Now we can use the merge function to put the two data frames back together:

> both <- merge(myleft, myright, by = "id")

> both

id workshop.x gender q1 q2 workshop.y q3 q4

1 1 1 f 1 1 1 5 1

2 2 2 f 2 1 2 4 1

3 3 1 f 2 2 1 4 3

4 4 2 <NA> 3 1 2 NA 3

5 5 1 m 4 5 1 2 4

6 6 2 m 5 4 2 5 5

7 7 1 m 5 3 1 4 4

8 8 2 m 4 5 2 5 5

This call to the merge function has three arguments:

1. The first data frame to merge.
2. The second data frame to merge.
3. The by argument, which has either a single variable name in quotes or a

character vector of names.

If you leave out the by argument, it will match by all variables with com-
mon names! That is quite unlike SAS or SPSS, which would simply match
the two row by row. That is what the R cbind function will do. It is much
safer to match on some sort of ID variable(s), though. Very often, rows do not
match up as well as you think they will.

Sometimes the same variable has two different names in the data frames
you need to merge. For example, one may have “id” and another “subject.” If
you have such a situation, you can use the by.x argument to identify the first
variable or set of variables and the by.y argument to identify the second. The
merge function will match them up in order and do the proper merge. In this
next example, I do just that. The variables have the same name, but it still
works:

> both <- merge(myleft, myright,

+ by.x = "id", by.y = "id")
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> both

id workshop gender q1 q2 q3 q4

1 1 1 f 1 1 5 1

2 2 2 f 2 1 4 1

3 3 1 f 2 2 4 3

4 4 2 <NA> 3 1 NA 3

5 5 1 m 4 5 2 4

6 6 2 m 5 4 5 5

7 7 1 m 5 3 4 4

8 8 2 m 4 5 5 5

If you have multiple variables in common, but you only want to match on
a subset of them, you can use the form

both <- merge( myleft, myright,

by = c("id", "workshop") )

If each file had variables with slightly different names, you could use the form

both <- merge( myleft,myright, by.x = c("id", "workshop")

y.y = c("subject", "shortCourse") )

By default, SAS and SPSS keep all records regardless of whether or not
they match (a full outer join). For observations that do not have matches in
the other file, the merge function will fill them in with missing values. R takes
the opposite approach, keeping only those that have a record in both (an inner
join). To get merge to keep all records, use the argument all = TRUE. You can
also use all.x = TRUE to keep all of the records in the first file regardless of
whether or not they have matches in the second. The all.y = TRUE argument
does the reverse.

While SAS and SPSS can merge any number of files at once, base R can
only do two at a time. To do more, you can use the merge_all function in
the reshape package.

10.11.1 Example Programs for Joining/Merging Data Sets

SAS Program for Joining/Merging Data Sets

* Filename: Merge.sas ;

LIBNAME myLib 'C:\myRfolder';

DATA myLib.myleft;

SET mylib.mydata;

KEEP id workshop gender q1 q2;

PROC SORT; BY id workshop; RUN;
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DATA myLib.myright;

SET myLib.mydata;

KEEP id workshop q3 q4;

PROC SORT; BY id workshop; RUN;

DATA myLib.both;

MERGE myLib.myleft myLib.myright;

BY id workshop;

RUN;

SPSS Program for Joining/Merging Data Sets

* Filename: Merge.sps .

CD 'C:\myRfolder'.

GET FILE='mydata.sav'.

DELETE VARIABLES q3 to q4.

SAVE OUTFILE='myleft.sav'.

GET FILE='mydata.sav'.

DELETE VARIABLES gender, q1 to q2.

SAVE OUTFILE='myright.sav'.

GET FILE='myleft.sav'.

MATCH FILES /FILE=*

/FILE='myright.sav'

/BY id.

R Program for Joining/Merging Data Sets

# Filename: Merge.R

setwd("c:/myRfolder")

# Read data keeping ID as a variable.

mydata <- read.table("mydata.csv",

header = TRUE, sep = ",", na.strings = " ")

mydata

# Create a data frame keeping the left two q variables.

myleft <- mydata[ c("id", "workshop", "gender", "q1", "q2") ]

myleft

# Create a data frame keeping the right two q variables.

myright <- mydata[ c("id", "workshop", "q3", "q4") ]

myright
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# Merge the two data frames by ID.

both <- merge(myleft, myright, by = "id")

both

# Merge the two data frames by ID.

both <- merge(myleft, myright,

by.x = "id", by.y = "id" )

#Merge data frames by both ID and workshop.

both <- merge(myleft, myright, by = c("id","workshop"))

both

#Merge dataframes by both ID and workshop,

#while allowing them to have different names.

both <- merge(myleft,

myright,

by.x=c("id", "workshop"),

by.y=c("id", "workshop") )

both

10.12 Creating Summarized or Aggregated Data Sets

We often have to work on data that are a summarization of other data. For
example, you might work on household-level data that you aggregated from a
data set that had each family member as its own observation. SAS calls this
summarization and performs it with the SUMMARY procedure. SPSS calls
this process aggregation and performs it using the AGGREGATE command.
Database programmers call this rolling up data.

R has three distinct advantages over SAS and SPSS regarding aggregation.

1. It is possible to perform multilevel calculations and selections in a single
step, so there is less need to create aggregated data sets.

2. R can aggregate with every function it has and any function you write! It
is not limited to the few that SAS and SPSS build into SUMMARY and
AGGREGATE.

3. R has data structures optimized to hold aggregate results. Other functions
offer methods to take advantage of those structures.

10.12.1 The aggregate Function

We will use the aggregate function to calculate the mean of the q1 variable
by gender and save it to a new (very small!) data frame.



10.12 Creating Summarized or Aggregated Data Sets 291

> attach(mydata)

> myAgg1 <- aggregate(q1,

+ by = data.frame(gender),

+ mean, na.rm = TRUE)

> myAgg1

gender x

1 f 1.666667

2 m 4.500000

The aggregate function call above has four arguments.

1. The variable you wish to aggregate.
2. One or more grouping factors. Unlike SAS, the data do not have to be

sorted by these factors. The factors must be in the form of a list (or
data frame, which is a type of list). Recall that single subscripting of a
data frame creates a list. So mydata["gender"] and mydata[2] work.
Adding the comma to either one will prevent them from working. There-
fore, mydata[ ,"gender"] or mydata[ ,2] will not work. If you have at-
tached the data frame, data.frame(gender) will work. The function call
list(gender) will also work, but it loses track of the grouping variable
names.

3. The function that you wish to apply – in this case – the mean function.
An important limitation of the aggregate function is that it can apply
only functions that return a single value. If you need to apply a function
that returns multiple values, you can use the tapply function.

4. Arguments to pass to the function applied. Here na.rm = TRUE is passed
to the mean function to remove missing, or NA, values.

Next we will aggregate by two variables: workshop and gender. To keep
our by factors in the form of a list (or data frame), we can use any one of the
following forms:

mydata[ c("workshop", "gender")]

or

mydata[ c(2, 3) ]

or, if you have attached the data frame,

data.frame(workshop, gender)

In this example, we will use the latter form.
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> myAgg2 <- aggregate(q1,

+ by = data.frame(workshop, gender),

+ mean, na.rm = TRUE)

> myAgg2

workshop gender x

1 R f 1.5

2 SAS f 2.0

3 R m 4.5

4 SAS m 4.5

Now let us use the mode and class functions to see the type of object the
aggregate function creates is a data frame:

> mode(myAgg2)

[1] "list"

> class(myAgg2)

[1] "data.frame"

It is small, but ready for further analysis.

10.12.2 The tapply Function

In the last subsection we discussed the aggregate function. That function has
an important limitation: you can only use it with functions that return single
values. The tapply function works very similarly to the aggregate function
but can perform aggregation using any R function. To gain this ability, it has
to abandon the convenience of creating a data frame. Instead, its output is in
the form of a matrix or an array.

Let us first duplicate the last example from the above subsection using
tapply:

> myAgg2 <- tapply(q1,

+ data.frame(workshop, gender),

+ mean, na.rm = TRUE)

> myAgg2

gender

workshop f m

R 1.5 4.5

SAS 2.0 4.5
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The tapply function call above uses four arguments:

1. The variable to aggregate.
2. One or more grouping factors (or vectors that it will coerce into fac-

tors). Unlike SAS and SPSS, the data do not have to be sorted by these
factors. This must be in the form of a list (or data frame, which is a
list). Recall that single subscripting of a data frame creates a list. So
mydata["gender"] and mydata[2] work. Adding the comma to either
one will prevent them from working. Therefore, mydata[ ,"gender"]

or mydata[ ,2] will not work. If you have attached the data frame,
data.frame(gender) will work. The function call list(gender) will also
work, but it loses track of the grouping variable names.

3. The function to apply – in this case, the mean function. This function can
return any result, not just single values.

4. Any additional parameters to pass to the applied function. In this case,
na.rm = TRUE is used by the mean function to remove NA or missing
values.

The actual means are, of course, the same as we obtained before using the
aggregate function. However, the result is now a numeric matrix rather than
a data frame.

> class(myAgg2)

[1] "matrix"

> mode(myAgg2)

[1] "numeric"

Now let us do an example that the aggregate function could not perform.
The range function returns two values: the minimum and maximum for each
variable:

> myAgg2 <- tapply(q1,

+ data.frame(workshop,gender),

+ range, na.rm = TRUE)

> myAgg2

gender

workshop f m

R Numeric,2 Numeric,2

SAS Numeric,2 Numeric,2

This output looks quite odd! It is certainly not formatted for communicating
results to others. Let us see how it is stored:

> mode(myAgg2)
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[1] "list"

> class(myAgg2)

[1] "matrix"

It is a matrix, whose elements are lists. Let us look at the entry for the
females who took the R workshop. That result is stored in the first row and
first column:

> class( myAgg2[1,1] )

[1] "list"

> myAgg2[1,1]

[[1]]

[1] 1 2

So we see that each component in this matrix is a list that contains a single
vector of minimum and maximum values. The opinions of the females who
took the R workshop range from 1 to 2. While this output is not very useful
for communicating results, it is very useful as input for further programming.

10.12.3 Merging Aggregates with Original Data

It is often useful to add aggregate values back to the original data frame. This
allows you to perform multilevel transformations that involve both individual-
level and aggregate-level values. A common example of such a calculation is
a Z-score, which subtracts a variable’s mean and then divides by its standard
deviation (see Sect. 10.2.3 for an easier way to do that particular task).

Another important use for merging aggregates with original data is to
perform multilevel selections of observations. To select individual-level obser-
vations based on aggregate-level values requires access to both at once. For
example, we could create a subset of subjects who fall below their group’s
mean value.

This is an area in which R has a distinct advantage over SAS and SPSS. R’s
greater flexibility allows it to do both multilevel transformations and selections
in a single step.

Now let us calculate a Z-score for variable q1 with the single following
statement. Note that we are specifying the long form of the name for our new
variable, mydata$Zq1, so that it will go into our data frame.

> mydata$Zq1 <- (q1 - mean(q1) ) / sd(q1)
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> mydata

workshop gender q1 q2 q3 q4 Zq1

1 R f 1 1 5 1 -1.5120484

2 SAS f 2 1 4 1 -0.8400269

3 R f 2 2 4 3 -0.8400269

4 SAS <NA> 3 1 NA 3 -0.1680054

5 R m 4 5 2 4 0.5040161

6 SAS m 5 4 5 5 1.1760376

7 R m 5 3 4 4 1.1760376

8 SAS m 4 5 5 5 0.5040161

You can also select the observations that were below average with this single
statement:

> mySubset <- mydata[ q1 < mean(q1), ]

> mySubset

workshop gender q1 q2 q3 q4 Zq1

1 R f 1 1 5 1 -1.5120484

2 SAS f 2 1 4 1 -0.8400269

3 R f 2 2 4 3 -0.8400269

4 SAS <NA> 3 1 NA 3 -0.1680054

SAS and SPSS cannot perform such calculations and selections in one step.
You would have to create the aggregate-level data and then merge it back into
the individual-level data set. R can use that approach too, and as the number
of levels you consider increases, it becomes more reasonable to do so.

So let us now merge myAgg2, created in Sect. 10.12.1, “The aggregate

Function,” to mydata. To do that, we will rename the mean of q1 from x to
mean.q1 using the rename function from the reshape package. If you do not
have that package installed, see Chap. 2, “Installing and Maintaining R.”

> library("reshape")

> myAgg3 <- rename(myAgg2, c(x = "mean.q1"))

> myAgg3

workshop gender mean.q1

1 R f 1.5

2 SAS f 2.0

3 R m 4.5

4 SAS m 4.5

Now we merge the mean onto each of the original observations:
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> mydata2 <- merge(mydata, myAgg3,

+ by = c("workshop", "gender") )

> mydata2

workshop gender q1 q2 q3 q4 Zq1 mean.q1

1 R f 1 1 5 1 -1.5120484 1.5

2 R f 2 2 4 3 -0.8400269 1.5

3 R m 4 5 2 4 0.5040161 4.5

4 R m 5 3 4 4 1.1760376 4.5

5 SAS f 2 1 4 1 -0.8400269 2.0

6 SAS m 5 4 5 5 1.1760376 4.5

7 SAS m 4 5 5 5 0.5040161 4.5

The merge function call above has only two arguments.

1. The two data frames to merge. Unlike SAS and SPSS, which can merge
many data sets at once, R can only do two at a time.

2. The by argument specifies the variables to match on. In this case, they
have the same name in both data frames. They can, however, have different
names. See the merge help files for details. While some other functions
require by variables in list form, here you provide more than one variable
in the form of a character vector.

We can now perform multilevel transformations or selections
on mydata2.

10.12.4 Tabular Aggregation

The aim of table creation in SAS and SPSS is to communicate results to
people. You can create simple tables of frequencies and percentages using
the SAS FREQ procedure and SPSS CROSSTABS. For more complex tables,
SAS has PROC TABULATE, and SPSS has its CTABLES procedure. These
two create complex tables with basic statistics in almost any form, as well as
some basic hypothesis tests. However, no other procedures are programmed
to process these tables further automatically. You can analyze them further
using the SAS Output Delivery (ODS) or SPSS Output Mangement System
(OMS), but not as easily as in R.

R can create tables for presentation, too, but it also creates tables and
matrices that are optimized for further use by other functions. They are a
different form of aggregated data set. See Chap. 17, “Statistics,” for other uses
of tables.

Let us revisit simple frequencies using the table function. First, let us
look at just workshop attendance (the data frame is attached, so I am using
short variable names):
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> table(workshop)

workshop

R SAS

4 4

And now gender and workshop:

> table(gender,workshop)

workshop

gender R SAS

f 2 1

m 2 2

Let us save this table to an object, myCounts, and check its mode and
class:

> myCounts <- table(gender, workshop)

> mode(myCounts)

[1] "numeric"

> class(myCounts)

[1] "table"

We see that the mode of myCounts is numeric and its class is table. Other
functions that exist to work with presummarized data know what to do with
table objects. In Chap. 15, “Traditional Graphics,” we will see the kinds of
plots we can make from tables. In Chap. 17, “Statistics,” we will also work
with table objects to calculate related values like row and column percents.

Other functions prefer count data in the form of a data frame. This is the
type of output created by the SAS SUMMARY procedure or the similar SPSS
AGGREGATE command. The as.data.frame function makes quick work
of it:

> myCountsDF <- as.data.frame(myCounts)

> myCountsDF

gender workshop Freq

1 f R 2

2 m R 2

3 f SAS 1

4 m SAS 2
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> class(myCountsDF)

[1] "data.frame"

This approach is particularly useful for people who use analysis of variance.
You can get cell counts for very complex models in a form that is very easy
to read and use in further analyses.

10.12.5 The plyr and reshape2 Packages

If you perform a lot of data aggregation, you will want to learn how to use two
of Wickham’s packages. His plyr package [73] provides a useful set of apply-
like functions that are more comprehensive and consistent than those built
into R. His reshape2 package [70] is also very useful for aggregation. While
its main purpose is to reshape data sets, it can also aggregate them as it does
so. Its use is covered in Sect. 10.17, “Reshaping Variables to Observations and
Back.”

10.12.6 Comparing Summarization Methods

Table 10.4. Comparison of summarization functions.See Sect. 10.17 for reshape2.

Input Functions it
can apply

Output

by Data frame Any function List with class of “by.” Easier to
read but not as easy to program

aggregate Data frame Only functions that
return single values

Data frame. Easy to read
and program

tapply List or
data frame

Any function List. Easy to access components
for programming. Not as nicely
formatted for reading.

table Factors Does counting only Table object. Easy to read
and easy to analyze further.

reshape2 Data frame Only functions that
return single values

Data frame (dcast) or list
(lcast). Easy to read and
program, especially useful
for ANOVA data.

In this section we have examined several methods of summarization. In
the following section, we will see that the by function not only does analyses
in the “by” approach used by SAS and the SPLIT FILE approach used by
SPSS, but it can also create summarized data sets. Table 10.4, can help you
choose which one to use.
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10.12.7 Example Programs for Aggregating/Summarizing Data

SAS Program for Aggregating/Summarizing Data

* Filename: Aggregate.sas ;

LIBNAME myLib 'C:\myRfolder';

* Get means of q1 for each gender;

PROC SUMMARY DATA=myLib.mydata MEAN NWAY;

CLASS GENDER;

VAR q1;

OUTPUT OUT=myLib.myAgg;

RUN;

PROC PRINT; RUN;

DATA myLib.myAgg;

SET myLib.myAgg;

WHERE _STAT_='MEAN'ŠMEANŠ;

KEEP gender q1;

RUN;

PROC PRINT; RUN;

*Get means of q1 by workshop and gender;

PROC SUMMARY DATA=myLib.mydata MEAN NWAY;

CLASS WORKSHOP GENDER;

VAR Q1;

OUTPUT OUT=myLib.myAgg;RUN;

PROC PRINT; RUN;

*Strip out just the mean and matching variables;

DATA myLib.myAgg;

SET myLib.myAgg;

WHERE _STAT_='MEAN';

KEEP workshop gender q1;

RENAME q1=meanQ1;

RUN;

PROC PRINT; RUN;

*Now merge aggregated data back into mydata;

PROC SORT DATA=myLib.mydata;

BY workshop gender; RUN:

PROC SORT DATA=myLib.myAgg;

BY workshop gender; RUN:

DATA myLib.mydata2;

MERGE myLib.mydata myLib.myAgg;
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BY workshop gender;

PROC PRINT; RUN;

SPSS Program for Aggregating/Summarizing Data

* Filename: Aggregate.sps .

CD 'C:\myRfolder'.

GET FILE='mydata.sav'.

AGGREGATE

/OUTFILE='myAgg.sav'

/BREAK=gender

/q1_mean = MEAN(q1).

GET FILE='myAgg.sav'.

LIST.

* Get mean of q1 by workshop and gender.

GET FILE='mydata.sav'.

AGGREGATE

/OUTFILE='myAgg.sav'.

/BREAK=workshop gender

/q1_mean = MEAN(q1).

GET FILE='myAgg.sav'.

LIST.

* Merge aggregated data back into mydata.

* This step can be saved by using

* MODE=ADDVARIABLES in the previous step.

GET FILE='mydata.sav'.

SORT CASES BY workshop (A) gender (A) .

MATCH FILES /FILE=*

/TABLE='\myAgg.sav'

/BY workshop gender.

SAVE OUTFILE='mydata.sav'.

R Program for Aggregating/Summarizing Data

# Filename: Aggregate.R

setwd("c:/myRfolder")

load(file = "mydata.RData")

attach(mydata)

mydata
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# The aggregate Function.

# Means by gender.

myAgg1 <- aggregate(q1,

by=data.frame(gender),

mean, na.rm = TRUE)

myAgg1

# Now by workshop and gender.

myAgg2 <- aggregate(q1,

by = data.frame(workshop, gender),

mean, na.rm=TRUE)

myAgg2

mode(myAgg2)

class(myAgg2)

# Aggregation with tapply.

myAgg2 <- tapply(q1,

data.frame(workshop, gender),

mean, na.rm = TRUE)

myAgg2

class(myAgg2)

mode(myAgg2)

myAgg2 <- tapply(q1,

data.frame(workshop, gender),

range, na.rm = TRUE)

myAgg2

mode(myAgg1)

class(myAgg2)

myAgg2[[1]]

# Example multi-level transformation.

mydata$Zq1 <- (q1 - mean(q1) ) / sd(q1)

mydata

mySubset <- mydata[ q1 < mean(q1), ]

mySubset

# Rename x to be mean.q1.

library("reshape2")

myAgg3 <- rename(myAgg2, c(x = "mean.q1") )

myAgg3
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# Now merge means back with mydata.

mydata2 <- merge(mydata, myAgg3,

by=c("workshop", "gender") )

mydata2

# Tables of Counts

table(workshop)

table(gender, workshop)

myCounts <- table(gender, workshop)

mode(myCounts)

class(myCounts)

# Counts in Summary/Aggregate style.

myCountsDF <- as.data.frame(myCounts)

myCountsDF

class(myCountsDF)

# Clean up

mydata["Zq1"] <- NULL

rm(myAgg1, myAgg2, myAgg3,

myComplete, myMeans, myCounts, myCountsDF)

10.13 By or Split-File Processing

When you want to repeat an analysis for every level of a categorical variable,
you can use the BY statement in SAS, or the SPLIT FILE command in SPSS.
SAS requires you to sort the data by the factor variable(s) first, but SPSS and
R do not.

R has a by function, which repeats analysis for levels of factors. In
Sect. 10.12, “Creating Summarized or Aggregated Data Sets,” we did simi-
lar things while creating summary data sets. When we finish with this topic,
we will compare the two approaches.

Let us look at the by function first and then discuss how it compares to
similar functions. We will use the by function to apply the mean function.
First, let us use the mean function by itself just for review. To get the means
of our q variables, we can use

> mean( mydata[ c("q1","q2","q3","q4") ] ,

+ na.rm = TRUE)

q1 q2 q3 q4

3.25003.2500 2.7500 4.1429 3.7500

Now let us get means for the males and females using the by function:
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> myBYout <- by( mydata[ c("q1","q2","q3","q4") ] ,

+ mydata["gender"],

+ mean,na.rm = TRUE)

> myBYout

gender: f

q1 q2 q3 q4

1.666667 1.333333 4.333333 1.666667

---------------------------------------------------

gender: m

q1 q2 q3 q4

4.50 4.25 4.00 4.50

The by function call above has four arguments:

1. The data frame name or variables to analyze,
mydata[ c("q1","q2","q3","q4") ].

2. One or more grouping factors. Unlike SAS, the data does not have to
be sorted by these factors. The factors must be in the form of a list (or
data frame, which is a type of list). Recall that single subscripting of a
data frame creates a list. So mydata["gender"] and mydata[2] work.
Adding the comma to either one will prevent them from working. There-
fore, mydata[ ,"gender"] or mydata[ ,2] will not work. If you have at-
tached the data frame, data.frame(gender) will work. The function call
list(gender) will also work, but it loses track of the grouping variable
names.

3. The function to apply – in this case, the mean function. The by func-
tion can apply functions that calculate more than one value (unlike the
aggregate function).

4. Any additional arguments are ignored by the by function and simply
passed on to the applied function. In this case, na.rm = TRUE is simply
passed on to the mean function.

Let us check to see what the mode and class are of the output object.

> mode(myBYout)

[1] "list"

> class(myBYout)

[1] "by"

It is a list, with a class of “by.” If we would like to convert that to a data frame,
we can do so with the following commands. The as.table function gets the
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data into a form that the as.data.frame function can then turn into a data
frame:

> myBYdata <- as.data.frame( (as.table(myBYout) ) )

> myBYdata

gender Freq.f Freq.m

q1 f 1.666667 4.50

q2 m 1.333333 4.25

q3 f 4.333333 4.00

q4 m 1.666667 4.50

Now let us break the mean down by both workshop and gender. To keep
our by factors in the form of a list (or data frame), we can use any one of
these forms:

mydata[ c("workshop", "gender")]

or

mydata[ c(2, 3) ]

or, if you have attached the data frame,

data.frame( workshop, gender)

This starts to look messy, so let us put both our variable list and our factor
list into character vectors:

myVars <- c("q1", "q2", "q3", "q4")

myBys <- mydata[ c("workshop", "gender") ]

By using our character vectors as arguments for the by function, it is much
easier to read. This time, let us use the range function to show that the by

function can apply functions that return more than one value.

> myBYout <- by( mydata[myVars],

+ myBys, range, na.rm = TRUE )

> myBYout

workshop: R

gender: f

[1] 1 5

---------------------------------------------------

workshop: SAS

gender: f
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[1] 1 4

---------------------------------------------------

workshop: R

gender: m

[1] 2 5

---------------------------------------------------

workshop: SAS

gender: m

[1] 4 5

That output is quite readable. Recall that when we did this same analysis
using the tapply function, the results were in a form that were optimized for
further analysis rather than communication. However, we can save the data
to a data frame if we like. The approach it takes is most interesting. Let us
see what type of object we have:

> mode(myBYout)

[1] "list"

> class(myBYout)

[1] "by"

> names(myBYout)

NULL

It is a list with a class of “by” and no names. Let us look at one of its compo-
nents:

> myBYout[[1]]

[1] 1 5

This is the first set of ranges from the printout above. If we wanted to create
a data frame from these, we could bind them into the rows of a matrix and
then convert that to a data frame with

> myBYdata <- data.frame(

+ rbind( myBYout[[1]], myBYout[[2]],

+ myBYout[[3]], myBYout[[4]] )

+ )

> myBYdata

X1 X2

1 1 5

2 1 4

3 2 5

4 4 5
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That approach is easy to understand but not much fun to use if we had
many more factor levels! Luckily the do.call function can call a function you
choose once, on all of the components of a list, just as if you had entered them
individually. That is quite different from the lapply function, which applies
the function you choose repeatedly on each separate component. All we have
to do is give it the function to feed the components into, rbind in this case,
and the list name, byBYout:

> myBYdata <- data.frame( do.call(rbind, myBYout) )

> myBYdata

X1 X2

1 1 5

2 1 4

3 2 5

4 4 5

10.13.1 Example Programs for By or Split-File Processing

SAS Program for By or Split-File processing

* Filename: By.sas ;

LIBNAME myLib 'C:\myRfolder';

PROC MEANS DATA=myLib.mydata;

RUN;

PROC SORT DATA=myLib.mydata;

BY gender;

RUN;

PROC MEANS DATA=myLib.mydata;

BY gender;

RUN;

PROC SORT DATA=myLib.mydata;

BY workshop gender;

RUN;

PROC MEANS DATA=myLib.mydata;

BY workshop gender;

RUN;

SPSS Program for By or Split-File processing

* Filename: By.sps .
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CD 'C:\myRfolder'.

GET FILE='mydata.sav'.

DESCRIPTIVES

VARIABLES=q1 q2 q3 q4

/STATISTICS=MEAN STDDEV MIN MAX .

SORT CASES BY gender .

SPLIT FILE

SEPARATE BY gender .

DESCRIPTIVES

VARIABLES=q1 q2 q3 q4

/STATISTICS=MEAN STDDEV MIN MAX .

SORT CASES BY workshop gender .

SPLIT FILE

SEPARATE BY workshop gender .

DESCRIPTIVES

VARIABLES=q1 q2 q3 q4

/STATISTICS=MEAN STDDEV MIN MAX .

R Program for By or Split-File processing

# Filename: By.R

setwd("c:/myRfolder")

load(file = "mydata.RData")

attach(mydata)

options(width=64)

mydata

# Get means of q variables for all observations.

mean( mydata[ c("q1", "q2", "q3", "q4") ] ,

na.rm = TRUE)

# Now get means by gender.

myBYout <- by( mydata[ c("q1", "q2", "q3", "q4") ] ,

mydata["gender"],

mean,na.rm = TRUE)

myBYout

mode(myBYout)

class(myBYout)

myBYdata <- as.data.frame( (as.table(myBYout) ) )

myBYdata
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# Get range by workshop and gender

myVars <- c("q1", "q2", "q3", "q4")

myBys <- mydata[ c("workshop", "gender") ]

myBYout <- by( mydata[myVars],

myBys, range, na.rm = TRUE )

myBYout

# Converting output to data frame.

mode(myBYout)

class(myBYout)

names(myBYout)

myBYout[[1]]

# A data frame the long way.

myBYdata <- data.frame(

rbind(myBYout[[1]], myBYout[[2]],

myBYout[[3]], myBYout[[4]])

)

myBYdata

# A data frame using do.call.

myBYdata <- data.frame( do.call( rbind, myBYout) )

myBYdata

mode(myBYdata)

class(myBYdata)

10.14 Removing Duplicate Observations

Duplicate observations frequently creep into data sets, especially those that
are merged from various other data sets. One SAS approach is to use PROC
SORT NODUPRECS to get rid of duplicates without examining them. The
SPSS approach uses the menu choice, Identify Duplicate Cases to generate
programming code that will identify or filter the observations. Of course SAS
and SPSS are powerful enough to do either approach. We will use both the
methods in R.

We will first see how to identify observations that are duplicates for every
variable (NODUPRECS) and then find those who duplicate just key values
(NODUPKEY).

10.14.1 Completely Duplicate Observations

First, let us create a data frame that takes the top two observations from
mydata and appends them to the bottom with the rbind function:
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> myDuplicates <- rbind(mydata, mydata[1:2, ])

> myDuplicates

workshop gender q1 q2 q3 q4

1 R f 1 1 5 1 <- We are copying

2 SAS f 2 1 4 1 <- these two...

3 R f 2 2 4 3

4 SAS <NA> 3 1 NA 3

5 R m 4 5 2 4

6 SAS m 5 4 5 5

7 R m 5 3 4 4

8 SAS m 4 5 5 5

9 R f 1 1 5 1 <- ...down here

10 SAS f 2 1 4 1 <- as duplicates.

Next we will use the unique function to find and delete them:

> myNoDuplicates <- unique(myDuplicates)

> myNoDuplicates

workshop gender q1 q2 q3 q4

1 R f 1 1 5 1

2 SAS f 2 1 4 1

3 R f 2 2 4 3

4 SAS <NA> 3 1 NA 3

5 R m 4 5 2 4

6 SAS m 5 4 5 5

7 R m 5 3 4 4

8 SAS m 4 5 5 5

So the unique function removed them but did not show them to us. In
a more realistic data set, we would certainly not want to print the whole
thing and examine the duplicates visually as we did above. However, knowing
more about the duplicates might help us prevent them from creeping into our
future analyses. Let us put the duplicates back and see what the duplicated
function can do:

> myDuplicates <- rbind(mydata, mydata[1:2, ])

> myDuplicates$DupRecs <- duplicated(myDuplicates)

> myDuplicates

workshop gender q1 q2 q3 q4 DupRecs

1 R f 1 1 5 1 FALSE
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2 SAS f 2 1 4 1 FALSE

3 R f 2 2 4 3 FALSE

4 SAS <NA> 3 1 NA 3 FALSE

5 R m 4 5 2 4 FALSE

6 SAS m 5 4 5 5 FALSE

7 R m 5 3 4 4 FALSE

8 SAS m 4 5 5 5 FALSE

9 R f 1 1 5 1 TRUE

10 SAS f 2 1 4 1 TRUE

The duplicated function added the variable named DupRecs to our data
frame. Its TRUE values show us that R has indeed located the duplicate
records. It is interesting to note that now we technically no longer have com-
plete duplicates! The original first two records now have values of FALSE,
whereas the last two, which up until now had been exact duplicates, have
values of TRUE. So they have ceased to be exact duplicates! Therefore, the
unique function would no longer identify the last two records. That is okay
because now we will just get rid of those marked TRUE after we print a report
of duplicate records.

> attach(myDuplicates)

> myDuplicates[DupRecs, ]

workshop gender q1 q2 q3 q4 DupRecs

9 R f 1 1 5 1 TRUE

10 SAS f 2 1 4 1 TRUE

Finally, we will choose those not duplicated (i.e., !DupRecs) and drop the
seventh variable, which is the TRUE/FALSE variable itself:

> myNoDuplicates <- myDuplicates[!DupRecs, -7 ]

> myNoDuplicates

workshop gender q1 q2 q3 q4

1 R f 1 1 5 1

2 SAS f 2 1 4 1

3 R f 2 2 4 3

4 SAS <NA> 3 1 NA 3

5 R m 4 5 2 4

6 SAS m 5 4 5 5

7 R m 5 3 4 4

8 SAS m 4 5 5 5

Now our data are back to their original, duplicate-free state.
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If I were doing this just for myself, I would have left the DupRecs vari-
able as a vector outside the data frame. That would have saved me the need
to attach the data frame (simplifying the selection) and later removing this
variable. However, adding it to our small data frame made it more clear what
it was doing.

10.14.2 Duplicate Keys

SAS also has a NODUPKEY option that eliminates records that have du-
plicate key values while allowing other values to differ. This approach uses
the method in the section above, but applies it only to the key variables of
workshop and gender.

Since we are now focusing on just workshop and gender, our original data
set already contained duplicates, so our job now is to identify them.

I will first create a character vector containing the keys of interest:

> myKeys <- c("workshop", "gender")

Next, I will apply the duplicated function only to the part of the data
frame that contains our keys:

> mydata$DupKeys <- duplicated(mydata[ ,myKeys])

> mydata

workshop gender q1 q2 q3 q4 DupKeys

1 R f 1 1 5 1 FALSE

2 SAS f 2 1 4 1 FALSE

3 R f 2 2 4 3 TRUE

4 SAS <NA> 3 1 NA 3 FALSE

5 R m 4 5 2 4 FALSE

6 SAS m 5 4 5 5 FALSE

7 R m 5 3 4 4 TRUE

8 SAS m 4 5 5 5 TRUE

Now we see that only the first occurrence of each workshop–gender com-
bination is considered a nonduplicate.

Using the DupKeys variable, you can now print the duplicated records or
delete them using the same steps as we used previously for records that were
complete duplicates.

10.14.3 Example Programs for Removing Duplicates

SAS Program for Removing Duplicates

* Filename: Duplicates.sas ;
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LIBNAME myLib 'C:\myRfolder';

DATA mycopy; SET myLib.mydata;

Data lastTwo;

SET myLib.mydata;

IF ID GE 7;

RUN;

DATA Duplicates;

SET mycopy lastTwo;

PROC PRINT; RUN;

PROC SORT NODUPREC DATA=Duplicates;

BY id workshop gender q1-q4;

RUN;

PROC PRINT;

RUN;

PROC SORT NODUPKEY EQUALS DATA=mycopy;

BY workshop gender;

RUN;

PROC PRINT DATA=mycopy;

RUN;

SPSS Program for Removing Duplicates

* Filename: Duplicates.sps .

CD 'C:\myRfolder'.

GET FILE='mydata.sav'.

* Identify Duplicate Cases.

SORT CASES BY workshop(A) gender(A)

q2(A) q1(A) q3(A) q4(A) .

MATCH FILES /FILE = *

/BY workshop gender q2 q1 q3 q4

/FIRST = PrimaryFirst

/LAST = PrimaryLast.

DO IF (PrimaryFirst).

+ COMPUTE MatchSequence = 1 - PrimaryLast.

ELSE.

+ COMPUTE MatchSequence = MatchSequence + 1.

END IF.
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LEAVE MatchSequence.

FORMAT MatchSequence (f7).

COMPUTE InDupGrp = MatchSequence > 0.

SORT CASES InDupGrp(D).

MATCH FILES /FILE = *

/DROP = PrimaryFirst InDupGrp MatchSequence.

VARIABLE LABELS

PrimaryLast 'Indicator of each last matching case as Primary'.

VALUE LABELS PrimaryLast

0 'Duplicate ŚDuplicate Case' CaseŠ

1 'Primary ŚPrimary Case'CaseŠ.

VARIABLE LEVEL PrimaryLast (ORDINAL).

FREQUENCIES VARIABLES = PrimaryLast .

R Program for Removing Duplicate Observations

# Filename: Duplicates.R

setwd("c:/myRfolder")

load("mydata.RData")

mydata

# Create some duplicates.

myDuplicates <- rbind(mydata, mydata[1:2, ])

myDuplicates

# Get rid of duplicates without seeing them.

myNoDuplicates <- unique(myDuplicates)

myNoDuplicates

# This checks for location of duplicates

# before getting rid of them.

myDuplicates <- rbind(mydata, mydata[1:2, ])

myDuplicates

myDuplicates$DupRecs <- duplicated(myDuplicates)

myDuplicates

# Print a report of just the duplicate records.

attach(myDuplicates)

myDuplicates[DupRecs, ]

# Remove duplicates and Duplicated variable.

myNoDuplicates <- myDuplicates[!DupRecs, -7 ]
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myNoDuplicates

# Locate records with duplicate keys.

myKeys <- c("workshop", "gender")

mydata$DupKeys <- duplicated(mydata[ ,myKeys])

mydata

10.15 Selecting First or Last Observations per Group

When a data set contains groups, members within each group are often sorted
in a useful order. For example, a company may have divisions divided into
departments. Each department might have salary information for each person
and a running total. So the last person’s running total value would be the
total for each department.

The SAS approach on this problem is quite flexible. Simply saying,

DATA mydata;

SET mydata;

BY workshop gender;

creates four temporary variables, first.workshop, first.gender, last.workshop
and last.gender. These all have values of 1 when true and 0 when false. These
variables vanish at the end of the data step unless you assign them to regular
variables, but that is usually not necessary.

SPSS uses a very similar approach in the MATCH FILES procedure. Nor-
mally, you think of MATCH FILES as requiring two files to join, but you
can use it in this case with only one file. It creates only a single FIRST or
LAST variable that is saved to the data set. Be careful with this approach as
it subsets the main file, so you need to save it to a new name.

SPSS can also view this problem as an aggregation. Unlike SAS, its
AGGREGATE procedure has FIRST and LAST functions. This works fine
for just a few variables, but since it requires naming every variable you wish
to save, it is not very useful for saving many variables. The example SPSS
program at the end of this section demonstrates both approaches.

The R approach to this problem demonstrates R’s extreme flexibility. It
does not have a function aimed directly at this problem. However, it is easy
to create one using several other functions. We have seen the head function
print the top few observations of a data frame. The tail function does the
same for the last few. We have also used the by function to apply a function
to groups within a data frame. We can use the by function to apply the head
function to get the first observation in each group or use the tail function to
get the last. Since the head and tail functions both have an “n=” argument,
we can not only use n = 1 to get the single first or last, but we could also use
n = 2 to get the first two or last two observations per group, and so on.
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The first record per group is often of interest because we may need to
initialize values for each group, e.g., when calculating cumulative totals. The
last record per group is often of interest since it contains the final values. We
will look at an example how to select the last observation per group. The idea
readily extends to the first record(s) per group.

First, we will read our data and create an ID variable based on the row
names. We do not need ID for our first example, but it will be helpful in the
second.

> setwd("c:/myRfolder")

> load(file = "mydata.RData")

> mydata$id <- row.names(mydata)

> mydata

workshop gender q1 q2 q3 q4 id

1 R f 1 1 5 1 1

2 SAS f 2 1 4 1 2

3 R f 2 2 4 3 3

...

Next, we will put our by variables into a data frame. By using workshop and
then gender, we will soon be selecting the last male in each workshop.

myBys <- data.frame(mydata$workshop, mydata$gender)

Next, we use the by function to apply the tail function to mydata by work-
shop and gender. We are saving the result to mylast, which is in the form of
a list:

> mylastList <- by(mydata, myBys, tail, n = 1)

> mylastList

mydata.workshop: R

mydata.gender: f

workshop gender q1 q2 q3 q4 id

3 R f 2 2 4 3 3

------------------------------------------------------------

mydata.workshop: SAS

mydata.gender: f

workshop gender q1 q2 q3 q4 id

2 SAS f 2 1 4 1 2

------------------------------------------------------------

mydata.workshop: R

mydata.gender: m

workshop gender q1 q2 q3 q4 id



316 10 Data Management

7 R m 5 3 4 4 7

------------------------------------------------------------

mydata.workshop: SAS

mydata.gender: m

workshop gender q1 q2 q3 q4 id

8 SAS m 4 5 5 5 8

We would like to put this into a data frame by combining all of the vectors
from that list in the form of rows. The do.call function does this. It essentially
takes all of the elements of a list and feeds them into a single call to the
function you choose. In this case, that is the rbind function:

> mylastDF <- do.call(rbind, mylastList)

> mylastDF

workshop gender q1 q2 q3 q4 id

3 R f 2 2 4 3 3

2 SAS f 2 1 4 1 2

7 R m 5 3 4 4 7

8 SAS m 4 5 5 5 8

That single call to the do.call function is the equivalent of all this:

mylastDF <- rbind(as.list(mylastList)[[1]],

as.list(mylastList)[[2]],

as.list(mylastList)[[3]],

as.list(mylastList)[[4]])

If we had hundreds of groups, the do.call function would be a big time saver!
At this point in my work, I am usually finished. However, some people need

a variable in the original data frame that indicates which record per group is
last (or first). SAS would name this variable “last.gender”. SPSS similarly uses
the LAST= option to create such a variable. You can create such a variable by
simply adding a constant 1 to mylastDF, then merging mylastDF back to the
original data frame. Here is how to create a constant with a value of 1:

> mylastDF$lastGender <- rep(1, nrow(mylastDF) )

> mylastDF

workshop gender q1 q2 q3 q4 id lastGender

3 R f 2 2 4 3 3 1

2 SAS f 2 1 4 1 2 1

7 R m 5 3 4 4 7 1

8 SAS m 4 5 5 5 8 1

The rep function call used only two arguments, the value to repeat and
the number of times to repeat it. We could have specified 4 there but in
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a larger data frame you may not know how many rows you have so using
nrow(mylastDF) is more general.

Next we save just the variables id and lastGender, and merge the two data
frames by id. The all = TRUE argument tells it to save records even if the id
values are not in both data frames:

> mylastDF2 <- mylastDF[ c("id", "lastGender") ]

> mydata2 <- merge(mydata, mylastDF2, by = "id", all = TRUE)

> mydata2

id workshop gender q1 q2 q3 q4 lastGender

1 1 R f 1 1 5 1 NA

2 2 SAS f 2 1 4 1 1

3 3 R f 2 2 4 3 1

4 4 SAS <NA> 3 1 NA 3 NA

...

Notice the number 1 appears when it is the last workshop and gender
combination but NA elsewhere. To match what SAS and SPSS do, we need
for NA to be zero instead. That is easy to change:

> mydata2$lastGender[ is.na(mydata2$lastGender) ] <- 0

> mydata2

id workshop gender q1 q2 q3 q4 lastGender

1 1 R f 1 1 5 1 0

2 2 SAS f 2 1 4 1 1

3 3 R f 2 2 4 3 1

4 4 SAS <NA> 3 1 NA 3 0

5 5 R m 4 5 2 4 0

6 6 SAS m 5 4 5 5 0

7 7 R m 5 3 4 4 1

8 8 SAS m 4 5 5 5 1

Recall that the form var==NA can never be true, so we use the form
is.na(var) to find missing values. Now you have your lastGender variable
and can use that in other calculations.

10.15.1 Example Programs for Selecting Last Observation
per Group

SAS Program for Selecting Last Observation per Group

* Filename: FirstLastObs.sas ;
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LIBNAME myLib 'C:\myRfolder';

PROC SORT DATA=sasuser.mydata;

BY workshop gender;

RUN;

DATA sasuser.mylast;

SET sasuser.mydata;

BY workshop gender;

IF last.gender;

RUN;

PROC PRINT; RUN;

SPSS Program for Selecting Last Observation per Group

* Filename: FirstLastObs.sps .

CD 'C:\myRfolder'.

* Match files method.

GET FILE='mydata.sav'.

SORT CASES BY workshop gender.

MATCH FILES FILE=* /By workshop gender /LAST=lastgender.

SELECT IF lastgender.

LIST.

SAVE OUTFILE='mylast.sav'.

* Aggregation method.

SORT CASES BY workshop gender.

AGGREGATE /OUTFILE='C:\mylast.sav'

/BREAK workshop gender

/q1 = LAST(q1)

/q2 = LAST(q2)

/q3 = LAST(q3)

/q4 = LAST(q4).

* Using LIST here would display original file.

GET FILE='mylast.sav'.

DATASET NAME DataSet5 WINDOW=FRONT.

LIST.

R Program for Selecting Last Observation per Group

# Filename: FirstLastObs.R
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setwd("c:/myRfolder")

load(file = "mydata.RData")

mydata$id <- row.names(mydata)

mydata

myBys <- data.frame(mydata$workshop, mydata$gender)

mylastList <- by(mydata, myBys, tail, n = 1)

mylastList

#Back into a data frame:

mylastDF <- do.call(rbind, mylastList)

mylastDF

# Another way to create the data frame:

mylastDF <- rbind(mylastList[[1]],

mylastList[[2]],

mylastList[[3]],

mylastList[[4]])

mylastDF

# Generating just an indicator variable

mylastDF$lastGender <- rep(1, nrow(mylastDF) )

mylastDF

mylastDF2 <- mylastDF[ c("id", "lastGender") ]

mydata2 <- merge(mydata, mylastDF2, by = "id", all = TRUE )

mydata2

mydata2$lastGender[ is.na(mydata2$lastGender) ] <- 0

mydata2

10.16 Transposing or Flipping Data Sets

When data arrive from a package not designed for data analysis, it is occa-
sionally entered“sideways”with the variables in the rows and the observations
or cases in the columns.

Let us start with the easy case: data that are all of one type. It would
usually be all numeric data but it could be all character as well. To simulate
a data set that needs to be transposed, I will simply strip off the q variables:

> mydata

> myQs <- c("q1", "q2", "q3", "q4")
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> myQdf <- mydata[ ,myQs]

> myQdf

q1 q2 q3 q4

1 1 1 5 1

2 2 1 4 1

3 2 2 4 3

4 3 1 NA 3

5 4 5 2 4

6 5 4 5 5

7 5 3 4 4

8 4 5 5 5

Now that we have an all-numeric data frame, we can use the t function to
transpose it:

> myFlipped <- t(myQdf)

> myFlipped

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

q1 1 2 2 3 4 5 5 4

q2 1 1 2 1 5 4 3 5

q3 5 4 4 NA 2 5 4 5

q4 1 1 3 3 4 5 4 5

Now this is the type of data we might have read in from some other source,
which we might need to transpose or flip before we can use it. Before we do
that, let us see what its class is:

> class(myFlipped)

[1] "matrix"

We see that the t function coerced the data frame into a matrix. So to flip
it back into a form that is useful for data analysis, we can nest the call to the
t function within a call to the as.data.frame function:

> myFixed <- as.data.frame( t(myFlipped) )

> myFixed

q1 q2 q3 q4

1 1 1 5 1

2 2 1 4 1

3 2 2 4 3
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4 3 1 NA 3

5 4 5 2 4

6 5 4 5 5

7 5 3 4 4

8 4 5 5 5

That was easy. However, eventually you are going to get a data set that
contains character data. That presents a much more challenging situation. We
will simulate that by flipping our whole data frame:

> myFlipped <- t(mydata)

> myFlipped

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

workshop "R" "SAS" "R" "SAS" "R" "SAS" "R" "SAS"

gender "f" "f" "f" NA "m" "m" "m" "m"

q1 "1" "2" "2" "3" "4" "5" "5" "4"

q2 "1" "1" "2" "1" "5" "4" "3" "5"

q3 " 5" " 4" " 4" NA " 2" " 5" " 4" " 5"

q4 "1" "1" "3" "3" "4" "5" "4" "5"

The t functions coerces a data frame into a matrix, and all the elements of a
matrix must be of the same mode: numeric or character. Therefore, myFlipped
is a character matrix. That is obvious from the quotes around each of its
elements. So these are the data as we might have imported them from some
other source and now we need to transpose them to make them useful:

> myFixed <- t(myFlipped)

> myFixed

workshop gender q1 q2 q3 q4

[1,] "R" "f" "1" "1" " 5" "1"

[2,] "SAS" "f" "2" "1" " 4" "1"

[3,] "R" "f" "2" "2" " 4" "3"

[4,] "SAS" NA "3" "1" NA "3"

[5,] "R" "m" "4" "5" " 2" "4"

[6,] "SAS" "m" "5" "4" " 5" "5"

[7,] "R" "m" "5" "3" " 4" "4"

[8,] "SAS" "m" "4" "5" " 5" "5"

That gets it back into the general form we need in R, but it is still a
character matrix. We can convert it to a data frame and check its structure
with the str function:

> myFixed <- data.frame(myFixed)
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> str(myFixed)

'data.frame': 8 obs. of 6 variables:

$ workshop: Factor w/ 2 levels "R","SAS": 1 2 1 2 1 2 1 2

$ gender : Factor w/ 2 levels "f","m": 1 1 1 NA 2 2 2 2

$ q1 : Factor w/ 5 levels "1","2","3","4",..: 1 2 2 3 4 5

$ q2 : Factor w/ 5 levels "1","2","3","4",..: 1 1 2 1 5 4

$ q3 : Factor w/ 3 levels " 2"," 4"," 5": 3 2 2 NA 1 3 2 3

$ q4 : Factor w/ 4 levels "1","3","4","5": 1 1 2 2 3 4 3 4

The data.frame function converts all character data to factors (by de-
fault). Therefore, we need to convert the q variables to numeric by applying
the as.numeric function:

> myQs <- c("q1", "q2", "q3", "q4")

> myFixed[ ,myQs] <-

+ lapply(myFixed[ ,myQs], as.numeric)

> str(myFixed)

'data.frame': 8 obs. of 6 variables:

$ workshop: Factor w/ 2 levels "R","SAS": 1 2 1 2 1 2 1 2

$ gender : Factor w/ 2 levels "f","m": 1 1 1 NA 2 2 2 2

$ q1 : num 1 2 2 3 4 5 5 4

$ q2 : num 1 1 2 1 5 4 3 5

$ q3 : num 3 2 2 NA 1 3 2 3

$ q4 : num 1 1 2 2 3 4 3 4

Now our data frame is back in its original form and ready to analyze.

10.16.1 Example Programs for Transposing or Flipping Data Sets

SAS Program for Transposing or Flipping Data Sets

* Filename: Transpose.sas ;

LIBNAME myLib 'C:\myRfolder';

PROC TRANSPOSE DATA=myLib.mydata OUT=mycopy;

PROC PRINT; RUN;

PROC TRANSPOSE DATA=mycopy OUT=myFixed;

PROC PRINT; RUN;
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SPSS Program for Transposing or Flipping Data Sets

* Filename: Transpose.sps.

CD 'C:\myRfolder'.

GET FILE='mydata.sav'.

DATASET NAME DataSet1 WINDOW=FRONT.

FLIP VARIABLES=id workshop gender q1 q2 q3 q4.

FLIP VARIABLES=var001 var002 var003 var004

var005 var006 var007 var008

/NEWNAMES=CASE_LBL.

R Program for Transposing or Flipping Data Sets

# Filename: Transpose.R

setwd("c:/myRfolder")

load("mydata.RData")

mydata

myQs <- c("q1", "q2", "q3", "q4")

myQdf <- mydata[ ,myQs]

myQdf

myFlipped <- t(myQdf)

myFlipped

class(myFlipped) # coerced into a matrix!

myFixed <- as.data.frame( t(myFlipped) )

myFixed

# Again, but with all the data

options(width = 60)

myFlipped <- t(mydata)

myFlipped

myFixed <- t(myFlipped)

myFixed

myFixed <- data.frame(myFixed)

str(myFixed)

myQs <- c("q1", "q2", "q3", "q4")

myFixed[ ,myQs] <-

lapply(myFixed[ ,myQs], as.numeric)

str(myFixed)
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10.17 Reshaping Variables to Observations and Back

A common data management problem is reshaping data from “wide” format
to “long” or vice versa. If we assume our variables q1, q2, q3, and q4 are the
same item measured at four different times, we will have the standard wide
format for repeated-measures data.

Converting this to the long format consists of writing out four records,
each of which has just one measure – often called simply Y – and a counter
variable, often called time, that goes 1, 2, 3, and 4. So in the simplest case,
just two variables, Y and time, could replace dozens of variables. Going from
long to wide is just the reverse.

SPSS makes this process very easy to do with its Restructure Data Wizard.
It prompts you for the exact structure of your data and your goal. Then it
generates the necessary SPSS program and executes it.

SAS can do this in at least two ways, but PROC TRANSPOSE is probably
the easiest to use.

In R, Wickham’s reshape2 package is quite powerful and easy to use. The
“2” in its name indicates that it is version 2 of the reshape package and it
changed in ways that make it incompatible with the older version. The original
reshape package is still available for download from CRAN so older programs
will still run.

The reshape2 package uses the analogy of melting your data so that you
can cast it into a different mold. In addition to reshaping, the package makes
quick work of a wide range of aggregation problems.

To work through an example, let us change some of the variable names to
indicate they are measures across time:

> library("reshape2")

> myChanges <- c(

+ q1 = "time1",

+ q2 = "time2",

+ q3 = "time3",

+ q4 = "time4")

> mydata <- rename(mydata, myChanges)

For details on changing variable names, see Sect. 10.6.
Next we will add a subject variable as a factor and look at our data so far:

> mydata$subject <- factor(1:8)

> mydata

workshop gender time1 time2 time3 time4 subject

1 R f 1 1 5 1 1

2 SAS f 2 1 4 1 2
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...

7 R m 5 3 4 4 7

8 SAS m 4 5 5 5 8

Now we will “melt” the data into the long form. By default, the melt function
will assume all factors and character variables are ID variables and all numeric
variables are the values you want to stretch into the long format. That was
why I created subject as a factor. Now we can melt our data set with:

> mylong <- melt(mydata)

Using workshop, gender, subject as id variables

> mylong

workshop gender subject variable value

1 R f 1 time1 1

2 SAS f 2 time1 2

3 R f 3 time1 2

4 SAS <NA> 4 time1 3

...

29 R m 5 time4 4

30 SAS m 6 time4 5

31 R m 7 time4 4

32 SAS m 8 time4 5

The resulting data set has 32 records. The variables workshop, gender, and
subject look much as they did before, but with many repeated values. The
new column named “variable” stores the original variable names and “value”
stores their values.

The melt function printed a message stating what it considered ID vari-
ables, which works fine in our case. If instead we had numeric ID variables,
we could have called the melt function by supplying these arguments:

mylong <- melt(mydata,

id.vars = c("subject", "workshop", "gender"),

measure.vars = c("time1", "time2", "time3", "time4"),

value.name = "value")

With our data the result would be identical.
Now let us cast the data back into the wide format:

> mywide <- dcast(mylong, subject+workshop+gender ~ variable)

> mywide

subject workshop gender time1 time2 time3 time4
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1 1 R f 1 1 5 1

2 2 SAS f 2 1 4 1

3 3 R f 2 2 4 3

4 4 SAS <NA> 3 1 NA 3

5 5 R m 4 5 2 4

6 6 SAS m 5 4 5 5

7 7 R m 5 3 4 4

8 8 SAS m 4 5 5 5

The dcast function needs only two arguments: the data to reshape and a
formula. The formula has the ID variables on the left side separated by plus
signs, then a tilde, “~”, and the variable that will contain the new variables’
values. The “d” in dcast means that it will create a data frame. The acast

function works the same but creates arrays (or vectors or matrices).
Let us now do a more complicated example, one with two levels of repeats.

We will assume that we have data from an experiment that used two teaching
methods and two levels of each method. Let us read the data again and rename
our variables accordingly:

> load("mydata.RData")

> mydata$subject <- factor(1:8)

> library("reshape2")

> myChanges <- c(

+ q1 = "M1_L1",

+ q2 = "M1_L2",

+ q3 = "M2_L1",

+ q4 = "M2_L2")

> mydata <- rename(mydata, myChanges)

> mydata

workshop gender M1_L1 M1_L2 M2_L1 M2_L2 subject

1 R f 1 1 5 1 1

2 SAS f 2 1 4 1 2

...

7 R m 5 3 4 4 7

8 SAS m 4 5 5 5 8

Now we can melt the data. All our ID variables are factors, so I will not
bother specifying any arguments:

> mylong2 <- melt(mydata)
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Using workshop, gender as id variables

> mylong2

workshop gender subject variable value

1 R f 1 M1_L1 1

2 SAS f 2 M1_L1 2

3 R f 3 M1_L1 2

4 SAS <NA> 4 M1_L1 3

...

29 R m 5 M2_L2 4

30 SAS m 6 M2_L2 5

31 R m 7 M2_L2 4

32 SAS m 8 M2_L2 5

If we had started with data in this long form, we would have had two
variables specifying the method and level. So before casting the data back
into wide form, let us create those variables using the rep function that is
described in detail in Sect. 12.3:

> mylong2$method <- rep( c("M1", "M2"), each=16, times=1)

> mylong2$level <- rep( c("L1", "L2"), each=8, times=2)

> mylong2

workshop gender subject variable value method level

1 R f 1 M1_L1 1 M1 L1

2 SAS f 2 M1_L1 2 M1 L1

...

9 R f 1 M1_L2 1 M1 L2

10 SAS f 2 M1_L2 1 M1 L2

...

17 R f 1 M2_L1 5 M2 L1

18 SAS f 2 M2_L1 4 M2 L1

...

31 R m 7 M2_L2 4 M2 L2

32 SAS m 8 M2_L2 5 M2 L2

In SAS or SPSS you would create such group ID variables using DO loops.
Just as it is critical to get your I and J counters correct there, you must also
be very careful using tools like rep to create variables. It is easy to make errors
using the each and times arguments. Only after careful checking should you
take the next step of dropping the variable named “variable”:

mylong2$variable <- NULL
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Now we are ready to cast the data into wide form. This uses dcast as
before but this time we have two variables on the right side of the formula:

mywide2 <- dcast(mylong2,

gender + workshop + subject ~ method + level)

We can see what the result looks like by simply printing it.

> mywide2

gender workshop subject M1_L1 M1_L2 M2_L1 M2_L2

1 f R 1 1 1 5 1

2 f R 3 2 2 4 3

3 f SAS 2 2 1 4 1

4 m R 5 4 5 2 4

5 m R 7 5 3 4 4

6 m SAS 6 5 4 5 5

7 m SAS 8 4 5 5 5

8 <NA> SAS 4 3 1 NA 3

The only difference between the data shown here and their original form is
that the rows are no longer in order by subject. We can easily fix that with:

mywide2 <- mywide2[ order(mywide2$subject), ]

See Section 10.18 for details on sorting data frames.

10.17.1 Summarizing/Aggregating Data Using reshape2

Once a data set is in long form, you can easily use reshape to get summary
statistics. We just saw that we could cast the data from long into wide format
with dcast. But what if the dcast formula was missing a variable or two?
What would dcast do then? It would have more than one number per cell to
cast, so it would have to call a function on them. The default function it uses
is length. The reshape2 package can aggregate by any function that returns
a single value.

Let us cast these data using the mean function. I will not bother to save
these data to a data frame, though it would be easy to do so. First, let us
drop the subject variable from our formula to see what the means across all
subjects look like:

> dcast(mylong2, gender + workshop ~ method + level,

+ mean, na.rm = TRUE)

gender workshop M1_L1 M1_L2 M2_L1 M2_L2

1 f R 1.5 1.5 4.5 2

2 f SAS 2.0 1.0 4.0 1
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3 m R 4.5 4.0 3.0 4

4 m SAS 4.5 4.5 5.0 5

5 <NA> SAS 3.0 1.0 NaN 3

Note that I simply appended mean onto the end of the function’s argu-
ments. The actual name of that argument position is fun.aggregate, but
people generally do not bother to type it. Next let us drop the level variable
and see what happens:

> dcast(mylong2, gender + workshop ~ method,

+ mean, na.rm = TRUE)

gender workshop M1 M2

1 f R 1.50 3.25

2 f SAS 1.50 2.50

3 m R 4.25 3.50

4 m SAS 4.50 5.00

5 <NA> SAS 2.00 3.00

Next, I will drop the method variable from the formula. When you have
no variables to put on one side of the formula or the other, you use the “.”
symbol:

> dcast(mylong2, gender + workshop ~ . ,

+ mean, na.rm = TRUE)

gender workshop NA

1 f R 2.375000

2 f SAS 2.000000

3 m R 3.875000

4 m SAS 4.750000

5 <NA> SAS 2.333333

Note that dcast can no longer come up with a good variable name for the
mean. Finally, let us remove gender, leaving only workshop:

> dcast(mylong2, workshop ~ . , mean, na.rm = TRUE)

workshop NA

1 R 3.125000

2 SAS 3.533333

If you need to select part of a data frame before casting it, you can do so
using dcast’s subset argument.

As we have seen with the reshape2 package and others, R’s ability to ex-
tend its power with packages can be very useful. However, it also occasionally
leads to confusion among names. R comes with a function named reshape,
and the Hmisc package has one named reShape (note the capital “S”). They
both do similar tasks but are not as flexible as the reshape2 package.
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10.17.2 Example Programs for Reshaping Variables to
Observations and Back

To save space, the SAS and SPSS programs just perform the first transforma-
tion from wide to long and back.

SAS Program for Reshaping Data

* Filename: Reshape.sas ;

LIBNAME myLib 'C:\myRfolder';

* Wide to long;

PROC TRANSPOSE DATA=mylib.mydata

OUT=myLib.mylong;

VAR q1-q4;

BY id workshop gender;

PROC PRINT;

RUN;

DATA mylib.mylong;

SET mylib.mylong( rename=(COL1=value) );

time=INPUT( SUBSTR( _NAME_, 2) , 1.);

DROP _NAME_;

RUN;

PROC PRINT;

RUN;

* Long to wide;

PROC TRANSPOSE DATA=mylib.mylong

OUT=myLib.mywide PREFIX=q;

BY id workshop gender;

ID time;

VAR value;

RUN;

DATA mylib.mywide;

SET mylib.mywide(DROP=_NAME_);

RUN;

PROC PRINT;

RUN;

SPSS Program for Reshaping Data

* Filename: Reshape.sps .

CD 'C:\myRfolder'.
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GET FILE='mydata.sav'.

* Wide to long.

VARSTOCASES /MAKE Y FROM q1 q2 q3 q4

/INDEX = Question(4)

/KEEP = id workshop gender

/NULL = KEEP.

LIST.

SAVE OUTFILE='mywide.sav'.

* Long to wide.

GET FILE='mywide.sav'.

CASESTOVARS

/ID = id workshop gender

/INDEX = Question

/GROUPBY = VARIABLE.

LIST.

SAVE OUTFILE='mylong.sav'.

R Program for Reshaping Data

# Filename: Reshape.R

setwd("c:/myRfolder")

load("mydata.RData")

library("reshape2")

myChanges <- c(

q1 = "time1",

q2 = "time2",

q3 = "time3",

q4 = "time4")

mydata <- rename(mydata, myChanges)

mydata$subject <- factor(1:8)

mydata

# Reshaping from wide to long

library("reshape2") # Just a reminder

mylong <- melt(mydata)

mylong

# Again, specifying arguments

mylong <- melt(mydata,

id.vars = c("subject", "workshop", "gender"),

measure.vars = c("time1", "time2", "time3", "time4"),

value.name = "variable")

mylong
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# Reshaping from long to wide

mywide <- dcast(mylong,

subject + workshop + gender ~ variable)

mywide

# ---Two Time Variables---

load("mydata.RData")

mydata$subject <- factor(1:8)

library("reshape2")

myChanges <- c(

q1 = "M1_L1",

q2 = "M1_L2",

q3 = "M2_L1",

q4 = "M2_L2")

mydata <- rename(mydata, myChanges)

mydata

library("reshape2") # Just a reminder

mylong2 <- melt(mydata)

mylong2

# Same thing with arguments specified

mylong2 <- melt(mydata,

id.vars = c("subject", "workshop", "gender"),

measure.vars = c("M1_L1", "M1_L2", "M2_L1", "M2_L2"),

value.name = "value")

mylong2

mylong2$method <- rep( c("M1", "M2"), each=16, times=1)

mylong2$level <- rep( c("L1", "L2"), each=8, times=2)

mylong2

mylong2$variable <- NULL

# Reshape to wide

mywide2 <- dcast(mylong2,

gender + workshop + subject ~ method + level)

mywide2

mywide2[ order(mywide2$subject), ]

# Aggregation via reshape

dcast(mylong2, gender + workshop ~ method + level,

mean, na.rm = TRUE)
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dcast(mylong2, gender + workshop ~ method,

mean, na.rm = TRUE)

dcast(mylong2, workshop ~ .,

mean, na.rm = TRUE)

10.18 Sorting Data Frames

Sorting is one of the areas in which R differs most from SAS and SPSS. In
SAS and SPSS, sorting is a critical prerequisite for three frequent tasks:

1. Doing the same analysis repeatedly for different groups. In SAS this is
called BY processing. SPSS calls it SPLIT–FILE processing.

2. Calculating summary statistics for each group in the SAS SUMMARY
procedure (the similar SPSS AGGREGATE command does not require
sorted data).

3. Merging files matched on the sorted variables such as ID.

As we have seen, R does not need for data to be sorted for any of these
tasks. Still, sorting is useful in a variety of contexts.

R has a function named sort, but it sorts vectors or factors individually.
While that can be occasionally useful, it is more often disastrous. For vari-
ables in a data frame, it breaks the relationship between row and observation,
essentially destroying the data frame!

The function that R uses to sort data frames is named order. It first
determines the order that the rows would be in if sorted and then applies
them to do the sort.

Consider the names Ann, Eve, Carla, Dave, and Bob. They are almost
sorted in ascending order. Since the number of names is small, it is easy to
determine the order that the names would require to sort them. We need the
first name, Ann, followed by the fifth name, Bob, followed by the third name,
Carla, the fourth name, Dave, and, finally, the second name, Eve. The order
function would get those index values for us: 1, 5, 3, 4, 2.

To understand how these index values will help us sort, let us review briefly
how data frame subscripts work. One way to select rows from a data frame
is to use the form mydata[rows, columns]. If you leave them all out, as in
mydata[ , ], then you will get all rows and all columns. You can select the
first four records with

> mydata[ c(1, 2, 3, 4), ]

id workshop gender q1 q2 q3 q4

1 1 1 f 1 1 5 1

2 2 2 f 2 1 4 1

3 3 1 f 2 2 4 3

4 4 2 <NA> 3 1 NA 3
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We can select them in reverse order with

> mydata[ c(4, 3, 2, 1), ]

id workshop gender q1 q2 q3 q4

4 4 2 <NA> 3 1 NA 3

3 3 1 f 2 2 4 3

2 2 2 f 2 1 4 1

1 1 1 f 1 1 5 1

Now let us create a variable to store the order of the observations if sorted
by workshop:

> myW <- order( mydata$workshop )

> myW

[1] 1 3 5 7 2 4 6 8

We can use this variable as the row subscript to mydata to see it sorted by
workshop:

> mydata[myW, ]

id workshop gender q1 q2 q3 q4

1 1 1 f 1 1 5 1

3 3 1 f 2 2 4 3

5 5 1 m 4 5 2 4

7 7 1 m 5 3 4 4

2 2 2 f 2 1 4 1

4 4 2 <NA> 3 1 NA 3

6 6 2 m 5 4 5 5

8 8 2 m 4 5 5 5

You can reverse the order of a sort calling the rev function:

> mydata[ rev(myW), ]

workshop gender q1 q2 q3 q4

8 2 m 4 5 5 5

6 2 m 5 4 5 5

4 2 <NA> 3 1 NA 3

2 2 f 2 1 4 1

7 1 m 5 3 4 4

5 1 m 4 5 2 4

3 1 f 2 2 4 3

1 1 f 1 1 5 1

The order function is one of the few R functions that allow you to specify
multiple variables without combining them in some way, like into a vector
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with the c function. So we can create an order variable to sort the data by
gender and then workshop within gender with the following function call (GW
stands for Gender then Workshop):

> myGW <- order( mydata$gender, mydata$workshop )

> mydata[myGW, ]

id workshop gender q1 q2 q3 q4

1 1 1 f 1 1 5 1

3 3 1 f 2 2 4 3

2 2 2 f 2 1 4 1

5 5 1 m 4 5 2 4

7 7 1 m 5 3 4 4

6 6 2 m 5 4 5 5

8 8 2 m 4 5 5 5

4 4 2 <NA> 3 1 NA 3

The default order is ascending (small to large). To reverse this, place the minus
sign before any variable. However, this only works with numeric variables,
and we have been sorting by factors. We can use the as.numeric function to
extract the numeric values that are a behind-the-scenes part of any factor:

> myDGW <- order(

+ -as.numeric(mydata$gender),

+ mydata$workshop

+ )

> mydata[ myDGW, ]

workshop gender q1 q2 q3 q4

5 1 m 4 5 2 4

7 1 m 5 3 4 4

6 2 m 5 4 5 5

8 2 m 4 5 5 5

1 1 f 1 1 5 1

3 1 f 2 2 4 3

2 2 f 2 1 4 1

4 2 <NA> 3 1 NA 3

This time we see males sorted before females. The “D” in myDGW stands for
Descending.

The as.numeric function is also helpful when sorting by numbers that
are stored as character data. By default, the row names of a data frame are
numbers stored as characters. The sort order of character values of: “1”, “2”,
“3”, “100”, “1000” are 1, 100, 1000, 2, 3! Sorting by
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as.numeric( row.names(mydata) )

will sort in the usual numeric order.
While SAS and SPSS view missing values as the smallest values to sort,

R simply places them last. Recall from our discussion of missing values
that R does not view NAs as large or small. You can use the argument
na.last = FALSE to cause R to place NAs first. You can also remove records
with missing values by setting na.last=NA.

Since it is so easy to create variables in which to store your various order
indices, you do not need to store the whole data frame in sorted form to have
easy access to it. However, if you want to, you can save the data frame in
sorted form by using

mydataSorted <- mydata[ myDGW, ]

10.18.1 Example Programs for Sorting Data Sets

SAS Program for Sorting Data

* Filename: Sort.sas ;

LIBNAME myLib '\myRfolder';

PROC SORT DATA = myLib.mydata;

BY workshop;

RUN;

PROC PRINT DATA = myLib.mydata;

RUN;

PROC SORT DATA = myLib.mydata;

BY gender workshop;

RUN;

PROC PRINT DATA = myLib.mydata;

RUN;

PROC SORT DATA = myLib.mydata;

BY descending gender workshop ;

RUN;

PROC PRINT DATA = myLib.mydata;

RUN;

SPSS Program for Sorting Data

* Filename: Sort.sps .
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CD '\myRfolder'.

GET FILE = 'mydata.sav'.

SORT CASES BY workshop (A).

LIST.

SORT CASES BY gender (A) workshop (A).

LIST.

SORT CASES BY gender (D) workshop (A).

LIST.

R Program for Sorting Data

# Filename: Sort.R

setwd("c:/myRfolder")

load(file = "mydata.RData")

mydata

# Show first four observations in order.

mydata[ c(1, 2, 3, 4), ]

# Show them in reverse order.

mydata[ c(4, 3, 2, 1), ]

# Create order variable for workshop.

myW <- order( mydata$workshop )

myW

mydata[ myW, ]

# Create order variable for gender then workshop.

myGW <- order( mydata$gender, mydata$workshop )

myGW

mydata[ myGW, ]

# Create order variable for

# descending (-) workshop then gender

myWdG <- order( -mydata$workshop, mydata$gender )

myWdG

# Print data in WG order.

mydata[ myWdG, ]

# Save data in WdG order.



338 10 Data Management

mydataSorted <- mydata[ myWdG, ]

mydataSorted

10.19 Converting Data Structures

In SAS and SPSS, there is only one data structure – the data set. Within
that, there is only one structure, the variable. It seems absurdly obvious, but
we need to say it: All SAS and SPSS procedures accept variables as input. Of
course, you have to learn that putting a character variable in where a numeric
one is expected causes an error. Occasionally, a character variable contains
numbers and we must convert them. Putting a categorical variable in where
a continuous variable belongs may not yield an error message, but perhaps it
should. SPSS has added variable classification methods (nominal, ordinal, or
scale) to help you choose the correct analyses and graphs.

As we have seen, R has several data structures, including vectors, fac-
tors, data frames, matrices, and lists. For many functions (what SAS/SPSS
call procedures), R can automatically provide output optimized for the data
structure you give it. Said more formally, generic functions apply different
methods to different classes of objects. So to control a function, you have to
know several things:

1. The classes of objects the function is able to accept.
2. What the function will do with each class; that is, what its method is

for each. Although many important functions in R offer multiple methods
(they are generic), not all do.

3. The data structure you supply to the function – that is, what the class of
your object is. As we have seen, the way you select data determines their
data structure or class.

4. If necessary, how to convert from the data structure you have to one you
need.

In Chap. 7, “Selecting Variables,”we learned that both of these commands
select our variable q1 and pass on the data in the form of a data frame:

mydata[3]

mydata["q1"]

while these, with their additional comma, also select variable q1 but instead
pass on the data in the form of a vector:

mydata[ ,3]

mydata[ ,"q1"]

Many functions would work just fine on either result. However, some pro-
cedures are fussier than others and require very specific data structures. If
you are having a problem figuring out which form of data you have, there are
functions that will tell you. For example,
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class(mydata)

will tell you its class is “data frame.” Knowing that a data frame is a type of
list, you will know that functions that require either of those structures will
accept them. As with the print function, it may produce different output,
but it will accept it. There are also functions that test the status of an object,
and they all begin with “is.” For example,

is.data.frame( mydata[3] )

will display TRUE, but

is.vector( mydata[3] )

will display FALSE.
Some of the functions you can use to convert from one structure to another

are listed in Table 10.5. Let us apply one to our data. First, recall how the
print function prints our data frame in a vertical format:

> print(mydata)

workshop gender q1 q2 q3 q4

1 R f 1 1 5 1

2 SAS f 2 1 4 1

3 R f 2 2 4 3

4 SAS <NA> 3 1 NA 3

5 R m 4 5 2 4

6 SAS m 5 4 5 5

7 R m 5 3 4 4

8 SAS m 4 5 5 9

Now let us print it in list form by adding the as.list function. This
causes the data frame to become a list at the moment of printing, giving us
the horizontal orientation that we have seen when printing a true list:

> print( as.list(mydata) )

$workshop

[1] R SAS R SAS R SAS R SAS

Levels: R SAS SPSS STATA

$gender

[1] f f f <NA> m m m m

Levels: f m

$q1

[1] 1 2 2 3 4 5 5 4
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Table 10.5. Data conversion functions

Conversion to perform Example

Index vector to logical vector myQindices <- c(3, 4, 5, 6)

myQtf <- 1:6 %in% myQindices

Vectors to columns of a data
frame

data.frame(x,y,z)

Vectors to rows of a data frame data.frame( rbind(x,y,z) )

Vectors to columns of a matrix cbind(x,y,z)

Vectors to rows of a matrix rbind(x,y,z)

Vectors combined into one long
one

c(x,y,z)

Data frame to matrix (must be
same type)

as.matrix(mydataframe)

Matrix to data frame as.data.frame(mymatrix)

A vector to an r by c matrix matrix(myvector,nrow=r,ncol=c)

(note this is not as.matrix!)
Matrix to one very long vector as.vector(mymatrix)

List to one long vector unlist(mylist)

Lists or data frames into lists c(list1,list2)

List of vectors, matrices to rows
of matrix

mymatrix <- ( do.call(rbind, myList) )

List of vectors, matrices to cols
of matrix

mymatrix <- ( do.call(cbind, myList) )

Logical vector to index vector myQtf <- c(FALSE, FALSE,

TRUE, TRUE, TRUE, TRUE)

myQindices <- which(myQtf)

Table to data frame as.data.frame(mytable)

Remove the class unclass(myobject)
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$q2

[1] 1 1 2 1 5 4 3 5

$q3

[1] 5 4 4 NA 2 5 4 5

$q4

[1] 1 1 3 3 4 5 4 9

10.19.1 Converting from Logical to Numeric Index and Back

We have looked at various ways to select variables and observations using both
logical and numerical indices. Now let us look at how to convert from one to
the other.

The which function will examine a logical vector and tell you which of its
elements are true; that is, it will tell you the index values of those that are true.
We can create a logical vector that chooses our q variables in many ways. Let
us use the vector that selects the last four variables in our practice data frame.
For various ways to create a vector like this, see Chap. 7, “Selecting Variables,”
or Chap. 8, “Selecting Observations.”We will just enter it manually:

myQtf <- c(FALSE, FALSE, TRUE, TRUE, TRUE, TRUE)

We can convert that to a numeric index vector that gives us the index numbers
for each occurrence of the value TRUE using the which function:

myQindices <- which(myQtf)

Now myQindices contains 3, 4, 5, 6 and we can analyze just the q variables
using

summary( mydata[myQindices] )

To go in the reverse direction, we would want to know which the variable
indices – 1, 2, 3, 4, 5, 6 – were, in a logical sense, in our list of 3, 4, 5, 6:

myQindices <- c(3, 4, 5, 6)

Now we will use the %in% function to create the logical selection we need
using:

myQtf <- 1:6 %in% myQindices

Now myQtf has the values FALSE, FALSE, TRUE, TRUE, TRUE, TRUE,
and we can analyze just the Q variables with

summary( mydata[myQtf] )
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Why are there two methods? The logical method is the most direct, since
calling the which function is often an additional step. However, if you have
20,000 variables, as researchers in genetics often have, the logical vector will
contain 20,000 values. The numeric index vector will have only as many values
as there are variables in your subset. The which function also has a critical
advantage. Since it looks only to see which values are TRUE, the NA missing
values do not affect it. Using a logical vector, R will look at all values, TRUE,
FALSE, even the missing values of NA. However, the selection mydata[NA , ]

is undefined, causing problems. See Chap. 8, “Selecting Observations,” for
details.

10.20 Character String Manipulations

As we have seen, you can create character variables using the c function:

> gender <-c("m","f","m",NA,"m","f","m","f")

> gender

[1] "m" "f" "m" NA "m" "f" "m" "f"

You must enclose the individual elements (values) of the vector in quotes,
except for missing values, NA. If you actually needed the string “NA” to
represent something like North America, you would then enclose it in quotes.
It would work, but you would be asking for confusion in the long run!

R has two character variables built in, that contain the letters of the al-
phabet in lower- and upper-case:

> letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m"

[14] "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

> LETTERS

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M"

[14] "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

We can use these letters to create variable names. Previously we used the
paste function to create names like q1, q2, and q3. That is a good function to
know because it is widely used. However, now that we are focusing on string
variables and ways to manipulate them, we will use the str_c function. It
comes fromWickham’s stringr package [72], which contains a set of character
string functions that are much more useful than those that are built into R.
In particular, they can manipulate both character variables and factors.

Let us create some variables:
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> library("stringr")

> myVars <- str_c( "Var", LETTERS[1:6] )

> myVars

[1] "VarA" "VarB" "VarC" "VarD" "VarE" "VarF"

In the above example, I loaded the stringr package and used str_c to
concatenate (c=concatenate) the string “Var” to the first five letters of the
uppercase alphabet. If we had mydata loaded into our workspace, we could
switch to these names with:

names(mydata) <- myVars

summary( mydata[myVars] )

In our case, those names are worse than the original ones, but sometimes
you get data sets from other sources that have similar names.

Let us now read a data set that contains the names of some famous statis-
ticians. To make the matching SAS and SPSS programs easy, we will use a
fixed-width format file. The following is the R code to read it:

> setwd("c:/myRfolder")

> giants <- read.fwf(

+ file = "giants.txt",

+ width = c(15, 11, 11),

+ col.names = c("name", "born", "died"),

+ colClasses = c("character","character","POSIXct")

+ )

> giants

name born died

1 R.A. Fisher 02/17/1890 1962-07-29

2 Carl Pearson 03/27/1857 1936-04-27

3 Gertrude Cox 01/13/1900 1978-10-17

4 John Tukey 06/16/1915 2000-07-26

5 William Gosset 06/13/1876 1937-10-16

That used the read.fwf function covered in Sect. 6.6, “Reading Fixed-Width
Text Files, One Record per Case.” The second and third columns we are
reading are dates. We will discuss how to deal with those in Sec. 10.21.

We can check the length of each name string using the str_length

function:

> str_length( giants$name )
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[1] 15 15 15 15 15

I set the width argument to read the names from the first 15 columns of
the file. I also left off the strip.white = TRUE argument, which would have
saved space by trimming off the trailing blanks. Let us try two different ways
to display the data for R.A. Fisher:

> giants[ giants$name == "R.A. Fisher", ]

[1] name born died

<0 rows> (or 0-length row.names)

> giants[ giants$name == "R.A. Fisher ", ]

name born died

1 R.A. Fisher 02/17/1890 1962-07-29

The first query found no results because Fisher’s name is the full 15 char-
acters including the trailing blanks. That not only wastes space, but it makes
queries error prone as you try to count exactly how many blanks you need to
add to each string.

In this case, the problem would have been best fixed by simply adding the
strip.white = TRUE argument to the read.table function call. However,
when importing data from other sources, such as a database, you may need an
alternative approach to removing the trailing blanks. The str_trim function
does just that:

> giants$name <- str_trim( giants$name )

> attach(giants)

> str_length(name)

[1] 11 12 12 10 14

The str_trim function would also remove any leading blanks, had their
been any.

SAS users may get confused here since SAS’s TRIM function removes only
trailing blanks, while SAS’s STRIP function removes both leading and trailing
blanks.

SPSS users will find str_trim works similarly to the RTRIM function.
However, while the RTRIM function will remove blanks when combining
strings, it will not actually make the original variable shorter unless you are
in UNICODE mode.
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Another common problem when dealing with character strings is getting
them into the proper case. Let us look at some examples. If you need to
store strings in all uppercase or all lowercase, in SAS the functions are named
UPCASE and LOWCASE. SPSS calls them UPCASE and LOWER. In R,
the toupper function changes to uppercase:

> toupper(name)

[1] "R.A. FISHER" "CARL PEARSON" "GERTRUDE COX"

[4] "JOHN TUKEY" "WILLIAM GOSSET"

While the tolower function does just the opposite:

> tolower(name)

[1] "r.a. fisher" "carl pearson" "gertrude cox"

[4] "john tukey" "william gosset"

With proper names you typically want to have the first letter of each name
capitalized, and all the following letters lowercase. The ggplot2 package has
a function that will do that:

> library("ggplot2")

> firstUpper( tolower(name) )

[1] "R.a. fisher" "Carl pearson" "Gertrude cox"

[4] "John tukey" "William gosset"

You can see that in this example, the function would have been more
useful if we had split the first and last names and applied it separately.
The firstUpper function is not as helpful as the SAS PROPER function.
That function would have seen the blank and capitalized the last name au-
tomatically. It would have even capitalized the “A” in “R.A.” Fisher. Instead,
firstUpper capitalizes only the first letter of a string.

Selecting pieces of strings is a very common data management task. SAS
and SPSS both do this with a function named SUBSTR. The stringr package
does it with the str_sub function:

> str_sub(name, 1, 5)

[1] "R.A. " "Carl " "Gertr" "John " "Willi"

Arguments 1 and 5 tell the function to begin selecting a piece of the string
at the very first character, then continue on until the fifth character (i.e., 5 is
the absolute location of the last character). This got some of the first names
correct, but broke others off in the middle.
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A better way to perform this task is to strip out all the characters wherever
there is a space. All three packages solve this problem in different ways, so I
will not mention the SAS and SPSS approaches. See the example programs at
the end of this section to see what I used. In R, the str_split_fixed function
makes quick work of this problem by splitting the names into a matrix:

> myNamesMatrix <- str_split_fixed(name, " ", 2)

> myNamesMatrix

[,1] [,2]

[1,] "R.A." "Fisher"

[2,] "Carl" "Pearson"

[3,] "Gertrude" "Cox"

[4,] "John" "Tukey"

[5,] "William" "Gosset"

The first argument to the str_split_fixed function is the name of the
string to split and the second is the character to split at, in our case a blank.
The final “2” is the number of items you would like the function to return. For
this example, we need two strings returned for the first and last names. As
you see, this has created a character matrix with the first name in column one
and the second in column two.

You can easily extract the columns to vectors using:

> myFirst <- myNamesMatrix[ ,1]

> myFirst

[1] "R.A." "Carl" "Gertrude" "John" "William"

> myLast <- myNamesMatrix[ ,2]

> myLast

[1] "Fisher" "Pearson" "Cox" "Tukey" "Gosset"

Finding and replacing parts of strings is often helpful when cleaning up a
data set. If we wish to replace the “R.A.” in Fisher’s name with “Ronald A.”,
SAS does such replacements with its TRANWRD function, while SPSS uses
REPLACE. The stringr package calls it str_replace_all:

> myFirst <- str_replace_all(myFirst, "R.A.", "Ronald A.")
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A very similar function, str_replace, would also work in this example. It
replaces only the first occurrence that it finds in each string.

Finally, let us recombine the names with the last name first. This is the
type of concatenation that SAS performs using its || operator, while SPSS
uses its CONCAT function. In stringr it is called the str_c function, with
c standing for concatenate:

> myLastFirst <- str_c( myLast, ", ", myFirst)

> myLastFirst

[1] "Fisher, Ronald A." "Pearson, Carl"

[3] "Cox, Gertrude" "Tukey, John"

[5] "Gosset, William"

You can select observations based on string comparisons or searches in
R using logical comparisons, just as you would in SAS or SPSS. To list ob-
servations whose whole strings match, we can use the methods discussed in
Chap. 8, “Selecting Observations,”:

> myObs <- myLast == "Tukey"

> myObs

[1] FALSE FALSE FALSE TRUE FALSE

> myObs <- which(myLast == "Tukey")

> myObs

[1] 4

> giants[ myObs, ]

name born died

4 John Tukey 06/16/1915 2000-07-26

The first example creates MYOBS as a logical vector. The second adds
the which function to find which of the logical conditions is true. Using either
approach, the final selection is the same.

However, what if we want to select on just part of a name? Here we look
for all the names that contain the lower-case string “key” in the people’s last
names:

> myObs <- str_detect(myLast, "key")

> myObs

[1] FALSE FALSE FALSE TRUE FALSE

We can use that logical result in the same way as before.
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We can look for a list of people using the %in% function. First we will
create a lookup table:

> myTable <- c("Box","Bayes","Fisher","Tukey")

And now we will test to see where the last names appear in the lookup
table:

> myTable <- c("Box","Bayes","Fisher","Tukey")

> myObs <- myLast %in% myTable

> myObs

[1] TRUE FALSE FALSE TRUE FALSE

> name[ myObs ]

[1] "R.A. Fisher" "John Tukey"

As easy as that example was, it was limited to precise matches. We can
use the str_detect function to search using the powerful regular expressions.
In the following example, we are able to find Fisher and Tukey by searching
for the strings “Fish” and “key”, respectively:

> myObs <- str_detect( myLast, "Box|Bayes|Fish|key" )

> myObs

[1] TRUE FALSE FALSE TRUE FALSE

> name[ myObs ]

[1] "R.A. Fisher" "John Tukey"

The first argument to the str_detect function is the string object to
search and the second is any regular expression enclosed in quotes. You can
search the Internet to find many useful descriptions of regular expressions and
how to use them.

The str_detect function is very useful. For example, if you wanted to
find the people whose last names began with the letters “A” through “M”, the
regular expression that is "^[A-M]". Using that, we can find them easily with

> myAthruM <- str_detect(myLastFirst, "^[A-M]")

> myAthruM

[1] TRUE FALSE TRUE FALSE TRUE
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> name[ myAthruM ]

[1] "R.A. Fisher" "Gertrude Cox" "William Gosset"

You can find the rest of the alphabet with the regular expression "^[N-Z]",
or you can save the effort by simply asking for those not in the first selection:

> name[!myAthruM ]

[1] "Carl Pearson" "John Tukey"

10.20.1 Example Programs for Character String Manipulation

SAS Program for Character String Manipulation

* Filename: CharacterStrings.sas

LIBNAME MYlIB 'C:\myRfolder';

DATA myLib.giants;

INFILE '\myRfolder\giants.txt'

MISSOVER DSD LRECL=32767;

INPUT name $char14. @16 born mmddyy10. @27 died yymmdd10.;

FORMAT born mmddyy10. died yymmdd10.;

myVarLength=length(name);

born=strip(born); *Not needed;

PROC PRINT;

RUN;

DATA myLib.giants;

SET myLib.giants;

myLower= lowcase(name);

myUpper= upcase(name);

myProper=propcase(name);

PROC PRINT; RUN;

DATA myLib.giants;

SET myLib.giants;

myFirst5=substr(name, 1, 5);

* split names using substr;

myBlank=find(name, " ");

myFirst=strip( substr(name, 1, myBlank) );

myLast =strip( substr(name, myBlank) );

PUT "Using substr... " myFirst= myLast=;

* splip names using scan;
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myFirst=scan(name,1," ");

myLast =scan(name,2," ");

myFirst=tranwrd(myFirst,"R.A.","Ronald A.");

LENGTH myLastFirst $ 17;

myLastFirst= strip(myLast) || ", " || strip(myFirst);

*or: CALL CATX(", ", myLastFirst, myLast, myFirst);

PROC PRINT; VAR name myFirst myLast myLastFirst;

RUN;

DATA tukey;

SET myLib.giants;

WHERE myLast="Tukey";

PROC PRINT;

VAR name;

RUN;

DATA tukey;

SET myLib.giants;

WHERE FIND(myLast, "key");

PROC PRINT;

VAR name;

RUN;

DATA mySubset;

SET myLib.giants;

WHERE myLast IN ("Box","Bayes","Fisher","Tukey");

RUN;

PROC PRINT;

VAR name;

RUN;

DATA FishOrKey;

SET myLib.giants;

IF FIND(myLast, "Box") |

FIND(myLast, "Bayes") |

FIND(myLast, "Fish") |

FIND(myLast, "key") ;

RUN;

PROC PRINT;

VAR name;

RUN;

DATA AthruM;

SET myLib.giants;

firstLetter=substr(myLast, 1, 1);

IF "A" <= firstLetter <= "M";

RUN;

PROC PRINT;

VAR name;

RUN;
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SPSS Program for Character String Manipulation

* Filename: CharacterStrings.sps

CD 'C:\myRfolder'.

DATA LIST FILE='giants.txt' RECORDS=1

/1 name 1-14 (A) born 16-26 (ADATE) died 27-37 (SDATE).

STRING myFirst5 (A5)/ myLower myUpper myLastFirst (A17)

myFirst myLast (A9).

COMPUTE myLength1=LENGTH(name).

COMPUTE name=RTRIM(name).

COMPUTE myLength2=LENGTH(name).

COMPUTE myLower=LOWER(name).

COMPUTE myUpper=UPCASE(name).

LIST name myLower myUpper myLength1 myLength2.

COMPUTE myFirst5=SUBSTR(name, 1, 5).

COMPUTE myBlank= INDEX(name, " ").

COMPUTE myFirst=SUBSTR(name, 1, myBlank-1).

COMPUTE myFirst=REPLACE(myFirst, "R.A.", "Ronald A.").

COMPUTE myLast=SUBSTR(name, myBlank+1).

COMPUTE myLastFirst=CONCAT( RTRIM(myLast),

", ", RTRIM(myFirst) ).

LIST name myFirst myLast myLastFirst.

TEMPORARY.

SELECT IF (myLast EQ "Tukey").

LIST name.

TEMPORARY.

SELECT IF (CHAR.RINDEX(myLast,"Fish") GE 1

OR CHAR.RINDEX(myLast,"key") GE 1).

LIST name.

TEMPORARY.

SELECT IF (

myLast EQ "Box" OR

myLast EQ "Bayes" OR

myLast EQ "Fisher" OR

myLast EQ "Tukey").

LIST name.
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TEMPORARY.

SELECT IF (

name EQ "Box" OR

name EQ "Bayes" OR

CHAR.RINDEX(myLast,"Fish") GE 1 OR

CHAR.RINDEX(myLast,"key") GE 1).

LIST name.

TEMPORARY.

SELECT IF(SUBSTR(myLast, 1, 1) LE "M").

LIST name.

R Program for Character String Manipulation

# Filename: CharacterStrings.R

gender <-c("m", "f", "m", NA, "m", "f", "m", "f")

gender

options(width = 58)

letters

LETTERS

library("stringr")

myVars <- str_c("Var", LETTERS[1:6])

myVars

setwd("c:/myRfolder")

giants <- read.fwf(

file = "giants.txt",

width = c(15, 11, 11),

col.names = c("name", "born", "died"),

colClasses = c("character", "character", "POSIXct")

)

giants

str_length( giants$name )

giants[ giants$name == "R.A. Fisher", ]

giants[ giants$name == "R.A. Fisher ", ]

giants$name <- str_trim(giants$name)

attach(giants)

str_length(name)
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toupper(name)

tolower(name)

library("ggplot2")

firstUpper( tolower(name) )

str_sub(name, 1, 5)

myNamesMatrix <- str_split_fixed(name, " ", 2)

myNamesMatrix

myFirst <- myNamesMatrix[ ,1]

myFirst

myLast <- myNamesMatrix[ ,2]

myLast

myFirst <- str_replace_all(myFirst, "R.A.", "Ronald A.")

myLastFirst <- str_c( myLast, ", ", myFirst)

myLastFirst

myObs <- myLast == "Tukey"

myObs

myObs <- which(myLast == "Tukey")

myObs

giants[ myObs, ]

myObs <- str_detect(myLast, "key")

myObs

myTable <- c("Box", "Bayes", "Fisher", "Tukey")

myObs <- myLast %in% myTable

myObs

name[ myObs ]

myObs <- str_detect( myLast, "Box|Bayes|Fish|key" )

myObs

name[ myObs ]

myAthruM <- str_detect(myLastFirst, "^[A-M]")

myAthruM

name[ myAthruM ]

name[!myAthruM ]
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10.21 Dates and Times

Date and time measurements are a challenge to work with because the units
of measure are a mess. Years have 365 days, except during leap years when
they have 366. Months vary from 28 to 31 days in length. A day consists of
24 hours, each with 60 minutes and 3,600 seconds. To add to the excitement,
we also have time zones, daylight savings time, and leap seconds to deal with.

Let us begin with a brief review of how SAS handles dates and times. It has
three kinds of date–time variables: dates, datetimes, and times. SAS considers
the origin, or zero point in time, to be the beginning of 1970. It stores dates
as the number of days since January 1, 1970, and datetimes as the number of
seconds since then. Negative numbers indicate dates or datetimes that precede
1970. Time variables are stored as the number of seconds into the current day.

SPSS uses only two types of date–time variables: dates-times and times.
Both date–times and times are stored as the number of seconds from their
respective origin points. The origin point for date–times is the beginning of
the Gregorian Calendar, October 14, 1582. The origin for time variables is the
start of the current day.

In both SAS and SPSS, the data may appear as dates, times, or date–
times when you read them from a file, but once they have been read using the
appropriate format, there is no discernible difference between the date–time
variables and any others; they become simply numeric variables. SPSS hides
this fact by automatically assigning a print format, but if you strip that away,
you see just numbers of seconds with no clue as to what the numbers originally
represented.

R has a variety of date and time objects. We will focus on the newest ap-
proach using Grolemund and Wickham’s amusingly named lubridate pack-
age [24]. It is documented in their article, Dates and Times Made Easy with
lubridate [25].

Let us dive in and read a file that contains the birth/death dates of some
intellectual giants from the field of statistics. Here is what the file looks like:

R.A. Fisher 02/17/1890 1962-07-29

Carl Pearson 03/27/1857 1936-04-27

Gertrude Cox 01/13/1900 1978-10-17

John Tukey 06/16/1915 2000-07-26

William Gosset 06/13/1876 1937-10-16

The dates are in two different formats to demonstrate the fact that R is
currently very limited in the format of dates it can read directly from a file. To
make the matching SAS and SPSS programs easy, we will use a fixed-width
format file. The following is the R code to read it:

> setwd("c:/myRfolder")

> giants <- read.fwf(
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+ file = "giants.txt",

+ width = c(15,11,11),

+ col.names = c("name","born","died"),

colClasses = c("character","character","POSIXct"),

+ row.names = "name",

+ strip.white = TRUE,

+ )

We are using the read.fwf function covered in Sect. 6.6, “Reading Fixed-
Width Text Files, One Record per Case.” The data are displayed below.
The second and third columns we are reading are dates. However, in the
colClasses argument I specified that the first two are “character” variables
and the third is “POSIXct.” SAS or SPSS users would expect two consec-
utive date specifications in a row. SAS would have used MMDDYY10 and
YYMMDD10, while SPSS would have used ADATE followed by SDATE.

However, R can only read dates-times in the YYYY-MM-DD format, which
is used in the last column in our data set. For any other format, you must first
read the dates (or date–times) as character variables and then convert them.
Here is the data as we read them:

> giants

born died

R.A. Fisher 02/17/1890 1962-07-29

Carl Pearson 03/27/1857 1936-04-27

Gertrude Cox 01/13/1900 1978-10-17

John Tukey 06/16/1915 2000-07-26

William Gosset 06/13/1876 1937-10-16

Although the dates look like dates, the class function shows that born is
still just a character variable:

> class( giants$born )

[1] "character"

The lubridate package contains a variety of conversion tools. We will use
the mdy function to convert our character variables to dates:

> library("lubridate")

> giants$born <- mdy( giants$born )

Using date format %m/%d/%Y.

The message that follows each use of the mdy function may seem redundant,
but it is not. The function is capable of reading a wide range of dates including



356 10 Data Management

02/17/1890

02-17-1890

02:17:1890

02171890

Therefore, the message is reporting which of its various formats it found.
This is very similar to SAS’s “any date” format, ANYDTDTE, along with
its DATESTYLE option set to MDY. In other words, it is going to try to
determine the date, but only within the constraints that month is first followed
by day, then year. The abbreviations %m for month, %d for day, and %Y for the
four-digit year are the same specifications that SAS uses in its picture formats
for dates. For a list of these date–time format conversion specifications see
Table 10.6.

Let us see how the data looks now:

> giants

born died

R.A. Fisher 1890-02-17 1962-07-29

Carl Pearson 1857-03-27 1936-04-27

Gertrude Cox 1900-01-13 1978-10-17

John Tukey 1915-06-16 2000-07-26

William Gosset 1876-06-13 1937-10-16

Notice that R now presents both of the dates from largest to smallest
units of year, then month, then day. Although we do not see them, there are
also times associated with these dates. Since we did not actually read any
times, they defaulted to zero hours, zero minutes, and zero seconds, or the
start of each date. Had it been otherwise, R would have printed the times
automatically.

What classes of variables are these? Let us check:

> class(giants$born)

[1] "POSIXt" "POSIXct"

> class(giants$died)

[1] "POSIXt" "POSIXct"

The dates are stored with two classes, POSIXt (t for Time) and POSIXct
(ct for Calendar Time). POSIX is a set of computer standards that include
rules for dates and times.

The POSIXct class stores the number of seconds since the start of 1970.
Another class not shown is POSIXlt (lt=Local Time). That class stores date–
times in a list of date elements (e.g., year, month, day). I rarely use the
POSIXlt class.
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Finally, POSIXt is a class that applies to both POSIXct and POSIXlt and
indicates that either class can contain date–times that we can use for math,
like calculating differences.

The print function displays our date variables using the method that its
designer chose for that class of object. We can see what they really contain
by temporarily stripping away their class. Let us do that for born:

> attach(giants)

> unclass( born )

[1] -2520460800 -3558556800 -2207952000 -1721347200

[5] -2952201600

attr(,"tzone")

[1] "UTC"

Now we see that just as in SAS and SPSS, the date–times are stored as a
number of seconds. In this case they are the number of seconds between the
dates and the start of 1970. Since the seconds are negative, they measure how
many seconds before 1970 each person was born.

We also see that this POSIXct variable has an attribute of the time zone,
set to UTC, which stands for Coordinated Universal Time. If you do precise
date–time calculations with data from multiple time zones, you will want to
learn more about time zones.

If we want to make this variable a simple numeric vector, we can using the
as.numeric function:

> as.numeric( born )

[1] -2520460800 -3558556800 -2207952000 -1721347200

[5] -2952201600

You could go in the reverse direction, converting a vector of seconds into
a date using the as.POSIXct function:

> as.POSIXct(

+ c(-2520460800,-3558556800,-2207952000,

+ -1721347200, -2952201600),

+ origin="1970-01-01", tz="UTC" )

[1] "1890-02-16 19:00:00 EST" "1857-03-26 19:00:00 EST"

[3] "1900-01-12 19:00:00 EST" "1915-06-15 19:00:00 EST"

[5] "1876-06-12 19:00:00 EST"

Notice that one of the arguments is the origin date. This comes in handy
when reading dates stored in seconds that were written to text files from other
software. If you were reading date–times written from SAS, you could fill in
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1960-01-01 here. If you were reading date–times from Excel, you could use
its origin 1900-01-01. For date–times originating in SPSS you would fill in
1582-10-14. This step applies only to text files since tools for importing data
directly from other file formats would do the proper conversion for you.

10.21.1 Calculating Durations

We can calculate durations of time using the difftime function. It is very
similar to SAS’s DATDIF function and SPSS’s DATEDIFF function. Let us
use difftime to calculate the statisticians’ ages:

> age <- difftime(died, born, units="secs")

> age

Time differences in secs

[1] 2286057600 2495664000 2485382400 2685916800 1935705600

attr(,"tzone")

[1] "UTC"

We now have age in seconds. It is a precise answer, but not one that we
can relate to for durations that last years.

Let us do it again using the default setting, units=auto, which will auto-
matically choose an appropriate unit. In this case, it chooses days.

> age <- difftime(died, born)

> age

Time differences in days

[1] 26459 28885 28766 31087 22404

attr(,"tzone")

[1] "UTC"

The difftime function can also measure durations in minutes, hours or
weeks. It does not use months or years because those units of time vary too
much in length.

The variable age appears to be a vector, but since it prints out the message
regarding time differences and the time zone (tzone) attribute, we know it is
not just a vector. Let us see what type of object it is:

> mode( age )

[1] "numeric"

> class( age )

[1] "difftime"
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We see that it is a numeric object with a class of difftime. Using the jargon
of the lubridate package, we have created a “duration,” a precise measure of
time. Durations can be added to or subtracted from other date–times or other
durations.

Although the difftime function does not calculate in years, we have two
options for converting age to years. The first approach is best when you
are more interested in seeing ages in years and days. You simply call the
as.period function:

> as.period(age)

[1] 10 years and 909 days 11 years and 780 days...

Periods are objects that the lubridate package uses to store times that
are less precise but that match calendar time well.

The second approach to converting durations from days to years is to
divide by the number of days in a typical year. When accounting for leap
years, an average year contains 365.2425 days. We can use that to convert age
into years:

> age/365.2425

Time differences in days

[1] 72.44228 79.08444 78.75863 85.11332 61.34007

attr(,"tzone")

[1] "UTC"

We do have age in years now, but difftime objects have a units attribute
that is still set to days. We cannot simply change this with:

units(age) <- "years" # Bad!

because difftime objects do not allow units greater than weeks. We can fix that
by converting it to a numeric vector, and let us round it off to two decimal
places while we are at it:

> giants$age <- round(

+ as.numeric( age/365.2425 ), 2 )

> giants

born died age

R.A. Fisher 1890-02-17 1962-07-29 72.44

Carl Pearson 1857-03-27 1936-04-27 79.08

Gertrude Cox 1900-01-13 1978-10-17 78.76

John Tukey 1915-06-16 2000-07-26 85.11

William Gosset 1876-06-13 1937-10-16 61.34
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If you want to compare date–times to the current date and time, it is
convenient to use a function like SAS’s TODAY function or SPSS’s system
variable $TIME. In the lubridate package the equivalent function is aptly
named now. Base R also has functions named Sys.time and date that are
very similar.

Let us see how long ago these people died:

> difftime( now(), died ) / 365.2425

Time differences in days

[1] 48.10735 74.36114 31.88799 10.11341 72.89088

attr(,"tzone")

[1] "UTC"

Again, it is labeled in days when we have converted to years, but we see
that the last statistician, John Tukey, died just over 10 years before I wrote
this.

We have seen that the difftime function calculates time durations. In SAS
or SPSS, this would have been easy to accomplish with subtraction. R can
use subtraction, too, but with an odd twist. Rather than creating durations,
subtracting dates creates intervals instead. Let us see how the two differ.

Although I do not recommend using subtraction to calculate durations,
seeing what will happen will help you to understand the full impact that a
package can have on how R operates.

First I will load the lubridate package again. It is already loaded, so I am
doing this only to emphasize that it changes the behavior of subtracting two
date–time instants. For a SAS or SPSS user, running something like a macro
would never change the function of fundamental operators like the minus sign.
However, R is that flexible, and the lubridate package does just that!

> library("lubridate")

> age <- died - born # age in days

> age

[1] 26459 days beginning at 1890-02-17

[2] 28885 days beginning at 1857-03-27

[3] 28766 days beginning at 1900-01-13

[4] 31087 days beginning at 1915-06-16

[5] 22404 days beginning at 1876-06-13

> age / 365.2425

[1] 72.44228 days beginning at 1890-02-17
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[2] 79.08444 days beginning at 1857-03-27

[3] 78.75863 days beginning at 1900-01-13

[4] 85.11332 days beginning at 1915-06-16

[5] 61.34007 days beginning at 1876-06-13

We get the same answers, although formatted differently. Now it includes
the beginning date! Let us look closer at this new age object:

> mode(age)

[1] "list"

> class(age)

[1] "interval" "data.frame"

> names(age)

[1] "start" "end"

We see that age is now a list with classes of both interval and data.frame. It
also contains two variables: start and end. But it printed as vector with some
labels added. What is going on? The designers of the interval class included a
method for the print function that told it to print the difference between the
start and end variables, but not the variables themselves! By simply typing the
name “age” we are invoking the print function. Recall that we can override
the print function’s methods by “unclassing” an object. That allows us to
really see what is inside it. However, we do not want to unclass age itself, but
rather the two variables that it contains. We can use the sapply function to
do that:

> sapply(age, unclass)

start end

[1,] -2520460800 -234403200

[2,] -3558556800 -1062892800

[3,] -2207952000 277430400

[4,] -1721347200 964569600

[5,] -2952201600 -1016496000

Now we see that when we create an interval object by subtracting two
date–time variables, we create a data frame that contains the start and end
of each person’s age interval. The actual difference isn’t calculated until the
print function does it. We have seen the print function prints subsets of
objects before, but we have never seen it do something like subtraction!

This interval object is a very flexible structure, but further use of it is
beyond our scope. For date–time calculations, the difftime approach is often
the better choice.
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10.21.2 Adding Durations to Date–Time Variables

We have seen how to calculate a duration from two date–time variables. But
what if we already know a duration, and want to add it to or subtract it from
date–time variables?

Let us take the case where we know when the people were born and their
ages, but not when they died.

We can use the as.duration function to create age from a numeric vector:

> age <- as.duration(

+ c(2286057600,2495664000,2485382400,

+ 2685916800,1935705600)

+ )

> class(age)

[1] "difftime"

We see from the class function that our new age variable is indeed a
difftime object. We can add it to the date they were born using addition:

> born+age

[1] "1962-07-29 UTC" "1936-04-27 UTC" "1978-10-17 UTC"

[4] "2000-07-26 UTC" "1937-10-16 UTC"

How did we do? Let us compare that to the variable died:

> died

[1] "1962-07-29 UTC" "1936-04-27 UTC" "1978-10-17 UTC"

[4] "2000-07-26 UTC" "1937-10-16 UTC"

That is correct!

10.21.3 Accessing Date–Time Elements

It is easy to access the various elements of date–time variables. The functions
have similar names to their SAS and SPSS counterparts and are similarly easy
to use:

> year(born)

[1] 1890 1857 1900 1915 1876

You can extract months in numeric or character form, with abbreviated
names or not:
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> month(born)

[1] 2 3 1 6 6

> month(born, label = TRUE)

[1] Feb Mar Jan Jun Jun

12 Levels: Jan < Feb < Mar < Apr < May < Jun < ... < Dec

Days can be of the month or week, and days of the week can be accessed
as numbers or names:

> day(born) # day of month

[1] 17 27 13 16 13

> wday(born) # day of week

[1] 2 6 7 4 3

> wday(born, label = TRUE, abbr = FALSE)

[1] Monday Friday Saturday Wednesday Tuesday

7 Levels: Sunday < Monday < Tuesday < ... < Saturday

Finally, you can see which day of the year the birthdays appeared on:

> yday(born)

[1] 48 86 13 167 165

One of the many nice things that the lubridate package does for us is
display weekdays with values from 1 to 7 and months from 1 to 12. The base
R functions begin at zero for both! After years of thinking of months starting
at 1, thank goodness we do not have to make that mental adjustment.

10.21.4 Creating Date–Time Variables from Elements

If your data set contains separate variables for the elements of a date (e.g.,
years, months, days), it is easy to combine them into a date–time variable.

To demonstrate this, let us split our died variable into its elements:

myYear <- year(died)

myMonth <- month(died)

myDay <- day(died)
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Now we can recreate the variable by combining the elements using the
paste function. Since our original data had dates in mdy format, let us choose
a hyphenated ymd format just to see that R can handle it:

> myDateString <- paste( myYear, myMonth, myDay, sep = "-" )

> myDateString

[1] "1962-7-29" "1936-4-27" "1978-10-17" "2000-7-26"

[5] "1937-10-16"

Finally, we can use the ymd function to convert the string to a date–time
variable:

> died2 <- ymd(myDateString)

Using date format %Y-%m-%d.

> died2

[1] "1962-07-29 UTC" "1936-04-27 UTC" "1978-10-17 UTC"

[4] "2000-07-26 UTC" "1937-10-16 UTC"

The powerful string handling functions discussed in Sect. 10.20 can help
you read date–time variables in almost any form.

10.21.5 Logical Comparisons with Date–Time Variables

As with SAS and SPSS, logical comparisons between date–times are done just
as they are between numbers. For example, if we wanted to list the people
who were born after the start of 1900, we could use the following selection:

> giants[ born > mdy("1/1/1900") , ]

born died

Gertrude Cox 1900-01-13 1978-10-17

John Tukey 1915-06-16 2000-07-26

If any dates had been missing, we could have avoided listing them by
nesting the logic within the which function.

10.21.6 Formatting Date–Time Output

We have seen that R uses the year–month–day format of printing date–times.
You can use the format function to control how R prints values, including
date–times. The format function and SAS picture formats both use the same
ISO conversion specifications to control the style of the output. Let us look
at an example:
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> myDateText <- format(born, "%B %d, %Y is day %j of %Y")

> myDateText

[1] "February 17, 1890 is day 048 of 1890"

[2] "March 27, 1857 is day 086 of 1857"

[3] "January 13, 1900 is day 013 of 1900"

[4] "June 16, 1915 is day 167 of 1915"

[5] "June 13, 1876 is day 165 of 1876"

I am telling format to print the born variable using %B to represent the
unabbreviated month. The code %Y represents the four-digit year, and so on.
See Table 10.6 for all the specifications.

We can get a bit fancier by using the cat function (short for concatenate).
It concatenates strings and values and then displays them, just like the SAS
PUT or SPSS PRINT commands. The following is an example:

> myDateText <- format(born,

+ "was born on the %jth day of %Y")

> for (i in 1:5) cat(rownames(giants)[i],

+ myDateText[i],"\n")

R.A. Fisher was born on the 048th day of 1890

Carl Pearson was born on the 086th day of 1857

Gertrude Cox was born on the 013th day of 1900

John Tukey was born on the 167th day of 1915

William Gosset was born on the 165th day of 1876

The for function repeats the cat function five times, once for each row in
our data frame. The \n at the end of the cat function call tells R to go to a
new line.

10.21.7 Two-Digit Years

It is a good idea to record years using four digits, like 2011. Even if you do,
you will probably still need to read data sets with years recorded using just
two digits. If you read a year of “11,” does it represent 1911 or 2011? At some
point you have to decide whether to add 1900 or 2000 to any two-digit year
you read.

In SAS, the YEARCUTOFF option controls this decision, and it has a
default value of 1920. SPSS calls this the Century Range for 2-Digit Years
and controls it through a dialog box, Edit> Options> Data.

R follows a POSIX standard that currently assumes years 69 to 99 are in
the 1900s and years 00 to 68 are in the 2000s. That is like setting
YEARCUTOFF=1969 in SAS. Unlike SAS and SPSS, R does not have an
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option to change this. If this does not match your data, then you will have to
add or subtract the proper number of years to correct the problem.

Let us look at an example. We will read my birthday in 1969:

> my1969 <- mdy("08/31/69")

Multiple format matches with 1 successes: %m/%d/%y, %m/%d/%Y.

> my1969

[1] "1969-08-31 UTC"

That looks fine. Let us do it again, this time for 1968:

> my1968 <- mdy("08/31/68")

Multiple format matches with 1 successes: %m/%d/%y, %m/%d/%Y.

> my1968

[1] "2068-08-31 UTC"

Oops! We crossed the century cutoff and ended up in 2068 instead. I hope
I make it that far! Since we know that time-dates are stored in seconds, we
can subtract 100 years’ worth of seconds:

> my1968 <- my1968 - as.duration(100 * 365.2425 * 24 * 60 * 60)

> my1968

[1] "1968-08-31 18:00:00 UTC"

Problem fixed! Keep in mind that over the years the POSIX standard will
change, and then so will R.

10.21.8 Date–Time Conclusion

While we have covered the basics of date–time calculations, R offers an ex-
tensive array of additional features should you ever need them.

10.21.9 Example Programs for Dates and Times

SAS Program for Dates and Times

* Filename: DateTime.sas

LIBNAME MyLib 'C:\myRfolder';

DATA myLib.giants;
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Table 10.6. Date-time format conversion specifications.

%a Weekday name, abbreviated
%A Weekday name, full
%b Month name, abbreviated
%B Month name, full
%c Date and time
%d Day of month (1–31)
%H Hour (0–23)
%I Hour (1–12)
%j Day of year (1–365)
%m Month (1–12)
%M Minute (0–59)
%p AM or PM
%S Second (0–61, <=2 leap seconds)
%U Week of year (0–53, Sunday as first day of week
%w Day of week (0–6, 0=Sunday)
%W Week of year (0–53), Monday as first day of week
%x Date, %y/%m/%d on input, locale-specific on output
%X Time, %H/%M/%S on input, locale-specific on output
%y Year, two-digit (00–99)
%Y Year, four-digit
%z Offset in hours/minutes from UTC
%Z Time zone (output only)
%% Percent character (%)
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INFILE '\myRfolder\giants.txt'

MISSOVER DSD LRECL=32767;

INPUT name $char14. @16 born mmddyy10. @27 died mmddyy10.;

PROC PRINT;

RUN;

PROC PRINT;

FORMAT died born mmddyy10.;

RUN;

* Caculating Durations.;

DATA myLib.giants;

SET myLib.giants;

age = (died-born)/365.2425;

longAgo = ( today()-died )/365.2425;

RUN;

PROC PRINT;

FORMAT died born mmddyy10. age longAgo 5.2 ;

RUN;

* Adding Durations to Date-Times.

DATA myLib.giants;

SET myLib.giants;

died=born+age;

RUN;

PROC PRINT;

FORMAT died born mmddyy10. age 5.2;

RUN;

* Accessing Date-Time Elements;

DATA myLib.giants;

SET myLib.giants;

myYear=YEAR(born);

myMonth=MONTH(born);

myDay =DAY(born);

PROC PRINT;

FORMAT died born mmddyy10. age 5.2;

RUN;

* Creating Date-Time Variables from Elements;

DATA myLib.giants;

set myLib.giants;

born=MDY(myMonth, myDay, myYear);
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PROC PRINT;

FORMAT died born mmddyy10. age 5.2;

RUN;

* Logical Comparisons with Date-Times;

DATA Born1900s;

set myLib.giants;

if born > "01jan1900"d ;

PROC PRINT;

FORMAT died born mmddyy10. age 5.2;

RUN;

* Formatting Date-Time Output;

PROC FORMAT;

PICTURE myFormatI

LOW - HIGH = '%B %d, %Y is day %j of %Y'

(DATATYPE=DATE);

RUN;

PROC PRINT DATA=myLib.giants;

VAR born;

FORMAT born myFormatI40.;

RUN;

PROC FORMAT;

PICTURE myFormatII

LOW - HIGH = ' was born on the %jth day of %Y'

(DATATYPE=DATE);

RUN;

DATA _NULL_;

SET myLib.giants;

PUT name $char14. born myFormatII34.;

run;

SPSS Program for Dates and Times

* Filename: DateTime.sps

CD 'C:\myRfolder'.

DATA LIST FILE='giants.txt' RECORDS=1

/1 name 1-14 (A) born 16-26 (ADATE) died 27-37 (SDATE).

* Calculating Durations.

COMPUTE age=died-born.

LIST.
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COMPUTE age=(died-born) / (365.2425*24*60*60).

LIST.

COMPUTE longAgo=($TIME-died) /(365.2425*24*60*60) .

LIST.

* Adding Durations to Date-Times.

COMPUTE died=born+age.

LIST.

* Accessing Date-Time Elements.

COMPUTE myYear=XDATE.YEAR(born).

COMPUTE myMonth=XDATE.MONTH(born).

COMPUTE myDay=XDATE.MDAY(born).

LIST name born myYear myMonth myDay.

* Creating Date-Time Variables from Elements.

COMPUTE born=DATE.MDY(myMonth, myDay, myYear).

LIST name born.

* Logical Comparisons with Date-Times.

TEMPORARY.

SELECT IF born GE date.mdy(1,1,1900).

LIST name born.

* Formatting Date-Time Output.

PRINT /born (adate) ' is the' myDay (F3.0)

'th day of ' myYear (F4.0).

EXECUTE.

PRINT /name 'was born on the' myDay (F3.0)

'th day of ' myYear (F4.0).

EXECUTE.

R Program for Dates and Times

# Filename: DateTime.R

setwd("c:/myRfolder")

giants <- read.fwf(

file = "giants.txt",

width = c(15,11,11),

col.names = c("name", "born", "died"),

colClasses = c("character", "character", "POSIXct"),

row.names = "name",

strip.white = TRUE,
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)

giants

class(giants$born) # A character vector.

library("lubridate")

giants$born <- mdy(giants$born)

giants

class(giants$born)

class(giants$died)

giants # They display in yyyy-mm-dd by default.

attach(giants)

unclass( born )

as.numeric( born )

as.POSIXct(

c(-2520460800,-3558556800,-2207952000,

-1721347200, -2952201600),

origin="1960-01-01", tz="UTC" )

#---Calculating Durations---

age <- difftime(died, born, units="secs")

age

age <- difftime(died, born)

age # now we have age in days

mode( age )

class( age ) # it's a difftime object

as.period(age)

age/365.2425 # age in years

giants$age <- round(

as.numeric( age/365.2425 ), 2 )

giants

now() # Current date-time.

difftime( now(), died ) / 365.2425

# Again, using subtraction.

age <- died - born # age in days

age

age / 365.2425 # Age in years, mislabeled.
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mode(age)

class( age ) # it's an interval object.

names( age )

sapply( age, unclass )

# Not a helpful age to store in our data frame!

#---Adding Durations to Date-Times---

age <- as.duration(

c(2286057600,2495664000,2485382400,

2685916800,1935705600)

)

class(age)

born+age

died

#---Accessing Date-Time Elements---

year(born)

month(born)

month(born, label = TRUE)

day(born) # day of month

wday(born) # day of week

wday(born, label = TRUE, abbr = FALSE)

yday(born)

#---Creating Date-Times from Elements---

myYear <- year(died)

myMonth <- month(died)

myDay <- day(died)

myDateString <- paste(myYear, myMonth, myDay, sep="/")

myDateString

died2 <- ymd(myDateString)

died2

#---Logical Comparisons with Date-Times---

giants[ born > mdy("1/1/1900") , ]

#---SAS Picture Format Example---
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myDateText <- format(born, "%B %d, %Y is day %j of %Y")

myDateText

myDateText <- format(born,

"was born on the %jth day of %Y")

for (i in 1:5) cat(rownames(giants)[i],

myDateText[i],"\n")

# Two-Digit Years

my1969 <- mdy("08/31/69")

my1969

my1968 <- mdy("08/31/68")

my1968

my1968 <- my1968 - as.duration(100 * 365.2425 * 24 * 60 * 60)

my1968

as.POSIXlt("08/31/68", format="%m/%d/%y")

as.POSIXlt("08/31/69", format="%m/%d/%y")

as.POSIXlt("08/31/69", format="%m/%d/%y")
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Enhancing Your Output

As we have seen, compared to SAS or SPSS, R output is quite sparse and not
nicely formatted for word processing. You can improve R’s output by adding
value and variable labels. You can also format the output to make beautiful
tables to use with word processors, Web pages, and document preparation
systems.

11.1 Value Labels or Formats (and Measurement Level)

This chapter blends two topics because in R they are inseparable. In both
SAS and SPSS, assigning labels to values is independent of the variable’s
measurement level. In R, you can assign value labels only to variables whose
measurement level is factor. To be more precise, only objects whose class is
factor can have label attributes.

In SAS, a variable’s measurement level of nominal, ordinal, or interval
is not stored. Instead, you list the variable on a specific statement, such as
CLASS or BY, to tell SAS that you wish to view it as categorical.

SAS’s use of value labels is a two-step process. First, PROC FORMAT
creates a format for every unique set of labels. Then the FORMAT statement
assigns a format to each variable or set of variables (see example program
Sect. 11.1.6). The formats are stored outside the data set in a format library.

In SPSS, the VARIABLE LEVEL command sets the measurement level,
but this is merely a convenience to help its GUI work well. Newer SPSS
procedures take advantage of this information and do not show you nominal
variables in a dialog box that it considers inappropriate. However, if you enter
them into the same procedure using the programming language, it will accept
them. As with SAS, special commands tell SPSS how you want to view the
scale of the data. These include GROUPS and BY.

Independently, the VALUE LABEL command sets labels for each level,
and the labels are stored within the data set itself as an attribute.

DOI 10.1007/978-1-4614-0685-3_11, © Springer Science+Business Media, LLC 2011
, Statistics and Computing,R.A. Muenchen, R for SAS and SPSS Users 375
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R has a measurement level of factor for nominal data, ordered factor for
ordinal data, and numeric for interval or scale data. You set these in advance
and then the statistical and graphical procedures use them in an appropriate
way automatically. When creating a factor, assigning labels is optional. If you
do not use labels, a variable’s original values are stored as character labels. R
stores value labels in the factor itself.

11.1.1 Character Factors

Let us review how the read.table function deals with character variables. If
we do not tell the function what to do, it will convert all character data to
factors.

> mydata <- read.table("mydata.tab")

> mydata

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1

2 2 f 2 1 4 1

3 1 f 2 2 4 3

4 2 <NA> 3 1 NA 3

5 1 m 4 5 2 4

6 2 m 5 4 5 5

7 1 m 5 3 4 4

8 2 m 4 5 5 5

You cannot tell what gender is by looking at it, but the class function can
tell us that gender is a factor.

> class( mydata[ ,"gender"] )

[1] "factor"

In our case, this is helpful. However, there are times when you want to
leave character data as simple characters. When reading people’s names or
addresses from a database, for example, you do not want to store them as
factors. The argument stringsAsFactors = FALSE will tell the read.table

function to leave such variables as characters.

> mydata2 <- read.table("mydata.tab",

+ stringsAsFactors = FALSE)

> mydata2

workshop gender q1 q2 q3 q4

1 1 f 1 1 5 1
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2 2 f 2 1 4 1

3 1 f 2 2 4 3

4 2 <NA> 3 1 NA 3

5 1 m 4 5 2 4

6 2 m 5 4 5 5

7 1 m 5 3 4 4

8 2 m 4 5 5 5

This determines how all of the character variables are read, so if some of them
do need to be factors, you can convert those afterward. The data look the
same, but the class function can verify that gender is indeed now a character
variable.

> class( mydata2[ ,"gender"] )

[1] "character"

Many functions will not do what you expect with character data. For
example, we have seen the summary function count factor levels. However, it
will not count them in character class (i.e. as string variables). If these were
names or addresses, there would be little use in counting them to see that
they were virtually all unique. Instead, summary simply gives you the grand
total (length) and the variable’s class and mode:

> summary( mydata2$gender )

Length Class Mode

8 character character

We will focus on the first data frame that has gender as a factor. As
read.table scans the data, it assigns the numeric values to the character
values in alphabetical order. R always uses the numbers 1, 2, . . . . However,
if you use the factor in an analysis, say as a regression predictor, it will do
a proper coding for you automatically. For character data, these defaults are
often sufficient. If you supply the levels argument in the factor function,
you can use it to specify the order of label assignment:

mydata$genderF <- factor(

mydata$gender,

levels = c("m", "f" ),

labels = c("Male","Female") )

The factor function call above has three arguments:

1. The name of the factor.
2. The levels argument with the levels in order. Since “m” appears first, it

will be associated with 1 and “f” with 2. This is the order the values will
appear in for frequency tables and bar plots. If used in modeling, the first
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level that appears will be the comparison level. For example, in a linear
regression gender as coded here would show how females are different from
males. For details, see Sect. 10.8. If the variable is actually ordinal rather
than nominal or categorical, then use the similar ordered rather than
factor

3. The labels argument provides labels in the same order as the levels

argument. This example sets“m”as 1 and“f”as 2 and uses the fully written
out labels. If you leave the labels out, R will use the levels themselves as
labels. In this case, the labels would be simply “m” and “f.” That is how
we will leave our practice data set, as it keeps the examples shorter.

There is a danger in setting value labels with character data that does not
appear at all in SAS or SPSS. In the function call above, if we instead set

levels = c("m", "F")

R would set the values for all females to missing (NA) because the actual
values are lowercase. There are no capital Fs in the data! This danger applies,
of course, to other, more obvious, misspellings.

11.1.2 Numeric Factors

Workshop is a categorical measure, but initially R assumes it is numeric be-
cause it is entered as 1 and 2. If we do any analysis on workshop, it will be as
an integer variable:

> class( mydata$workshop )

[1] "integer"

> summary( mydata$workshop )

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.0 1.0 1.5 1.5 2.0 2.0

We can nest a call to the as.factor function into any analysis to overcome
this problem:

> summary( as.factor(mydata$workshop) )

1 2

4 4

So we see four people took workshops 1 and 2. The values 1 and 2 are merely
labels at this point.

We can use the factor function to convert it to a factor and optionally
assign labels. Factor labels in R are stored in the factor itself.
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mydata$workshop <- factor(

mydata$workshop,

levels = c( 1, 2, 3, 4 ),

labels = c("R", "SAS", "SPSS", "Stata")

)

Notice that we have assigned four labels to four values even though our
data only contain the values 1 and 2. This can ensure consistent value label
assignments regardless of the data we currently have on hand. If we collected
another data set in which people only took SPSS and Stata workshops, we
would not want 1=R in one data set and 1=SPSS in another!

Since R appears first, for modeling purposes it is the comparison level. A
linear regression would then include effects for SAS, SPSS, and Stata, all in
comparison to R. For details, see Sect. 10.8.

To simplify our other examples, we will use only the labels that appear in
this small data set:

mydata$workshop <- factor(

mydata$workshop,

levels = c( 1, 2 ),

labels = c("R", "SAS")

)

Now let us convert our q variables to factors. Since we will need to specify the
same levels repeatedly, let us put them in a variable.

> myQlevels <- c(1, 2, 3, 4, 5)

> myQlevels

[1] 1 2 3 4 5

Now we will do the same for the labels:

> myQlabels <- c("Strongly Disagree",

+ "Disagree",

+ "Neutral",

+ "Agree",

+ "Strongly Agree")

> myQlabels

[1] "Strongly Disagree" "Disagree" "Neutral"

[4] "Agree" "Strongly Agree"

Finally, we will use the ordered function to complete the process. It works
just like the factor function but tells R that the data values have order. In
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statistical terms, it sets the variable’s measurement level to ordinal. Ordered
factors allow you to perform logical comparisons of greater than or less than.
R’s statistical modeling functions also try to treat ordinal data appropriately.
However, some methods are influenced by the assumption that the ordered
values are equally spaced, which may not be the case in your data.

We will put the factors into new variables with an “f” for f actor in their
names, like qf1 for q1. The f is just there to help us remember; it has no
meaning to R. We will keep both sets of variables because people who do
survey research often want to view this type of variable as numeric for some
analyses and as categorical for others. It is not necessary to do this if you
prefer converting back and forth on the fly:

> mydata$qf1 <- ordered(mydata$q1, myQlevels, myQlabels)

> mydata$qf2 <- ordered(mydata$q2, myQlevels, myQlabels)

> mydata$qf3 <- ordered(mydata$q3, myQlevels, myQlabels)

> mydata$qf4 <- ordered(mydata$q4, myQlevels, myQlabels)

Now we can use the summary function to get frequency tables on them,
complete with value labels:

> summary( mydata[ c("qf1", "qf2", "qf3", "qf4") ] )

qf1 qf2 qf3

Strongly Disagree:1 Strongly Disagree:3 Strongly Disagree:0

Disagree :2 Disagree :1 Disagree :1

Neutral :1 Neutral :1 Neutral :0

Agree :2 Agree :1 Agree :3

Strongly Agree :2 Strongly Agree :2 Strongly Agree :3

NA's :1

qf4

Strongly Disagree:3

Disagree :0

Neutral :2

Agree :2

Strongly Agree :1

11.1.3 Making Factors of Many Variables

The approach used above works fine for small numbers of variables. However,
if you have hundreds, it is needlessly tedious. We do the same thing again,
this time in a form that would handle any number of variables whose names
follow the format string1 to stringN. Our practice data only have q1 to q4,
but the same number of commands would handle q1 to q4000.

First, we will generate variable names to use. We will use qf to represent
the q variables in factor form. This is an optional step, needed only if you
want to keep the variables in both forms:
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> myQnames <- paste("q", 1:4, sep = "")

> myQnames

[1] "q1" "q2" "q3" "q4"

> myQFnames <- paste("qf", 1:4, sep = "")

> myQFnames

[1] "qf1" "qf2" "qf3" "qf4"

Now we will use the myQnames character vector as column names to select
from our data frame. We will store those in a separate data frame:

> myQFvars <- mydata[ ,myQnames]

> myQFvars

q1 q2 q3 q4

1 1 1 5 1

2 2 1 4 1

3 2 2 4 3

4 3 1 NA 3

5 4 5 2 4

6 5 4 5 5

7 5 3 4 4

8 4 5 5 5

Next, we will use the myQFnames character vector to rename these variables:

> names(myQFvars) <- myQFnames

> myQFvars

qf1 qf2 qf3 qf4

1 1 1 5 1

2 2 1 4 1

3 2 2 4 3

4 3 1 NA 3

5 4 5 2 4

6 5 4 5 5

7 5 3 4 4

8 4 5 5 5

Now we need to make up a function to apply to the variables:
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myLabeler <- function(x) {

ordered(x, myQlevels, myQlabels)

}

The myLabeler function will apply myQlevels and myQlabels (defined in
Sect. 11.1.2) to any variable, x, that we supply to it. Let us try it on a single
variable:

> summary( myLabeler( myQFvars[ ,"qf1"] ) )

Strongly Disagree Disagree Neutral Agree

1 2 1 2

Strongly Agree

2

It is important to understand that the myLabeler function will work only
on vectors, since the ordered function requires them. Removing the comma
in the above command would select a data frame containing only q1f, instead
of a vector, and this would not work.

> summary( myLabeler(myQFvars["qf1"]) ) # Does not work!

Strongly Disagree Disagree Neutral Agree

0 0 0 0

Strongly Agree NA's

0 1

Now we will use the sapply function to apply myLabeler to myQFvars.

myQFvars <- data.frame( sapply( myQFvars, myLabeler ) )

The sapply function simplified the result to a matrix and the data.frame

function converted that to a data frame. Now the summary function will count
the values and display their labels:

> summary(myQFvars)

qf1 qf2 qf3

Agree :2 Agree :1 Agree :3

Disagree :2 Disagree :1 Disagree :1

Neutral :1 Neutral :1 Strongly Agree:3

Strongly Agree :2 Strongly Agree :2 NA's :1

Strongly Disagree:1 Strongly Disagree:3

qf4

Agree :2

Neutral :2

Strongly Agree :2

Strongly Disagree:2
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If you care to, you can bind myQFvars to our original data frame:

mydata <- cbind(mydata, myQFvars)

11.1.4 Converting Factors to Numeric or Character Variables

R has functions for converting factors to numeric or character vectors (vari-
ables). To extract the numeric values from a factor like gender, we can use
the as.numeric function:

> mydata$genderNums <- as.numeric( mydata$gender )

> mydata$genderNums

[1] 1 1 1 NA 2 2 2 2

If we want to extract the labels themselves to use in a character vector,
we can do so with the as.character function.

> mydata$genderChars <- as.character( mydata$gender)

> mydata$genderChars

[1] "f" "f" "f" NA "m" "m" "m" "m"

We can apply the same two functions to variable qf1. Since we were careful
to set all of the levels, even for those that did not appear in the data, this
works fine. First, we will do it using as.numeric:

> mydata$qf1Nums <- as.numeric(mydata$qf1)

> mydata$qf1Nums

[1] 1 2 2 3 4 5 5 4

Now let us do it again using the as.character function:

> mydata$qf1Chars <- as.character(mydata$qf1)

> mydata$qf1Chars

[1] "Strongly Disagree" "Disagree" "Disagree"

[4] "Neutral" "Agree" "Strongly Agree"

[7] "Strongly Agree" "Agree"

Where you can run into trouble is when you do not specify the original
numeric values, and they are not simply 1, 2, 3, etc. For example, let us create
a variable whose original values are 10, 20, 30:
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> x <- c(10, 20, 30)

> x

[1] 10 20 30

> xf <- as.factor(x)

> xf

[1] 10 20 30

Levels: 10 20 30

So far, the factor xf looks fine. However, when we try to extract the original
values with the as.numeric function, we get, instead, the levels 1, 2, 3!

> as.numeric(xf)

[1] 1 2 3

If we use as.character to get the values, there are no nice value labels, so
we get character versions of the original values:

> as.character(xf)

[1] "10" "20" "30"

If we want those original values in a numeric vector like the one we began
with, we can use as.numeric to convert them. To extract the original values
and store them in a variable x10, we can use:

> x10 <- as.numeric( as.character(xf) )

> x10

[1] 10 20 30

The original values were automatically stored as value labels. If you had
specified value labels of your own, like low, medium, and high, the original
values would have been lost. You would then have to recode the values to get
them back. For details, see Sect. 10.7, “Recoding Variables.”

11.1.5 Dropping Factor Levels

Earlier in this chapter, we created labels for factor levels that did not exist
in our data. While this is not at all necessary, it would be helpful if you
were to enter more data or merge your data frame with others that have a
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full set of values. However, when using such variables in analysis, it is often
helpful to get rid of such empty levels. To get rid of the unused levels, append
[ , drop = TRUE] to the variable reference. For example, if you want to
include the empty levels, skip the drop argument:

> summary(workshop)

R SAS SPSS Stata

4 4 0 0

However, when you need to get rid of empty levels, add the drop
argument:

> summary( workshop[ , drop = TRUE] )

R SAS

4 4

11.1.6 Example Programs for Value Labels

SAS Program to Assign Value Labels

* ValueLabels.sas ;

LIBNAME myLib 'C:\myRfolder';

PROC FORMAT;

VALUES workshop_f 1="Control" 2="Treatment"

VALUES $gender_f "m"="Male" "f"="Female";

VALUES agreement

1='Strongly Disagree'

2='Disagree'

3='Neutral'

4='Agree'

5='Strongly Agree'.;

RUN;

DATA myLib.mydata;

SET myLib.mydata;

FORMAT workshop workshop_f. gender gender_f.

q1-q4 agreement.;

RUN;

SPSS program to Assign Value Labels

* ValueLabels.sps
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CD 'C:\myRfolder'.

GET FILE='mydata.sav'.

VARIABLE LEVEL workshop (NOMINAL)

/q1 TO q4 (SCALE).

VALUE LABELS workshop 1 'Control' 2 'Treatment'

/q1 TO q4

1 'Strongly Disagree'

2 'Disagree'

3 'Neutral'

4 'Agree'

5 'Strongly Agree'.

SAVE OUTfile = "mydata.sav".

11.1.7 R Program to Assign Value Labels and Factor Status

# Filename: ValueLabels.R

setwd("c:/myRfolder")

# Character Factors

# Read gender as factor.

mydata <- read.table("mydata.tab")

mydata

class( mydata[ , "gender"] )

# Read gender as character.

mydata2 <- read.table("mydata.tab", as.is = TRUE)

mydata2

class( mydata2[ , "gender"] )

summary( mydata2$gender )

rm(mydata2)

# Numeric Factors

class( mydata$workshop )

summary( mydata$workshop )

summary( as.factor(mydata$workshop) )

# Now change workshop into a factor:
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mydata$workshop <- factor( mydata$workshop,

levels = c( 1, 2, 3, 4),

labels = c("R", "SAS", "SPSS", "Stata") )

mydata

# Now see that summary only counts workshop attendance.

summary(mydata$workshop)

# Making the Q Variables Factors

# Store levels to use repeatedly.

myQlevels <- c(1, 2, 3, 4, 5)

myQlevels

# Store labels to use repeatedly.

myQlabels <- c("Strongly Disagree",

"Disagree",

"Neutral",

"Agree",

"Strongly Agree")

myQlabels

# Now create a new set of variables as factors.

mydata$qf1 <- ordered(mydata$q1, myQlevels, myQlabels)

mydata$qf2 <- ordered(mydata$q2, myQlevels, myQlabels)

mydata$qf3 <- ordered(mydata$q3, myQlevels, myQlabels)

mydata$qf4 <- ordered(mydata$q4, myQlevels, myQlabels)

# Get summary and see that workshops are now counted.

summary( mydata[ c("qf1", "qf2", "qf3", "qf4") ] )

# Making Factors of Many Variables

# Generate two sets of var names to use.

myQnames <- paste( "q", 1:4, sep = "")

myQnames

myQFnames <- paste( "qf", 1:4, sep = "")

myQFnames

# Extract the q variables to a separate data frame.

myQFvars <- mydata[ ,myQnames]

myQFvars

# Rename all of the variables with F for Factor.

names(myQFvars) <- myQFnames
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myQFvars

# Create a function to apply the labels to lots of variables.

myLabeler <- function(x) {

ordered(x, myQlevels, myQlabels)

}

# Here is how to use the function on one variable.

summary( myLabeler(myQFvars[ ,"qf1"]) )

summary( myLabeler(myQFvars["qf1"]) ) # Does not work!

# Apply it to all of the variables.

myQFvars <- data.frame( sapply( myQFvars, myLabeler ) )

# Get summary again, this time with labels.

summary(myQFvars)

# You can even join the new variables to mydata.

mydata <- cbind(mydata, myQFvars)

mydata

#---Converting Factors into Character or Numeric Variables

# Converting the gender factor, first with as.numeric.

mydata$genderNums <- as.numeric(mydata$gender)

mydata$genderNums

# Again with as.character.

mydata$genderChars <- as.character(mydata$gender)

mydata$genderChars

# Converting the qf1 factor.

mydata$qf1Nums <- as.numeric(mydata$qf1)

mydata$qf1Nums

mydata$qf1Chars <- as.character(mydata$qf1)

mydata$qf1Chars

# Example with bigger values.

x <- c(10, 20, 30)

x
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xf <- factor(x)

xf

as.numeric(xf)

as.character(xf)

x10 <- as.numeric( as.character(xf) )

x10

11.2 Variable Labels

Perhaps the most fundamental feature missing from the main R distribution
is support for variable labels. It does have a comment attribute that you can
apply to each variable, but only the comment function itself will display it.

In SAS or SPSS, you might name a variable BP and want your publication-
ready output to display“Systolic Blood Pressure” instead. SAS does this using
the LABEL statement and SPSS does it using the very similar VARIABLE
LABELS command.

Survey researchers in particular rely on variable labels. They often name
their variables Q1, Q2, and so on and assign labels as the full text of the
survey items. R is the only statistics package that I am aware of that lacks
such a feature.

It is a testament to R’s openness and flexibility that a user can add such
a fundamental feature. Frank Harrell did just that in his Hmisc package [32].
It adds a label attribute to the data frame and stores the labels there, even
converting them from SAS data sets automatically (but not SPSS data sets).
As amazing as this addition is, the fact that variable labels were not included
in the main distribution means that most procedures do not take advantage
of what Hmisc adds. The many wonderful functions in the Hmisc package do,
of course. The Hmisc package creates variable labels using its label function:

library("Hmisc")

label(mydata$q1) <- "The instructor was well prepared."

label(mydata$q2) <- "The instructor communicated well."

label(mydata$q3) <- "The course materials were helpful."

label(mydata$q4) <- "Overall, I found this workshop useful."

Now the Hmisc describe function will take advantage of the labels:

> describe( mydata[ ,3:6] )

mydata[ ,3:6]

4 Variables 8 Observations

------------------------------------------------------
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q1 : The instructor was well prepared.

n missing unique Mean

8 0 5 3.25

1 2 3 4 5

Frequency 1 2 1 2 2

% 12 25 12 25 25

------------------------------------------------------

q2 : The instructor communicated well.

n missing unique Mean

8 0 5 2.75

1 2 3 4 5

Frequency 3 1 1 1 2

% 38 12 12 12 25

------------------------------------------------------

q3 : The course materials were helpful.

n missing unique Mean

7 1 3 4.143

2 (1, 14%), 4 (3, 43%), 5 (3, 43%)

------------------------------------------------------

q4 : Overall, I found this workshop useful.

n missing unique Mean

8 0 4 3.25

1 (2, 25%), 3 (2, 25%), 4 (2, 25%), 5 (2, 25%)

------------------------------------------------------

Unfortunately, built-in functions such as summary ignore the labels.

> summary( mydata[ ,3:6] )

q1 q2 q3 q4

Min. :1.00 Min. :1.00 Min. :2.00 Min. :1.00

1st Qu.:2.00 1st Qu.:1.00 1st Qu.:4.00 1st Qu.:2.50

Median :3.50 Median :2.50 Median :4.00 Median :3.50

Mean :3.25 Mean :2.75 Mean :4.14 Mean :3.25

3rd Qu.:4.25 3rd Qu.:4.25 3rd Qu.:5.00 3rd Qu.:4.25

Max. :5.00 Max. :5.00 Max. :5.00 Max. :5.00

NA's :1.00

A second approach to variable labels is to store them as character variables.
That is the approach used by Jim Lemon and Philippe Grosjean’s prettyR

package. Its use is beyond our scope.
Finally, you can create variable names of any length by enclosing them in

quotes. This has the advantage of working with most R functions:

> names(mydata) <- c("Workshop","Gender",

+ "The instructor was well prepared.",
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+ "The instructor communicated well.",

+ "The course materials were helpful.",

+ "Overall, I found this workshop useful.")

Notice here that names like q1, q2, etc. do not exist now. The labels are the
variable names:

> names(mydata)

[1] "Workshop"

[2] "Gender"

[3] "The instructor was well prepared."

[4] "The instructor communicated well."

[5] "The course materials were helpful."

[6] "Overall, I found this workshop useful."

Now many R functions, even those built in, will use the labels. Here we
select the variables by their numeric index values rather than their names:

> summary( mydata[ ,3:6] )

The instructor was well prepared.

Min. :1.00

1st Qu.:2.00

Median :3.50

Mean :3.25

3rd Qu.:4.25

Max. :5.00

The instructor communicated well.

Min. :1.00

1st Qu.:1.00

Median :2.50

Mean :2.75

3rd Qu.:4.25

Max. :5.00

...

You can still select variables by their names, but now typing the whole name
out is an absurd amount of work!

> summary( mydata["Overall, I found this workshop useful."] )

Overall, I found this workshop useful.

Min. :1.00

1st Qu.:2.50

Median :3.50

Mean :3.25
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3rd Qu.:4.25

Max. :5.00

In addition to selecting variables by their index number, it is also easy
to search for keywords in long variable names using the grep function. For
details, see Sect. 7.6,“Selecting Variables by String Search.”The grep function
call below finds the two variable names containing the string “instructor” in
variables 3 and 4 and then stores their locations in a numeric index vector:

> myvars <- grep( 'instructor', names(mydata) )

> myvars

[1] 3 4

Now we can use those indices to analyze the selected variables:

> summary ( mydata[myvars] )

The instructor was well prepared.

Min. :1.00

1st Qu.:2.00

Median :3.50

Mean :3.25

3rd Qu.:4.25

Max. :5.00

The instructor communicated well.

Min. :1.00

1st Qu.:1.00

Median :2.50

Mean :2.75

3rd Qu.:4.25

Max. :5.00

Some important R functions, such as data.frame, convert the spaces in
the labels to periods.

> newdata <- data.frame( mydata )

> names( newdata[ ,3:6] )

[1] "The.instructor.was.well.prepared."

[2] "The.instructor.communicated.well."

[3] "The.course.materials.were.helpful."

[4] "Overall..I.found.this.workshop.useful."

To avoid this change, you can add the check.names = FALSE argument to
the data.frame function call:
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> newdata <- data.frame(mydata, check.names = FALSE)

> names( newdata[ ,3:6] )

[1] "The instructor was well prepared."

[2] "The instructor communicated well."

[3] "The course materials were helpful."

[4] "Overall, I found this workshop useful."

11.2.1 Other Packages That Support Variable Labels

There are at least two other packages that support variable labels. Unfortu-
nately, I have not had a chance to fully evaluate them. Martin Elff’s memisc
package [17] offers a wide range of tools for survey research. Jim Lemon and
Philippe Grosjean’s prettyR package [38] stores variable labels as character
variables.

11.2.2 Example Programs for Variable Labels

SAS Program for Variable Labels

* Filename: VarLabels.sas ;

LIBNAME myLib 'C:\myRfolder';

DATA myLib.mydata;

SET myLib.mydata ;

LABEL

Q1="The instructor was well prepared"

Q2="The instructor communicated well"

Q3="The course materials were helpful"

Q4="Overall, I found this workshop useful";

RUN;

PROC FREQ; TABLES q1-q4; RUN;

RUN;

SPSS Program for Variable Labels

* Filename: VarLabels.sps .

CD 'C:\myRfolder'.

GET FILE='mydata.sav'.

VARIABLE LABELS
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Q1 "The instructor was well prepared"

Q2 "The instructor communicated well"

Q3 "The course materials were helpful"

Q4 "Overall, I found this workshop useful".

FREQUENCIES VARIABLES=q1 q2 q3 q4.

SAVE OUTFILE='mydata.sav'.

R Program for Variable Labels

# Filename: VarLabels.R

setwd("c:/myRfolder")

load(file = "mydata.RData")

options(width = 63)

mydata

# Using the Hmisc label attribute.

library("Hmisc")

label(mydata$q1) <- "The instructor was well prepared."

label(mydata$q2) <- "The instructor communicated well."

label(mydata$q3) <- "The course materials were helpful."

label(mydata$q4) <-

"Overall, I found this workshop useful."

# Hmisc describe function uses the labels.

describe( mydata[ ,3:6] )

# Buit-in summary function ignores the labels.

summary( mydata[ ,3:6] )

#Assign long variable names to act as variable labels.

names(mydata) <- c("Workshop","Gender",

"The instructor was well prepared.",

"The instructor communicated well.",

"The course materials were helpful.",

"Overall, I found this workshop useful.")

names(mydata)

# Now summary uses the long names.

summary( mydata[ ,3:6] )

# You can still select variables by name.

summary( mydata["Overall, I found this workshop useful."] )
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# Searching for strings in long variable names.

myvars <- grep('instructor', names(mydata))

myvars

summary ( mydata[myvars] )

# Data.frame replaces spaces with periods.

newdata <- data.frame( mydata )

names( newdata[ , 3:6] )

# Data.frame now keeps the spaces.

newdata <- data.frame( mydata, check.names = FALSE )

names( newdata[ , 3:6] )

11.3 Output for Word Processing and Web Pages

Hypertext Markup Language, or HTML, is the format used for displaying re-
sults on Web pages. Most word processors can also easily incorporate HTML
files. For technical writing, the popular LATEX document preparation system
and the LyX document processor share a common format for displaying tables
of results.

In SAS or SPSS, getting tabular results into your word processor or Web
page is as easy as setting the style when you install it and then saving the
output directly in format you need. For get a subset of output copy and paste
works fine.

In R, the output in the console is just text. It does not even have tabs
between columns. You can cut and paste it into a word processor, but it
would only appear in neat columns when displayed with a monospaced font
like Courier. However, there are a number of packages and functions that
enable you to create nicely formatted results.

Table 11.1. Our practice data set printed in LATEX

workshop gender q1 q2 q3 q4

1 R f 1.00 1.00 5.00 1.00
2 SAS f 2.00 1.00 4.00 1.00
3 R f 2.00 2.00 4.00 3.00
4 SAS 3.00 1.00 3.00
5 R m 4.00 5.00 2.00 4.00
6 SAS m 5.00 4.00 5.00 5.00
7 R m 5.00 3.00 4.00 4.00
8 SAS m 4.00 5.00 5.00 5.00
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11.3.1 The xtable Package

Dahl’s xtable package [15] can convert your R results to both HTML and
LATEX. What follows is our practice data frame as it appears from the print

function.

> print(mydata)

workshop gender q1 q2 q3 q4

1 R f 1 1 5 1

2 SAS f 2 1 4 1

3 R f 2 2 4 3

4 SAS <NA> 3 1 NA 3

5 R m 4 5 2 4

6 SAS m 5 4 5 5

7 R m 5 3 4 4

8 SAS m 4 5 5 5

In Table 11.1, you can see mydata printed again after loading the xtable
package. How did we get such nice output? The following are the function
calls and output:

> library("xtable")

> myXtable <- xtable(mydata)

> print(myXtable, type="latex")

% latex table generated in R 2.9.2 by xtable 1.5-5 package

% Sat Oct 17 11:55:58 2009

\begin{table}[ht]

\begin{center}

\begin{tabular}{rllrrrr}

\hline

& workshop & gender & q1 & q2 & q3 & q4 \\

\hline

1 & R & f & 1.00 & 1.00 & 5.00 & 1.00 \\

2 & SAS & f & 2.00 & 1.00 & 4.00 & 1.00 \\

3 & R & f & 2.00 & 2.00 & 4.00 & 3.00 \\

4 & SAS & & 3.00 & 1.00 & & 3.00 \\

5 & R & m & 4.00 & 5.00 & 2.00 & 4.00 \\

6 & SAS & m & 5.00 & 4.00 & 5.00 & 5.00 \\

7 & R & m & 5.00 & 3.00 & 4.00 & 4.00 \\

8 & SAS & m & 4.00 & 5.00 & 5.00 & 5.00 \\

\hline
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\end{tabular}

\end{center}

\end{table}

Notice that the print command has a new method for handling objects
with a class of xtable, and a new type argument. The value, type="latex"
is the default, so we did not need to list it here. However, it makes it easy to
guess that type="html" is the way to get HTML output.

The LATEX output begins with the line “% latex table generated in R. . . .”
If you are not accustomed to the LATEX language, it may see quite odd, but
when we pasted it into this chapter, it came out looking nice.

If we had instead used type="html", we could have used the output on
Web pages or in most any word processor.

The following is another example, this time using the output from a linear
model that we will examine later in Sect. 17.5, “Linear Regression.”

> mymodel <- lm( q4~q1 + q2 + q3, data = mydata)

> myXtable <- xtable(mymodel)

Before printing the result, let us add to it a label and caption. If this were an
HTML file, these commands would add an anchor and a title, respectively:

> label(myXtable) <- c("xtableOutput")

> caption(myXtable) <-

+ c("Linear model results formatted by xtable.")

> print(myXtable,type="latex")

% latex table generated in R 2.9.2 by xtable 1.5-5 package

% Sat Oct 17 12:49:59 2009

\begin{table}[ht]

\begin{center}

\begin{tabular}{rrrrr}

\hline

& Estimate & Std. Error & t value & Pr($>$$|$t$|$) \\

\hline

(Intercept) & -1.3243 & 1.2877 & -1.03 & 0.3794 \\

q1 & 0.4297 & 0.2623 & 1.64 & 0.1999 \\

q2 & 0.6310 & 0.2503 & 2.52 & 0.0861 \\

q3 & 0.3150 & 0.2557 & 1.23 & 0.3058 \\

\hline

\end{tabular}

\caption{Linear model results formatted by xtable.}

\label{xtableOutput}
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\end{center}

\end{table}

The caption and label appear near the bottom of the output. To match
the style of the rest of this book, I moved the caption to the top in the tables
themselves. You can see the nicely formatted result in Table 11.2. I cheated a
bit on the previous table by adding the caption manually.

Table 11.2. Linear model results formatted by xtable

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.3243 1.2877 -1.03 0.3794

q1 0.4297 0.2623 1.64 0.1999
q2 0.6310 0.2503 2.52 0.0861
q3 0.3150 0.2557 1.23 0.3058

11.3.2 Other Options for Formatting Output

There several other packages that can provide nicely formatted output.
Koenker’s quantreg package [34] includes the latex.table function, which
creates LATEX output. Lecoutre’S R2HTML package [36] includes over a dozen
functions for writing output in HTML format.

Perhaps the most interesting option to get nice output is the “Weave”
family of software. The packages in this family allow you to weave, or blend, R
commands or output into your word processing or text formatting documents.
You then see your results appear in high-quality output right in the middle
of your documents. Of course, if you change your data, then you had better
be sure the text that describes the results actually matches the new output!
You can choose to display the R commands – if, say you are teaching R – or
display only their output. This not only gives you publishable results, but it
also assures the reproducibility of those results.

Leisch’s Sweave function [37] comes with the main R installation. It allows
you to “weave” your R program into your LATEX or LyX file. Similarly, Baier’s
SWord software [4] allows you to weave your R code into beautiful Word doc-
uments. The odfWeave package [35] by Kuhn and Weaston works similarly to
SWord but using the Open Document Format, or ODF. Many word processors,
including Microsoft Word, LibreOffice, and OpenOffice, can work with ODF
files.

11.3.3 Example Program for Formatting Output

This section usually shows programs in SAS, SPSS, and R. However, SAS and
SPSS can both display their output already formatted for Web pages or word
processors. Therefore, I show only an R program here.
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# Filename: FormattedOutput.R

options(width = 60)

setwd("c:/myRfolder")

load("mydata.RData")

attach(mydata)

library("xtable")

# Formatting a Data Frame

print(mydata)

myXtable <- xtable(mydata)

class(myXtable)

print(myXtable, type = "html")

print(myXtable, type = "latex")

# Formatting a Linear Model

mymodel <- lm( q4 ~ q1 + q2 + q3, data = mydata)

myXtable <- xtable(mymodel)

label(myXtable) <- c("xtableOutput")

caption(myXtable) <-

c("Linear model results formatted by xtable")

print(myXtable, type = "html")

print(myXtable, type = "latex")
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Generating Data

Generating data is far more important to R users than it is to SAS or SPSS
users. As we have seen, many R functions are controlled by numeric, character,
or logical vectors. You can generate those vectors using the methods in this
chapter, making quick work of otherwise tedious tasks.

What follows are some of the ways we have used vectors as arguments to
R functions.

� To create variable names that follow a pattern like q1, q2, etc. using the
paste function For an example, see Chap. 7.

� To create a set of index values to select variables, as with mydata[ ,3:6].
Here the colon operator generates the simple values 3, 4, 5, 6. The methods
I present in this chapter can generate a much wider range of patterns.

� To provide sets of column widths when reading data from fixed-width text
files (Sect. 6.6.1). Our example used a very small vector of value widths,
but the methods in this chapter could generate long sets of patterns to
read hundreds of variables with a single command.

� To create variables to assist in reshaping data, see Sect. 10.17.

Generating data is also helpful in more general ways for situations similar
to those in other statistics packages.

� Generating data allows you to demonstrate various analytic methods, as I
have done in this book. It is not easy to find one data set to use for all of
the methods you might like to demonstrate.

� Generating data lets you create very small examples that can help you
debug an otherwise complex problem. Debugging a problem on a large
data set often introduces added complexities and slows down each new at-
tempted execution. When you can demonstrate a problem with the small-
est possible set of data, it helps you focus on the exact nature of the
problem. This is usually the best way to report a problem when request-
ing technical assistance. If possible, provide a small generated example
when you ask questions to the R-help e-mail support list.

DOI 10.1007/978-1-4614-0685-3_12, © Springer Science+Business Media, LLC 2011
, Statistics and Computing,R.A. Muenchen, R for SAS and SPSS Users 401
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� When you are designing an experiment, the levels of the experimental
variables usually follow simple repetitive patterns. You can generate those
and then add the measured outcome values to them later manually. With
such a nice neat data set to start with, it is tempting to collect data in
that order. However, it is important to collect it in random order whenever
possible so that factors such as human fatigue or machine wear do not bias
the results of your study.

Some of our data generation examples use R’s random number generator.
It will give a different result each time you use it unless you use the set.seed
function before each function that generates random numbers.

12.1 Generating Numeric Sequences

SAS generates data using DO loops in a data step. SPSS uses input programs
to generate data. You can also use SPSS’s strong links to Python to generate
data. R generates data using specialized functions. We have used the simplest
one: the colon operator. We can generate a simple sequence with

> 1:10

[1] 1 2 3 4 5 6 7 8 9 10

You can store the results of any of our data generation examples in a vector
using the assignment operator. So we can create the ID variable we used with

> id <- 1:8

> id

[1] 1 2 3 4 5 6 7 8

The seq function generates sequences like this, too, and it offers more
flexibility. What follows is an example:

> seq(from = 1, to = 10, by = 1)

[1] 1 2 3 4 5 6 7 8 9 10

The seq function call above has three arguments:

1. The from argument tells it where to begin the sequence.
2. The to argument tells it where to stop.
3. The by argument tells it the increments to use between each number.

The following is an example that goes from 5 to 50 in increments of 5:
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> seq(from = 5, to = 50, by = 5)

[1] 5 10 15 20 25 30 35 40 45 50

Of course, you do not need to name the arguments if you use them in order.
So you can do the above example using this form, too.

> seq(5, 50, 5)

[1] 5 10 15 20 25 30 35 40 45 50

12.2 Generating Factors

The gl function generates levels of factors. What follows is an example that
generates the series 1, 2, 1, 2, etc.:

> gl(n = 2, k = 1, length = 8)

[1] 1 2 1 2 1 2 1 2

Levels: 1 2

The gl function call above has three arguments.

1. The n argument tells it how many levels your factor will have.
2. The k argument tells it how many of each level to repeat before incre-

menting to the next value.
3. The length argument is the total number of values generated. Although

this would usually be divisible by n*k, it does not have to be.

To generate our gender variable, we just need to change k to be 4:

> gl(n = 2, k = 4, length = 8)

[1] 1 1 1 1 2 2 2 2

Levels: 1 2

There is also an optional label argument. Here we use it to generate
workshop and gender, complete with value labels:

> workshop <- gl(n = 2, k = 1, length = 8,

+ label = c("R", "SAS") )

> workshop

[1] R SAS R SAS R SAS R SAS
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Levels: R SAS

> gender <- gl(n = 2, k = 4, length = 8,

+ label = c("f", "m") )

> gender

[1] f f f f m m m m

Levels: f m

12.3 Generating Repetitious Patterns (Not Factors)

When you need to generate repetitious sequences of values, you are often
creating levels of factors, which is covered in the previous section. However,
sometimes you need similar patterns that are numeric, not factors. The rep

function generates these:

> gender <- rep(1:2, each = 4, times = 1)

> gender

[1] 1 1 1 1 2 2 2 2

The call to the rep function above has three simple arguments.

1. The set of numbers to repeat. We have used the colon operator to generate
the values 1 and 2. You could use the c function here to list any set of
numbers you need. Note that you can use any vector here and it will repeat
it, the numbers need not be sequential.

2. The each argument tells it often to repeat each number in the set. Here
we need four of each number.

3. The times argument tells it the number of times to repeat the (set by
each) combination. For this example, we only needed one.

Note that while we are generating the gender variable as an easy example,
rep did not create gender as a factor. To make it one, you would have to use
the factor function. You could instead generate it directly as a factor using
the more appropriate gl function.

Next, we generate the workshop variable by repeating each number in the
1:2 sequence only one time each but repeat that set four times:

> workshop <- rep(1:2, each = 1, times = 4)

> workshop

[1] 1 2 1 2 1 2 1 2
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By comparing the way we generated gender and workshop, the meaning of
the rep function’s arguments should become clear.

Now we come to the only example that we actually needed for the rep

function in this book – to generate a constant! We use a variation of this
in Chap. 15, “Traditional Graphics,” to generate a set of zeros for use on a
histogram:

> myZeros <- rep(0, each = 8)

> myZeros

[1] 0 0 0 0 0 0 0 0

12.4 Generating Values for Reading Fixed-Width Files

In Section6.6 we read a data file that had the values for each variable fixed in
specific columns. Now that we know how to generate patterns of values, we
can use that knowledge to read far more complex files.

Let us assume we are going to read a file that contains 300 variables we
want to name x1, y1, z1, x2, y2, z2, . . . , x100, y100, and z100. The values of
x, y, and z are 8, 12, and 10 columns wide, respectively. To read such a file,
our first task is to generate the prefixes and suffixes for each of the variable
names:

> myPrefixes <- c("x", "y", "z")

> mySuffixes <- rep(1:300, each = 3, times = 1)

> head(mySuffixes, n = 20)

[1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7

You can see that we have used the rep function in the same way as we
discussed in the previous section. Now we want to combine these parts. We
can do so using the paste function:

> myVariableNames <- paste(myPrefixes, mySuffixes, sep = "")

> head(myVars, n = 20)

[1] "x1" "y1" "z1" "x2" "y2" "z2" "x3" "y3" "z3" "x4" "y4" "z4"

[13] "x5" "y5" "z5" "x6" "y6" "z6" "x7" "y7"

You might think that you would need to have the same number of prefix
and suffix pieces to match, but R will recycle a shorter vector over and over to
make it match a longer vector. Now we need to get 300 values of our variable
widths:
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> myWidthSet <- c(8, 12, 10)

> myVariableWidths <- rep(myWidthSet, each = 1, times = 100)

> head(myRecord, n = 20)

[1] 8 12 6 8 12 6 8 12 6 8 12 6 8 12 6 8 12 6 8 12

To make the example more realistic, let us assume there is also an ID
variable in the first five columns of the file. We can add the name and the
width using the c function:

myVariablenames <- c("id", myVariableNames)

myVariableWidths <- c( 5 , myVariableWidths)

Now we are ready to read the file as we did back in Sect. 6.6:

myReallyWideData <- read.fwf(

file = "myReallyWideFile.txt,

width = myVariableWidths,

col.names = myVariableNames,

row.names = "id")

12.5 Generating Integer Measures

R’s ability to generate samples of integers is easy to use and is quite different
from SAS’s and SPSS’s usual approach. It is similar to the SPSSINC TRANS
extension command. You provide a list of possible values and then use the
sample function to generate your data. First, we put the Likert scale values
1, 2, 3, 4, and 5 into myValues:

> myValues <- c(1, 2, 3, 4, 5)

Next, we set the random number seed using the set.seed function, so you
can see the same result when you run it:

> set.seed(1234) # Set random number seed.

Finally, we generate a random sample size of 1000 from myValues using the
sample function. We are sampling with replacement so we can use the five
values repeatedly:

> q1 <- sample(myValues, size = 1000, replace = TRUE)

Now we can check its mean and standard deviation:
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> mean(q1)

[1] 3.029

> sd(q1)

[1] 1.412854

To generate a sample using the same numbers but with a roughly normal
distribution, we can change the values to have more as we reach the center.

> myValues <- c(1, 2, 2, 3, 3, 3, 4, 4, 5)

> set.seed(1234)

> q2 <- sample( myValues, 1000, replace = TRUE)

> mean(q2)

[1] 3.012

> sd(q2)

[1] 1.169283

You can see from the bar plots in Fig. 12.1 that our first variable follows a
uniform distribution (left), and our second one follows a normal distribution
(right). Do not worry about how we created the plot; we will cover that in
Chap. 15, “Traditional Graphics.”

We could have done the latter example more precisely by generating 1000
samples from a normal distribution and then chopping it into 5 equally spaced
groups. We will cover generating samples from continuous samples in the next
section.

> boxplot( table(q1) )

> boxplot( table(q2) )

If you would like to generate two Likert-scale variables that have a mean
difference, you can do so by providing them with different sets of values from
which to sample. In the example below, I nest the call to the c function, to
generate a vector of values, within the call to the sample function. Notice that
the vector for q1 has no values greater than 3 and q2 has none less than 3.
This difference will create the mean difference. Here I am only asking for a
sample size of 8:

> set.seed(1234)

> q1 <- sample( c(1, 2, 2, 3), size = 8, replace = TRUE)

> mean(q1)

[1] 1.75
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Fig. 12.1. Bar plots showing the distributions of our generated integer variables

> set.seed(1234)

> q2 <- sample( c(3, 4, 4, 5), size = 8, replace = TRUE)

> mean(q2)

[1] 3.75

12.6 Generating Continuous Measures

You can generate continuous random values from a uniform distribution using
the runif function:

> set.seed(1234)

> x1 <- runif(n = 1000)

> mean(x1)

[1] 0.5072735

> sd(x1)

[1] 0.2912082

where the n argument is the number of values to generate. You can also
provide min and max arguments to set the lowest and highest possible values,
respectively. So you might generate 1000 pseudo test scores that range from
60 to 100 with
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> set.seed(1234)

> x2 <- runif(n = 1000, min = 60, max = 100)

> mean(x2)

[1] 80.29094

> sd(x2)

[1] 11.64833

Normal distributions with a mean of 0 and standard deviation of 1 have
many uses. You can use the rnorm function to generate 1000 values from such
a distribution with

> set.seed(1234)

> x3 <- rnorm(n = 1000)

> mean(x3)

[1] -0.0265972

> sd(x3)

[1] 0.9973377

You can specify other means and standard deviations as in the following
example:

> set.seed(1234)

> x4 <- rnorm(n = 1000, mean = 70, sd = 5)

> mean(x4)

[1] 69.86701

> sd(x4)

[1] 4.986689

We can use the hist function to see what two of these distributions look
like, see Fig. 12.2:

> hist(x2)

> hist(x4)

12.7 Generating a Data Frame

Putting all of the above ideas together, we can use the following commands
to create a data frame similar to our practice data set, with a couple of test
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scores added. I am not bothering to set the random number generator seed,
so each time you run this, you will get different results.

> id <- 1:8

> workshop <- gl( n=2, k=1,

+ length=8, label = c("R","SAS") )

> gender <- gl( n = 2, k = 4,

+ length=8, label=c("f", "m") )

> q1 <- sample( c(1, 2, 2, 3), 8, replace = TRUE)

> q2 <- sample( c(3, 4, 4, 5), 8, replace = TRUE)

> q3 <- sample( c(1, 2, 2, 3), 8, replace = TRUE)

> q4 <- sample( c(3, 4, 4, 5), 8, replace = TRUE)

> pretest <- rnorm( n = 8, mean = 70, sd = 5)

> posttest <- rnorm( n = 8, mean = 80, sd = 5)

> myGenerated <- data.frame(id, gender, workshop,

+ q1, q2, q3, q4, pretest, posttest)

> myGenerated

id gender workshop q1 q2 q3 q4 pretest posttest

1 1 f R 1 5 2 3 67.77482 77.95827

2 2 f SAS 1 4 2 5 58.28944 78.11115

3 3 f R 2 3 2 4 68.60809 86.64183

4 4 f SAS 2 5 2 4 64.09098 83.58218

5 5 m R 1 5 3 4 70.16563 78.83855

6 6 m SAS 2 3 3 3 65.81141 73.86887
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Fig. 12.2. Histograms showing the distributions of our continuous generated data
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7 7 m R 2 4 3 4 69.41194 85.23769

8 8 m SAS 1 4 1 4 66.29239 72.81796

12.8 Example Programs for Generating Data

12.8.1 SAS Program for Generating Data

* GenerateData.sas ;

DATA myID;

DO id=1 TO 8;

OUTPUT;

END;

PROC PRINT; RUN;

DATA myWorkshop;

Do i=1 to 4;

DO workshop= 1 to 2;

OUTPUT;

END;

END;

DROP i;

RUN;

PROC PRINT; RUN;

DATA myGender;

DO i=1 to 2;

DO j=1 to 4;

gender=i;

OUTPUT;

END;

END;

DROP i j;

RUN;

PROC PRINT; RUN;

DATA myMeasures;

DO i=1 to 8;

q1=round ( uniform(1234) * 5 );

q2=round ( ( uniform(1234) * 5 ) -1 );

q3=round (uniform(1234) * 5 );

q4=round (uniform(1234) * 5 );

test1=normal(1234)*5 + 70;
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test2=normal(1234)*5 + 80;

OUTPUT;

END;

DROP i;

RUN;

PROC PRINT; RUN;

PROC FORMAT;

VALUES wLabels 1='R' 2='SAS';

VALUES gLabels 1='Female' 2='Male';

RUN;

* Merge and eliminate out of range values;

DATA myGenerated;

MERGE myID myWorkshop myGender myMeasures;

FORMAT workshop wLabels. gender gLabels. ;

ARRAY q{4} q1-q4;

DO i=1 to 4;

IF q{i} < 1 then q{i}=1;

ELSE IF q{i} > 5 then q{i}=5;

END;

RUN;

PROC PRINT; RUN;

12.8.2 SPSS Program for Generating Data

* Filename: GenerateData.sps .

input program.

numeric id(F4.0).

string gender(a1) workshop(a4).

vector q(4).

loop #i = 1 to 8.

compute id = #i.

do if #i <= 5.

+ compute gender = 'f'.

else.

+ compute gender = 'm'.

end if.

compute #ws = mod(#i, 2).

if #ws = 0 workshop = 'SAS'.
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if #ws = 1 workshop = 'R'.

do repeat #j = 1 to 4.

+ compute q(#j)=trunc(rv.uniform(1,5)).

end repeat.

compute pretest = rv.normal(70, 5).

compute posttest = rv.normal(80,5).

end case.

end loop.

end file.

end input program.

list.

12.8.3 R Program for Generating Data

# Filename: GenerateData.R

# Simple sequences.

1:10

seq(from = 1,to = 10,by = 1)

seq(from = 5,to = 50,by = 5)

seq(5, 50, 5)

# Generating our ID variable

id <- 1:8

id

# gl function Generates Levels.

gl(n = 2, k = 1, length = 8)

gl(n = 2, k = 4, length = 8)

#Adding labels.

workshop <- gl(n = 2, k = 1, length = 8,

label = c("R", "SAS") )

workshop

gender <- gl(n = 2, k = 4, length = 8,

label = c("f", "m") )

gender

# Generating Repetition Patterns (Not Factors)

gender <- rep(1:2, each = 4, times = 1)

gender

workshop <- rep(1:2, each = 1, times = 4)
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workshop

myZeros <- rep(0, each = 8)

myZeros

# Generating Values for Reading a Fixed-Width File

myPrefixes <- c("x", "y", "z")

mySuffixes <- rep(1:300, each = 3, times = 1)

head(mySuffixes, n = 20)

myVariableNames <- paste(myPrefixes, mySuffixes, sep = "")

head(myVars, n = 20)

myWidthSet <- c(8, 12, 10)

myVariableWidths <- rep(myWidthSet, each = 1, times = 100)

head(myRecord, n = 20)

myVariablenames <- c("id", myVariableNames)

myVariableWidths <- c( 5 , myVariableWidths)

mydata <- read.fwf(

file = myfile,

width = myVariableWidths,

col.names = myVariableNames,

row.names = "id")

# Generating uniformly distributed Likert data

myValues <- c(1, 2, 3, 4, 5)

set.seed(1234)

q1 <- sample( myValues, size = 1000, replace = TRUE)

mean(q1)

sd(q1)

# Generating normally distributed Likert data

myValues <- c(1, 2, 2, 3, 3, 3, 4, 4, 5)

set.seed(1234)

q2 <- sample( myValues , size = 1000, replace = TRUE)

mean(q2)

sd(q2)

# Plot details in Traditional Graphics chapter.

par( mar = c(2, 2, 2, 1)+0.1 )

par( mfrow = c(1, 2) )

barplot( table(q1) )

barplot( table(q2) )

# par( mfrow = c(1, 1) ) #Sets back to 1 plot per page.

# par( mar = c(5, 4, 4, 2) + 0.1 )
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# Same two barplots routed to a file.

postscript(file = "F:/r4sas/chapter12/GeneratedIntegers.eps",

width = 4.0, height = 2.0)

par( mar = c(2, 2, 2, 1) + 0.1 )

par( mfrow = c(1, 2) )

barplot( table(q1) )

barplot( table(q2) )

dev.off()

# Two Likert scales with mean difference

set.seed(1234)

q1 <- sample( c(1, 2, 2, 3), size = 8, replace = TRUE)

mean(q1)

set.seed(1234)

q2 <- sample( c(3, 4, 4, 5), size = 8, replace = TRUE)

mean(q2)

# Generating continuous data

# From uniform distribution.

# mean = 0.5

set.seed(1234)

x1 <- runif(n = 1000)

mean(x1)

sd(x1)

# From a uniform distribution

# between 60 and 100

set.seed(1234)

x2 <- runif(n = 1000, min = 60, max = 100)

mean(x2)

sd(x2)

# From a normal distribution.

set.seed(1234)

x3 <- rnorm(n = 1000)

mean(x3)

sd(x3)

set.seed(1234)

x4 <- rnorm(n = 1000, mean = 70, sd = 5)

mean(x4)

sd(x4)
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# Plot details are in Traditional Graphics chapter.

par( mar = c(2, 2, 2, 1) + 0.1 )

par( mfrow = c(1, 2) )

hist(x2)

hist(x4)

# par( mfrow = c(1, 1) ) #Sets back to 1 plot per page.

# par( mar = c(5, 4, 4, 2) + 0.1 )

# Same pair of plots, this time sent to a file.

postscript(file = "F:/r4sas/chapter12/GeneratedContinuous.eps",

width = 4.0, height = 2.0)

par( mar = c(2, 2, 2, 1) + 0.1 )

par( mfrow = c(1, 2) )

hist(x2, main = "")

hist(x4, main = "")

dev.off()

# par( mfrow = c(1,1) ) #Sets back to 1 plot per page.

# par( mar = c(5, 4, 4, 2) + 0.1 )

# Generating a Data Frame.

id <- 1:8

workshop <- gl( n = 2, k = 1,

length = 8, label = c("R","SAS") )

gender <- gl( n = 2, k = 4,

length = 8, label = c("f","m") )

q1 <- sample( c(1, 2, 2, 3), 8, replace = TRUE)

q2 <- sample( c(3, 4, 4, 5), 8, replace = TRUE)

q3 <- sample( c(1, 2, 2, 3), 8, replace = TRUE)

q4 <- sample( c(3, 4, 4, 5), 8, replace = TRUE)

pretest <- rnorm(n = 8, mean = 70, sd = 5)

posttest <- rnorm(n = 8, mean = 80, sd = 5)

myGenerated <- data.frame(id, gender, workshop,

q1, q2, q3, q4, pretest, posttest)

myGenerated
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Managing Your Files and Workspace

When using SAS and SPSS, you manage your files using the same operating
system commands that you use for your other software. SAS does have a few
file management procedures such as DATASETS and CATALOG, but you can
get by just fine without them for most purposes.

R is quite different. It has a set of commands that replicate many operating
system functions such as listing names of objects, deleting them, setting search
paths, and so on. Learning how to use these commands is especially important
because of the way R stores its data. You need to know how to make the most
of your computer’s memory.

13.1 Loading and Listing Objects

You can see what objects are in your workspace with the ls function. To list
all objects such as data frames, vectors, and functions, use

ls()

The objects function does the same thing and its name is more descrip-
tive, but ls is more widely used since it is the same command that UNIX,
Linux, and MacOS X users can use to list the files in a particular directory or
folder (without the parentheses).

When you first start R, using the ls function will tell you there is nothing
in your workspace. How it does this is quite odd by SAS or SPSS standards.
It tells you that the list of objects in memory is a character vector with zero
values:

> ls()

character(0)
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The file myall.RData contains all of the objects we created in Chap. 5,
“Programming Language Basics.”After loading that into our workspace using
the load function, ls will show us the objects that are available:

> load("myall.RData")

> ls()

[1] "gender" "mydata" "mylist" "mymatrix" "q1"

[6] "q2" "q3" "q4" "workshop"

You can use the pattern argument to search for any regular expression. There-
fore, to get a list of all objects that begin with the string “my,” you can use
the following:

> ls(pattern = "my")

[1] "mydata" "mylist" "mymatrix"

The ls function does not look inside data frames to see what they contain,
and it does not even tell you when an object is a data frame. You can use
many of the functions we have already covered to determine what an object
is and what it contains.

To review, typing its name or using the print function will show you the
whole object or at least something about it. What print shows you depends
on the class of the object. The head and tail functions will show you the top
or bottom few lines of vectors, matrices, tables, data frames, or functions.

The class function will tell you if an object is a data frame, list, or some
other object. The names function will show you object names within objects
such as data frames, lists, vectors, and matrices. The attributes function
will display all of the attributes that are stored in an object such as variable
names, the object’s class, and any labels that it may contain.

> attributes(mydata)

$names

[1] "id" "workshop" "gender" "q1" "q2" "q3" "q4"

$class

[1] "data.frame"

$row.names

[1] 1 2 3 4 5 6 7 8
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The str function displays the structure of any R object in a compact form.
When applied to data frames, it is the closest thing base R has to SAS’s PROC
CONTENTS. Equivalent SPSS commands are SYSFILE INFO and, for a file
that is already open, DISPLAY DICTIONARY.

> str(mydata)

'data.frame': 8 obs. of 6 variables:

$ workshop: Factor w/ 4 levels "R","SAS","SPSS",..:

1 2 1 2 1 2 1 2

$ gender : Factor w/ 2 levels "f","m": 1 1 1 NA 2 2 2 2

$ q1 : num 1 2 2 3 4 5 5 4

$ q2 : num 1 1 2 1 5 4 3 5

$ q3 : num 5 4 4 NA 2 5 4 5

$ q4 : num 1 1 3 3 4 5 4 5

The str function works on functions, too. What follows is the structure it
shows for the lm function:

> str( lm )

function (formula, data, subset, weights, na.action,

method = "qr", model = TRUE, x = FALSE, y = FALSE,

qr = TRUE, singular.ok = TRUE, contrasts = NULL, offset, ...)

The ls.str function applies the str function to every object in your
workspace. It is essentially a combination of the ls function and the str

function. The following is the structure of all the objects I had in my workspace
as I wrote this paragraph.

> ls.str()

myCounts : 'table' int [1:2, 1:2] 2 2 1 2

myCountsDF : 'data.frame': 4 obs. of 3 variables:

$ gender : Factor w/ 2 levels "f","m": 1 2 1 2

$ workshop: Factor w/ 2 levels "R","SAS": 1 1 2 2
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$ Freq : int 2 2 1 2

mydata : 'data.frame': 8 obs. of 6 variables:

$ workshop: int 1 2 1 2 1 2 1 2

$ gender : Factor w/ 2 levels "f","m": 1 1 1 NA 2 2 2 2

$ q1 : int 1 2 2 3 4 5 5 4

$ q2 : int 1 1 2 1 5 4 3 5

$ q3 : int 5 4 4 NA 2 5 4 5

$ q4 : int 1 1 3 3 4 5 4 5

Harrell’s Hmisc package has a contents function that is modeled after the
SAS CONTENTS procedure. It also lists names and other attributes as shown
below. However, it works only with data frames.

> library("Hmisc")

Attaching package: 'Hmisc'...

> contents(mydata)

Data frame:mydata 8 observations and 7 variables

Maximum # NAs:1

Levels Storage NAs

id integer 0

workshop integer 0

gender 2 integer 1

q1 integer 0

q2 integer 0

q3 integer 1

q4 integer 0

+--------+------+

|Variable|Levels|

+--------+------+

| gender | f,m |

+--------+------+
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13.2 Understanding Your Search Path

Once you have data in your workspace, where exactly are they? They are in an
environment called .GlobalEnv. The search function will show us where that
resides in R’s search path. Since the search path is affected by any packages
or data files you load, we will start R with a clean workspace and load our
practice data frame, mydata:

> setwd("c:/myRfolder")

> load("mydata.RData")

> ls()

[1] "mydata"

Now let us examine R’s search path.

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"

Since our workspace, .GlobalEnv, is in position 1, R will search it first.
By supplying no arguments to the ls function, we were asking for a listing of
objects in the first position of the search path. Let us see what happens if we
apply ls to different levels. We can use either the path position value, 1, 2, 3,
etc. or their names.

> ls(1) # This uses position number.

[1] "mydata"

> ls(".GlobalEnv") # This uses name.

[1] "mydata"

The package:stats at level 2 contains some of R’s built-in statistical func-
tions. There are a lot of them, so let us use the head function to show us just
the top few results:

> head( ls(2) )

[1] "acf" "acf2AR" "add.scope" "add1"

[5] "addmargins" "aggregate"
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> head( ls("package:stats") ) # Same result.

[1] "acf" "acf2AR" "add.scope" "add1"

[5] "addmargins" "aggregate"

13.3 Attaching Data Frames

Books on R (including this one) often warn against using the attach function,
but then they go ahead and use it. They do this because the resulting R code
is so much simpler to read when you refer to variables as q1 rather than
mydata$q1. However, as you will soon see, attach is much trickier to use
than you would suspect at first.

Many R experts never use the attach function. As we discussed in
Sect. 7.8, you can avoid using attach by instead using with or by speci-
fying the data argument on modeling functions. Understanding the search
path is essential to understanding what the attach function really does, and
why experts avoid its use. We will attach mydata and see what happens:

> attach(mydata)

> search()

[1] ".GlobalEnv" "mydata"

[3] "package:stats" "package:graphics"

[5] "package:grDevices" "package:utils"

[7] "package:datasets" "package:methods"

[9] "Autoloads" "package:base"

> ls(2)

[1] "gender" "id" "q1" "q2" "q3"

[6] "q4" "workshop"

You can see that attach has made virtual copies of the variables stored in
mydata and placed them in search position 2. When we refer to just “gender”
rather than“mydata$gender,”R looks for it in position 1 first. It does not find
anything with just that short name, even though mydata$gender is in that
position. R then goes on to position 2 and finds it. (I am talking about function
calls in general, not modeling function calls that specify, e.g., data = mydata.)
This is the process that makes it so easy to refer to variables by their short
names. It also makes them very confusing to work with if you create new
variables! Let us say we want to take the square root of q4:

> q4 <- sqrt(q4)
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> q4

[1] 1.000000 1.000000 1.732051 1.732051 2.000000 2.236068

[7] 2.000000 2.236068

This looks like it worked fine. However, let us list the contents of search
positions 1 and 2 to see what really happened:

> ls(1)

[1] "mydata" "q4"

> ls(2)

[1] "gender" "id" "q1" "q2" "q3"

[6] "q4" "workshop"

R created the new version of q4 as a separate vector in our main workspace.
The copy of q4 that the attach function put in position 2 was never changed!
Since search position 1 dominates, asking for q4 will cause R to show us the
one in our workspace. Asking for mydata$q4 will cause R to go inside the data
frame and show us the original, untransformed values.

There are two important lessons to learn from this:

1. If you want to create a new variable inside a data frame, do so using a
method that clearly specifies the name of the data frame. One approach is
specifying mydata$varname or mydata[ ,"varname"]. Another approach
is to use the tranform function described in Sect. 10.1, “Transforming
Variables.”

2. When two objects have the same name, R will always choose the object
higher in the search path. There is one important exception to this: when
you specify a data frame using the data argument on a modeling function
call. That will cause R to go inside the data frame you specify and get
any vectors that exist there.

When the attach function places objects in position 2 of the search path
(a position you can change but rarely need to), those objects will block, or
mask, any others of the same name in lower positions (i.e., further toward the
end of the search list). In the following example, I started with a fresh launch
of R, loaded mydata, and attached it twice to see what would happen:

> attach(mydata)

> attach(mydata) # Again, to see what happens.

The following object(s) are masked from mydata (position 3):

gender id q1 q2 q3 q4 workshop
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> search()

[1] ".GlobalEnv" "mydata" "mydata"

[4] "package:stats" "package:graphics" "package:grDevices"

[7] "package:utils" "package:datasets" "package:methods"

[10] "Autoloads" "package:base"

Note that mydata is now in search positions: 2 and 3. If you refer to any
variable or object, R has to decide which one you mean (they do not need to be
identical, as in this example.) The message about masked objects in position
3 tells us that the second attach brought variables with those names into
position 2. The variables from the first attach were then moved to position
3, and those with common names were masked (all of them in this example).
Therefore, we can no longer refer to them by their simple names; those names
are already in use somewhere higher in the search path. In this case, the
variables from the second attach went to position 2, and they will be used.
Rarely would anyone actually try to attach a data frame twice. But if you run
a program twice in a row that contains an attach function call, that is what
will happen. However, it is simple to avoid this mess by including the detach
function in any program that attaches a data frame:

attach(mydata)

[do your work with short variable names]

detach(mydata)

When we first learned about vectors, we created q1, q2, q3, and q4 as
vectors and then formed them into a data frame. If we had left them as
separate vectors in our main workspace, even the first use of the attach

function would have been in trouble. The vectors in position 1 would have
blocked those with the same names in positions 2 and 3.

13.4 Loading Packages

We have seen throughout the book that R packages are loaded from its library
using the library function. But how are the packages made available to R?
The library function attaches packages to your search path.

In Sect. 2.2,“Loading an Add-on Package,”we saw that when two packages
share a function name, the most recent one loaded from the library is the one
R will use. That is an example of the same masking effect described in the
previous section. This is rarely a source of trouble since you usually want
the functions from the latest package you load. However, you can avoid any
potential conflicts by detaching a package when you are finished using it. In
this example, I am using the describe function from the prettyR package:
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> library("prettyR")

> describe(mydata)

Description of mydata

Numeric

mean median var sd valid.n

q1 3.25 3.5 2.214 1.488 8

q2 2.75 2.5 3.071 1.753 8

q3 4.143 4 1.143 1.069 7

q4 3.25 3.5 2.5 1.581 8

Factor

workshop

Value Count Percent

R 4 50

SAS 4 50

mode = >1 mode Valid n = 8

gender

Value Count Percent

m 4 50

f 3 37.5

NA 1 12.5

mode = m Valid n = 7

> detach("package:prettyR")

Next I will get very similar results using the Hmisc package:

> library("Hmisc")

Loading required package: survival

Loading required package: splines

Attaching package: 'Hmisc'

The following object(s) are masked from 'package:survival':

untangle.specials

The following object(s) are masked from 'package:base':

format.pval, round.POSIXt, trunc.POSIXt, units

> describe(mydata)
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mydata

6 Variables 8 Observations

----------------------------------------------

workshop

n missing unique

8 0 2

R (4, 50%), SAS (4, 50%)

----------------------------------------------

gender

n missing unique

7 1 2

f (3, 43%), m (4, 57%)...

> detach("package:Hmisc")

We see R is warning us about masked functions from the packages survival
and base but not prettyR. Had I not detached prettyR it would have warned
that after loading Hmisc from the library, I would no longer have access to
the describe function in prettyR.

You can also avoid confusion about attached packages by prefixing each
function call with the package’s name and two colons:

> library("prettyR")

> library("Hmisc")

...The following object(s) are masked from 'package:prettyR':

describe...

> prettyR::describe(mydata)

---prettyR's describe output would appear---

> Hmisc::describe(mydata)

---Hmisc's describe output would appear---

13.5 Attaching Files

So far, we have only used the attach function with data frames. It can also
be very useful with R data files. If you load a file, it brings all objects into
your workspace. However, if you attach the file, you can bring in only what
you need and then detach it.

For example, let us create a variable x and then add only the vector q4 from
the file myall.RData, a file that contains the objects we created in Chapter5,
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“Programming Language Basics.”Recall that in that chapter, we created each
practice variable first as a vector and then converted them to a factor, a
matrix, a data frame, and a list.

> x <- c(1, 2, 3, 4, 5, 6, 7, 8)

> attach("myall.RData")

> search()

[1] ".GlobalEnv" "file:myall.RData" "package:stats"

[4] "package:graphics" "package:grDevices" "package:utils"

[7] "package:datasets" "package:methods" "Autoloads"

[10] "package:base"

> q4 <- q4

The last statement looks quite odd! What is going on? The attach function
loaded myall.RData, but put it at position 2 in the search path. R will place
any variables you create in your workspace (position 1), and the attached copy
allows R to find q4 in position 2. So it copies it from there to your workspace.
Let us look at what we now have in both places:

> ls(1) # Your workspace.

[1] "q4" "x"

> ls(2) # The attached file.

[1] "mystats" "gender" "mydata" "mylist" "mymatrix"

[6] "q1" "q2" "q3" "q4" "workshop"

> detach(2)

So we have succeeded in copying a single vector, q4, from a data frame
into our workspace. The final detach removes "file:myall.RData" from the
search path.

13.6 Removing Objects from Your Workspace

To delete an object from your workspace, use the remove function or the
equivalent rm function as in

rm(mydata)
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The rm function is one of the few functions that will accept multiple objects
separated by commas; that is, the names do not have to be in a single character
vector. In fact, the names cannot simply be placed into a single vector. We
will soon see why.

Let us load myall.RData, so we will have lots of objects to remove:

> load(file = "myall.RData")

> ls()

[1] "mystats" "gender" "mydata" "mylist" "mymatrix"

[6] "q1" "q2" "q3" "q4" "workshop"

We do not need our vectors, workshop, gender, and the q variable since
they are in our data frame, mydata. To remove these extraneous variables, we
can use

rm(workshop, gender, q1, q2, q3, q4)

If we had lots of variables, manually entering each name would get quite
tedious. We can instead use any of the shortcuts for creating sets of variable
names described in Chap. 7, “Selecting Variables.” Let us use the ls function
with its pattern argument to find all of the objects that begin with the letter
“q.”

> myQvars <- ls(pattern = "q")

> myQvars

[1] "q1" "q2" "q3" "q4"

Now let us use the c function to combine workshop and gender with
myQvars:

> myDeleteItems <- c("workshop", "gender", myQvars)

> myDeleteItems

[1] "workshop" "gender" "q1" "q2" "q3"

[6] "q4"

Note that myQvars is not enclosed in quotes in the first line. It is already a
character vector that we are adding to the character values of “workshop” and
“gender.”

Finally, we can delete them all at once by adding the list argument to
the rm function:
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> rm(list = myDeleteItems)

>

> ls()

[1] "mydata" "myDeleteItems" "mylist" "mymatrix"

[5] "myQvars" "mystats"

Finally, we can remove myQvars and myDeleteItems.

> rm(myQvars,myDeleteItems)

> ls()

[1] "mydata" "mylist" "mymatrix" "mystats"

It may appear that a good way to delete the list of objects in myDeleteItems
would be to use

rm(myDeleteItems) # Bad!

or, equivalently,

rm( c("workshop", "gender", "q1", "q2", "q3", "q4") ) # Bad!

However, that would delete only the list of item names, not the items them-
selves! That is why the rm function needs a list argument when dealing with
character vectors.

Once you are happy with the objects remaining in your workspace, you
can save them all with

save.image("myFavorites.RData")

If you want to delete all of the visible objects in your workspace, you can
do the following. Be careful; there is no “undo” function for this radical step!

myDeleteItems <- ls()

rm( list = myDeleteItems )

Doing this in two steps makes it clear what is happening, but, of course,
you can nest these two functions. This approach looks quite cryptic at first,
but I hope the above steps make it much more obvious what is occurring.

rm( list = ls() )

To conserve workspace by saving only the variables you need within a
data frame, see Sect. 10.9, “Keeping and Dropping Variables.”The rm function
cannot drop variables stored within a data frame.



430 13 Managing Your Files and Workspace

13.7 Minimizing Your Workspace

Removing unneeded objects from your workspace is one important way to save
space in your computer’s main memory. You can also use the cleanup.import
function from Harrell’s Hmisc package. It automatically stores the variables
in a data frame in their most compact form. You use it as

library("Hmisc")

mydata <- cleanup.import(mydata)

If you have not installed Hmisc, see Chap. 2, “Installing R and Add-on
Packages,” for details.

13.8 Setting Your Working Directory

Your working directory is the location R uses to retrieve or store files, if you
do not otherwise specify the full path for filenames. In Windows, the default
working directory is My Documents. In Windows XP or earlier, it is
C:\Documents and Settings\username\My Documents. In Windows Vista or
later, it is C:\Users\Yourname\My Documents. In Mac OS, the default work-
ing directory is /Users/username.

The getwd function will tell you the current location of your working
directory:

> getwd()

[1] "C:/Users/Muenchen/My Documents"

Windows users can see or change their working directory by choosing
File>Change dir. R will then display a window that you use to browse to
any folder you like.

In any operating system you can change the working directory with the
setwd function. This is the equivalent to SPSS’s CD command and somewhat
similar to the SAS LIBNAME statement. Simply provide the full path between
the quotes:

setwd("c:/myRfolder")

We discussed earlier that R uses the forward slash “/” even on computers
running Windows. That is because within strings, R uses “\t,”“\n,” and “\\”
to represent the single characters tab, newline, and backslash, respectively. In
general, a backslash followed by another character may have a special meaning.
So when using R in Windows, always specify the paths with either a single
forward slash or two backslashes in a row. This book uses the single forward
slash because that works with R in all operating systems.

You can set your working directory automatically by putting it in your
.Rprofile. For details, see Appendix C, “Automating Your R Setup.”
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13.9 Saving Your Workspace

Throughout this book we manually save the objects we create, naming them
as we do so. That is the way almost all other computer programs work. R also
has options for saving your workspace automatically when you exit.

13.9.1 Saving Your Workspace Manually

To save the entire contents of your workspace, you can use the save.image

function:

save.image(file = "myWorkspace.RData")

This will save all your objects, data, functions, everything. Therefore, it is
usually good to remove unwanted objects first, using the rm function. See
Sect. 13.6, “Removing Objects from Your Workspace,” for details.
If you are a Windows user, R does not automatically append the .RData
extension, as do most Windows programs, so make sure you enter it yourself.

Later, when you start R, you can use File>Load Workspace to load it from
the hard drive back into the computer’s memory. You can also restore them
using the load function:

load(file = "myWorkspace.RData")

If you want to save only a subset of your workspace, the save function
allows you to list the objects to save, separated by commas, before the file
argument:

save(mydata, file = "mydata.RData")

This is one of the few functions that can accept many objects separated by
commas, so it might save three as in the example below:

save(mydata, mylist, mymatrix, file = "myExamples.RData")

It also has a list argument that lets you specify a character vector of objects
to save.

You exit R by choosing File>Exit or by entering the function call quit()
or just q(). R will then offer to save your workspace. If you have used either the
save or the save.image functions recommended above, you should click“No.”

13.9.2 Saving Your Workspace Automatically

Every time you exit R, it offers to save your workspace for you automatically.
If you click“Yes,” it stores it in a file named“.RData”in your working directory
(see how to set in in the Sect. 13.8). The next time you start R from the same
working directory, it automatically loads that file back into memory, and you
can continue working.
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While this method saves a little time, it also has problems. The name
.RData is an odd choice, because most operating systems hide files that begin
with a period. So, initially, you cannot copy or rename your project files! That
is true on Windows, Mac OS, and Linux/UNIX systems. Of course, you can
tell your operating system to show you such files (shown below).

Since all your projects end up in a file with the same name, it is harder to
find the one you need via search engines or backup systems. If you accidentally
moved an .RData file to another folder, you would not know which project it
contained without first loading it into R.

13.9.3 Getting Operating Systems to Show You .RData Files

While the default workspace file, “.RData,” is hidden on most operating sys-
tem, you can tell them to show you those files.

To get Windows XP to show you .RData, in Windows Explorer uncheck
the option Tools> Folder Options. Then click on the View tab and uncheck
the box“Hide extensions to known file types.”Then, in the ”Folder views”box
at the top of the View tab, click “Apply to All Folders.” Then click OK.

In Windows Vista, use the following selection: Start>Control Panel> Ap-
pearance and Personalization> Folder Options> View> Show hidden files and
folders. Then click OK.

In Windows 7 or later, start File Explorer, then follow this menu path,
and uncheck the option Organize> Folder and search options> View> Hide
extensions for known file types. Then click OK.

Note that this will still not allow you to click on a filename like myPro-
ject.RData and rename it to just .RData. The Windows Rename message box
will tell you “You must type a filename.”

Linux/UNIX users can see files named .RData with the command “ls -a.”
Macintosh users can see files named .RData by starting a terminal window

with Applications> Utilities> Terminal. In the terminal window, enter

defaults write com.apple.finder AppleShowAllFiles TRUE

killall Finder

To revert back to normal file view, simply type the same thing, but with
“FALSE” instead of “TRUE.”

13.9.4 Organizing Projects with Windows Shortcuts

If you are a Windows user and like using shortcuts, there is another way to
keep your various projects organized. You can create an R shortcut for each of
your analysis projects. Then you right-click the shortcut, choose Properties,
and set the Start in folder to a unique folder. When you use that shortcut to
start R, on exit it will store the .RData file for that project. Although neatly
organized into separate folders, each project workspace will still be in a file
named .RData.
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13.10 Saving Your Programs and Output

R users who prefer the graphical user interface can easily save programs,
called scripts, and output to files in the usual way. Just click anywhere on
the window you wish to save, choose File>Save as, and supply a name. The
standard extension for R programs is “.R” and for output it is simply “.txt”.
You can also save bits of output to your word processor using the typical
cut-and-paste steps.

In Windows, R will not automatically append “.R” to each filename. You
must specify that yourself. When you forget this, and you will, later choosing
File>Open script will not let you see the file! You will have to specify “*.*”
as the filename to get the file to appear.

R users who prefer to use the command-line interface often use text editors
such as Emacs, or the one in JGR, that will check their R syntax for errors.
Those files are no different from any other file created in a given editor.

Windows and Macintosh users can cut and paste graphics output into their
word processors or other applications. Users of any operating system can rerun
graphs, directing their output to a file. See Chap. 14, “Graphics Overview,”
for details.

13.11 Saving Your History

R has a history that saves all of the commands in a given session. This is just
like the SPSS journal. The closest thing SAS has is its log, but that contains
messages, which are absent in R’s history file. If you run your programs from
R’s program editor or from a text editor, you already know how to save your
programs; you are unlikely to need to save your command history separately.

However, if you need to, you can save the current session’s history to a
file in your working directory with the savehistory function. To route the
history to a different folder, use the setwd function to change it before using
savehistory, or simply specify the file’s full path in the file argument:

savehistory(file = "myHistory.Rhistory")

You can later recall it using the loadhistory function.

loadhistory(file = "myHistory.Rhistory")

Note that the filename can be anything you like, but the extension should be
“.Rhistory.” In fact the entire filename will be simply “.Rhistory” if you do
not provide one. You can also automate loading and saving your history. For
details, see Appendix C, “Automating Your R Setup.”

All of the file and workspace functions we have discussed are summarized
in Table 13.1.
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Table 13.1. Workspace management functions

Function to perform Example

List object names,
including .First, .Last

objects(all.names=TRUE)

List object names,
of most objects

ls() or objects()

List object attributes attributes(mydata)

Load workspace load(file = "myWorkspace.RData")

Remove a variable from
a data frame

mydata$myvar <- NULL

Remove all objects
(nonhidden ones)

rm( list=ls() )

Remove an object rm(mydata)

Remove several objects rm(mydata, mymatrix, mylist)

Save all objects save.image(file = "myWorkspace.RData")

Save some objects save(x, y, z, file = "myObjects.RData)

Show structure of all objects ls.str( all.names=TRUE )

Show structure of most objects ls.str()

Show structure of data frame
only (requires Hmisc)

contents(mydata)

Show structure of objects
by name

str(mydata), str(lm)

Store data efficiently
(requires Hmisc)

mydata <- cleanup.import(mydata)

Working directory, getting getwd ()

Working directory, setting setwd("/mypath/myfolder")

Even Windows uses forward slashes!
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13.12 Large Data Set Considerations

All of the topics we have covered in this chapter are helpful for managing
the amount of free space you have available in your workspace. This is a very
important topic to R users.

For most procedures, SAS and SPSS store their data on your hard drive
and pull “chunks” of data into memory to work on as needed. That allows
them to analyze as much data as you can afford to store. Of course, even in
SAS and SPSS, some kinds of models must have all their data in memory, but
these are relatively few in number.

Unfortunately, R must store all the data in your computer’s memory at
once, so it cannot analyze what is commonly called big data. Much work is
going into ways to get around the memory limitation. For example, Lumley’s
biglm package [39] processes data in “chunks” for some linear and generalized
linear models. There are other packages that provide various ways to get
around the memory limitation for certain kinds of problems. They are listed
in the High Performance Computing Task View at CRAN.

Given the low cost of memory today, R’s memory limitation is less of a
problem than you might think. R can handle hundreds of thousands of records
on a computer with 2 gigabytes of memory available to R. That is the memory
limit for a single process or program in 32-bit operating systems. Operating
systems with 64-bit memory spaces are now the norm, allowing you to analyze
millions of records.

Another way around the limitation is to store your data in a relational
database and use its facilities to generate a sample to analyze. A sample size
of a few thousand is sufficient for many analyses. However, if you need to
ensure that certain small groups (e.g., those who have a rare disease, the
small proportion of borrowers who defaulted on a loan), then you may end up
taking a complex sample, which complicates your analysis considerably. R has
specialized packages to help analyze such samples, including pps, sampfling,
sampling, spsurvey, and survey. See CRAN at http://cran.r-project.

org/ for details.
Another alternative is to purchase a commercial version of R from Rev-

olution Analytics called Revolution R Enterprise. It solves the problem in a
way similar to that used in packages such as SAS and SPSS. It can handle
terabyte-sized files for certain types of problems. You can read more about it
at www.revolutionanalytics.com.

13.13 Example R Program for Managing
Files and Workspace

Most chapters in this book end with the SAS, SPSS, and R programs that
summarize the topics in the chapter. However, this chapter has been very
specific to R. Therefore, we present only the R program below.
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# Filename: ManagingWorkspace.R

ls()

setwd("c:/myRfolder")

load("myall.RData")

ls()

# List objects that begin with "my".

ls(pattern = "my")

# Get attributes and structure of mydata.

attributes(mydata)

str(mydata)

# Get structure of the lm function.

str(lm)

# List all objects' structure.

ls.str()

# Use the Hmisc contents function.

install.packages("Hmisc")

library("Hmisc")

contents(mydata)

# ---Understanding Search Paths---

setwd("c:/myRfolder")

load("mydata.RData")

ls()

search()

ls(1) # This uses position number.

ls(".GlobalEnv") # This does the same using name.

head( ls(2) )

head( ls("package:stats") ) # Same result.

# See how attaching mydata change the path.

attach(mydata)

search()

ls(2)

# Create a new variable.

q4 <- sqrt(q4)
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q4

ls(1)

ls(2)

# Attaching data frames.

detach(mydata)

attach(mydata)

attach(mydata)

search()

# Clean up for next example,

# or restart R with an empty workspace.

detach(mydata)

detach(mydata)

rm( list = ls() )

# Loading Packages

library("prettyR")

describe(mydata)

detach("package:prettyR")

library("Hmisc")

describe(mydata)

detach("package:Hmisc")

library("prettyR")

library("Hmisc")

prettyR::describe(mydata)

Hmisc::describe(mydata)

# Attaching files.

x <- c(1, 2, 3, 4, 5, 6, 7, 8)

attach("myall.RData")

search()

q4 <- q4

ls(1) # Your workspace.

ls(2) # The attached file.

detach(2)

# Removing objects.

rm(mydata)

load(file = "myall.RData")

ls()

# Example not run:
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# rm(workshop, gender, q1, q2, q3, q4)

myQvars <- ls(pattern = "q")

myQvars

myDeleteItems <- c("workshop","gender",myQvars)

myDeleteItems

myDeleteItems

rm( list = myDeleteItems )

ls()

rm( myQvars, myDeleteItems )

ls()

# Wrong!

rm(myDeleteItems)

rm( c("workshop", "gender", "q1", "q2", "q3", "q4") )

save.image("myFavorites.RData")

# Removing all workspace items.

# The clear approach:

myDeleteItems <- ls()

myDeleteItems

rm(list = myDeleteItems)

# The usual approach:

rm( list = ls() )

# Setting your working directory.

getwd()

setwd("c:/myRfolder")

# Saving your workspace.

load(file = "myall.RData")

# Save everything.

save.image(file = "myPractice1.RData")

# Save some objects.

save(mydata,file = "myPractice2.RData")

save(mydata, mylist, mymatrix, file = "myPractice3.RData")
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# Remove all objects and reload myPractice3.

rm( list = ls() )

load("myPractice3.RData")

ls()

# Save and load history.

savehistory(file = "myHistory.Rhistory")

loadhistory(file = "myHistory.Rhistory")
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Graphics Overview

Graphics is perhaps the most difficult topic to compare across SAS, SPSS,
and R. Each package contains at least two graphical approaches, each with
dozens of options and each with entire books devoted to them. Therefore,
we will focus on only two main approaches in R, and we will discuss many
more examples in R than in SAS or SPSS. This chapter focuses on a broad,
high-level comparison of the three. The next chapter focuses on R’s tradi-
tional graphics. The one after that focuses just on the grammar of graphics
approaches used in both R and SPSS.

14.1 Dynamic Visualization

Dynamic visualization allows you explore your data by interacting with plots.
You can often rotate a three-dimensional scatter plot by dragging it about
with your mouse. Selections you make in one graph, such as the females in a
bar chart, are reflected in all graphs, allowing you to explore your data very
quickly. SAS/IML Studio provides this capability in SAS. SPSS does not offer
much interactivity. Although dynamic visualization is outside our scope, R
has this capability through two excellent packages that we will review briefly.

The iplots package, by Urbanek, et al. [63], offers a wide array of interac-
tive plots. These include histograms, bar charts, scatter plots, box plots, fluc-
tuation diagrams, parallel coordinates plots, and spine plots. They all include
interactive abilities such as linked highlighting and color brushing. iplots is a
stand-alone package that you can also activate from within the Deducer GUI
discussed in Sec. 3.11.1.

R can also link to a separate interactive graphics package, GGobi by
Swayne, et al. [54], available for free at http://www.ggobi.org/. GGobi’s
plots include scatter plots, bar charts, and parallel coordinates plots. One of
its most interesting features is called a tour. This approach displays a three-
dimensional scatter plot, which it rotates as it searches patterns in the data.
Each dimension is a weighted combination of other variables that lets you see

DOI 10.1007/978-1-4614-0685-3_14, © Springer Science+Business Media, LLC 2011
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into a higher dimensional space. Tours are also available in R via the tourr

package by Wickham [74].
You can link to GGobi easily from Williams’ rattle GUI for data mining,

discussed in Sect. 3.11.3. You can also link to GGobi from within R using the
function calls provided by the rggobi package by Temple Lang, et al. [60].

14.2 SAS/GRAPH

When you purchase Base SAS, its graphics procedures such as CHART and
PLOT use only primitive printer characters. For example, lines are drawn
using series of “-” and “|” characters, while plotting symbols are things like “*”
or “+.” You have to purchase a separate add-on package, SAS/GRAPH, to
get real graphics.

From its release in 1980 through 2008, SAS/GRAPH offered a limited set
of popular graphics displays. It used short commands, so getting a basic plot
was easy. However, its default settings were poorly chosen and it took many
additional commands to create a publication-quality graph. If you needed the
same set of graphs in a periodic report, that was not too much of a problem.
But if you tended to do frequent unique graphs, it was frustrating. If you
needed a wider selection of graph styles, you had to switch to another package.

The release of SAS/GRAPH version 9.2 in 2008 finally corrected this prob-
lem. The SGPLOT, SGPANEL, and SGSCATTER procedures added modern
plots with very attractive default settings. In addition, ODS Graphics gave
SAS the ability to automatically provide a standard set of graphics with many
statistical analyses. This makes sense as people typically do the same core set
of graphs for a given analysis. As nice as these improvements are, they still
leave SAS behind both SPSS and R in graphics flexibility.

14.3 SPSS Graphics

SPSS Base includes three types of graphics: one based on Graphics Produc-
tion Language (GPL) and the two“legacy”systems of standard and interactive
graphics. The standard legacy graphics use short commands and reasonable
default settings. They can also plot data stored in either wide or long formats
without having to restructure the data, which is very convenient. The inter-
active legacy graphics offer a very limited range of interactivity. For example,
selections you make in one graph are not displayed automatically in others,
as would happen in SAS/IML Studio, iplots, and GGobi. As you can tell by
the “legacy” label that the company applied to them in version 15, SPSS is
likely to phase them out eventually.

SPSS’s third graphics approach is its GPL. We will discuss this extremely
flexible approach below in Sect. 14.5, “The Grammar of Graphics.” SPSS’s
standard legacy commands typically take one statement per graph, while GPL
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takes over a dozen! That demonstrates the classic tradeoff of simplicity versus
power. The example SPSS programs in Chap. 15 use standard legacy graphics,
while those in Chap. 16 use GPL.

14.4 R Graphics

R offers three main types of graphics: traditional graphics (also called “base
graphics”), the lattice package [50], and ggplot2 package [71].

R’s traditional graphics functions come with the main R installation in the
graphics package. That package is loaded from your library automatically
each time you start R. Traditional graphics include high-level functions such
as bar plots, histograms, and scatter plots. These functions are brief and the
default settings are good.

While SAS and SPSS have you specify your complete plot in advance,
R’s traditional graphics allow you to plot repeatedly on the same graph. For
example, you might start with a scatter plot, and then add a regression line.
As you add new features, each writes on top of the previous ones, so the
order of commands is important. Once written, a particular feature cannot be
changed without starting the plot over from the beginning.

R’s traditional graphics also includes low-level functions for drawing things
like points, lines, and axes. These provide flexibility and control that people
can use to invent new types of graphs. Their use has resulted in many add-on
graphics packages for R. The level of control is so fine that you can even use
it for artistic graphics that have nothing to do with data. See Murrell’s R
Graphics [42] for examples.

The most important function in R’s traditional graphics is the plot func-
tion. It is a generic function that offers many different kinds of plots for dif-
ferent objects. Various packages often extend the plot function’s capabilities
for any new types of objects they introduce. So although the other graphics
packages that R offers have their own advantages, traditional graphics still
play an important role.

The main weakness of traditional graphics is that it requires a great deal
of effort to repeat plots for groups in your data.

The second major graphics package added to R was lattice, written by
Sarkar [50]. It implements Cleveland’s Trellis graphics system [13]. It is part
of the main R distribution, and it does an excellent job of repeating plots for
different groups. A good book on that package is Sarkar’s Lattice: Multivariate
Data Visualization with R [49]. We will not examine lattice graphics, as the
next system covers most of its abilities and offers additional advantages.

The third major package, ggplot2 [71], written by Wickham, is based on
the grammar of graphics described in the next section. It offers an excellent
balance between power and ease of use. The ggplot2 package is based on the
same concepts as SPSS’s GPL. While the ggplot2 package offers full flexibility
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Table 14.1. Comparison of R’s three main graphics packages

Traditional
(or base)

lattice ggplot2

Automatic output for
different objects

Yes No No

Automatic legends No Sometimes Yes
Easily repeats plots
for different groups

No Yes Yes

Easy to use with multiple
data sources

Yes No Yes

Allows you to build
plots piece by piece

Yes No Yes

Allows you to replace
pieces after creation

No No Yes

Consistent functions No No Yes
Attractiveness of default
settings

Good Good Excellent

Can do mosaic plots Yes Yes No
Control extends beyond
data graphics

Yes No No

Underlying graphics system Traditional Grid Grid

that can require many statements, unlike SPSS’s GPL, it offers ways to do
most graphs in only a few commands.

We will cover ggplot2 in Chap. 16. Although ggplot has advantages over
lattice, most of our ggplot2 examples can be created as well in the lattice
package. A comparison of these three main packages is given in Table 14.1.

14.5 The Grammar of Graphics

Wilkinson’s watershed work, The Grammar of Graphics [76], forms the foun-
dation of for both SPSS GPL, and Wickham’s ggplot2 package for R. Wilkin-
son’s key insight was the realization that general principles form the founda-
tion of all data graphics. Once you design a graphics language to follow those
principles, the language should then be able to do any existing data graphics
as well as variations that people had not previously considered.

An example is a stacked bar chart that shows how many students took
each workshop (i.e., one divided bar). This not a popular graph, but if you
change its coordinate system from rectangular to circular (Cartesian to polar),
it becomes a pie chart. So rather than requiring separate procedures, you
can have one that includes changing coordinates. That type of generalization
applies to various other graphical elements as well.

A much more interesting example is Charles Joseph Minard’s famous plot
of Napoleon’s march to Moscow and back in 1812 (Fig. 14.1). The grey line
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shows the army’s advance toward Moscow, and the dark grey line shows its
retreat. The thickness of the line reflects the size of the army. Through a very
substantial effort, you can get other graphics packages to create this graph,
including R’s traditional graphics. However, SPSS’s GPL and R’s ggplot2

package can do it easily using the same general concepts that they use for any
other plots.1

It might seem that people are unlikely to use this type of plot again, but
minor variations of it are used to diagram computer network throughput,
the transmission of disease, and the communication of product awareness in
marketing. The point is that ggplot2 gives you the broadest range of graphical
options that R offers.

14.6 Other Graphics Packages

There are many other graphics packages that we will not have space to exam-
ine. You can see a comprehensive list of them at http://cran.r-project.
org/web/views/Graphics.html A notable one is the vcd package [40] for
v isualizing categorical data. The latter was written by Meyer, et al. and
was inspired by Friendly’s book Visualizing Categorical Data [22]. That book
describes how to do its plots using SAS macros. The fact that plots initially
designed for SAS could be added to R is testament to R’s graphical flexibility.

14.7 Graphics Archives

There are comprehensive collections of example graphs and the R pro-
grams to make them at the R Graph Gallery http://addictedtor.free.fr/

graphiques/ and the Image Browser at http://bg9.imslab.co.jp/Rhelp/.
Wickham’s ggplot2 Web site is also filled with many wonderful examples. It
is at http://had.co.nz/ggplot2/.

14.8 Graphics Demonstrations

You can also use R’s demo function to have it show you a sample of what it can
do. If you provide it no arguments, demo will list all available demonstrations
for packages that you currently have loaded from your library. Here I load the
lattice package so you can see how it displays its demos along with those
from the traditional graphics package:

1 The code and data to reproduce this plot and several variations are available at
http://r4stats.com.
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> library("lattice")

> demo()

...

Demos in package 'graphics':

Hershey Tables of the characters in the Hershey vector

fonts

Japanese Tables of the Japanese characters in the

Hershey vector fonts

graphics A show of some of R's graphics capabilities

image The image-like graphics builtins of R

persp Extended persp() examples

plotmath Examples of the use of mathematics annotation

Demos in package 'lattice':

intervals Confidence intervals

labels Labels in lattice displays

lattice Lattice Demos

panel Custom panel functions

...

The ggplot package does not currently offer demonstration programs.
To run any of the demos, enter the demo function calls below in the R

console, and each will generate several example plots.

demo("graphics")

demo("persp")

demo("lattice")

14.9 Graphics Procedures and Graphics Systems

In SAS/GRAPH and SPSS Base, there are high-level graphics procedures
such as PROC GPLOT in SAS or GRAPH /SCATTER in SPSS. R has many
add-on packages that contain similar high-level graphics functions.

At a lower level are graphics systems. This is where a command to do
something like a scatter plot is turned into the precise combinations of lines
and points needed. Controlling the graphics system allows you to change set-
tings that affect all graphs, like text fonts, fill patterns, and line or point types.
In SAS, you control these settings using the GOPTIONS command. In SPSS,
you select the menu options File> Options> Edit> Charts. SPSS also allows
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you to control these settings when you create a template to apply to future
graphs.

Graphics systems are more visible in R because there are two of them.
The traditional graphics system controls the high-level traditional graphics
functions such as plot, barplot, and pie as well as some add-on packages
such as maps. It also controls low-level traditional graphics functions that do
things like draw lines or rectangles.

The packages lattice and ggplot2 instead use the grid graphics sys-
tem. The implications of this will become much more obvious as we look at
examples. The grid graphics system was written by Paul Murrell and is doc-
umented in his book R Graphics [42]. That book is a good reference for both
graphics systems as well as high-level traditional graphics procedures. It also
gives an introduction to lattice graphics.

14.10 Graphics Devices

At the lowest level of graphics control is the graphics device itself. Regardless
of the graphics package or system in R you use, the way you see or save the
result is the same: the graphics device.

SAS/GRAPH chooses its devices with the GOPTIONS statement. For
example, to create a postscript file you might use

GOPTIONS DEV = PS GSFNAME = myfile GSFMODE = Replace;

In SPSS I usually save graphics for various devices via its File> Export
menu. You can also use OUTPUT EXPORT or OMS to save graphics output
to files.

R has both menus and functions you can use to route graphics to various
locations, such as your monitor (the default) or to a file. By default, R writes
to your monitor, each plot taking the place of the previous one. Windows users
can record the plots for viewing later with the Page Up/Page Down keys, by
choosing History> Recording in your plot window.

On Windows or Macintosh computers, R lets you simply copy and paste
the image into your word processor. That is often an easy way to work because
you can resize the image in your word processor, and you can place multiple
images on a page by placing them in the cells of a word processing table.
However, if you need to align the axes of multiple graphs, it may be better to
create a single multiframe plot in R. Chapters 15 and 16 both show how to
do that using traditional graphics and the ggplot2 package, respectively.

When using the cut/paste approach, it is usually best to avoid File> Copy
to the clipboard> Copy as a Bitmap since that will result in a lower-resolution
image. It matches the resolution of your screen. Using Copy as Metafile instead
will result in a high-resolution version.
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You can also use menus to route what you see on your monitor to a file
using the usual File> Save as selection. However, it does not offer as much
control as using a device function.

R has functions named for the various graphics devices. So to write a plot
to an encapsulated postscript file, you could use

postscript(

file = "myPlot.eps",

paper = "special",

width = 4,

height = 3.5) # Opens the device.

plot(pretest, posttest) # Does the plot.

dev.off() # Closes the device.

The paper = "special" argument lets you set the size of the plot using
the width and height arguments. Measurements are in inches.
The last command, dev.off(), is optional, since R will close the device when
you exit R. However, any additional plots you create will go to that file until
you either call the dev.off() function or explicitly choose to use the screen
device again.

Although bitmap file formats are generally lower-resolution than postscript
or PDF, in some cases you may need one. For example, this book was written in
a version of the LATEX document preparation system that prefers encapsulated
postscript files. Although it is a high-resolution format, it does not support
transparency used by some plots. So I switched to a high-resolution Portable
Network Graphics (PNG) file for the plots that used transparency. What
follows is the code that I used:

png(

file = "transparencyDemo.png",

res = 600,

width = 2400,

height = 2100)

plot(pretest, posttest)

dev.off()

The png function measures width and height in dots per inch (dpi) of resolu-
tion. So at 600 dpi, 2400× 2100 yields a 4× 3.5 inch plot.

Screen device functions are windows(), quartz(), and x11() for Microsoft
Windows, Macintosh OS X, and UNIX or Linux, respectively. A helpful com-
mand for Windows users is:

windows(record = TRUE)
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which tells Windows to start recording your graphs so that you can use the
Page Up key to review older graphs as your work progresses. You can also
activate that by displaying one plot and then on the plot window choosing
History> Recording.

Other popular device functions include jpeg, pdf, pictex (for LATEX), png,
and win.metafile for Microsoft Windows. The JPG file format is popular
for photographs but is best avoided for most data graphics as its compression
blurs the sharp boundaries that make up lines, points, and numbers.

Multiple plots can go to the file in the above example because Postscript
(and PDF) supports multiple pages. Other formats like Microsoft Windows
Metafile do not.

When you send multiple plots to separate files use the following form.
The part of the filename “%03d” tells R to append 1, 2, etc. to the end of
each filename. The numbers are padded by blanks or zeros depending on the
operating system:

win.metafile(file = "myPlot%03d.wmf")

boxplot( table(workshop) ) # 1st plot goes to myPlot 1.wmf

hist(posttest) # 2nd plot goes to myPlot 2.wmf

plot(pretest,posttest) # 3rd plot goes to myPlot 3.wmf

dev.off()

The ggplot2 package has its own ggsave function to save its plots to files.
You include a call to ggsave as the first line after your plot. It saves the type
you need based on the file’s extension. For details, see Chap. 16, “Graphics
with ggplot2 (GPL).”

ggsave(file = "myplot.pdf", width = 4, height = 3.5)

For much greater depth on these and many other graphics subjects, see R
Graphics [42].
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Traditional Graphics

In the previous chapter, we discussed the various graphics packages in R, SAS,
and SPSS. Now we will delve into R’s traditional, or base, graphics. Many of
these examples will use the practice data set mydata100, which is described
in Sect. 1.7

15.1 The plot Function

As we have seen, generic R functions examine the classes of the objects you
give them and try to do “the right thing” for you. The plot function is generic
and it provides a helpful array of plots with very little effort. In Fig. 15.1 The
function call used to create each plot is displayed in the title of each plot. For
the remainder of the chapter we will examine variations of these and other
plots in great detail.

The methods function will show you the wide range of methods that plot
offers for various objects:

> methods(plot)

[1] plot.acf* plot.data.frame*

[3] plot.decomposed.ts* plot.default

[5] plot.dendrogram* plot.density

[7] plot.ecdf plot.factor*

[9] plot.formula* plot.hclust*

[11] plot.histogram* plot.HoltWinters*

[13] plot.isoreg* plot.lm

[15] plot.medpolish* plot.mlm

[17] plot.path_curve* plot.path_index*

[19] plot.ppr* plot.prcomp*

[21] plot.princomp* plot.profile.nls*

[23] plot.shingle* plot.spec

DOI 10.1007/978-1-4614-0685-3_15, © Springer Science+Business Media, LLC 2011
, Statistics and Computing,R.A. Muenchen, R for SAS and SPSS Users 451
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[25] plot.spec.coherency plot.spec.phase

[27] plot.stepfun plot.stl*

[29] plot.table* plot.trellis*

[31] plot.ts plot.tskernel*

[33] plot.TukeyHSD

Each time you load another package from your library, this list may grow.
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Fig. 15.1. Various plots using the plot function. The command that created each
plot is listed above each
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15.2 Bar Plots

We have seen the plot function create bar plots, but to create the full range of
bar plots requires the barplot function. However, approach barplot uses is
quite different from the approach used by SAS and SPSS (or by plot). While
SAS and SPSS assume your data need summarizing and require options to tell
them when the data are presummarized, barplot assumes just the opposite.
While this creates extra work, it also provides additional control. We will first
look at bar plots of counts, then grouped counts, and finally various types of
bar plots for means.

15.2.1 Bar Plots of Counts

The bar plot function call below makes a chart with just two bars, one for
each value (Fig. 15.2). They could be counts, means, or any other measure.
The main point to see here is that we get a bar for every observation. We are
ignoring options for the moment, so the plot lacks labels and its axis values
are tiny:

barplot( c(40, 60) )
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Fig. 15.2. Unlabeled bar plot using traditional graphics

If we apply the same command to variable q4, we get a bar representing
each observation in the data frame (Fig. 15.3):

barplot(q4) # Not good.
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Fig. 15.3. Bar plot on unsummarized variable q4

Notice that the y-axis is labeled 1 through 5. It displays the raw values for
every observation rather than summarizing them. That is not a very helpful
plot!

Recall that the table function gets frequency counts:

> table(q4)

q4

1 2 3 4 5

6 14 34 26 20

Since the table function gets the data in the form we need for a bar plot,
we can simply nest one function within the other to finally get a reasonable
plot (Fig. 15.4).

> barplot( table(q4) )

When we make that same mistake with a bar plot on gender, we see a
different message:

> barplot(gender)

Error in bar plot.default(gender) :

'height' must be a vector or a matrix

If gender had been coded 1 or 2, and was not stored as a factor, it would
have created one bar for every subject, each with a height of 1 or 2. However,
because gender is a factor, the message is telling us that bar plot accepts
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Fig. 15.4. A more reasonable bar plot for variable q4, this time summarized first

only a vector or matrix. The solution is the same as before: count the genders
before plotting (Fig. 15.5):

barplot( table(gender) )
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Fig. 15.5. Bar plot of gender

We can use the horiz = TRUE argument to turn the graph sideways
(Fig. 15.6):

> barplot(table(workshop), horiz = TRUE)
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Fig. 15.6. Horizontal bar plot of workshop flipped using horiz = TRUE

If we are interested in viewing groups as a proportion of the total, we can
stack the bars into a single one (Fig. 15.7). As we will see in the next chapter,
this is essentially a pie chart in rectangular Cartesian coordinates, rather
than circular polar coordinates. To do this we use the as.matrix function to
convert the table into the form we need and use the beside = FALSE argument
to prevent the bars from appearing beside each other.

barplot( as.matrix( table(workshop) ),

beside = FALSE)

0
20

40
60

80

Fig. 15.7. Stacked bar plot of workshop (unlabeled)
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15.2.2 Bar Plots for Subgroups of Counts

Recall that the table function can handle two variables. Nested within the
bar plot function, this results in a clustered bar chart (Fig. 15.8):

> barplot( table(gender, workshop) )
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Fig. 15.8. Stacked bar plot of workshop with bars split by gender (lacking legend)

The plot function is generic, so it does something different depending on
the variables you give it. If we give it two factors, it will create a plot similar
to the one above (Fig. 15.9).

> plot(workshop, gender)

The difference is that the bars fill the plot vertically so the shading gives
us proportions instead of counts. Also, the width of each bar varies, reflecting
the marginal proportion of observations in each workshop. This is called a
spine plot. Notice that we did not need to summarize the data with the table
function. The plot function takes care of that for us.

The mosaicplot function does something similar (Fig. 15.10).

> mosaicplot( table(workshop, gender) )

Note that the mosaicplot function adds titles to its figures by default. You
can suppress them by supplying your own blank main title (Section 15.3).

The mosaicplot function can handle the complexity of a third factor. We
do not have one, so let us use an example from the mosaicplot help file:

> mosaicplot( ~ Sex + Age + Survived,

+ data = Titanic, color = TRUE)
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Fig. 15.9. Mosaic plot of workshop by gender, done using plot function. Gender is
labeled automatically

In Fig. 15.11, we see that not only are the marginal proportions of sex
and age reflected, but the third variable of survival is reflected as well. It is
essentially four bar charts within a 2× 2 cross-tabulation.

15.2.3 Bar Plots of Means

The table function counted for us. Now let us use the mean function, along
with the tapply function, to get a similar table of means. To make it easier to
read, we will store the table of means in myMeans and then plot it (Fig. 15.12):

> myMeans <- tapply(q1, gender, mean, na.rm = TRUE)

> barplot(myMeans)

Adding workshop to the tapply function is easy, but you must combine
gender and workshop into a list first, using the list function (Fig. 15.13):

> myMeans <- tapply(

+ q1, list(workshop, gender), mean, na.rm = TRUE)

> barplot(myMeans, beside = TRUE)
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Fig. 15.10. Mosaic plot of workshop by gender, using the mosaicplot function.
Note the default title

Many of the variations we used with bar plots of counts will work with
means, of course. For example, the horiz = TRUE argument will flip any of
the above examples on their sides.

15.3 Adding Titles, Labels, Colors, and Legends

So far our graphs have been fairly bland. Worse than that, without a legend,
some of the bar charts above are essentially worthless. Let us now polish
them up. Although we are using bar plots, these steps apply to many of R’s
traditional graphics functions (Fig. 15.14):

> barplot( table(gender, workshop),

+ beside = TRUE,

+ col = c("gray90", "gray60"),

+ xlab = "Workshop",

+ ylab = "Count",

+ main = "Number of males and females \nin each workshop" )

The barplot function call above has six arguments.

1. The table(gender, workshop) argument generates a two-way table of
counts.
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Fig. 15.11. Mosaic plot of Titanic survivors demonstrating display of three factors
at once. This plot also includes a default title.

2. The beside = TRUE argument places the workshop bars side by side in-
stead of stacking them on top of each other. That is better for perceiving
the count per workshop. Leaving it off would result in a stacked bar chart
that might be better for estimating relative total attendance of each work-
shop rather than absolute counts.

3. The col = c("gray90", "gray60") argument supplies the colors (shades
of gray in this case) for the bars in order of the factor levels in gender. To
get a complete list of colors, enter the function colors().

4. The xlab = "Workshop" argument specifies the x -axis label. R differenti-
ates between upper and lower case, and I chose to name my variables all
lower case. However, when it comes to labeling output that created extra
work.

5. The ylab = "Count" argument specifies the y-axis label. It is probably
obvious in this graph that the y-axis represents counts, but I add it here
just as an example.
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Fig. 15.12. Bar plot of means

6. The main argument lists the plot’s title. The “\n” indicates where the title
should skip to a new line. R uses the backslash character, “\,” to introduce
control characters. The“n” represents a new line. Keep in mind that many
publications do not want titles on plots because the caption can contain
the same information. If you do not see the main argument used in other
plots in this chapter, any resulting titles are there by default. You can
suppress default titles by adding the argument main = "".

Initially, the plot in Fig. 15.14 had no legend. This code caused it to appear
after the fact:

> legend( "topright",

+ legend = c("Female", "Male"),

+ fill = c("gray90", "gray60") )

The legend function call above has three arguments.

1. The first argument positions the legend itself. This can be the values
“topleft,”“topright,”“bottomleft,”“bottomright,”“right,” and “center.” It
can also be a pair of x, y values such as 10, 15. The 15 is a value of the
y-axis, but the value of 10 for the x -axis was determined by the bar plot

function. You can query the settings with par("usr"), which will return
the start and end of the x -axis followed by the same figures for the y-axis.
Those figures for this graph are 0.56, 12.44, –0.17, 17.00. So we see that
the x -axis goes from 0.56 to 12.44 and the y-axis from –0.17 to 17.00.
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Fig. 15.13. Bar plot of q1 means by workshop (unlabeled) and gender

2. The legend = c("Female", "Male") argument supplies the value labels
to print in the legend. It is up to you to match their order to the values
of the factor gender, so be careful!

3. The fill = c("gray90", "gray60") argument supplies colors to match
the col argument in the bar plot function. Again, it is up to you to make
these match the labels as well as the graph itself! The ggplot2 package
covered in the next chapter does this for you automatically.

This might seem like an absurd amount of work for a legend, but as with
SAS/GRAPH and SPSS’s GPL, it trades off some ease of use for power. We
are only skimming the surface of R’s traditional graphics flexibility.

15.4 Graphics Parameters and Multiple Plots on a Page

R’s traditional graphics make it very easy to place multiple graphs on a page.
You could also use your word processor to create a table and insert graphs into
the cells, but then you would have to do extra work to make them all of the
proper size and position, especially if their axes need to line up for comparison.
You still have to specify the axes’ ranges to ensure compatibility, but then R
would size and position them properly. The built-in lattice package and the
ggplot2 package will also standardize the axes automatically.
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Fig. 15.14. A bar plot with a manually added title, x-axis label, legend and shades
of gray

Another problem with using word processors to place multiple graphs on
a page is that text can shrink so small as to be illegible. Using R to create
multiframe plots will solve these problems.

There are three different approaches to creating multiframe plots in R. We
will discuss the approach that uses the par function. The name par is short
for graphics parameters. It is easy to use, but is limited to equal-sized plots.

If you need to create more complex multiframe plots, see the help files for
either the layout function or the split.screen function.

R also has some functions, such as coplot and pairs, that create mul-
tiframe plots themselves. Those plots cannot be one piece of an even larger
multiframe plot. Even if R could do it, it would be quite a mess!

In traditional R graphics, you use the par function to set or query graphic
parameter settings. This is the equivalent to the SAS GOPTIONS statement.
Entering simply par() will display all 71 parameters and how they are set.
That is a lot, so we will use the head function to print just the top few pa-
rameters. In a later section, you will see a table of all the graphics parameters
and functions we use.

> head( par() )

$xlog

[1] FALSE
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$ylog

[1] FALSE

$adj

[1] 0.5

$ann

[1] TRUE

$ask

[1] FALSE

$bg

[1] "transparent"

We can see above that the xlog parameter is set to FALSE, meaning the
x -axis will not be scaled via the logarithm. The ask parameter is also FALSE
telling us R will not pause and ask you to click your mouse (or press Enter)
to continue. If you submit one graph at a time, this is a good setting. If you
instead like to submit several graphs at a time, then you will want R to ask
you when you are finished looking at each. Otherwise they will fly past so fast
you can barely see them. To change this setting, enter

> par(ask = TRUE)

Setting it back to FALSE will turn it off and plots will automatically
replace one another again. Notice that there is no verification of this for the
moment. If you wish to query the setting of any particular parameter, you
can enter it in quotes:

> par("mfrow")

[1] 1 1

The mfrow parameter determines how many rows and columns of graphs
will appear on one multiframe plot. The setting “1 1” that par("mfrow")

displays means that only 1 one graph will appear (one row and one column).
One of the most common uses of the par function is to extract and save

the original parameter settings so that you can restore them after you make a
few changes. Not all the parameter settings can be changed, so you will want
to save only the values of those that can be written, i.e., those that are not
read-only:

> opar <- par(no.readonly = TRUE) #save original parameters

[make changes, do a graph...]
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> par(opar) #restore original parameters

The variable name “opar” is commonly used for this step. I do not use the
common “my”prefix on it since these are the original settings, not anything I
have set. Simply closing the graphics window or starting a different graphics
device will also set the parameters back to their original settings, but it is
convenient to be able to do so using programming.

Let us see how we can use the graphics parameters to display four graphs
on a page. First we need to set the mfrow parameter to “2, 2” for two rows
of graphs, each with two columns. We will create four different bar charts of
counts to see the impact of the argument, beside = TRUE (the default value
is FALSE). The graphs will appear as we read words: left to right and top to
bottom (Fig. 15.15):

> opar <- par(no.readonly = TRUE) #save original parameters

>

> par( mfrow = c(2, 2) ) #set to 2 rows, 2 columns of graphs.

>

> barplot(table(gender, workshop)) # top left

> barplot(table(workshop, gender)) # top right

> barplot(table(gender, workshop), beside = TRUE ) # bot. left

> barplot(table(workshop, gender), beside = TRUE ) # bot. right

>

> par(opar) #reset to original parameters

15.5 Pie Charts

As the R help file for the pie function says, “Pie charts are a very bad way
of displaying information. The eye is good at judging linear measures and
bad at judging relative areas. A bar chart or dot chart is a preferable way of
displaying this type of data.” To prove this to yourself, look at the pie chart
in Fig. 15.16 and try to determine which workshop had more attendees, SAS
or SPSS. Then look at the bar plot in Fig. 15.6 to see how much easier it is
to determine.

The pie function works much in the same way as the barplot function
(Fig. 15.16):

> pie( table(workshop),

+ col = c("white","gray90","gray60","black" ) )
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Fig. 15.15. Bar plots of counts by workshop and gender. The top two use the
default argument, beside = FALSE; the bottom two specify beside = TRUE. The
left two tabulated (gender,workshop); the right two tabulated (workshop,gender)

15.6 Dot Charts

Cleveland popularized the dot chart in his book, Visualizing Data [13]. Based
on research that showed people excel at determining the length of a line, he
reduced the bar chart to just dots on lines. R makes this very easy to do
(Fig. 15.17). The arguments for the dotchart function are essentially the
same as those for the barplot function. The default dots in the dot chart
do not show up well in the small image below, so I have added pch = 19 to
make the point character a solid black circle and cex = 1.5 for character
expansion.

> dotchart( table(workshop,gender),

+ pch = 19, cex = 1.5)

15.7 Histograms

Many statistical methods make assumptions about the distribution of your
data. As long as you have enough data, say 30 or more data points, his-
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tograms are a good way to examine those assumptions. We will start with
basic histograms, and then examine a few variations.

15.7.1 Basic Histograms

To get a histogram of our posttest score, all we need to do is enter a call to
the hist function (Fig. 15.18):

> hist(posttest)

Figure 15.18 shows that the hist function prints a main title by default. You
can suppress this by adding the argument main = "".

One of the problems with histograms is that they break continuous data
down into artificial bins. Trying a different number of bins to see how that
changes the view of the distribution is a good idea.

In Fig. 15.19, we use the breaks = 20 argument to get far more bars
than we saw in the default plot. The argument probability = TRUE causes
the y-axis to display probability instead of counts. That does not change the
overall look of the histogram, but it does allow us to add a kernel density fit
with a combination of the lines function and the density function:

> hist(posttest, breaks=20, probability = TRUE)
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Fig. 15.17. Dot chart of workshop attendance within gender

The lines function draws the smooth kernel density calculated by the
call to the density function. You can vary the amount of smoothness in this
function with the adjust argument. See the help file for details.

> lines( density(posttest) )

Finally, we can add tick marks to the x -axis to show the exact data points.
That is easy to do with the rug function:

rug(posttest)

Now let us get a histogram of just the males. Recall from Chap. 8, “Select-
ing Observations,”that posttest[gender == "Male"] will make the selection
we need. We will also add the argument col = gray60 to give the bars a gray
“color” (Fig. 15.20):

> hist(posttest[ which(gender == "Male") ],

col = "gray60",

main = "Histogram for Males Only",
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Fig. 15.18. Histogram of posttest

15.7.2 Histograms Stacked

If we want to compare two plots more directly, we can put them onto a mul-
tiframe plot (Fig. 15.21) with the graphic parameter command

par( mfrow = c(2, 1) )

To make them more comparable, we will ensure they break the data into
bars at the same spots using the breaks argument:

> par( mfrow = c(2, 1) ) # Multiframe plot, 2 rows, 1 column.

> hist(posttest, col = "gray90",

+ breaks = c(50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100) )

> hist(posttest[gender == "Male"], col = "gray60",

+ breaks = c(50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100) )

> par( mfrow = c(1, 1) ) # Back to 1 graph per plot.

I entered all of the break points to make it clear for beginners. Once you
get more used to R, it will be much easier to specify sequences of numbers
using the seq function:

...breaks = seq(10, 100, by=50)
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Fig. 15.19. A histogram of posttest with breaks=20, a kernel density curve and
“rug” tick-marks for every data point on the x -axis

See Chap. 12, “Generating Data,” for more ways to generate values like
this.

15.7.3 Histograms Overlaid

That looks nice, but we could get a bit fancier and plot the two graphs right
on top of one another. The next few examples start slow and end up rather
complicated compared to similar plots in SAS or SPSS. In the next chapter,
the same plot will be much simpler. However, this is an important example
because it helps you learn the type of information held inside a graphics object.

Our entire data set contains males and females, so a histogram of both
will have taller bars than a histogram for just the males. Therefore, we can
overlay a histogram for males on top of one for both genders (Fig. 15.22).

The add = TRUE argument is what tells the hist function to add the
second histogram on top of the first. Notice below that we also use the seq

function to generate the numbers 50, 55,. . . ,100 without having to write them
all out as we did in the previous example:

> hist(posttest, col = "gray90",

+ breaks = seq(from = 50, to = 100, by = 5) )

> hist(posttest[gender == "Male"], col = "gray60",
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Fig. 15.20. Histogram of posttest for males only

+ breaks = seq(from = 50, to = 100, by = 5),

+ add = TRUE )

> legend( "topright",

+ legend = c("Female", "Male"),

+ fill = c("gray90", "gray60") )

This looks good, but we did have to manually decide what the breaks
should be. In a more general-purpose program, we may want R to choose the
break points in the first plot and then apply them to the second automatically.
We can do that by saving the first graph to an object called, say, myHistogram.

> myHistogram <- hist(posttest, col = "gray90")

Now let us use the names function to see the names of its components.

> names(myHistogram)

[1] "breaks" "counts" "intensities" "density"

[5] "mids" "xname" "equidist"

One part of this object, myHistogram$breaks, stores the break points that
we will use in the second histogram. The graph of all the data appears at this
point and we can print the contents of myHistogram$breaks. Notice that R
has decided that our manually selected break point of 50 was not needed:
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Fig. 15.21. Multiframe plot of posttest histograms for whole data set(top) and just
the males (bottom)

> myHistogram$breaks

[1] 55 60 65 70 75 80 85 90 95 100

Let us now do the histogram for males again, but this time with the argu-
ment:

breaks = myHistogram$breaks

so the break points for males will be the same as those automatically chosen
for the whole sample (Fig. 15.23):

> hist(posttest[gender == "Male"], col = 'gray60',
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Fig. 15.22. A histogram of posttest for all data (tall bars) overlaid with just the
males. The difference between the two represents the females

+ add = TRUE, breaks = myHistogram$breaks)

> legend( "topright",

+ legend = c("Female", "Male"),

+ fill = c("gray90", "gray60") )

This is essentially the same as the previous graph, but the axis fits better
by not extending all the way down to 50. Of course, we could have noticed
that and fixed it manually if we had wanted. To see what else a histogram
class object contains, simply enter its name. You see the breaks listed as its
first element:

> myHistogram

$breaks

[1] 55 60 65 70 75 80 85 90 95 100

$counts

[1] 1 0 3 9 26 29 24 6 2

$intensities
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Fig. 15.23. Same histogram as previous one but now bar break points were chosen
from the whole data set and then applied to males

[1] 0.002 0.000 0.006 0.018 0.052 0.058 0.048 0.012 0.004

$density

[1] 0.002 0.000 0.006 0.018 0.052 0.058 0.048 0.012 0.004

$mids

[1] 57.5 62.5 67.5 72.5 77.5 82.5 87.5 92.5 97.5

$xname

[1] "posttest"

$equidist

[1] TRUE

attr(,"class")

[1] "histogram"

Now that the plot is saved in myHistogram, we can display it any time
with
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plot(myHistogram)

You can change the plot object using standard R programming methods;
you are not restricted to modifying it with the function that created it. That
is a tricky way to work, but you can see how someone working to develop a
new type of graph would revel in this extreme flexibility.

15.8 Normal QQ Plots

A normal QQ plot plots the quantiles of each data point against the quantiles
that each point would get if the data were normally distributed. If these points
fall on a straight line, they are likely to be from a normal distribution.

Histograms give you a nice view of a variable’s distribution, but if you
have fewer than 30 or so points, the resulting histogram is often impossible to
interpret. Another problem with histograms is that they break the data down
into artificial bins, so unless you fiddle with the bin size, you might miss an
interesting pattern in your data. A QQ plot has neither of these limitations.

So why use histograms at all? Because they are easier to interpret. At a
statistical meeting I attended, the speaker displayed a QQ plot and asked the
audience, all statisticians, what the distribution looked like. It was clearly not
normal and people offered quite an amusing array of responses! When the
shape is not a straight line, it takes time to learn how the line’s shape reflects
the underlying distribution. To make matters worse, some software reverses
the roles of the two axes! The plot shown in Fig. 15.24, created using the
qq.plot function from John Fox’s car package, has the theoretical quantiles
on the x -axis, like SAS.

> library("car")

> qq.plot(posttest,

+ labels = row.names(mydata100),

+ col = "black" )

> detach("package:car")

The call to the qq.plot function above has three arguments.

1. The variable to plot.
2. labels = row.names(mydata100) allows you to interactively identify any

point you wish, and label it according to the values you request. Your
cursor will become a cross-hair, and when you click on (or near) a point,
its label will appear. The escape key will end this interactive mode.

3. col = "black" sets the color, which is red by default.

R also has a built-in function for QQ plots called qqnorm. However, it lacks
confidence intervals. It also does not let you identify points without calling
the identify function (graph not shown):
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Fig. 15.24. A normal quantile plot of posttest using qq.plot from the car package

myQQ <- qqnorm(posttest)

identify(myQQ)

15.9 Strip Charts

Strip charts are scatter plots for one variable. Since they plot each data point,
you might see clusters of points that would be lost in a box plot or error
bar plot. The first strip chart function call below uses “jitter” or random noise
added to help you see points that would otherwise be obscured by falling on top
of other point(s) at the same location. The second one uses method = "stack"

to stack the points like little histograms instead (Fig. 15.25). Here we do
both types in a single multiframe plot. For details, see Sect. 15.4, “Graphics
Parameters and Multiple Plots on a Page.”

> par( mfrow = c(2, 1) ) #set up 2 columns, 1 row multiplot

> stripchart(posttest, method = "jitter",

+ main = "Stripchart with Jitter")
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> stripchart(posttest, method = "stack",

+ main = "Stripchart with Stacking")

> par( mfrow = c(1, 1) ) # restore to 1 plot

60 70 80 90

Stripchart with Jitter

60 70 80 90

Stripchart with Stacking

Fig. 15.25. Strip chart demonstrating the methods jitter and stack

Let us now compare groups using strip charts (Fig. 15.26). Notice the use
of the formula posttest~workshop to compare the workshop groups. You can
reverse the order of those two variables to flip the scatter vertically, but you
would lose the automated labels for the factor levels:

> par( las = 2, mar = c(4, 8, 4, 1) + 0.1 )

> stripchart(posttest ~ workshop, method = "jitter")

The par function here is optional. I use it just to angle the workshop
value labels so that they are easier to read. Turned that way, they need more
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Fig. 15.26. A strip chart of posttest scores by workshop

Table 15.1. Graphics arguments for traditional high-level graphics functions

main Supplies the text to the main title.
Example: plot(pretest, posttest, main = "My Scatter plot")

sub Supplies the text to the sub-title.
Example: plot(pretest, posttest...sub = "My Scatter plot")

xlab Supplies the x -axis label
(variable labels from Hmisc package are ignored).
Example: plot(pretest, posttest...xlab = "Score Before Training")

xlim Specifies the lower and upper limits of the x -axis.
Example: plot(pretest, posttest, xlim = c(50,100) )

ylab Supplies the y-axis label
(variable labels from Hmisc package are ignored.).
Example: plot(pretest, posttest...ylab = "Score After Training")

ylim Specifies the lower and upper limits of the y-axis.
Example: plot(pretest, posttest, ylim = c(50, 100) )

space on the left-hand side of the chart. The par function call above uses two
arguments to accomplish this.

1. The las = 2 argument changes the label angle setting of the text to be
perpendicular to the y-axis. For more settings, see Table 15.1, “Graphics
Parameters.”

2. The mar = c(4, 8, 4, 1) + 0.1 argument sets the size of the margins
at the bottom, left, top, and right sides, respectively. The point of this
was to make the left side much wider so that we could fit the labels turned
on their sides. For details, see Table 15.2, “Graphics Parameters.”

The stripchart function call above contains two arguments:
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Table 15.2. Graphics parameters to set or query using only par()

ask par(ask = TRUE) causes R to prompt you before showing a new graphic. The default
setting of FALSE causes it to automatically replace any existing plot with a new
one. If you run a program in batch mode, you should set this to FALSE!

family Sets font family for text.
par(family = "sans"), the default, requests Helvetica or Arial.
par(family = "serif") requests a serif font like Times Roman.
par(family = "mono") requests a monospaced font like Courier.
par(family = "symbol") requests math and Greek symbols.

mar Sets margin size in number of lines. The default setting is
par( mar = c(5, 4, 4, 2) + 0.1 )
which sets the number of margin lines in order (bottom, left, top, right). For graphs
that lack labels, you may want to decrease the margins to eliminate superfluous
white space. The settings 4, 4, 2, 2 work well if you do not have a title above or
below your plot. An example that sets the label angle style to perpendicular and
provides eight lines on the left side is par(las = 2, mar = c(4, 8, 4, 1) + 0.1).

mfrow Sets up a multif rame plot to contain several other plots. R will plot to them left
to right, top to bottom. This example yields three rows of two plots.
par( mfrow = c(3, 2) ). This returns it to a single plot: par( mfrow = c(1, 1) ).

mfcol Sets up a multif rame plot like mfrow, but writes plots in columns from top to
bottom, left to right.

new Setting par(new = TRUE) tells R that a new plot has already been started so that
it will not erase what is there before adding to it.

par() Will display all traditional graphics parameters. opar <- par(no.readonly = TRUE)
saves the writable parameters so that you can later reset them with par(opar).

ps Sets the point size of text. For example, to select 12-point text: par(ps = 12).
usr Shows you the coordinates of a plot in the form x-start, x-stop, y-start, y-stop.
xlog Setting par(xlog = TRUE) requests a logarithm-transformed x -axis,

including tick-marks.
ylog Setting par(ylog = TRUE) requests a logarithm-transformed y-axis,

including tick marks.

1. The formula posttest ~ workshop, which asks for a strip chart of post-
test for every value of workshop.

2. The method = "jitter" argument that tells it to add random noise to
help us see the points that would otherwise be plotted on top of others.
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Table 15.3. Graphics functions to add elements to existing plots.

abline A function that adds straight line(s) to an existing plot in the form y = a + bx.
Example of intercept 0, slope 1: abline(a = 0, b = 1, lty = 5). E.g., linear model
line: abline( lm(posttest ~ pretest), lty = 1 ).

arrows A function that draws an arrow with the arguments (from–x, from–y, to–x, to–y).
The optional length argument sets the length of the arrowhead lines.
E.g., arrows(65, 85, 58.5, 59, length = 0.1).

axis A function that adds an axis to an existing plot. E.g., axis(4) adds it to the right
side (1 = bottom, 2 = left, 3 = top, 4 = right).

box A function that adds a box around an existing plot. E.g., box().
grid A function that adds a set of vertical and horizontal lines to an existing plot.

E.g., grid().
lines A function that adds line(s) to an existing plot (need not be straight).

E.g., lowess fit: lines( lowess(posttest ~ pretest), lty = 3 ).
text A function that adds text to an existing plot. Its arguments are the x,y position

of the plot, the text, and the position of the text. Its pos argument positions text
relative to x,y values with 1=bottom, 2=left, 3=top, 4=right.
E.g., text (65, 85, "Fit is linear", pos = 3).

15.10 Scatter and Line Plots

Scatter plots are helpful in many ways. They show the nature of a relationship
between two variables. Is it a line? A curve? Is the variability in one variable
the same at different levels of the other? Is there an outlier now visible that
did not show up when checking minimum and maximum values one variable
at a time? A scatter plot can answer all these questions.

The plot function takes advantage of R’s object orientation by being
generic. That is, it looks at the class of objects you provide it and takes
the appropriate action.

For example, when you give it two continuous variables, it does a scatter
plot (Fig. 15.27):

> plot(pretest, posttest)

Note the “92” on the lower left point. That did not appear on the graph
at first. I wanted to find which observation that was, so I used the identify
function.

> identify(pretest, posttest)

[1] 92

The identify function lets you label points by clicking on them. You list
the x and y variables in your plot, and optionally provide a label = argument
to specify an ID variable, with the row names as the default. The function
will label the point you click on or near. Unfortunately, it does not let you
draw a box around a set of points. You must click on each one, which can get
a bit tedious. When finished, users can right-click and choose “stop” (or press
the Esc key on Windows). It will then print out the values you chose. If you
assigned the result to a vector as in:
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Fig. 15.27. A scatter plot of pretest and posttest. Observation 92 was identified
after the plot was created

myPoints <- identify(pretest, posttest)

then that vector would contain all your selected points. You could then use
logic like:

summary( mydata100[!myPoints, ] )

(not myPoints) to exclude the selected points and see how it changes your
analysis. Below, I use a logical selection to verify that it is indeed observation
92 that has the low score.

> mydata100[pretest < 60, ]

gender workshop q1 q2 q3 q4 pretest posttest

92 Male Stata 3 4 4 4 58 59

Back at the scatter plot, you can specify the type argument to change how
the points are displayed. The values use the letter “p” for points, the letter “l”
for lines, “b” for both points and lines, and “h” for histogram-like lines that
rise vertically from the x -axis. Connecting the points using either “l” or “b”
makes sense only when the points are collected in a certain order, such as time
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series data. As you can see in Fig. 15.28, that is not the case with our data,
so those appear as a jumbled nest of lines:

> par( mfrow = c(2, 2) ) # set up a 2x2 multiframe plot

> plot( pretest, posttest, type = "p", main = "type=p" )

> plot( pretest, posttest, type = "l", main = "type=l" )

> plot( pretest, posttest, type = "b", main = "type=b" )

> plot( pretest, posttest, type = "h", main = "type=h" )

> par( mfrow = c(1, 1) ) # set parameter back to 1 plot
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Fig. 15.28. Various scatter plots demonstrating the effect of the type argument
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15.10.1 Scatter Plots with Jitter

The more points you have in a scatter plot, the more likely you are to have
them overlap, potentially hiding the true structure of the data. This is a
particularly bad problem with Likert-scale data since Likert-scales use few
values. These data are typically averaged into scales that are more continuous,
but we will look at an example with just two Likert measures, q1 and q4.

Jitter is simply some random variation added to the data to prevent over-
lap. You will see the jitter function in the second plot in Fig. 15.29. Its
arguments are simply the variable to jitter, and a value “3” for the amount
of jitter. That was derived from trial and error. The bigger the number, the
greater the jitter.

> par( mfrow = c(1, 2) ) # set up 1x2 multiframe plot

> plot( q1, q4,

+ main = "Likert Scale Without Jitter")

> plot( jitter(q1, 3), jitter(q4, 3),

+ main = "Likert Scale With Jitter")

> par( mfrow = c(1, 1) ) # reset to single plot
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Fig. 15.29. Scatter plots demonstrating the impact of jitter on five–point Likert–
scale data

15.10.2 Scatter Plots with Large Data Sets

The larger your data set, the more likely it is that points will fall on top
of one another, obscuring the structure in the data. R’s traditional graphics
offers several ways to deal with this problem, including decreasing point size,
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replacing sets of points with hexagonal bins, and using density functions to
display shading instead of points.

Scatter Plots with Jitter and Small Points

The simplest way to keep points from plotting on top of one another is to
use jitter as described in the previous section. It is also helpful to use the
smallest point character with pch = ".". Here is an example using 5000 points
(Fig. 15.30). The R code that generated pretest2 and posttest2 is included in
the program at the end of this chapter.

> plot( jitter(pretest2,4), jitter(posttest2,4), pch = ".",

+ main = "5,000 Points Using pch = '.' \nand Jitter")
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Fig. 15.30. Scatter plots showing how to handle large data sets. The plot on the
left using default settings, leaves many points obscured. The one on the right uses
much smaller points and jitters them, allowing us to see more points

Hexbin Plots

Another way of plotting large amounts of data is a hexbin plot (Fig. 15.31).
This is provided via the hexbin package, written by Carr et al. [11]. Note
that hexbin uses the lattice package, which in turn uses the grid graphics
system. That means that you cannot put multiple graphs on a page or set any
other parameters using the par function.

> library("hexbin")

Loading required package: grid

Loading required package: lattice
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> plot( hexbin(pretest2, posttest2),

+ main = "5,000 Points Using Hexbin")

> detach("package:hexbin")
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Fig. 15.31. A hexbin plot that divides large amounts of data into hexagonal bins
to show structure in large data sets. Each bin can represent many original points

Scatter Plots with Density Shading

The last approach we will look at uses the smoothScatter function. It uses
a density function to color or shade large amounts of data. It works very
similarly to the plot function:

> smoothScatter( pretest2, posttest2,

+ main="5,000 Points Using smoothScatter")

You can see the resulting plot in Fig. 15.32.
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Fig. 15.32. A smoothScatter plot shades the density of the points

15.10.3 Scatter Plots with Lines

You can add straight lines to your plots with the abline function. It has
several different types of arguments. Let us start with a scatter plot with only
points on it (Fig 15.33):

> plot(posttest ~ pretest)

Now let us add a horizontal line and a vertical line at the value 75. You
might do this if there were a cutoff below which students were not allowed to
take the next workshop:

> abline( h = 75, v = 75 )

The abline function exists to add straight lines to the last plot you did, so
there is no add = TRUE argument. Next, let us draw a diagonal line that has
pretest equal to posttest. If the workshop training had no effect, the scatter
would lie on this line. This line would have a y-intercept of 0 and a slope of
1. The abline function does formulas in the form y = a + bx, so we want
to specify a = 0 and b = 1. We will also set the l ine type to dashed with
lty = 5:

> abline( a = 0, b = 1, lty = 5 )

Next, let us add a regression fit using the lm function within abline.
The abline function draws straight lines, so let us use the lines function
along with the lowess function to draw a smoothly fitting lowess curve. The
legend function allows you to choose the order of the labels, so I have listed
them as they appear from top to bottom in the upper left corner of the plot.
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Fig. 15.33. A scatter plot demonstrating how to add various types of lines, as well
as a legend and title

> abline( lm( posttest ~ pretest ), lty = 1 )

> lines( lowess( posttest ~ pretest ), lty = 3 )

> legend(60, 95,

+ legend = c("Regression", "Lowess", "Posttest=Pretest"),

+ lty = c(1, 3, 5) )

15.10.4 Scatter Plots with Linear Fit by Group

As we saw in the last section, it is easy to add regression lines to plots using R’s
traditional graphics. Let us now turn our attention to fitting a regression line
separately for each group (Fig. 15.34). First, we will use the plot function
to display the scatter, using the pch argument to set the point characters
based on gender. Gender is a factor that cannot be used directly to set point
characters. Therefore, we are using the as.numeric function to convert it on
the fly. That will cause it to use two symbols. If we used the as.character

function instead, it would plot the actual characters M and F:

> plot(posttest ~ pretest,
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+ pch = as.numeric(gender) )
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Fig. 15.34. A plot that displays different point symbols and regression lines for
each gender

Next, we simply use the abline function as we did before, but basing our
regression on the males and females separately. For details about selecting ob-
servations based on group membership, see Chap. 8, “Selecting Observations.”

> abline( lm( posttest[ which(gender == "Male") ]

+ ~ pretest[ which(gender == "Male") ] ),

+ lty = 1 )

> abline( lm( posttest[ which(gender == "Female") ]

+ ~ pretest[ which(gender == "Female") ] ),

+ lty = 2 )

legend( "topleft",

legend = c("Male", "Female"),

lty = c(1, 2),

pch = c(2, 1) )
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15.10.5 Scatter Plots by Group or Level (Coplots)

Coplots are scatter plots conditioned on the levels of a third variable. For
example, getting a scatter plot for each workshop is very easy. In Fig. 15.35,
the box above the scatter plots indicates which plot is which. The bottom left
is for R, the bottom right is for SAS, the top left is for SPSS, and the top right
is for Stata. This is a rather odd layout for what could have been a simple 2× 2
table of labels, but it makes more sense when the third variable is continuous.
Both the lattice and ggplot2 packages do a better job of labeling such plots.
The coplot function is easy to use. Simply specify a formula in the form y~x,
and list your conditioning variable after a vertical bar, “|”:

> coplot( posttest ~ pretest | workshop)

The next plot, Fig. 15.36, is conditioned on the levels of q1. Look at the
grey bars at the top labeled“Given: q1.”The four grey bars are positioned left
to right, bottom to top, to match the scatter plots below. The grey bar to the
lower left covers the values of q1 from 0 to 3.5 (1, 2, and 3). That indicates
that the scatter plot on the lower left is also shows the pretest-posttest scatter
for observations that have those low q1 values. The second grey bar from the
bottom and to the right covers values of q1 from 1.5 to 3.5 (2 and 3 in our
case). Therefore, the scatter plot on the lower right also displays points whose
observations are limited to q1 values of 2 and 3. The values of q1 in each plot
overlap to prevent you from missing an important change that may occur at
a cut point of q1. Here is the code that created Fig. 15.36:

> coplot( posttest ~ pretest | q1)

The functions that modify plots, apply to plots you create one at a time.
That is true even when you build a multiframe plot one plot at a time. How-
ever, when you use a single R function that creates its own multiframe plot,
such as coplot, you can no longer use those functions. See the help file for
ways to modify coplots.

15.10.6 Scatter Plots with Confidence Ellipse

Confidence ellipses help visualize the strength of a correlation as well as pro-
vide a guide for identifying outliers. The data.ellipse function in John Fox’s
car package makes these quite easy to plot (Fig. 15.37). It works much like
the plot function with the first two arguments being your x and y variables,
respectively. The levels argument lets you specify one confidence limit as
shown below, or you could specify a set in the usual way, for example,

levels = c(.25, .50, .75)

If you leave the col = "black" argument off, it will display in its default
color of red:
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Fig. 15.35. A set of scatter plots for each workshop created using the coplot

function. The bars in the top frame show which workshop each plot represents, from
left to right, starting on the bottom row

> library("car")

> data.ellipse(pretest, posttest,

+ levels = .95,

+ col = "black")

> detach("package:car")

15.10.7 Scatter Plots with Confidence and Prediction Intervals

As we saw previously, adding a regression line to a scatter plot is easy. How-
ever, adding confidence intervals is somewhat complicated. The ggplot2 pack-
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Fig. 15.36. A set of scatter plots for various levels of q1. The bars in the top frame
show the values of q1 for each plot, and how they overlap. Going left to right, and
from bottom to top, the values of q1 increase

age, covered in the next chapter, makes getting a line and 95% confidence band
about the line easy. However, getting confidence limits about the predicted
points is complicated, even with ggplot2.

Let us start with a simple example. We will create a vector x and three
vectors y1, y2, and y3. The three ys will represent a lower confidence limit,
the prediction line, and the upper confidence limit:

> x <- c(1, 2, 3, 4)

> y1 <- c(1, 2, 3, 4)

> y2 <- c(2, 3, 4, 5)
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Fig. 15.37. Scatter plot with 95% confidence ellipse

> y3 <- c(3, 4, 5, 6)

> yMatrix <- cbind(y1, y2, y3)

> yMatrix

y1 y2 y3

[1,] 1 2 3

[2,] 2 3 4

[3,] 3 4 5

[4,] 4 5 6

Now we will use the plot function to plot x against y2 (Fig. 15.38). We will
specify the xlim and ylim arguments to ensure the axes will be big enough to
hold the other y variables. The result is rather dull! I have used the cex = 1.5

argument to do character expansion of 50% to make it easier to see in this
small size:

> plot(x, y2, xlim = c(1, 4), ylim = c(1, 6), cex = 1.5)

Next, we will use the matlines function (Fig. 15.39). It can plot a vector
against every column of a matrix. We will use the lty argument to specify
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Fig. 15.38. A scatter plot of just four points on a straight line, a simple foundation
to build on

line types of dashed, solid, dashed for y1, y2, and y3, respectively. Finally, we
will specify the line color as col = "black" to prevent it from providing a
different color for each line, as it does by default:

> matlines( x, yMatrix, lty = c(2, 1, 2), col = "black" )

> rm( x, y1, y2, y3, yMatrix)

This plot represents the essence of our goal. Now let us fill in the details.
First, we need to create a new data frame that will hold a “well-designed” ver-
sion of the pretest score. We want one that covers the range of possible values
evenly. That will not be important for linear regression, since the spacing of
points will not change the line, but we want to use a method that would work
even if we were fitting a polynomial regression.

> myIntervals <-

data.frame( pretest = seq(from = 60, to = 100, by = 5) )

> myIntervals

pretest

1 60

2 65

3 70

4 75

5 80
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Fig. 15.39. A scatter plot that demonstrates the basic idea of a regression line with
confidence intervals. With a more realistic example, the confidence bands would be
curved
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Now let us create a regression model using the lm function, and store it in
myModel. Note that we have attached the larger practice data set, mydata100,
so the model is based on its pretest and posttest scores.

> myModel <- lm( posttest ~ pretest )

Next, we will use the predict function to apply myModel to the
myIntervals data frame we just created. There are two types of intervals
you might wish to plot around a regression line. The 95% prediction inter-
val (also called tolerance interval) is the wider of the two and is for pre-
dicted values of y for new values of x (interval = "prediction"). The
95% confidence interval is for the mean of the y values at a given value of x
(interval = "confidence"). We will run the predict function twice to get
both types of intervals, and then look at the data. Notice that the newdata

argument tells the predict function which data set to use:

> myIntervals$pp <- predict( myModel,

+ interval = "prediction", newdata = myIntervals)

> myIntervals$pc <- predict( myModel,

+ interval = "confidence", newdata = myIntervals)
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> myIntervals

pretest pp.fit pp.lwr pp.upr pc.fit pc.lwr pc.upr

1 60 69.401 59.330 79.472 69.401 66.497 72.305

2 65 73.629 63.768 83.491 73.629 71.566 75.693

3 70 77.857 68.124 87.591 77.857 76.532 79.183

4 75 82.085 72.394 91.776 82.085 81.121 83.050

5 80 86.313 76.579 96.048 86.313 84.980 87.646

6 85 90.541 80.678 100.405 90.541 88.468 92.615

7 90 94.770 84.696 104.843 94.770 91.855 97.684

8 95 98.998 88.636 109.359 98.998 95.207 102.788

9 100 103.226 92.507 113.945 103.226 98.545 107.906

Now we have all of the data we need. Look at the names pp.fit, pp.lwr,
pp.upr. They are the fit and lower/upper prediction confidence intervals. The
three variables whose names begin with “pc” are the same variables for the
line’s narrower confidence interval. But why the funny names? Let us check
the class of just “pp.”

> class( myIntervals$pp )

[1] "matrix"

> myIntervals$pp

fit lwr upr

1 69.401 59.330 79.472

2 73.629 63.768 83.491

3 77.857 68.124 87.591

4 82.085 72.394 91.776

5 86.313 76.579 96.048

6 90.541 80.678 100.405

7 94.770 84.696 104.843

8 98.998 88.636 109.359

9 103.226 92.507 113.945

The predict function has added two matrices to the myIntervals data
frame. Since the matlines function can plot all columns of a matrix at once,
this is particularly helpful. Now let us use this information to complete our
plot with both types of confidence intervals. The only argument that is new is
setting the limits of the y-axis using the range function. I did that to ensure
that the y-axis was wide enough to hold both the pretest scores and the wider
prediction interval, pp. Finally, we see the plot in Fig. 15.40.

> plot( pretest, posttest,
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+ ylim = range(myIntervals$pretest,

+ myIntervals$pp, na.rm = TRUE) )

> matlines(myIntervals$pretest, myIntervals$pc,

+ lty = c(1, 2, 2), col = "black")

> matlines(myIntervals$pretest, myIntervals$pp,

+ lty = c(1, 3, 3), col = "black")
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Fig. 15.40. Here we finally see the complete plot with both types of confidence
intervals using our practice data set

15.10.8 Plotting Labels Instead of Points

When you do not have too much data, it is often useful to plot labels instead of
symbols (Fig. 15.41). If your label is a single character, you can do this using
the pch argument. If you have a character variable, pch will accept it directly.
In our case, gender is a factor, so we will use the as.character function to
covert it on the fly:
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> plot(pretest, posttest,

+ pch = as.character(gender) )
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Fig. 15.41. A scatter plot using gender as its point symbol. This method only works
with a single character

If you provide the pch function a longer label, it will plot only the first
character. To see the whole label, you must first plot an empty graph with
type = "n", for no points, and then add to it with the text function. The
text function works just like the plot function but it plots labels instead of
points. In Fig. 15.42, below, we use the row.names function to provide labels.
If we had wanted to plot the workshop value instead, we could have used
label = as.character(workshop):

> plot(pretest, posttest, type = "n" )

> text(pretest, posttest,

+ label = row.names(mydata100) )
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Fig. 15.42. A scatter plot with row.names as labels. This used the text function
because it can handle labels longer than one character

15.10.9 Scatter Plot Matrices

When you have many variables to study, it can be helpful to get pairwise
scatter plots of them all (Fig. 15.43). This is easy to do with the plot function.
The first one below will suffice, but it inserts gaps between each pair of graphs.
The second one removes those gaps and shrinks the size of the labels by 10%.
The second plot is the only one shown.

> plot(mydata100) # Not shown.

> plot(mydata100, gap = 0, cex.labels = 0.9)

You can use the entire data frame in this type of plot, and it will convert
factors to numeric and give you the following warning. The plots involving
factors would appear as strip plots:

Warning message:

In data.matrix(x) : class information lost

from one or more columns

As with any generic function, you can see what other functions plot will
call given different classes of data. The methods function will show you.
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Fig. 15.43. A scatter plot matrix shows small plots for every combination of vari-
ables. This was created using the plot function

> methods(plot)

[1] plot.acf* plot.data.frame* plot.Date*

[4] plot.decomposed.ts* plot.default plot.dendrogram*

[7] plot.density plot.ecdf plot.factor*

[10] plot.formula* plot.hclust* plot.histogram*

[13] plot.HoltWinters* plot.isoreg* plot.lm

[16] plot.medpolish* plot.mlm plot.POSIXct*

[19] plot.POSIXlt* plot.ppr* plot.prcomp*

[22] plot.princomp* plot.profile.nls* plot.spec

[25] plot.spec.coherency plot.spec.phase plot.stepfun

[28] plot.stl* plot.table* plot.ts
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[31] plot.tskernel* plot.TukeyHSD

When you use the plot function on a data frame, it passes the data on to
the plot.data.frame function. When you read the help file on that, you find
that it then calls the pairs function! So to find out the options to use, you
can finally enter help("pairs"). That will show you some interesting options,
including adding histograms on the main diagonal and Pearson correlations
on the upper right panels.

In the next example, I have added the panel.smooth values to draw lowess
smoothing. Although I call the pairs function directly here, I could have used
the plot function to achieve the same result. Since the pairs function creates
a multiframe plot by itself, you must use its own options to modify the plot.
In this case, we cannot add a smoothed fit with the lines function; we must
use panel.smooth instead (Fig. 15.44):

> pairs(mydata100[3:8], gap = 0,

+ lower.panel = panel.smooth,

+ upper.panel = panel.smooth)

15.11 Dual-Axis Plots

The usual plot has a y-axis on only the left side. However, to enhance legibility
you may wish to place it on the right side as well (Fig. 15.45). If you have the
same y-variable measured in two different units (dollars and euros, fahrenheit
& celsius, and so on), you may wish a second axis in those units.

If you have two different y variables to plot, using a dual-axis plot is often
not a good idea because you can stretch or shrink the two axes to make the
same comparison appear totally different [26]. Stacking two different plots in
a multiframe plot is often a better way to handle that situation. The axes
can still be manipulated, but the reader focuses more on each axis when it
appears alone on one plot. For examples of how to stack plots, see Sect. 15.4,
“Graphics Parameters and Multiple Plots on a Page.”

We will simply place the same axis on both sides, which can make it easier
to read the y-values of points near the right-hand side of the plot. We will
plot the same graph, once without axes, then adding one on the right, then
the left.

First, we will need to add space in the margins, especially the right side
where the new axis will need labeling. That is done with the following com-
mand, which changes the margins from their default values of (5,2,2,4)+0.1
to 5, 5, 4, 5 as it applies to the bottom, left, top, and right sides, respectively:

> par( mar = c(5, 5, 4, 5) )

Next we will draw the main plot. Since we are focusing on improving the
axes, let us add labels for the x -axis and the first y-axis:
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Fig. 15.44. A scatter plot matrix with smoothed fits from the pairs function

> plot(pretest, posttest,

+ xlab = "Pretest Score",

+ ylab = "Posttest Score")

The next call to the axis function asks R to place the current axis on the
right side (side 4):

> axis(4)

Next we will add text to the margin around that axis with the mtext

function. It places its text on line 3 of side 4 (the right).

> mtext("Posttest Score", side = 4, line = 3)

Since we are making the graph easier to read from the left or right side,
let us also embellish it with a grid that will connect the tick-marks on the two
axes, (as well as add vertical lines) using the grid function:
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> grid()

The complete plot is shown in Fig. 15.45.

> par( new = TRUE )

> plot( pretest, posttest, xlim = c(60, 90) )
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Fig. 15.45. A scatter plot demonstrating an additional axis on the right side and
the addition of a grid

15.12 Box Plots

Box plots put the middle 50% of the data in a box with a median line in
the middle and lines, called “whiskers,” extending to ±1.5 times the height of
the box (i.e., the 75th percentile minus the 25th). Points that lie outside the
whiskers are considered outliers. You can create side-by-side box plots using
the plot function when the first variable you provide is a factor (Fig. 15.46):

> plot(workshop, posttest)
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Fig. 15.46. A box plot of posttest scores for each workshop

There are several variations we can do. First, let us use the mfrow argument
of the par function to create a 2× 2 multiframe plot.

> par( mfrow = c(2, 2) )

Next we will do a box plot of a single variable, posttest. It will appear in
the upper left of Fig. 15.47. We will use the box plot function since it gives
us more flexibility.

> boxplot(posttest)

Then we will put pretest and posttest side side–by–side in the upper right
of Fig. 15.47. The notch argument tells it to create notches that, when they
do not overlap, provide “strong evidence” that the medians differ. It appears
in the upper right.

> boxplot(pretest, posttest, notch = TRUE)

Next we will use a formula to get box plots for each workshop, side–by–
side. It appears in the bottom left of Fig. 15.47.

> boxplot(posttest ~ workshop)
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Fig. 15.47. Various box plots. The upper left is the posttest score. The upper right
shows pretest and posttest, with notches indicating possible median differences. The
lower left shows posttest scores for each workshop. The lower right shows posttest
for the gender and workshop combinations, as well as labels perpendicular to the
x -axis

Finally, we will create a box plot for each workshop:gender combination. If
we tried to use the plot function using the workshop:gender syntax, it would
create two box plots, one for workshop and another for gender. To get one for
all combinations, we must use the boxplot function.

Generating the combination of factors will create long value labels, like
“SAS.Female.”So we will need to change the label axis style of the x -axis using
las = 2 and increase the bottom margin with mar = c(8, 4, 4, 2) + 0.1.
We will set those parameters back to their defaults immediately afterwards.
The plot appears in the bottom right of Fig. 15.47.
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> par(las = 2, mar = c(8, 4, 4, 2) + 0.1 )

> boxplot(posttest ~ workshop:gender)

> par( las = 0, mar = c(5, 4, 4, 2) + 0.1 )

This is a bit of a mess and would probably be more interpretable if we
had done one box plot of workshop for each gender and stacked them in a
multiframe plot. For instructions on how to do that, see Sect. 15.4, “Graphics
Parameters and Multiple Plots on a Page.”The ggplot2 package does a much
better version of this same plot in Fig. 16.38.

15.13 Error Bar Plots

The gplots package, by Warnes et al. [67], has a plotmeans function that
plots means with 95% confidence bars around each. The confidence intervals
assume the data come from a normal distribution (Fig. 15.48). Its main argu-
ment is in the form measure~group:

> library("gplots")

> plotmeans(posttest ~ workshop)

> detach("package:gplots")

15.14 Interaction Plots

R has a built-in interaction.plot function that plots the means for a two-
way interaction (Fig. 15.49). For a three-way or higher interactions, you can
use the by function to repeat the interaction plot for each level of the other
variables.

In Fig. 15.49, the males seem to be doing slightly better with R and the
females with Stata. Since the plot does not display variability, we do not have
any test of significance for this interpretation.

> interaction.plot(workshop, gender, posttest)

15.15 Adding Equations and Symbols to Graphs

Any of the functions that add text to a graph, such as main, sub, xlab, and
ylab can display mathematical equations. For example, a well well-known
formula for multiple regression is, β̂ = (XtX)−1XtY . You can add this to any
existing graph using the following call to the text function:
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Fig. 15.48. An error bar plot showing the posttest mean for each workshop, along
with 95% confidence intervals

text(66, 88, "My Example Formula")

text(65, 85,

expression( hat(beta) == (X^t * X)^{-1} * X^t * Y) )

The text function adds any text at the x,y position you specify, in this case
66 and 88. So the use of it above adds, “My Example Formula” to an existing
graph at that position. In the second call to the text function, we also call the
expression function. When used on any of the text annotation functions, the
expression function tells R to interpret its arguments in a special way that
allows it to display a wide variety of symbols. In this example, beta will cause
the Greek letter β to appear. Two equal signs in a row (x == y) result in the
display of one (x = y). Functions like hat and bar will cause those symbols
to appear over their arguments. So hat(beta) will display a “^” symbol over
the Greek letter beta. This example formula appears on the plot in Fig. 15.50.
You can see several tables of symbols with help("plotmath").
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Fig. 15.49. An interaction plot of posttest means by the workshop and gender
combinations

15.16 Summary of Graphics Elements and Parameters

As we have seen in the examples above, R’s traditional graphics has a range of
functions and arguments that you can use to embellish your plots. Tables 15.1
through 15.3 summarize them.

15.17 Plot Demonstrating Many Modifications

Below is a program that creates a rather horrible looking plot (Fig. 15.50),
but it does demonstrate many of the options you are likely to need. The
repetitive mtext function calls that place margin labels could be done with
a loop, making it more compact but less clear to beginners unfamiliar with
loops.

par( mar = c(5, 4, 4, 2) + 0.1 )

par( mfrow = c(1, 1) )

par(family = "serif")

plot(pretest, posttest,

main = "My Main Title" ,
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xlab = "My xlab text" ,

ylab = "My ylab text",

sub = "My subtitle ",

pch = 2)

text(66, 88, "My Example Formula")

text(65, 85,

expression( hat(beta) ==

(X^t * X)^{-1} * X^t * Y) )

text( 80, 65, "My label with arrow", pos = 3)

arrows(80, 65, 58.5, 59, length = 0.1)

abline(h = 75, v = 75)

abline(a = 0, b = 1, lty = 5)

abline( lm(posttest ~ pretest), lty = 1 )

lines( lowess(posttest ~ pretest), lty = 3 )

legend( 64, 99,

legend = c("Regression", "Lowess", "Posttest=Pretest"),

lty = c(1, 3, 5) )

mtext("line = 0", side = 1, line = 0, at = 57 )

mtext("line = 1", side = 1, line = 1, at = 57 )

mtext("line = 2", side = 1, line = 2, at = 57 )

mtext("line = 3", side = 1, line = 3, at = 57 )

mtext("line = 4", side = 1, line = 4, at = 57 )

mtext("line = 0", side = 2, line = 0, at = 65 )

mtext("line = 1", side = 2, line = 1, at = 65 )

mtext("line = 2", side = 2, line = 2, at = 65 )

mtext("line = 3", side = 2, line = 3, at = 65 )

mtext("line = 0", side = 3, line = 0, at = 65 )

mtext("line = 1", side = 3, line = 1, at = 65 )

mtext("line = 2", side = 3, line = 2, at = 65 )

mtext("line = 3", side = 3, line = 3, at = 65 )

mtext("line = 0", side = 4, line = 0, at = 65 )

mtext("line = 1", side = 4, line = 1, at = 65 )

mtext("line = 0", side = 4, line = 0, at = 65 )

mtext("line = 1", side = 4, line = 1, at = 65 )

15.18 Example Traditional Graphics Programs

The SAS and SPSS examples in this chapter are particularly sparse compared
to those for R. This is due to space constraints rather than due to lack of
capability. The SPSS examples below are done only using their legacy graph-
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Fig. 15.50. A plot demonstrating many types of text and line annotations. The
“line=n” labels around the margins display how the line numbers start at zero next
to each axis and move outward as the line numbers increase
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ics. I present a parallel set of examples using SPSS’s Graphics Production
Language in the next chapter.

15.18.1 SAS Program for Traditional Graphics

* Filename: GraphicsTraditional.sas ;

LIBNAME myLib 'C:\myRfolder';

OPTIONS _LAST_=myLib.mydata100;

* Histogram of q1;

PROC GCHART; VBAR q1; RUN;

* Bar charts of workshop & gender;

PROC GCHART; VBAR workshop gender; RUN;

* Scatter plot of pretest by posttest;

PROG GPLOT; PLOT posttest*pretest; RUN;

* Scatter plot matrix of all vars but gender;

* Gender would need to be recoded as numeric;

PROC INSIGHT;

SCATTER workshop q1-q4 * workshop q1-q4;

RUN;

15.18.2 SPSS Program for Traditional Graphics

* Filename: GraphicsTraditional.sps .

CD 'c:\myRfolder'.

GET FILE='mydata100.sav'.

* Legacy SPSS commands for histogram of q1.

GRAPH /HISTOGRAM=q1 .

* Legacy SPSS commands for bar chart of gender.

GRAPH /BAR(SIMPLE)=COUNT BY gender .

* Legacy syntax for scatter plot of q1 by q2.

GRAPH /SCATTERPLOT(BIVAR)=pretest WITH posttest.

* Legacy SPSS commands for scatter plot matrix

* of all but gender. * Gender cannot be used until

* it is recoded numerically.
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GRAPH /SCATTERPLOT(MATRIX)=workshop q1 q2 q3 q4.

execute.

15.18.3 R Program for Traditional Graphics

# R Program for Traditional Graphics

# Filename: GraphicsTraditional.R

setwd("c:/myRfolder")

load(file = "mydata100.Rdata")

attach(mydata100)

options(width = 64)

# Request it to ask you to click for new graph.

par(ask = FALSE, mfrow = c(1,1) )

#---The Plot Function---

plot(workshop) # Bar plot

plot(posttest) # Index plot

plot(workshop, gender) # Bar plot split

plot(workshop, posttest) # Box plot

plot(posttest, workshop) # Strip plot

plot(pretest, posttest) # Scatter plot

#---Barplots---

# Barplots of counts via table

barplot( c(40, 60) )

barplot(q4)

table(q4)

barplot( table(q4) )

barplot( workshop )

barplot( table(workshop) )

barplot(gender)

barplot( table(gender) )

barplot( table(workshop), horiz = TRUE)

barplot( as.matrix( table(workshop) ),
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beside = FALSE)

# Grouped barplots & mosaic plots

barplot( table(gender, workshop) )

plot(workshop, gender)

mosaicplot( table(workshop, gender) )

mosaicplot(~ Sex + Age + Survived,

data = Titanic, color = TRUE)

# Barplots of means via tapply

myMeans <- tapply(q1, gender, mean, na.rm = TRUE)

barplot(myMeans)

myMeans <- tapply(

q1, list(workshop, gender), mean, na.rm = TRUE)

barplot(myMeans, beside = TRUE)

#---Adding main title, color and legend---

barplot( table(gender, workshop),

beside = TRUE,

col = c("gray90", "gray60"),

xlab = "Workshop",

ylab = "Count",

main = "Number of males and females \nin each workshop" )

legend( "topright",

legend = c("Female", "Male"),

fill = c("gray90", "gray60") )

# A manually positioned legend at 10,15.

legend( 10, 15,

legend = c("Female", "Male"),

fill = c("gray90", "gray60") )

#---Mulitple Graphs on a Page---

par()

head( par() )

opar <- par(no.readonly = TRUE)
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par( mar = c(3, 3, 3, 1) + 0.1 )

par( mfrow = c(2, 2) )

barplot( table(gender, workshop) )

barplot( table(workshop, gender) )

barplot( table(gender, workshop), beside = TRUE )

barplot( table(workshop, gender), beside = TRUE )

par(opar) # Reset to original parameters.

#---Piecharts---

pie( table(workshop),

col = c("white", "gray90", "gray60", "black" ) )

#---Dotcharts---

dotchart( table(workshop,gender),

pch=19, cex=1.5)

# ---Histograms---

hist(posttest)

# More bins plus density and ticks at values.

hist(posttest, breaks = 20, probability = TRUE)

lines( density(posttest) )

rug(posttest)

# Histogram of males only.

hist( posttest[ which(gender == "Male") ],

main = "Histogram of Males Only",

col = "gray60")

# Plotting above two on one page,

# matching breakpoints.

par(mfrow = c(2, 1) )

hist(posttest, col = "gray90",

main="Histogram for Both Genders",

breaks = c(50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100) )

hist(posttest[ which(gender == "Male") ],

col = "gray60",

main="Histogram for Males Only",

breaks = c(50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100) )

par(mfrow = c(1, 1) )
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# Could have used either of these:

# breaks = seq(from = 50, to = 100, by = 5) )

# breaks = seq(50, 100, 5) )

# Histograms overlaid.

hist( posttest, col = "gray90",

breaks = seq(from = 50, to = 100, by = 5) )

hist(posttest[ which(gender == "Male") ],

col = "gray60",

breaks = seq(from = 50, to = 100, by = 5),

add = TRUE )

legend( "topright",

legend = c("Female", "Male"),

fill = c("gray90", "gray60") )

# Same plot but extracting $breaks

# from previous graph.

myHistogram <- hist(posttest, col = "gray90")

names(myHistogram)

myHistogram$breaks

myHistogram$xlim

hist(posttest[ which(gender == "Male") ],

col = 'gray60',

add = TRUE, breaks=myHistogram$breaks)

legend( "topright",

legend = c("Female", "Male"),

fill = c("gray90", "gray60") )

# What else does myHistogram hold?

class(myHistogram)

myHistogram

#---Q-Q plots---

library("car")

qq.plot(posttest,

labels = row.names(mydata100),

col = "black" )

detach("package:car")

myQQ <- qqnorm(posttest) # Not shown in text.

identify(myQQ)
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#---Stripcharts---

par( mar = c(4, 3, 3, 1) + 0.1 )

par(mfrow = c(2, 1) )

stripchart(posttest, method = "jitter",

main = "Stripchart with Jitter")

stripchart(posttest, method = "stack",

main = "Stripchart with Stacking")

par( mfrow = c(1, 1) )

par( mar = c(5, 4, 4, 2) + 0.1 )

par( las = 2, mar = c(4, 8, 4, 1) + 0.1 )

stripchart(posttest ~ workshop, method = "jitter")

par( las = 0, mar = c(5, 4, 4, 2) + 0.1 )

# --- Scatter Plots ---

plot(pretest, posttest)

# Find low score interactively.

# Click 2nd mouse button to choose stop.

identify(pretest, posttest)

# Check it manually.

mydata100[pretest < 60, ]

# Different types of plots.

par( mar = c(5, 4, 4, 2) + 0.1 )

par( mfrow = c(2, 2) )

plot( pretest, posttest, type = "p", main = 'type="p"' )

plot( pretest, posttest, type = "l", main = 'type="l"' )

plot( pretest, posttest, type = "b", main = 'type="b"' )

plot( pretest, posttest, type = "h", main = 'type="h"' )

par( mfrow = c(1, 1) )

# Scatter plots with jitter

par( mar = c(5, 4, 4, 2) + 0.1 )

par( mfrow = c(1, 2) )

plot( q1, q4,

main = "Likert Scale Without Jitter")

plot( jitter(q1, 3), jitter(q4, 3),

main = "Likert Scale With Jitter")
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# Scatter plot of large data sets.

# Example with pch = "." and jitter.

par(mfrow = c(1, 2) )

pretest2 <- round( rnorm( n = 5000, mean = 80, sd = 5) )

posttest2 <-

round( pretest2 + rnorm( n = 5000, mean = 3, sd = 3) )

pretest2[ pretest2 > 100] <- 100

posttest2[posttest2 > 100] <- 100

plot( pretest2, posttest2,

main = "5,000 Points, Default Character \nNo Jitter")

plot( jitter(pretest2,4), jitter(posttest2, 4), pch = ".",

main = "5,000 Points Using pch = '.' \nand Jitter")

par(mfrow = c(1, 1) )

# Hexbins (resets mfrow automatically).

library("hexbin")

plot( hexbin(pretest2, posttest2),

main = "5,000 Points Using Hexbin")

detach("package:hexbin")

# smoothScatter

smoothScatter(pretest2, posttest2)

rm(pretest2, posttest2) # Cleaning up.

# Scatter plot with different lines added.

plot(posttest ~ pretest)

abline(h = 75, v = 75)

abline(a = 0, b = 1, lty = 5)

abline( lm(posttest ~ pretest), lty = 1 )

lines( lowess(posttest ~ pretest), lty = 3 )

legend(60, 95,

legend = c("Regression", "Lowess", "Posttest=Pretest"),

lty = c(1, 3, 5) )

# Scatter plot of q1 by q2 separately by gender.

plot(posttest ~ pretest,

pch = as.numeric(gender) )

abline( lm( posttest[ which(gender == "Male") ]

~ pretest[ which(gender == "Male") ] ),

lty = 1 )

abline( lm( posttest[ which(gender == "Female") ]
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~ pretest[ which(gender == "Female") ] ),

lty = 2 )

legend( "topleft",

legend = c("Male", "Female"),

lty = c(1, 2),

pch = c(2, 1) )

# Coplots: conditioned scatter plots.

coplot( posttest ~ pretest | workshop)

coplot( posttest ~ pretest | q1)

# Scatter plot with confidence ellipse.

library("car")

data.ellipse(pretest, posttest,

levels = .95,

col = "black")

detach("package:car")

# Confidence Intervals: A small example.

x <- c(1, 2, 3, 4)

y1 <- c(1, 2, 3, 4)

y2 <- c(2, 3, 4, 5)

y3 <- c(3, 4, 5, 6)

yMatrix <- cbind(y1, y2, y3)

yMatrix

# Just the points.

plot(x, y2, xlim = c(1, 4), ylim = c(1, 6), cex = 1.5)

# Points with pseudo-confidence interval

plot(x, y2, xlim = c(1, 4), ylim = c(1, 6), cex = 1.5)

matlines( x, yMatrix, lty = c(2, 1, 2), col = "black" )

rm( x, y1, y2, y3, yMatrix)

# Confidence Intervals: A realistic example.

myIntervals <-

data.frame(pretest = seq(from = 60, to = 100, by = 5))

myIntervals

myModel <- lm( posttest ~ pretest )

myIntervals$pp <- predict( myModel,

interval = "prediction", newdata = myIntervals)

myIntervals$pc <- predict(myModel,

interval = "confidence", newdata = myIntervals)

myIntervals
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class( myIntervals$pp )

myIntervals$pp

plot( pretest, posttest,

ylim = range(myIntervals$pretest,

myIntervals$pp, na.rm = TRUE) )

matlines(myIntervals$pretest, myIntervals$pc,

lty = c(1, 2, 2), col = "black")

matlines(myIntervals$pretest, myIntervals$pp,

lty = c(1, 3, 3), col = "black")

# Scatter plot plotting text labels.

plot(pretest, posttest,

pch = as.character(gender) )

plot(pretest, posttest, type = "n" )

text(pretest, posttest,

label = row.names(mydata100) )

# Scatter plot matrix of whole data frame.

plot(mydata100[3:8]) #Not shown with text.

plot(mydata100[3:8], gap = 0, cex.labels = 0.9)

pairs(mydata100[3:8], gap = 0,

lower.panel = panel.smooth,

upper.panel = panel.smooth)

# Dual axes

# Adds room for label on right margin.

par( mar = c(5, 5, 4, 5) )

plot(pretest, posttest,

xlab = "Pretest Score",

ylab = "Posttest Score")

axis(4)

mtext("Posttest Score", side = 4, line = 3)

grid()

#---Boxplots---

plot(workshop, posttest)

par( mfrow = c(2, 2) )

boxplot(posttest)

boxplot(pretest, posttest, notch = TRUE)
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boxplot(posttest ~ workshop)

par( las = 2, mar = c(8, 4, 4, 2) + 0.1 )

boxplot(posttest ~ workshop:gender)

par( las = 1, mar = c(5, 4, 4, 2) + 0.1 )

#---Error bar plots---

library("gplots")

par( mfrow = c(1, 1) )

plotmeans( posttest ~ workshop)

detach("package:gplots")

interaction.plot(workshop, gender, posttest)

# ---Adding Labels---

# Many annotations at once.

par( mar = c(5, 4, 4, 2) + 0.1 )

par( mfrow = c(1, 1) )

par(family = "serif")

plot(pretest, posttest,

main = "My Main Title" ,

xlab = "My xlab text" ,

ylab = "My ylab text",

sub = "My subtitle ",

pch = 2)

text(66, 88, "My Example Formula")

text(65, 85,

expression( hat(beta) ==

(X^t * X)^{-1} * X^t * Y) )

text( 80, 65, "My label with arrow", pos = 3)

arrows(80, 65, 58.5, 59, length = 0.1)

abline(h = 75, v = 75)

abline(a = 0, b = 1, lty = 5)

abline( lm(posttest ~ pretest), lty = 1 )

lines( lowess(posttest ~ pretest), lty = 3 )

legend( 64, 99,

legend = c("Regression", "Lowess", "Posttest=Pretest"),

lty = c(1, 3, 5) )

mtext("line = 0", side = 1, line = 0, at = 57 )

mtext("line = 1", side = 1, line = 1, at = 57 )

mtext("line = 2", side = 1, line = 2, at = 57 )
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mtext("line = 3", side = 1, line = 3, at = 57 )

mtext("line = 4", side = 1, line = 4, at = 57 )

mtext("line = 0", side = 2, line = 0, at = 65 )

mtext("line = 1", side = 2, line = 1, at = 65 )

mtext("line = 2", side = 2, line = 2, at = 65 )

mtext("line = 3", side = 2, line = 3, at = 65 )

mtext("line = 0", side = 3, line = 0, at = 65 )

mtext("line = 1", side = 3, line = 1, at = 65 )

mtext("line = 2", side = 3, line = 2, at = 65 )

mtext("line = 3", side = 3, line = 3, at = 65 )

mtext("line = 0", side = 4, line = 0, at = 65 )

mtext("line = 1", side = 4, line = 1, at = 65 )

mtext("line = 0", side = 4, line = 0, at = 65 )

mtext("line = 1", side = 4, line = 1, at = 65 )

#---Scatter plot with bells & whistles---

# Not shown in text

plot(pretest, posttest, pch = 19,

main = "Scatter Plot of Pretest and Postest",

xlab = "Test score before taking workshop",

ylab = "Test score after taking workshop" )

myModel <- lm(posttest ~ pretest)

abline(myModel)

arrows(60, 82, 63, 72.5, length = 0.1)

text(60, 82, "Linear Fit", pos = 3)

arrows(70, 62, 58.5, 59, length = 0.1)

text(70, 62, "Double check this value", pos = 4)

# Use locator() or:

# predict(myModel, data.frame(pretest=75) )
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Graphics with ggplot2

16.1 Introduction

As we discussed in Chap. 14, “Graphics Overview,” the ggplot2 package is
an implementation of Wilkinson’s grammar of graphics (hence the “gg” in
its name). The last chapter focused on R’s traditional graphics functions.
Many plots were easy, but other plots were a lot of work compared to SAS or
SPSS. In particular, adding things like legends and confidence intervals was
complicated.

The ggplot2 package is usually easier to use, as you will now see as we
replicate many of the same graphs. The ggplot2 package has both a shorter
qplot function (also called quickplot) and a more powerful ggplot function.
We will use both so you can learn the difference and choose whichever you
prefer. Although less flexible overall, the built-in lattice package is also
capable of doing the examples in this chapter.

While traditional graphics come with R, you will need to install the
ggplot2 package. For details, see Chap. 2, “Installing and Updating R.”Once
installed, you need to load the package using the library function:

> library("ggplot2")

Loading required package: grid

Loading required package: reshape

Loading required package: proto

Loading required package: splines

Loading required package: MASS

Loading required package: RColorBrewer

Loading required package: colorspace

Notice that this requires the grid package. That is a completely different
graphics system than traditional graphics. That means that the par function
we used to set graphics parameters, like fonts, in the last chapter does not

DOI 10.1007/978-1-4614-0685-3_16, © Springer Science+Business Media, LLC 2011
, Statistics and Computing,R.A. Muenchen, R for SAS and SPSS Users 521
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work with ggplot2, nor do any of the base functions that we have covered,
including abline, arrows, axis, box, grid, lines, rug, and text.

16.1.1 Overview of qplot and ggplot

With the ggplot2 package, you create your graphs by specifying the following
elements:

� Aesthetics: The aesthetics map your data to the graph, telling it what role
each variable will play. Some variables will map to an axis, and some will
determine the color, shape, or size of a point in a scatter plot. Different
groups might have differently shaped or colored points. The size or color
of a point might reflect the magnitude of a third variable. Other variables
might determine how to fill the bars of a bar chart with colors or patterns;
so, for example, you can see the number of males and females within each
bar.

� Geoms: Short for geometric objects, geoms determine the objects that will
represent the data values. Possible geoms include bar, boxplot, errorbar,
histogram, jitter, line, path, point, smooth, and text.

� Statistics: Statistics provide functions for features like adding regression
lines to a scatter plot, or dividing a variable up into bins to form a his-
togram.

� Scales: These match your data to the aesthetic features – for example, in
a legend that tells us that triangles represent males and circles represent
females.

� Coordinate system: For most plots this is the usual rectangular Cartesian
coordinate system. However, for pie charts it is the circular polar coordi-
nate system.

� Facets: These describe how to repeat your plot for each subgroup, perhaps
creating separate scatter plots for males and females. A helpful feature of
facets is that they standardize the axes on each plot, making comparisons
across groups much easier.

The qplot function tries to simplify graph creation by (a) looking a lot
like the traditional plot function and (b) allowing you to skip specifying as
many of the items above as possible. As with the plot function, the main
arguments to the qplot function are the x and y variables. You can identify
them with the argument name x = or y = or you can simply supply them in
that order.

The qplot function is not generic, but it will give you appropriate plots
for factors, vectors and combinations of the two as shown in Fig. 16.1. While
qplot mimics the plot function in some ways, you can see that the two func-
tion provide different defaults by comparing qplot’s results shown in Fig. 16.1
to those of the plot function’s back in Fig. 15.1. The two main differences
are that the default plot for a numeric vector is a histogram in qplot rather
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Fig. 16.1. Default plots from qplot.

than an index plot, and for two factors qplot gives a rather odd plot showing
where the combinations of factor values exist rather than a split bar plot.

Unlike the plot function, the qplot function has a data argument. That
means you do not have to attach the data frame to use short variable names.
(However, to minimize our code, our examples will assume the data are at-
tached.)

Finally, as you would expect, elements are specified by an argument. For
example, geom = "bar".

A major difference between plot and qplot is that qplot is limited to
working with vectors and factors. So, for example, it will not automatically
give you diagnostic plots for a model you have created. As nice as the ggplot
package is, it does not replace the need for R’s traditional graphics.
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The ggplot function offers a complete implementation of the grammar
of graphics. To do so, it gives up any resemblance to the plot function. It
requires you to specify the data frame, since you can use different data frames
in different layers of the graph. (The qplot function cannot.) Its options
are specified by additional functions rather than the usual arguments. For
example, rather than the geom = "bar" format of qplot, they follow the
form +geom_bar(options). The form is quite consistent, so if you know there
is a geom named “smooth,” you can readily guess how to specify it in either
qplot or ggplot.

The simplicity that qplot offers has another limitation. Since it cannot
plot in layers, it occasionally needs help interpreting what you want it to do
with legends. For example, you could do a scatter plot for which size = q4.
This would cause the points to have five sizes, from small for people who did
not like the workshop to large for those who did. The qplot function would
generate the legend for you automatically. However, what happens when you
just want to specify the size of all points with size = 4? It generates a rather
useless legend showing one of the points and telling you it represents “4.”
Whenever you want to tell qplot to inhibit the interpretation of values, you
nest them within the “I()” function: size = I(4). As a mnemonic, think
that I() = Inhibit unnecessary legends. The ggplot function does not need
the I function since its level of control is fine enough to make your intentions
obvious. See Table 16.1 for a summary of the major differences between qplot

and ggplot. When possible, I have done the examples in this chapter using
both qplot and ggplot. You can decide which you prefer.

Although the ggplot2 is based on The Grammar of Graphics, the package
differs in several important ways from the syntax described in that book. It
depends on R’s ability to transform data, so you can use log(x) or any other
function within qplot or ggplot. It also uses R’s ability to reshape or aggre-
gate data, so the ggplot2 package does not include its own algebra for these
steps. Also, the functions in ggplot2 display axes and legends automatically,
so there is no “guide” function. For a more detailed comparison, see ggplot2:
Elegant Graphics for Data Analysis by Wickham [71].

16.1.2 Missing Values

By default, the ggplot2 package will display missing values. This would result
in additional bars in bar charts and even entire additional plots when we repeat
graphs for each level of a grouping variable. That might be fine in your initial
analyses, but you are unlikely to want that in a plot for publication. We will
use a version of our data set that has all missing values stripped out with

mydata100 <- na.omit(mydata100)

See Sect. 10.5, “Missing Values,” for other ways to address missing values.
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Table 16.1. Comparison of qplot and ggplot functions

The qplot function The ggplot function
Goal Designed to mimic the plot function. Designed as a complete

grammar of graphics system.
Aesthetics Like most R functions:

qplot(x= , y= , fill= ,
color= , shape= ,...)

You must specify the mapping between
each graphical element, even x- and
y-axes, and the variable(s):
ggplot(data= ,
aes(x= , y= , fill= , color= ,
shape= ,...) ).

ABline ...geom="abline",
intercept=a, slope=b)

+geom_abline(
intercept=a, slope=b).

Aspect ratio Leave out for interactive adjustment.
+coord_equal(ratio=height/width)
+coord_equal() is square

Leave out for interactive adjustment.
+coord_equal(ratio=height/width)
+coord_equal() is square.

Axis flip +coord_flip() +coord_flip()
Axis labels ...xlab="My Text")

Just like plot function.
+scale_x_discrete("My Text")
+scale_y_discrete("My Text")
+scale_x_continuous("My Text")
+scale_y_continuous("My Text")

Axis
logarithmic

+scale_x_log10()
+scale_x_log2()
+scale_x_log()

+scale_x_log10()
+scale_x_log2()
+scale_x_log()

Bars ...geom="bar", position="stack"
or dodge.

+geom_bar(position="stack") or dodge.

Bar filling ...posttest, fill=gender) +aes(x=posttest, fill=gender)
Data Optional data= argument as with

most R functions.
You must specify data= argument.
ggplot(data = mydata, aes(...

Facets ...facets=gender ~ .) +facet_grid( gender ~ . )
Greyscale +scale_fill_grey(start=0, end=1)

Change values to control grey.
+scale_fill_grey(start=0, end=1)
Change values to control grey.

Histogram ...geom="histogram", binwidth=1) +geom_bar(binwidth=1)
Density ...geom="density") +geom_density()
Jitter ..position=position_jitter()

Lessen jitter with, e.g., (width=.02).
+geom_jitter(position=position_jitter()
Lessen jitter with, e.g., (width=.02).

Legend
inhibit

Use I() function, e.g.,
...geom="point", size = I(4) )

Precise control makes I() function
unnecessary.

Line ...geom="line" +geom_line()
Line vert. ...geom="vline", xintercept=?) +geom_vline(xintercept=?)
Line horiz. ...geom="hline", yintercept=?) +geom_hline(yintercept=?)
Pie (polar) +coord_polar(theta="y") +coord_polar(theta="y")
Points ...geom="point") That is the default

for two variables.
+geom_point(size=2) There is no default
geom for ggplot. The default size is 2.

Polygons
(maps)

...geom="polygon") +geom_polygon()

QQ plot ...stat="qq") +stat_qq=()
Rug ...geom="rug" +geom_rug()
Smooth ...geom="smooth", method="lm")

Lowess is default method.
+geom_smooth(method="lm")
Lowess is default method.

Smooth no
confidence

...geom="smooth",
method="lm", se = FALSE)

+geom_smooth(method="lm", se=FALSE)

Titles ...main="My Title")
Just like plot function.

+opts(title="My Title" )

16.1.3 Typographic Conventions

Throughout this book we have displayed R’s prompt characters only when
input was followed by output. The prompt characters helped us discriminate
between the two. Each of our function calls will result in a graph, so there is
no chance of confusing input with output. Therefore, we will dispense with
the prompt characters for the remainder of this chapter. This will make the
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Fig. 16.2. A bar plot of workshop attendance.

code much cleaner to read because our examples of the ggplot function often
end in a “+” sign. That is something you type. Since R prompts you with “+”
at the beginning of a continued line, it looks a bit confusing at first.

16.2 Bar Plots

Let us do a simple bar chart of counts for our workshop variable (Fig. 16.2).
Both of the following function calls will do it.

The qplot approach to Fig. 16.2 is

> attach(mydata100) # Assumed for all qplot examples

> qplot(workshop)

The ggplot approach to to Fig. 16.2 is

> ggplot(mydata100, aes(workshop) ) +

+ geom_bar()

Bars are the default geom when you give qplot only one variable, so we
only need a single argument, workshop.

The ggplot function call above requires three arguments:
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1. Unlike most other R functions, it requires that you specify the data frame.
As we will see later, that is because ggplot can plot multiple layers, and
each layer can use a different data frame.

2. The aes function defines the aesthetic role that workshop will play. It
maps workshop to the x -axis. We could have named the argument as in
aes(x = workshop). The first two arguments to the aes function are x

and y, in that order. To simplify the code, we will not bother listing their
names.

3. The geom_bar function tells it that the geometric object, or geom, needed
is a bar. Therefore, a bar chart will result. This function call is tied to the
first one through the “+” sign.

We did the same plot using the traditional graphics barplot function, but
that required us to summarize the data using table(workshop). The ggplot2
package is more like SAS and SPSS in this regard (and more like plot); it
does that type of summarization for you.

If we want to change to a horizontal bar chart (Fig. 16.3), all we need to
do is flip the coordinates. In the following examples, it is clear that we simply
added the cord_flip function to the end of both qplot and ggplot. There
is no argument for qplot like coord = "flip".

This brings up an interesting point. Both qplot and ggplot create the
exact same graphics object. Even if there is a qplot equivalent, you can always
add a ggplot function to the qplot function.

The qplot approach to Fig. 16.3 is

qplot(workshop) + coord_flip()

The ggplot approach to Fig. 16.3 is

ggplot(mydata100, aes(workshop) ) +

geom_bar() + coord_flip()

You can create the usual types of grouped bar plots. Let us start with a
simple stacked one (Fig. 16.4). You can use either function below. They contain
two new arguments. Although we are requesting only a single bar, we must still
supply a variable for the x -axis. The function call factor("") provides the
variable we need, and it is simply an unnamed factor whose value is empty. We
use the factor function to keep it from labeling the x -axis from 0 to 1, which
it would do if the variable were continuous. The fill = workshop aesthetic
argument tells the function to fill the bars with the number of students who
took each workshop.

With qplot, we clear labels on the x -axis with xlab = "". Otherwise, the
word “factor” would occur there from our factor("") statement. The equiv-
alent way to label ggplot is to use the scale_x_discrete function, also pro-
viding an empty label for the x -axis. Finally, the function scale_fill_grey

tells each function to use shades of grey. You can leave this out, of course,
and both functions will choose the same nice color scheme. The start and end
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Fig. 16.3. A horizontal bar plot demonstrating the impact of the
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values tell the function to go all the way to black and white, respectively. If
you use just scale_fill_grey(), it will use four shades of grey.

The qplot approach to Fig. 16.4 is

qplot(factor(""), fill = workshop,

geom = "bar", xlab = "") +

scale_fill_grey(start = 0, end = 1)

The ggplot approach to Fig. 16.4 is

ggplot(mydata100,

aes(factor(""), fill = workshop) ) +

geom_bar() +

scale_x_discrete("") +

scale_fill_grey(start = 0, end = 1)

16.3 Pie Charts

One interesting aspect to the grammar of graphics concept is that a pie chart
(Fig. 16.5) is just a single stacked bar chart (Fig. 16.4) drawn in polar coor-
dinates. So we can use the same function calls that we used for the bar chart
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Fig. 16.4. A stacked bar plot of workshop attendance

in the previous section but convert to polar afterward using the coord_polar
function.

This is a plot that only the ggplot function can do correctly. The
geom_bar(width = 1) function call tells it to put the slices right next to
each other. If you included that on a standard bar chart, it would also put
the bars right next to each other:

ggplot(mydata100,

aes( factor(""), fill = workshop ) ) +

geom_bar(width = 1) +

scale_x_discrete("") +

coord_polar(theta = "y") +

scale_fill_grey(start = 0, end = 1)

That is a lot of code for a simple pie chart! In the previous chapter, we created
this graph with a simple

pie( table(workshop) )

So traditional graphics are the better approach in some cases. However, as we
will see in the coming sections, the ggplot2 package is the easiest to use for
most things.
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16.4 Bar Plots for Groups

Let us now look at repeating bar charts for levels of a factor, like gender. This
requires having factors named for both the x argument and the fill argument.
Unless you change it, the position argument stacks the fill groups – in
this case, the workshops. That graph is displayed in the upper left frame of
Fig. 16.6:

The qplot approach to Fig. 16.6, upper left is

qplot(gender, geom = "bar",

fill = workshop, position = "stack") +

scale_fill_grey(start = 0, end = 1)

The ggplot approach to Fig. 16.6, upper left is

ggplot(mydata100, aes(gender, fill = workshop) ) +

geom_bar(position = "stack") +

scale_fill_grey(start = 0, end = 1)

Changing either of the above examples to: position = "fill" makes every
bar fill the y-axis, displaying the proportion in each group rather than the
number. That type of graph is called a spine plot and it is displayed in the
upper right of Fig. 16.6.

Finally, if you set position = "dodge", the filled segments appear beside
one another, “dodging” each other. That takes more room on the x -axis, so
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Fig. 16.6. A multiframe plot showing the impact of the various position settings

it appears across the entire bottom row of Fig. 16.6. We will discuss how to
convey similar information using multiframe plots in Sect. 16.18, “Multiple
Plots on a Page.”

16.5 Plots by Group or Level

One of the nicest features of the ggplot2 package is its ability to easily plot
groups within a single plot (Fig. 16.7). To fully appreciate all of the work it
is doing for us, let us first consider how to do this with traditional graphics
functions.

1. We would set up a multiframe plot, say for males and females.
2. Then we might create a bar chart on workshop, selecting

which(gender == "Female").
3. Then we would repeat the step above, selecting the males.
4. We would probably want to standardize the axes to enhance comparisons

and do the plots again.
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5. We would add a legend, making sure to manually match any color or
symbol differences across the plots.

6. Finally, we would turn off the multiframe plot settings to get back to one
plot per page.

Thank goodness the ggplot2 package can perform the equivalent of those
tedious steps using either of the following simple function calls:

The qplot approach to Fig. 16.7 is

qplot(workshop, facets = gender ~ . )

The ggplot approach to Fig. 16.7 is

ggplot(mydata100, aes(workshop) ) +

geom_bar() + facet_grid( gender ~ . )

The new feature is the facets argument in qplot and the facet_grid

function in ggplot. The formula it uses is in the form “rows~columns.” In
this case, we have “gender~.” so we will get rows of plots for each gender
and no columns. The “.” represents “1” row or column. If we instead did
“.~gender,” we would have one row and two columns of plots side by side.

You can extend this idea with the various rules for formulas described
in Sect. 5.7.3, “Controlling Functions with Formulas.” Given the space con-
straints, the most you are likely to find useful is the addition of one more
variable, such as

facets = workshop ~ gender

In our current example, that leaves us nothing to plot, but we will look at a
scatter plot example of that later.

16.6 Presummarized Data

We mentioned earlier that the ggplot2 package assumed that your data
needed summarizing, which is the opposite of some traditional R graphics
functions. However, what if the data are already summarized? The qplot

function makes it quite easy to deal with, as you can see in the program be-
low. We simply use the factor function to provide the x argument and the c
function to provide the data for the y argument. Since we are providing both
x and y arguments, the qplot function will provide a default point geom,
so we override that with geom = "bar". The xlab and ylab arguments label
the axes, which it would otherwise label with the factor and c functions
themselves.

The qplot approach to Fig. 16.8 is

qplot( factor( c(1, 2) ), c(40, 60), geom = "bar",

xlab = "myGroup", ylab = "myMeasure")
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Fig. 16.7. A bar plot of workshop attendance with facets for the genders

The ggplot approach to this type of plot is somewhat different because
it requires that the data be in a data frame. I find it much easier to create
a temporary data frame containing the summary data. Trying to nest a data
frame creation within the ggplot function will work, but you end up with so
many parentheses that it can be a challenge getting it to work. The example
program at the end of this chapter contains that example as well.

The following is the more complicated ggplot approach to Fig. 16.8. We
are displaying R’s prompts here to differentiate input from output:

> myTemp <- data.frame(

+ myGroup = factor( c(1, 2) ),

+ myMeasure = c(40, 60)

+ )

> myTemp

myGroup myMeasure

1 1 40

2 2 60

> ggplot(data = myTemp, aes(myX, myY) ) +

+ geom_bar()
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> rm(myTemp) #Cleaning up.

16.7 Dot Charts

Dot charts are bar charts reduced to just points on lines, so you can take any
of the above bar chart examples and turn them into dot charts (Fig. 16.9).

Dot charts are particularly good at packing in a lot of information on a
single plot, so let us look at the counts for the attendance in each workshop,
for both males and females. This example demonstrates how very different
qplot and ggplot can be. It also shows how flexible ggplot is and that it is
sometimes much easier to understand than qplot.

First, let us look at how qplot does it. The variable workshop is in the
x position, so this is the same as saying x = workshop. If you look at the
plot, workshop is on the y-axis. However, qplot requires an x variable, so
we cannot simply say y = workshop and not specify an x variable. Next, it
specifies geom = "point" and sets the size of the points to I(4), which is
much larger than in a standard scatter plot. Remember that the I() function
around the 4 inhibits interpretation, which in this case means that it stops
qplot from displaying a legend showing which point size represents a “4.” In
this example, that is useless information. You can try various size values to
see how it looks. The stat = "bin" argument tells it to combine all of the
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values that it finds for each level of workshop as a histogram might do. So it
ends up counting the number of observations in each combination of workshop
and gender. The facets argument tells it to create a row for each gender. The
coord_flip function rotates it in the direction we desire.

The qplot approach to Fig. 16.9 is

qplot(workshop, geom = "point", size = I(4),

stat = "bin", facets = gender ~ . ) +

coord_flip()

Now let us see how ggplot does the same plot. The aes function supplies the
x -axis variable, and the y-axis variable uses the special“..count..”computed
variable. That variable is also used by qplot, but it is the default y variable.
The geom_point function adds points, bins them, and sets their size. The
coord_flip function then reverses the axes. Finally, the facet_grid function
specifies the same formula used earlier in qplot. Notice here that we did not
need the I() function, as ggplot “knows” that the legend is not needed. If
we were adjusting the point sizes based on a third variable, we would have
to specify the variable as an additional aesthetic. The syntax to ggplot is
verbose, but more precise:

ggplot(mydata100,

aes(workshop, ..count..) ) +

geom_point(stat = "bin", size = 4) + coord_flip()+

facet_grid( gender ~ . )

16.8 Adding Titles and Labels

Sprucing up your graphs with titles and labels is easy to do (Fig. 16.10). The
qplot function adds them exactly like the traditional graphics functions do.
You supply the main title with the main argument, and the x and y labels
with xlab and ylab, respectively. There is no subtitle argument. As with all
labels in R, the characters “\n”causes it to go to a new line, so “\nWorkshops”
below will put just the word “Workshops” at the beginning of a new line.

The qplot approach to Fig. 16.10 is

qplot(workshop, geom = "bar",

main = "Workshop Attendance",

xlab = "Statistics Package \nWorkshops")

The ggplot approach to Fig. 16.10 is

ggplot(mydata100, aes(workshop, ..count..) ) +

geom_bar() +

opts( title = "Workshop Attendance" ) +

scale_x_discrete("Statistics Package \nWorkshops")
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Fig. 16.9. A dot chart of workshop attendance with facets for the genders

Adding titles and labels in ggplot is slightly more verbose. The opts

function sets various opt ions, one of which is title. The axis labels are
attributes of the axes themselves. They are controlled by the functions,
scale_x_discrete and scale_y_discrete, and for continuous axes, they are
controlled by the functions scale_x_continuous and scale_y_continuous,
which are clearly named according to their function. I find it odd that you use
different functions for labeling axes if they were discrete or continuous, but it
is one of the tradeoffs you make when getting all of the flexibility that ggplot
offers.

16.9 Histograms and Density Plots

Many statistical methods make assumptions about the distribution of your
data, or at least of your model residuals. Histograms and density plots are
two effective plots to help you assess the distributions of your data.

16.9.1 Histograms

As long as you have 30 or more observations, histograms (Fig. 16.11) are a
good way to examine continuous variables. You can use either of the follow-
ing examples to create one. In qplot, the histogram is the default geom for
continuous data, making it particularly easy to perform.

The qplot approach to Fig. 16.11 is
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Fig. 16.10. A bar plot demonstrating titles and x -axis labels

qplot(posttest)

The ggplot approach to Fig. 16.11 is

ggplot(mydata100, aes(posttest) ) +

geom_histogram()

Both functions, by default, will print to the R console the number of bins they
use (not shown). If you narrow the width of the bins, you will get more bars,
showing more structure in the data (Fig. 16.12). If you prefer qplot, simply
add the binwidth argument. If you prefer ggplot, add the geom_bar function
with its binwidth argument. Smaller numbers result in more bars.

The qplot approach to Fig. 16.12 is

qplot(posttest, geom = "histogram", binwidth = 0.5)

The qplot approach to Fig. 16.12 is

ggplot(mydata100, aes(posttest) ) +

geom_bar( binwidth = 0.5 )

16.9.2 Density Plots

If you prefer to see a density curve, just change the geom argument or function
to density (Fig. 16.13). The qplot approach to Fig. 16.13 is
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Fig. 16.11. A histogram of posttest

qplot(posttest, geom = "density" )

The ggplot approach to Fig. 16.13 is

ggplot(mydata100, aes(posttest) ) +

geom_density()

16.9.3 Histograms with Density Overlaid

Overlaying the density on the histogram, as in Fig. 16.14, is only slightly
more complicated. Both qplot and ggplot compute in the background a
special new variable for the y-axis named “..density..”. It did this behind
the scenes in the previous density plot. To get both plots combined, you must
use the variable directly. To ask for both a histogram and the density, you
must explicitly list ..density.. as the y argument. Then for qplot, you
provide both histogram and density to the geom argument. For ggplot, you
simply call both functions.

The qplot approach to Fig. 16.14 (except for the “rug” points on the
x -axis) is

qplot(posttest, ..density..,

geom = c("histogram", "density") )
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Fig. 16.12. A histogram of posttest with smaller bin widths

Since I added a rug of points to this type of plot using traditional graphics
in Sect. 15.19, adding one here is a good example of something that ggplot
can do that qplot cannot. You can add rug points on both the x - and y-
axis using geom = "rug" in qplot. However, we want to add it only to the
x -axis, and ggplot has that level of flexibility. In the ggplot code below for
Fig. 16.14, I call geom_histogram and geom_density with variables for both
axes, but for geom_rug I give it only the x -axis variable posttest:

ggplot(data = mydata100) +

geom_histogram( aes(posttest, ..density..) ) +

geom_density( aes(posttest, ..density..) ) +

geom_rug( aes(posttest) )

16.9.4 Histograms for Groups, Stacked

What if we want to compare the histograms for males and females (Fig. 16.15)?
Using base graphics, we had to set up a multiframe plot and learn how to
control break points for the bars so that they would be comparable. Using
ggplot2, the facet feature makes the job trivial.

The qplot approach to Fig. 16.15 is

qplot(posttest, facets = gender ~ .)

The ggplot approach to Fig. 16.15 is
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Fig. 16.13. A density plot of posttest

ggplot(mydata100, aes(posttest) ) +

geom_histogram() + facet_grid( gender ~ . )

16.9.5 Histograms for Groups, Overlaid

We can also compare males and females by filling the bars by gender as in
Fig. 16.16. As earlier, if you leave off the scale_fill_grey function, the bars
will come out in two colors rather than black and white.

The qplot approach to Fig. 16.16 is

qplot( posttest, fill = gender ) +

scale_fill_grey(start = 0, end = 1)

The ggplot approach to Fig. 16.16 is

ggplot(mydata100, aes(posttest, fill = gender) ) +

geom_bar() + scale_fill_grey( start = 0, end = 1 )

16.10 Normal QQ Plots

Earlier I defined a QQ plot in the chapter on traditional graphics. Creating
them in the ggplot2 package is straightforward (Fig. 16.17). If you prefer the
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Fig. 16.14. A density plot overlaid on a histogram with rug points on the x -axis

qplot function, supply the stat = "qq" argument. In ggplot, the similar
stat_qq function will do the trick.

The qplot approach to Fig. 16.17 is

qplot(posttest, stat = "qq")

The ggplot approach to Fig. 16.17 is

ggplot( mydata100, aes(posttest) ) +

stat_qq()

16.11 Strip Plots

Strip plots are scatter plots of single continuous variables, or a continuous
variable displayed at each level of a factor like workshop. As with the single
stacked bar chart, the case of a single strip plot still requires a variable on
the x -axis (Fig. 16.18). As you see can below, factor("") will suffice. The
variable to actually plot is the y argument. Reversing the x and y variables
will turn the plot on its side; in the default way the traditional graphics func-
tion, stripchart, does it. We prefer the vertical approach, as it matches the
style of box plots and error bar plots when you use them to compare groups.
The geom = "jitter" adds some noise to separate points that would other-
wise obscure other points by plotting on top of them. Finally, the xlab = ""
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Fig. 16.15. Histograms of posttest with facets for the genders

and scale_x_discrete("") labels erase what would have been a meaningless
label about factor("") for qplot and ggplot, respectively.

This qplot approach does a strip plot with wider jitter than Fig 16.18:

qplot( factor(""), posttest, geom = "jitter", xlab = "")

This ggplot approach does a strip plot with wider jitter than Fig. 16.18:

ggplot(mydata100, aes(factor(""), posttest) ) +

geom_jitter() +

scale_x_discrete("")

The above two examples use an amount of jitter that is best for large data sets.
For smaller data sets, it is best to limit the amount of jitter to separate the
groups into clear strips of points. Unfortunately, this complicates the syntax.

The qplot function controls jitter width with the position argument,
setting position_jitter with width = scalefactor.

The ggplot approach places that same parameter within its geom_jitter
function call.

The qplot approach to Fig. 16.18 is

qplot(factor(""), posttest, data = mydata100, xlab = "",

position = position_jitter(width = .02) )
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The ggplot approach to Fig. 16.18 is

ggplot(mydata100, aes(factor(""), posttest) ) +

geom_jitter(position = position_jitter(width = .02) ) +

scale_x_discrete("")

Placing a factor like workshop on the x -axis will result in a strip chart for
each level of the factor (Fig. 16.19).

This qplot approach does a grouped strip plot with wider jitter than
Fig. 16.19, but its code is simpler:

> qplot(workshop, posttest, geom = "jitter")

This ggplot approach does a grouped strip plot with wider jitter than
Fig. 16.19, but with simpler code:

> ggplot(mydata100, aes(workshop, posttest ) ) +

+ geom_jitter()

Limiting the amount of jitter for a grouped strip plot uses exactly the same
parameters we used for a single strip plot.

The qplot approach to Fig. 16.19 is

qplot(workshop, posttest, data = mydata100, xlab = "",

position = position_jitter(width = .08))

The ggplot approach to Fig. 16.19 is
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Fig. 16.17. A normal quantile–quantile plot of posttest

ggplot(mydata100, aes(workshop, posttest) ) +

geom_jitter(position = position_jitter(width = .08) ) +

scale_x_discrete("")

16.12 Scatter Plots and Line Plots

The simplest scatter plot hardly takes any effort in qplot. Just list x and y

variables in that order. You could add the geom = "point" argument, but it
is the default when you list only those first two arguments.

The ggplot function is slightly more complicated. Since it has no default
geometric object to display, we must specify geom_point().

The qplot approach to Fig. 16.20, upper left, is

qplot(pretest, posttest)

The ggplot approach to Fig. 16.20, upper left, is

ggplot(mydata100, aes(pretest, posttest) ) +

geom_point()

We can connect the points using the line geom, as you see below. However,
the result is different from what you get in traditional R graphics. The line
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connects the points in the order in which they appear on the x -axis. That
almost makes our data appear as a time series, when they are not.

The qplot approach to Fig. 16.20, upper right, is

qplot( pretest, posttest, geom = "line")

The qplot approach to Fig. 16.20, upper right, is

ggplot(mydata100, aes(pretest, posttest) ) +

geom_line()

Although the line geom ignored the order of the points in the data frame,
the path geom will connect them in that order. You can see the result in the
lower left quadrant of Fig. 16.20. The order of the points in our data set has
no meaning, so it is just a mess! The following is the code to do it in qplot

and ggplot.
The qplot approach to Fig. 16.20, lower left, is

qplot( pretest, posttest, geom = "path")

The ggplot approach to Fig. 16.20, lower left, is

ggplot(mydata100, aes(pretest, posttest) ) +

geom_path()
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Fig. 16.19. A strip chart with facets for the workshops

Now let us run a vertical line to each point. When we did that using
traditional graphics, it was a very minor variation. In ggplot2, it is quite
different but an interesting example. It is a plot that is much more clear using
ggplot, so we will skip qplot for this one.

In the ggplot code below, the first line is the same as the above exam-
ples. Where it gets interesting is the geom_segment function. It has its own
aes function, repeating the x and y arguments, but in this case, they are the
beginning points for drawing line segments! It also has the arguments xend

and yend, which tell it where to end the line segments. This may look overly
complicated compared to the simple "type = h" argument from the plot

function, but you could use this approach to draw all kinds of line segments.
You could easily draw them coming from the top or either side, or even among
sets of points. The "type = h" approach is a one-trick pony. With that ap-
proach, adding features to a function leads to a very large number of options,
and the developer is still unlikely to think of all of the interesting variations
in advance.

The following is the code, and the resulting plot is in the lower right panel
of Fig. 16.20.

ggplot(mydata100, aes(pretest, posttest) ) +

geom_segment( aes(pretest, posttest,
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Fig. 16.20. A multiframe plot demonstrating various styles of scatter plots and line
plots. The top two and the bottom left show different geoms. The bottom right is
done a very different way, by drawing line segments from each point to the x -axis

xend = pretest, yend = 58) )

16.12.1 Scatter Plots with Jitter

We discussed the benefits of jitter in the previous chapter. To get a nonjittered
plot of q1 and q4, we will just use qplot (Fig. 16.21, left).

qplot(q1,q4)

To add jitter, below are both the qplot and gglot approaches (Fig. 16.21,
right). Note that the geom = "point" argument is the default in qplot when
two variables are used. Since that default is not shown, the fact that the
position argument applies to it is not obvious. That relationship is clearer
in the ggplot code, where the position argument is clearly part of the
geom_point function. You can try various amounts of jitter to see which pro-
vides the best view of your data.

The qplot approach to Fig. 16.21, right, is
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Fig. 16.21. A multiframe plot showing the impact of jitter on five-point Likert–
scale data. The plot on the left is not jittered, so many points are obscured. The
plot on the right is jittered, randomly moving points out from behind one another

qplot(q1, q4, position =

position_jitter(width = .3, height = .3) )

The ggplot approach to Fig. 16.21, right, is

ggplot(mydata100, aes(x = q1, y = q2) ) +

geom_point(position =

position_jitter(width = .3, height = .3) )

16.12.2 Scatter Plots for Large Data Sets

When plotting large data sets, points often obscure one another. The ggplot2
package offers several ways to deal with this problem, including decreasing
point size, adding jitter or transparency, displaying density contours, and re-
placing sets of points with hexagonal bins.

Scatter Plots with Jitter and Transparency

By adjusting the amount of jitter and the amount of transparency, you can
find a good combination that lets you see through points into the heart of
a dense scatter plot (Fig. 16.22). For example, let us consider three points
occupied the exact same location. In a small data set, adding jitter will move
them about, perhaps plotting them with no overlap at all. You can then see
clearly the number of plots near that location. But with a large data set, the
scatter of points is dense and the jitter may just move those points on top of
other points nearby. When you make points semi-transparent, the more points
overlap, the less transparent that plot location becomes. This ends up making
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dense parts of the plot darker, showing structure that exists deeper into the
point cloud.

Unfortunately, transparency is not yet supported in Windows metafiles.
So if you are a Windows user, choose “Copy as bitmap” when cutting and
pasting graphs into your word processor. For a higher-resolution image, route
your graph to a file using the png function. For an example, see Sect. 14.10,
“Graphics Devices.” You can also use the ggsave function, which is part of
the ggplot2 package. For details, see Sect. 16.19, “Saving ggplot2 Graphs to
a File.”

To get 5000 points to work with, we generated them with the following
code:

pretest2 <- round( rnorm(n = 5000, mean = 80, sd = 5) )

posttest2 <- round( pretest2 +

rnorm(n = 5000, mean = 3, sd = 3) )

pretest2[pretest2 > 100] <- 100

posttest2[posttest2 > 100] <- 100

temp <- data.frame(pretest2, posttest2)

Now let us plot these data. This builds on our previous plots that used
jitter and size. In computer terminology, controlling transparency is called
alpha compositing. The qplot function makes this easy with a simple alpha

argument. You can try various levels of transparency until you get the result
you desire.

The size and alpha arguments could be set as variables, in which case
they would vary the point size or transparency to reflect the levels of the
assigned variables. That would require a legend to help us interpret the plot.
However, when you want to set them equal to fixed values, you can nest the
numbers using the I() function. The I() function inhibits the interpretation
of its arguments. Without the I() function, the qplot function would print
a legend saying that “size = 2” and “alpha = 0.15,” which in our case is fairly
useless information.

The ggplot function controls transparency with the colour argument to
the geom_jitter function. That lets you control color and amount of trans-
parency in the same option.

The qplot approach to Fig. 16.22 is

qplot(pretest2, posttest2, data = temp,

geom = "jitter", size = I(2), alpha = I(0.15),

position = position_jitter(width = 2) )

The ggplot approach to Fig. 16.22 is
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Fig. 16.22. A scatter plot demonstrating how transparency allows you to see many
points at once

ggplot(temp, aes(pretest2, posttest2),

size = 2, position = position_jitter(x = 2, y = 2) ) +

geom_jitter(colour = alpha("black", 0.15) )

Scatter Plots with Density Contours

A different approach to studying a dense scatter plot is to draw density con-
tours on top of the data (Fig. 16.23). With this approach, it is often better
not to jitter the data, so that you can more clearly see the contours. You
can do this with the density2d geom in qplot or the geom_density func-
tion in ggplot. The size = I(1) argument below reduces the point size to
make it easier to see many points at once. As before, the I() function simply
suppressed a superfluous legend.

The qplot approach to Fig. 16.23 is

qplot(pretest2, posttest2, data = temp,

geom = c("point","density2d"), size = I(1) )

The ggplot approach to Fig. 16.23 is

ggplot(temp, aes( pretest2, posttest2) ) +

geom_point( size = 1 ) + geom_density_2d()
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Fig. 16.23. This scatter plot shows an alternate way to see the structure in a large
data set. These points are small, but not jittered, making more space for us to see
the density contour lines

Scatter Plots with Density Shading

Another way to deal with densely packed points on a scatter plot is to shade
them using a density function. This is best done with ggplot. The function
does this type of plot is stat_density2d. It uses the tile geom and the
built-in ..density.. variable as the fill aesthetic. To prevent it from drawing
contour lines, that argument is set to FALSE. What follows is the code that
creates Fig. 16.24:

ggplot(temp, aes( x = pretest2, y = posttest2) ) +

stat_density2d(geom = "tile",

aes(fill = ..density..), contour = FALSE) +

scale_fill_continuous(

low = "grey80", high = "black")

If the scale_fill_continous function were left out, the background color
would be blue and the more dense the plots were the brighter red they would
become.

Hexbin Plots

Another approach to plotting large data sets is to divide the plot surface into
a set of hexagons and shade each hexagon to represent the number of points
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Fig. 16.24. A scatter plot with 2-D density shading

that fall within it (Fig. 16.25). In that way, you scale millions of points down
into tens of bins.

In qplot, we can use the hex geom. In ggplot, we use the equivalent
geom_hex function. Both use the bins argument to set the number of hexag-
onal bins you want. The default is 30; we use it here only so that you can
see how to change it. As with histograms, increasing the number of bins may
reveal more structure within the data.

The following function call uses qplot to create a color version of Fig. 16.25:

qplot(pretest2, posttest2, geom = "hex", bins = 30)

The following code uses ggplot to create the actual greyscale version of
Fig. 16.25. The scale_fill_continuous function allows us to shade the plot
using levels of grey. You can change the low = "grey80" argument to other
values to get the range of grey you prefer. Of course, you could add this
function call to the above qplot call to get it to be grey instead of color.

ggplot(temp, aes(pretest2, posttest2)) +
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Fig. 16.25. A hexbin plot of pretest and posttest

geom_hex( bins = 30 ) +

scale_fill_continuous(

low = "grey80", high = "black")

16.12.3 Scatter Plots with Fit Lines

While the traditional graphics plot function took quite a lot of extra effort to
add confidence lines around a regression fit (Fig. 15.40), the ggplot2 package
makes that automatic. Unfortunately, the transparency used to create the
confidence band is not supported when you cut and paste the image as a
metafile in Windows. The image in Fig. 16.26 is a slightly lower-resolution
600-dpi bitmap.

To get a regression line in qplot, simply specify geom = "smooth". How-
ever, that alone will replace the default of geom = "point", so if you want
both, you need to specify geom = c("point", "smooth").
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Fig. 16.26. A scatter plot with regression line and default confidence band

In ggplot, you use both the geom_point and geom_smooth functions. The
default smoothing method is a lowess function, so if you prefer a linear model,
include the method = lm argument.

The qplot approach to Fig. 16.26 is

qplot(pretest, posttest,

geom = c("point", "smooth"), method = lm )

The ggplot approach to Fig. 16.26 is

ggplot(mydata100, aes(pretest, posttest) ) +

geom_point() + geom_smooth(method = lm)

Since the confidence bands appear by default, we have to set the se argu-
ment (standard error) to FALSE to turn it off.

The qplot approach to Fig. 16.27 is

qplot(pretest, posttest,

geom = c("point","smooth"), method = lm, se = FALSE )

The ggplot approach to Fig. 16.27 is
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Fig. 16.27. A scatter plot with regression line with default confidence band removed

ggplot(mydata100, aes(pretest, posttest) ) +

geom_point() + geom_smooth(method = lm, se = FALSE)

16.12.4 Scatter Plots with Reference Lines

To place an arbitrary straight line on a plot, use the abline geom in qplot.
You specify your slope and intercept using clearly named arguments. Here we
are using intercept = 0 and slope = 1 since this is the line where posttest
= pretest. If the students did not learn anything in the workshops, the data
would fall on this line (assuming a reliable test). The ggplot function adds
the abline function with arguments for intercept and slope.

The qplot approach to Fig. 16.28 is

qplot(pretest, posttest,

geom = c("point", "abline"),

intercept = 0, slope = 1)

The ggplot approach to Fig. 16.28 is

ggplot(mydata100, aes(pretest, posttest) ) +

geom_point()+ geom_abline(intercept = 0, slope = 1)
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Fig. 16.28. A scatter plot with a line added where pretest=posttest. Most of the
points lie above this line, showing that students did learn

Vertical or horizontal reference lines can help emphasize points or cutoffs.
For example, if our students are required to get a score greater than 75 before
moving on, we might want to display those cutoffs on our plot (Fig. 16.29).

In qplot, we can do this with the xintercept and yintercept arguments.
In ggplot, the functions are named geom_vline and geom_hline, each with
an intercept argument.

The qplot approach to Fig. 16.29 is

qplot(pretest, posttest,

geom = c("point", "vline", "hline"),

xintercept = 75, yintercept = 75)

The ggplot approach to Fig. 16.29 is

ggplot(mydata100, aes(pretest, posttest)) +

geom_point() +

geom_vline( xintercept = 75 ) +

geom_hline( yintercept = 75 )

To add a series of reference lines, we need to use the geom_vline or
geom_hline functions (Fig. 16.30). The qplot example does not do much
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Fig. 16.29. A scatter plot with vertical and horizontal reference lines

with qplot itself since it cannot create multiple reference lines. So for both
examples, we use the identical geom_vline function. It includes the seq func-
tion to generate the sequence of numbers we needed. Without it we could have
used xintercept = c(70, 72, 74, 76, 78, 80). In this case, we did not
save much effort, but if we wanted to add dozens of lines, the seq function
would be much easier.

The qplot approach to Fig. 16.30 is

qplot(pretest, posttest, type = "point") +

geom_vline( xintercept = seq(from = 70, to = 80, by = 2) )

The ggplot approach to Fig. 16.30 is

ggplot(mydata100, aes(pretest, posttest)) +

geom_point() +

geom_vline( xintercept = seq(from = 70, to = 80, by = 2) )

16.12.5 Scatter Plots with Labels Instead of Points

If you do not have much data or you are only interested in points around the
edges, you can plot labels instead of symbols (Fig. 16.31). The labels could be
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Fig. 16.30. A scatter plot with multiple vertical reference lines

identifiers such as ID numbers, people’s names, or row names, or they could
be values of other variables of interest to add a third dimension to the plot.

You do this using the geom = "text" argument in qplot or the geom_text
function in ggplot. In either case, the label argument points to the values
to use. Recall that in R, row.names(mydata) gives you the stored row names,
even if these are just the sequential characters,“1,”“2,”and so on. We will store
them in a variable named mydata$id and then use it with the label argument.
The reason we do not use the form label = row.names(mydata100) is that
the ggplot2 package puts all of the variables it uses into a separate temporary
data frame before running.

The qplot approach to Fig. 16.31 is

mydata100$id <- row.names(mydata100)

qplot(pretest, posttest, geom = "text",

label = mydata100$id )

The ggplot approach to Fig. 16.31 is

ggplot(mydata100, aes(pretest, posttest,

label = mydata100$id ) ) + geom_text()
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Fig. 16.31. A scatter plot with ID numbers plotted instead of points

16.12.6 Changing Plot Symbols

You can use different plot symbols to represent levels of any third variable.
Factor values, such as those representing group membership, can be displayed
by different plot symbols (shapes) or colors. You can use a continuous third
variable to shade the colors of each point or to vary the size of each point. The
ggplot2 package makes quick work of any of these options. Let us consider a
plot of pretest versus posttest that uses different points for males and females
(Fig. 16.32).

The qplot function can do this using the shape argument.
The ggplot function must bring a new variable into the geom_point func-

tion. Recall that aesthetics map variables into their roles, so we will nest
aes(shape = gender) within the call to geom_point.

You can also set colour (note the British spelling of that argument) and
size by substituting either of those arguments for shape.

The qplot approach to Fig. 16.32 is

qplot(pretest, posttest, shape = gender)

The ggplot approach to Fig. 16.32 is



560 16 Graphics with ggplot2

pretest

po
st

te
st

60

70

80

90

60 65 70 75 80 85

gender

Female

Male

Fig. 16.32. A scatter plot with point shape determined by gender

ggplot(mydata100, aes(pretest, posttest) ) +

geom_point( aes(shape = gender) )

16.12.7 Scatter Plot with Linear Fits by Group

We have seen that the smooth geom adds a lowess or regression line and that
shape can include group membership. If we do both of these in the same plot,
we can get separate lines for each group as shown in Fig. 16.33. The linetype
argument causes each group to get its own style of line, solid for the females
and dashed for the males. If we were publishing in color, we could use the
colour argument to give each gender its own color.

The qplot approach to Fig. 16.33 is

qplot(pretest, posttest,

geom = c("smooth", "point"),

method = "lm", shape = gender,

linetype = gender)

The ggplot approach to Fig. 16.33 is

ggplot(mydata100,

aes(pretest, posttest, shape = gender,

linetype = gender) ) +

geom_smooth(method = "lm") +

geom_point()
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Fig. 16.33. A scatter plot with regression lines and point shape determined by
gender

16.12.8 Scatter Plots Faceted by Groups

Another way to compare the scatter plots of different groups, with or without
lines of fit, is through facets (Fig. 16.34). As we have already seen several
times, simply adding the facets argument to the qplot function allows you
to specify rows ~ columns of categorical variables. So

facets = workshop ~ gender+

requests a grid of plots for each workshop:gender combination, with workshop
determining the rows and gender determining the columns.

The ggplot function works similarly, using the facet_grid function to do
the same. If you have a continuous variable to condition on, you can use the
chop function from the ggplot2 package or the cut function that is built into
R to break up the variable into groups.

The qplot approach to Fig. 16.34 is

qplot(pretest, posttest, geom = c("smooth", "point"),

method = "lm", shape = gender, facets = workshop ~ gender)

The ggplot approach to Fig. 16.34 is

ggplot(mydata100, aes( pretest, posttest) ) +

geom_smooth( method = "lm" ) + geom_point() +

facet_grid( workshop ~ gender )
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Fig. 16.34. A scatter plot with facets showing linear fits for each workshop and
gender combination

16.12.9 Scatter Plot Matrix

When you have many variables to plot, a scatter plot matrix is helpful
(Fig. 16.35). You lose a lot of detail compared to a set of full-sized plots, but
if your data set is not too large, you usually get the gist of the relationships.

The ggplot2 package has a separate plotmatrix function for this type of
plot. Simply entering the following function call will plot variables 3 through
8 against one another (not shown):

plotmatrix( mydata100[3:8] )

You can embellish the plots with many of the options we have covered
earlier in this chapter. Shown below is an example of a scatter plot matrix
(Fig. 16.35) with smoothed lowess fits for the entire data set (i.e., not by
group). The density plots on the diagonals appear by default:



16.12 Scatter Plots and Line Plots 563

Fig. 16.35. A scatter plot matrix with lowess curve fits on the off-diagonal plots,
and density plots on the diagonals. The x -axis for pretest and posttest are too dense
to read. Plotting fewer variables would solve that problem

plotmatrix( mydata100[3:8] ) +

geom_smooth()

The lowess fit generated some warnings, but that is not a problem. It said,
“There were 50 or more warnings (use warnings() to see the first 50).” Note
that on the right side of the x -axis the numbers are packed so densely that
you cannot read them. The overall images are still clear but if you need to be
able to read the axes on a scatter plot matrix, simply plot fewer variables at
a time.

The next example gets fancier by assigning a different symbol shape and
linear fits per group (plot not shown):

plotmatrix( mydata100[3:8],

aes( shape = gender ) ) +

geom_smooth(method = lm)
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16.13 Box Plots

We discussed what box plots are in the Chap. 15 “Traditional Graphics,”
Sect. 15.12. We can recreate all those examples using the ggplot2 package,
except for the “notches” to indicate possible group differences, shown in the
upper right of Fig. 15.47.

The simplest type of box plot is for a single variable (Fig. 16.36). The
qplot function uses the simple form of factor("") to act as its x -axis value.
The y argument is the variable to plot: in this case, posttest. The geom of
boxplot specifies the main display type. The xlab = "" argument blanks out
the label on the x -axis, which would have been a meaningless “factor("")”.

The equivalent ggplot approach is almost identical with its ever-present
aes arguments for x and y and the geom_boxplot function to draw the box.
The scale_x_discrete function simply blanks out the x -axis label.

The qplot approach to Fig. 16.36 is

qplot(factor(""), posttest,

geom = "boxplot", xlab = "")

The ggplot approach to Fig. 16.36 is

ggplot(mydata100,

aes(factor(""), posttest) ) +

geom_boxplot() +

scale_x_discrete("")

Adding a grouping variable like workshop makes box plots much more
informative (Fig. 16.37; ignore the overlaid strip plot points for now). These
are the same function calls as above but with the x argument specified as
workshop. We will skip showing this one in favor of the next.

The qplot approach to box plots (figure not shown) is

qplot(workshop, posttest, geom = "boxplot" )

The ggplot approach to box plots (figure not shown) is

ggplot(mydata100,

aes( workshop, posttest) ) +

geom_boxplot()

Now we will do the same plot but with an added jittered strip plot on top
of it (Fig. 16.37). This way we get the box plot information about the median
and quartiles plus we get to see any interesting structure in the points that
would otherwise have been lost. As you can see, qplot now has jitter added
to its geom argument, and ggplot has an additional geom_jitter function.
Unfortunately, the amount of jitter that both functions provide by default is
optimized for a much larger data set. So these next two sets of code do the
plot shown in Fig. 16.37, but with much more jitter.

The qplot approach to Fig. 16.37 with more jitter added is
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Fig. 16.36. A box plot of posttest

qplot(workshop, posttest,

geom = c("boxplot", "jitter") )

The ggplot approach to Fig. 16.37 with more jitter added is

ggplot(mydata100,

aes(workshop, posttest )) +

geom_boxplot() + geom_jitter()

What follows is the exact code that created Fig. 16.37. The qplot function
does not have enough control to request both the box plot and jitter while
adjusting the amount of jitter:

ggplot(mydata100,

aes(workshop, posttest )) +

geom_boxplot() +

geom_jitter(position = position_jitter(width = .1))

To add another grouping variable, you only need to add the fill argument
to either qplot or ggplot. Compare the resulting Fig. 16.38 to the result we
obtained from traditional graphics in the lower right panel of Fig. 15.47. The
ggplot2 version is superior in many ways. The genders are easier to compare
for a given workshop because they are now grouped side by side. The shading
makes it easy to focus on one gender at a time to see how they changed across
the levels of workshop. The labels are easier to read and did not require the
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Fig. 16.37. A box plot comparing workshop groups on posttest, with jittered points
on top

custom sizing that we did earlier to make room for the labels. The ggplot2

package usually does a better job with complex plots and makes quick work
of them, too.

The qplot approach to Fig. 16.38 is

qplot(workshop, posttest,

geom = "boxplot", fill = gender ) +

scale_fill_grey( start = 0, end = 1 )

The ggplot approach to Fig. 16.38 is

ggplot(mydata100,

aes(workshop, posttest) ) +

geom_boxplot( aes(fill = gender), colour = "black") +

scale_fill_grey( start = 0, end = 1 )
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Fig. 16.38. A box plot comparing workshop and gender groups on posttest

16.14 Error Bar Plots

Plotting means and 95% confidence intervals, as in Fig. 16.39, is a task that
stretches what qplot was designed to do. Due to its complexity, this type
of plot is really not worth doing using qplot, so I only show the code for
ggplot. This plot builds on a jittered strip plot of points which we did earlier
in Sect. 16.11). Notice that I had to use the as.numeric function for our x
variable: workshop. Since workshop is a factor, the software would not connect
the means across the levels of x. Workshop is not a continuous variable, so that
makes sense! Still, connecting the means with a line is a common approach,
one that facilitates the study of higher-level interactions.

The key addition for this plot is stat_summary, which we use twice. First,
we use the argument fun.y = "mean" to calculate the group means. We also
use the geom = "smooth" argument to connect them with a line. Next, we use
fun.data = "mean_cl_normal" to calculate confidence l imits for the means
based on a normal distribution and display them with the errorbar geom.
You can try various values for the width argument until you are satisfied with
the error bar widths. The size = 1 argument sets the thickness of the error
bar lines.

ggplot(mydata100,

aes( as.numeric(workshop), posttest ) ) +

geom_jitter( size = 1,
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Fig. 16.39. An error bar plot with lines running through the means, with default
axis labels

position = position_jitter(width = .1) ) +

stat_summary(fun.y = "mean",

geom = "smooth", se = FALSE) +

stat_summary(fun.data = "mean_cl_normal",

geom = "errorbar", width = .2, size = 1)

16.15 Geographic Maps

Displaying data on maps as they change values across geographic regions is
useful in many fields. As of this writing, SPSS, Inc. does not offer mapping.
However, if you use SPSS, you can use the SPSS Statistics-R Integration
Plug-in to do your maps in R.

SAS offers mapping in SAS/GRAPH and even offers a more comprehensive
Geographic Information System (GIS) in SAS/GIS. While maps are usually
static images displaying geographic information, a GIS allows you to interact
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with a map. For example, SAS/GIS allows you to click on any map region
and have it execute any SAS program you like.

R offers mapping and extensive spatial analysis methods. However, it defers
to other GIS systems for interactive capabilities. The Geographic Resources
Analysis Support System (GRASS) is a popular free and open source GIS sys-
tem available at http://grass.fbk.eu/. The R package spgrass6 provides
an interface between R and GRASS.

For the analysis of spatial data, R’s capabilities are quite powerful. The
Spatial Task View at CRAN lists almost one hundred packages which offer a
wide range of spatial analysis capabilities. An excellent book on the subject
is Applied Spatial Data Analysis with R [8]. A good book that shows how to
use R to control several other free and open source mapping or GIS packages
is Hengl’s A Practical Guide to Geostatistical Mapping [29].

R offers three main approaches to mapping. The oldest is the built-in maps

package [7]. That comes with an eclectic set of maps stored as lists of latitude
and longitude values. It includes a map function to display them, which works
similarly to the traditional plot function.

The second approach is provided by the sp package [44]. It offers a rich
set of Spatial map data structures that store points, lines, polygons, and even
dataframes. The structures are rich enough to allow a region that contains a
lake, on which there is an island, which can have its own lake! That level of
flexibility has encouraged many other packages to adopt these Spatial struc-
tures. As useful as it is, that level of complexity is beyond our scope.

The third approach is the one we will use: the ggplot2 package. As you
have seen, ggplot2 is very powerful and flexible. In addition, it stores its map
data in dataframes, so you have much less to learn about using them. The
maps from the maps and sp packages can both be converted to dataframes for
use in ggplot2.

Let us now work through an example map from one of the ggplot2 help
files. First we need a map which we can get from the maps package:

> library("maps")

> library("ggplot2")

> myStates <- map_data("state")

> head(myStates)

long lat group order region subregion

1 -87.46201 30.38968 1 1 alabama <NA>

2 -87.48493 30.37249 1 2 alabama <NA>

3 -87.52503 30.37249 1 3 alabama <NA>

4 -87.53076 30.33239 1 4 alabama <NA>

5 -87.57087 30.32665 1 5 alabama <NA>

6 -87.58806 30.32665 1 6 alabama <NA>

The map_data function is a ggplot2 function which converts map classes
of objects into dataframes. The map named state is one of the maps included
in the maps package.
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Fig. 16.40. A map of the USA using the path geom

We now have a dataframe myStates which has the longitude (long) and
latitude (lat) for the United States of America.

The group variable stores information about which points form a polygon
so R will know to “pick up the pen” when drawing the various regions.

The order variable will tell R the order in which to draw the points. At
the moment, that is redundant information because the points are already in
the proper order. However, after merging with the data we wish to display on
the map, the order is likely to get scrambled. We can use the order variable
to restore it.

Finally, we have the region and subregion variables. In this case they store
the state names and pieces of states where applicable. Alabama has subregions
set to NA indicating that the state map that we converted to a dataframe
contains no subregions. If we had instead converted the county map, then
the counties of Alabama would have shown up as subregions. However, the
state map does contain some subregions. New York as different pieces such as
Manhattan Island, and that is how they are stored.

We can display the map itself with no data (Fig. 16.40) using qplot:

qplot(long, lat, data = myStates, group = group,

geom = "path", asp = 1)

The long and lat variables supply the x-y coordinates from myStates and
the group variable supplies “lift the pen” information to the group argument.
Since I am only drawing the lines around each state I am using the path geom.
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Maintaining the proper aspect ratio for a map is important. I am doing that
with the asp = 1 setting. The very similar code using the ggplot function
follows:

ggplot(data = myStates, aes(long, lat, group = group) )+

geom_path() +

coord_map()

You see it uses a coord_map function to maintain the proper aspect ration.

Now we need some data to display. R has a built-in dataframe of crime
measures by state:

> myArrests <- USArrests

> head(myArrests)

Murder Assault UrbanPop Rape

Alabama 13.2 236 58 21.2

Alaska 10.0 263 48 44.5

Arizona 8.1 294 80 31.0

Arkansas 8.8 190 50 19.5

California 9.0 276 91 40.6

Colorado 7.9 204 78 38.7

There are two problems with this file. First, the state names are capitalized
while in our map dataframe they are all lower case. Second, the state names
are stored as row names rather than as a variable. We will need a variable to
merge by soon. We can fix both those problems with the following:

> myArrests$region <- tolower( rownames(USArrests) )

> head(myArrests)

Murder Assault UrbanPop Rape region

Alabama 13.2 236 58 21.2 alabama

Alaska 10.0 263 48 44.5 alaska

Arizona 8.1 294 80 31.0 arizona

Arkansas 8.8 190 50 19.5 arkansas

California 9.0 276 91 40.6 california

Colorado 7.9 204 78 38.7 colorado

The tolower function is part of the ggplot2 package and it simply lowers
the case of all letters in a character string.

The next step in any mapping program would be to establish the link
between our two data sets: myStates and myArrests. If we were in SAS, we
would leave the two files separate and use:

PROC GMAP MAP = myStates DATA = myArrests;
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ID region;

CHORO Assault;

SAS would then use the ID statement to match the proper assault value
to each region.

The ggplot approach is to merge the two files and then supply the com-
bined set to the plotting functions. The merge function can handle that task:

> myBoth <- merge(

+ myStates,

+ myArrests, by = "region")

> myBoth[1:4, c(1:5,8)]

region long lat group order Assault

1 alabama -87.46201 30.38968 1 1 236

2 alabama -87.48493 30.37249 1 2 236

3 alabama -87.95475 30.24644 1 13 236

4 alabama -88.00632 30.24071 1 14 236

The two dataframes merged just fine, but now the values of the order
variable indicate that our state outlines will no longer be drawn in their proper
order. We can fix that with:

> myBoth <- myBoth[ order(myBoth$order), ]

> myBoth[1:4, c(1:5, 8)]

region long lat group order Assault

1 alabama -87.46201 30.38968 1 1 236

2 alabama -87.48493 30.37249 1 2 236

6 alabama -87.52503 30.37249 1 3 236

7 alabama -87.53076 30.33239 1 4 236

That first statement looks a bit odd since we are calling the order function
on the order variable. If you need to brush up on sorting, see Sect. 10.18.

I am now ready to draw the map. Before I was only displaying state out-
lines, so I used the path geom. Now, however, I want to fill in the states with
colors that reflect the amount of Assault in each state, so I must view them as
polygons and use that geom instead. A polygon is a line that encloses space
by ending at the same point at which it started. The fill argument supplies
the variable. Now that color is involved, we have an additional function call to
scale_fill_continuous If I left that out, the map would be in color. That’s
much nicer but it would also raise the price of this book and on anything you
publish as well. Therefore, I added it to specify the shades of grey I liked. If
assault were a factor, I would have to use the scale_fill_grey function to
control the shades of grey.
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Fig. 16.41. A map of the USA using the polygon geom

The following is the qplot code for Fig. 16.41, bottom:

qplot(long, lat, data = myBoth, group = group,

fill = Assault, geom = "polygon", asp = 1) +

scale_fill_continuous(low = "grey80", high = "black")

And this is the ggplot code for Fig. 16.41, bottom:

ggplot(data = myBoth,

aes(long, lat, fill = Assault, group = group) )+

geom_polygon() +

coord_map() +

scale_fill_continuous(low = "grey80", high = "black")

16.15.1 Finding and Converting Maps

While SAS has a comprehensive set of maps built in, R comes with an eclectic
mix of maps. However, maps are available from many locations so you should
have no problem finding what you need.

The cshapes package, written by Weidmann, et al. [69], contains world
country maps as they existed each year since 1948 until recently. When I
wrote this, the maps end at 2008 but this will grow with time. In Mapping
and Measuring Country Shapes Weidmann and Gleditsch [69] demonstrate
how to use the maps, which are stored as Spatial objects.
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The Internet is a good source of maps. The Global Administrative Areas
site at http://www.gadm.org/ is particularly useful since their maps are al-
ready R Spatial objects. You can load them directly into R by putting their
URLs into the load function. For example, to load a map of Italy, you can
use:

load( url( "http://gadm.org/data/rda/ITA_adm1.RData") )

The maps there are all named gadm.
Another good source of maps is the Natural Earth Web site at

http://www.naturalearthdata.com/. The maps there are not in the more
convenient Spatial format, but their license allows for commercial use without
getting permission.

As shown above, you can convert any of the maps in the maps package
using ggplot2’s map_data function. It also has a fortify function that will
convert maps in the sp package’s Spatial classes, including the SpatialPolygon
or SpatialPolygonDataFrame.

The maptools package has a readShapeSpatial function that reads the
popular shapefile map format and converts it to a SpatialPolygon or Spa-
tialPolygonDataFrame. From there you can use fortify to finally get the
map into a data frame useful with ggplot2.

16.16 Logarithmic Axes

If your data have a very wide range of values, working in a logarithmic scale is
often helpful. In ggplot2 you can approach this in three different ways. First,
you can take the logarithm of the data before plotting:

qplot( log(pretest), log(posttest) )

Another approach is to use evenly placed tick marks on the plot but have the
axis values use logarithmic values such as 101, 102, and so on. This is what the
scale_x_log10 function does (similarly for the y-axis, of course). There are
similar functions for natural logarithms, scale_x_log, and base 2 logarithms,
scale_x_log2:

qplot(pretest, posttest, data = mydata100) +

scale_x_log10() + scale_y_log10()

Finally, you can have the tick marks spaced unevenly and use values on
your original scale. The coord_trans function does that. Its arguments for
the various bases of logarithms are log10, log, and log2.

qplot(pretest, posttest, data = mydata100) +

coord_trans("log10", "log10")

With our data set, the range of values is so small that this last plot will not
noticeably change the axes. Therefore, we do not show it.
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16.17 Aspect Ratio

Changing the aspect ratio of a graph can be far more important than you
might first think. When a plot displays multiple lines, or a cyclical time series
(in essence a set of multiple lines), you generally want to compare the slopes
or angles of the lines. Research has shown that when the average of the lines’
angles is approximately 45◦, people make more accurate comparisons [13].

Unless you specify an aspect ratio for your graph, qplot and ggplot will
match the dimensions of your output window and allow you to change those
dimensions using your mouse, as you would for any other window.

If you are routing your output to a file, however, it is helpful to be able
to set the aspect ratio using code. You set it using the coord_equal function.
If you leave it empty, as in coord_equal(), it will make the x - and y-axes
of equal lengths. If you specify this while working interactively, you can still
reshape your window, but the graph will remain square. Specifying a ratio
parameter follows the form “height/width.” For a mnemonic, think of how R
specifies [rows,columns]. The following example would result in a graph that
is four times wider than it is high (not shown):

qplot(pretest, posttest) + coord_equal(ratio = 1/4)

16.18 Multiple Plots on a Page

In the previous chapter on traditional graphics, we discussed how to put mul-
tiple plots on a page. However, ggplot2 uses the grid graphics system, so that
method does not work. We previously saw the multiframe plot shown again
in Fig. 16.42. Let us now look at how it was constructed. This time we will
skip the bar plot details and focus on how we combined the plots.

We first clear the page with the grid.newpage function. This is an impor-
tant step as otherwise plots printed using the following methods will appear
on top of others.

grid.newpage()

Next, we use the pushViewport function to define the various frames called
viewports in the grid graphics system. The grid.layout argument uses R’s
common format of [rows, columns]. The following example sets up a 2×2 grid
for us to use:

pushViewport( viewport(layout = grid.layout(2, 2) ) )

In traditional graphics, you would now just do the graphs in order and
they would find their place. However, in the grid system, we must save the
plot to an object and then use the print function to print it into the viewport
we desire. The object name “p” is commonly used as an object name for the
plot. Since there are many ways to add to this object, it is helpful to keep



576 16 Graphics with ggplot2

it short. To emphasize that this is something we get to name, we will use
“myPlot.” The name is not particularly important since it usually used again
for plots that follow. It is only the filename that you create for publication
that needs to be descriptive.

The print function has a vp argument that lets you specify the v iewport’s
position in row(s) and column(s). In the following example, we will print the
graph to row 1 and column 1:

myPlot <- ggplot(mydata100,

aes(gender, fill = workshop) ) +

geom_bar(position = "stack") +

scale_fill_grey(start = 0, end = 1) +

opts( title = "position = stack" )

print(myPlot, vp = viewport(

layout.pos.row = 1,

layout.pos.col = 1) )

The next plot prints to row 1 and column 2.

myPlot <- ggplot(mydata100,

aes(gender, fill = workshop) ) +

geom_bar(position = "fill") +

scale_fill_grey(start = 0, end = 1) +

opts( title = "position = fill" )

print(myPlot, vp = viewport(

layout.pos.row = 1,

layout.pos.col = 2) )

The third and final plot is much wider than the first two. So we will print
it to row 2 in both columns 1 and 2. Since we did not set the aspect ratio
explicitly, the graph will resize to fit the double-wide viewport.

myPlot <- ggplot(mydata100,

aes(gender, fill = workshop) ) +

geom_bar(position = "dodge") +

scale_fill_grey(start = 0, end = 1) +

opts( title = "position = dodge" )

print(myPlot, vp = viewport(

layout.pos.row = 2,

layout.pos.col = 1:2) )

The next time you print a plot without specifying a viewport, the screen
resets back to its previous full-window display. The code for the other multi-
frame plots is in the example program in Sect. 16.22.2.
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Fig. 16.42. Multiframe demonstration plot

16.19 Saving ggplot2 Graphs to a File

In Sect. 14.10, “Graphics Devices,” we discussed various ways to save plots in
files. Those methods work with the ggplot2 package, and in fact they are the
only way to save a multiframe plot to a file.

However, the ggplot2 package has its own function that is optimized for
saving single plots to a file. To save the last graph you created, with either
qplot or ggplot, use the ggsave function. It will choose the proper graphics
device from the file extension.

For example, the following function call will save the last graph created in
an encapsulated postscript file:

> ggsave("mygraph.eps")
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Saving 4.00" x 3.50" image

It will choose the width and height from your computer monitor and will
report back those dimensions. If you did not get it right, you can change
those dimensions and rerun the function. Alternatively, you can specify the
width and height arguments in inches or, for bitmapped formats like Portable
Network Graphics (png), in dots per inch. See help("ggsave") for additional
options.

The file will go to your working directory unless you specify a full path as
part of the filename.

16.20 An Example Specifying All Defaults

Now that you have seen some examples of both qplot and ggplot, let us take
a brief look at the full power of ggplot by revisiting the scatter plot with a
regression line (Fig. 16.43). We will first review both sets of code, exactly as
described in Sect. 16.12.3.

First, done with qplot, it is quite easy and it feels similar to the traditional
graphics plot function:

qplot(pretest, posttest,

geom = c("point", "smooth"), method = "lm" )

Next, let us do it using ggplot with as many default settings as possible. It
does not require much additional typing, and it brings us into the grammar-
of-graphics world. We see the new concepts of aesthetic mapping of variables
and geometric objects, or geoms:

ggplot(mydata100, aes(pretest, posttest) ) +

geom_point() +

geom_smooth(method = "lm")

Finally, here it is again in ggplot but with no default settings. We see that
the plot actually has two layers: one with points and another with the smooth
line. Each layer can use different data frames, variables, geometric objects,
statistics, and so on. If you need graphics flexibility, then ggplot2 is the
package for you!

ggplot() +

layer(

data = mydata100,

mapping = aes(pretest, posttest),

geom = "point",

stat = "identity"

) +

layer(
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Fig. 16.43. This same scatter plot results from several types of programs shown in
the text

data = mydata100,

mapping = aes(pretest, posttest),

geom = "smooth",

stat = "smooth",

method = "lm"

) +

coord_cartesian()

16.21 Summary of Graphics Elements and Parameters

We have seen many ways to modify plots in the ggplot2 package. The ggopt
function is another way. You can set the parameters of all future graphs in the
current session with the following function call. See help("ggopt") function
for many more parameters:

ggopt(
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background.fill = "black",

background.color = "white",

axis.colour = "black" # default axis fonts are grey.

)

The opts function is useful for modifying settings for a single plot. For
example, when colors, shapes, or labels make a legend superfluous, you can
suppress it with

+ opts(legend.position = "none")

See help("opts") for more examples.
The plots created with both qplot and ggplot make copious use of color.

Since our examples did not really need color we suppressed it with

...+ scale_fill_grey(start = 0, end = 1)

An alternate way of doing this is with the theme_set function. To use levels
of grey, use:

theme_set( theme_grey() )

To limit colors to black and white, use:

theme_set( theme_bw() )

To return to the default colors, use:

theme_set()

Enter help("theme_set") for details.

16.22 Example Programs for Grammar of Graphics

SAS does not follow the grammar-of-graphics model. See previous chapter for
SAS/Graph examples. The SPSS examples are sparse compared to those in
R. That is due to space constraints, not lack of capability. For examples using
SPSS legacy graphics, see previous chapter.

16.22.1 SPSS Program for Graphics Production Language

* Filename: GraphicsGG.sps .

CD 'C:\myRfolder'.

GET FILE = 'mydata.sav'.

* GPL statements for histogram of q1.
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GGRAPH

/GRAPHDATASET NAME="graphdataset"

VARIABLES=q1 MISSING=LISTWISE

REPORTMISSING=NO

/GRAPHSPEC SOURCE=INLINE.

BEGIN GPL

SOURCE: s=userSource(id("graphdataset"))

DATA: q1=col(source(s), name("q1"))

GUIDE: axis(dim(1), label("q1"))

GUIDE: axis(dim(2), label("Frequency"))

ELEMENT: interval(position(summary.count(bin.rect(q1))) ,

shape.interior(shape.square))

END GPL.

* GPL statements for bar chart of gender.

GGRAPH

/GRAPHDATASET NAME="graphdataset" VARIABLES=gender

COUNT()[name="COUNT"] MISSING=LISTWISE REPORTMISSING=NO

/GRAPHSPEC SOURCE=INLINE.

BEGIN GPL

SOURCE: s=userSource(id("graphdataset"))

DATA: gender=col(source(s), name("gender"), unit.category())

DATA: COUNT=col(source(s), name("COUNT"))

GUIDE: axis(dim(1), label("gender"))

GUIDE: axis(dim(2), label("Count"))

SCALE: cat(dim(1))

SCALE: linear(dim(2), include(0))

ELEMENT: interval(position(gender*COUNT),

shape.interior(shape.square))

END GPL.

* GPL syntax for scatter plot of q1 by q2.

GGRAPH

/GRAPHDATASET NAME="graphdataset"

VARIABLES=q1 q2 MISSING=LISTWISE

REPORTMISSING=NO

/GRAPHSPEC SOURCE=INLINE.

BEGIN GPL

SOURCE: s=userSource(id("graphdataset"))

DATA: q1=col(source(s), name("q1"))

DATA: q2=col(source(s), name("q2"))

GUIDE: axis(dim(1), label("q1"))

GUIDE: axis(dim(2), label("q2"))

ELEMENT: point(position(q1*q2))

END GPL.
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* Chart Builder.

GGRAPH

/GRAPHDATASET NAME="graphdataset"

VARIABLES=workshop q1 q2 q3 q4

MISSING=LISTWISE REPORTMISSING=NO

/GRAPHSPEC SOURCE=INLINE.

BEGIN GPL

SOURCE: s=userSource(id("graphdataset"))

DATA: workshop=col(source(s), name("workshop"))

DATA: q1=col(source(s), name("q1"))

DATA: q2=col(source(s), name("q2"))

DATA: q3=col(source(s), name("q3"))

DATA: q4=col(source(s), name("q4"))

TRANS: workshop_label = eval("workshop")

TRANS: q1_label = eval("q1")

TRANS: q2_label = eval("q2")

TRANS: q3_label = eval("q3")

TRANS: q4_label = eval("q4")

GUIDE: axis(dim(1.1), ticks(null()))

GUIDE: axis(dim(2.1), ticks(null()))

GUIDE: axis(dim(1), gap(0px))

GUIDE: axis(dim(2), gap(0px))

ELEMENT: point(position((

workshop/workshop_label+q1/q1_label+

q2/q2_label+q3/q3_label+q4/q4_label)*(

workshop/workshop_label+q1/q1_label+

q2/q2_label+q3/q3_label+q4/q4_label)))

END GPL.

* GPL statements for scatter plot matrix

* of workshop to q4 excluding gender.

* Gender cannot be used in this context.

GGRAPH

/GRAPHDATASET NAME="graphdataset"

VARIABLES=workshop q1 q2 q3 q4

MISSING=LISTWISE REPORTMISSING=NO

/GRAPHSPEC SOURCE=INLINE.

BEGIN GPL

SOURCE: s=userSource(id("graphdataset"))

DATA: workshop=col(source(s), name("workshop"))

DATA: q1=col(source(s), name("q1"))

DATA: q2=col(source(s), name("q2"))

DATA: q3=col(source(s), name("q3"))

DATA: q4=col(source(s), name("q4"))

TRANS: workshop_label = eval("workshop")
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TRANS: q1_label = eval("q1")

TRANS: q2_label = eval("q2")

TRANS: q3_label = eval("q3")

TRANS: q4_label = eval("q4")

GUIDE: axis(dim(1.1), ticks(null()))

GUIDE: axis(dim(2.1), ticks(null()))

GUIDE: axis(dim(1), gap(0px))

GUIDE: axis(dim(2), gap(0px))

ELEMENT: point(position((

workshop/workshop_label+q1/q1_label+

q2/q2_label+q3/q3_label+q4/q4_label)*(

workshop/workshop_label+q1/q1_label+

q2/q2_label+q3/q3_label+q4/q4_label)))

END GPL.

16.22.2 R Program for ggplot2

This program brings together the examples discussed in this chapter and a
few variations that were not.

# Filename: GraphicsGG.R

setwd("c:/myRfolder")

load(file = "mydata100.Rdata")

# Get rid of missing values for facets

mydata100 <- na.omit(mydata100)

attach(mydata100)

library("ggplot2")

# ---Bar Plots---

# Bar plot - vertical

qplot(workshop, geom = "bar")

ggplot(mydata100, aes( workshop ) ) +

geom_bar()

# Bar plot - horizontal

qplot(workshop, geom = "bar") + coord_flip()

ggplot(mydata100, aes(workshop) ) +

geom_bar() + coord_flip()
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# Bar plot - single bar stacked

qplot(factor(""), fill = workshop,

geom = "bar", xlab = "") +

scale_fill_grey(start = 0, end = 1)

ggplot(mydata100,

aes(factor(""), fill = workshop) ) +

geom_bar() +

scale_x_discrete("") +

scale_fill_grey(start = 0, end = 1)

# Pie charts, same as stacked bar but polar coordinates

qplot(factor(""), fill = workshop,

geom = "bar", xlab = "") +

coord_polar(theta = "y") +

scale_fill_grey(start = 0, end = 1)

ggplot(mydata100,

aes( factor(""), fill = workshop ) ) +

geom_bar( width = 1 ) +

scale_x_discrete("") +

coord_polar(theta = "y") +

scale_fill_grey(start = 0, end = 1)

# Bar Plots - Grouped

qplot(gender, geom = "bar",

fill = workshop, position = "stack") +

scale_fill_grey(start = 0, end = 1)

qplot(gender, geom = "bar",

fill = workshop, position = "fill") +

scale_fill_grey(start = 0, end = 1)

qplot(gender, geom = "bar",

fill = workshop, position = "dodge") +

scale_fill_grey(start = 0, end = 1)

ggplot(mydata100, aes(gender, fill = workshop) ) +

geom_bar(position = "stack") +

scale_fill_grey(start = 0, end = 1)

ggplot(mydata100, aes(gender, fill = workshop) ) +

geom_bar(position = "fill") +

scale_fill_grey(start = 0, end = 1)
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ggplot(mydata100, aes(gender, fill = workshop ) ) +

geom_bar(position = "dodge") +

scale_fill_grey(start = 0, end = 1)

# Bar Plots - Faceted

qplot(workshop, geom = "bar", facets = gender ~ . )

ggplot(mydata100, aes(workshop) ) +

geom_bar() + facet_grid(gender ~ . )

# Bar Plots - Pre-summarized data

qplot( factor( c(1, 2) ), c(40, 60), geom = "bar",

xlab = "myGroup", ylab = "myMeasure")

myTemp <- data.frame(

myGroup = factor( c(1, 2) ),

myMeasure = c(40, 60)

)

myTemp

ggplot(data = myTemp, aes(myGroup, myMeasure) ) +

geom_bar()

# ---Dot Charts---

qplot(workshop, stat = "bin",

facets = gender ~ . , geom = "point", size = I(4) ) +

coord_flip()

# Same thing but suppressing legend a different way

qplot(workshop, stat = "bin",

facets = gender ~ . , geom = "point", size = 4 ) +

opts(legend.position = "none") +

coord_flip()

ggplot(mydata100,

aes(workshop, ..count.. ) ) +

geom_point(stat = "bin", size = 4) + coord_flip()+

facet_grid( gender ~ . )

# ---Adding Titles and Labels---

qplot(workshop, geom = "bar",

main = "Workshop Attendance",
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xlab = "Statistics Package \nWorkshops")

ggplot(mydata100, aes(workshop, ..count..)) +

geom_bar() +

opts( title = "Workshop Attendance" ) +

scale_x_discrete("Statistics Package \nWorkshops")

# Example not in text: labels of continuous scales.

ggplot(mydata100, aes(pretest,posttest ) ) +

geom_point() +

scale_x_continuous("Test Score Before Training") +

scale_y_continuous("Test Score After Training") +

opts(title = "The Relationship is Linear")

# ---Histograms and Density Plots---

# Simle Histogram

qplot(posttest, geom = "histogram")

qplot(posttest, geom = c("histogram", "rug") ) #not shown

ggplot(mydata100, aes(posttest) ) +

geom_histogram() + geom_rug() # not shown in text

# Histogram with more bars.

qplot(posttest, geom = "histogram", binwidth = 0.5)

ggplot(mydata100, aes(posttest) ) +

geom_histogram(binwidth = 0.5)

# Density plot

qplot(posttest, geom = "density")

ggplot(mydata100, aes(posttest)) +

geom_density()

# Histogram with density

qplot(data = mydata100, posttest, ..density..,

geom = c("histogram", "density") )

ggplot(data=mydata100) +

geom_histogram( aes(posttest, ..density..) ) +

geom_density( aes(posttest, ..density..) ) +

geom_rug( aes(posttest) )
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# Histogram - separate plots by group

qplot(posttest, geom = "histogram", facets = gender ~ . )

ggplot(mydata100, aes(posttest) ) +

geom_histogram() + facet_grid( gender ~ . )

# Histogram with Stacked Bars

qplot(posttest, geom = "histogram", fill = gender) +

scale_fill_grey(start = 0, end = 1)

ggplot(mydata100, aes(posttest, fill = gender) ) +

geom_bar() +

scale_fill_grey(start = 0, end = 1)

# ---QQ Plots---

qplot(sample = posttest, stat = "qq")

ggplot(mydata100, aes(sample = posttest) ) +

stat_qq()

# ---Strip Plots---

# Simple, but jitter too wide for our small data

qplot( factor(""), posttest, geom = "jitter", xlab = "")

ggplot(mydata100, aes(factor(""), posttest) ) +

geom_jitter() +

scale_x_discrete("")

# Again, with more narrow jitter

qplot( factor(""), posttest, data = mydata100, xlab = "",

position = position_jitter(width = .02))

ggplot(mydata100, aes(factor(""), posttest) ) +

geom_jitter(position = position_jitter(width = .02)) +

scale_x_discrete("")

# Strip plot by group.

# First, the easy way, with too much jitter for our data:
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qplot(workshop, posttest, geom = "jitter")

ggplot(mydata100, aes(workshop, posttest) ) +

geom_jitter()

# Again, limiting the jitter for our small data set:

qplot(workshop, posttest, data = mydata100, xlab = "",

position = position_jitter(width = .08) )

ggplot(mydata100, aes(workshop, posttest) ) +

geom_jitter(position = position_jitter(width = .08) ) +

scale_x_discrete("")

# ---Scatter Plots---

# Simple scatter Plot

qplot(pretest, posttest)

qplot(pretest, posttest, geom = "point")

ggplot(mydata100, aes(pretest, posttest) ) +

geom_point()

# Scatter plot connecting points sorted on x.

qplot(pretest, posttest, geom = "line")

ggplot(mydata100, aes(pretest, posttest) ) +

geom_line()

# Scatter plot connecting points in data set order.

qplot(pretest, posttest, geom = "path")

ggplot(mydata100, aes(pretest, posttest) ) +

geom_path()

# Scatter plot with skinny histogram-like bars to X axis.

qplot(pretest,posttest,

xend = pretest, yend = 50,

geom = "segment")
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ggplot(mydata100, aes(pretest, posttest) ) +

geom_segment( aes( pretest, posttest,

xend = pretest, yend = 50) )

# Scatter plot with jitter

# qplot without:

qplot(q1, q4)

# qplot with:

qplot(q1, q4, position =

position_jitter(width = .3, height = .3) )

# ggplot without:

ggplot(mydata100, aes(x = q1, y = q2) ) +

geom_point()

# ggplot with:

ggplot(mydata100, aes(x = q1, y = q2) ) +

geom_point(position =

position_jitter(width = .3,height = .3) )

# Scatter plot on large data sets

pretest2 <- round( rnorm( n = 5000, mean = 80, sd = 5) )

posttest2 <- round( pretest2 +

rnorm( n = 5000, mean = 3, sd = 3) )

pretest2[pretest2 > 100] <- 100

posttest2[posttest2 > 100] <- 100

temp <- data.frame(pretest2, posttest2)

# Small, jittered, transparent points.

qplot(pretest2, posttest2, data = temp,

geom = "jitter", size = I(2), alpha = I(0.15),

position = position_jitter(width = 2) )

ggplot(temp, aes(pretest2, posttest2),

size = 2, position = position_jitter(x = 2, y = 2) ) +

geom_jitter(colour = alpha("black", 0.15) )

# Hexbin plots

# In qplot using default colors.
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qplot(pretest2, posttest2, geom = "hex", bins = 30)

# This works too:

ggplot(temp, aes(pretest2, posttest2) ) +

stat_binhex(bins = 30) +

# In ggplot, switching to greyscale.

ggplot(temp, aes(pretest2, posttest2) ) +

geom_hex( bins = 30 ) +

scale_fill_continuous(

low = "grey80", high = "black")

# Using density contours and small points.

qplot(pretest2, posttest2, data = temp, size = I(1),

geom = c("point","density2d"))

ggplot(temp, aes( x = pretest2, y = posttest2) ) +

geom_point(size = 1) + geom_density2d()

# Density shading

ggplot(temp, aes( x = pretest2, y = posttest2) ) +

stat_density2d(geom = "tile",

aes(fill = ..density..), contour = FALSE) +

scale_fill_continuous(

low = "grey80", high = "black")

rm(pretest2,posttest2,temp)

# Scatter plot with regression line, 95% confidence intervals.

qplot(pretest, posttest,

geom = c("point", "smooth"), method = lm )

ggplot(mydata100, aes(pretest, posttest) ) +

geom_point() + geom_smooth(method = lm)

# Scatter plot with regression line but NO confidence intervals.

qplot(pretest, posttest,

geom = c("point", "smooth"),

method = lm, se = FALSE )

ggplot(mydata100, aes(pretest, posttest) ) +

geom_point() +



16.22 Example Programs for Grammar of Graphics 591

geom_smooth(method = lm, se = FALSE)

# Scatter with x = y line

qplot(pretest, posttest,

geom = c("point", "abline"),

intercept = 0, slope = 1 )

ggplot(mydata100, aes(pretest, posttest) ) +

geom_point() +

geom_abline(intercept = 0, slope = 1)

# Scatter plot with different point shapes for each group.

qplot(pretest, posttest, shape = gender)

ggplot(mydata100, aes(pretest, posttest) ) +

geom_point( aes(shape = gender ) )

# Scatter plot with regressions fit for each group.

qplot(pretest, posttest,

geom = c("smooth", "point"),

method = "lm", shape = gender,

linetype = gender)

ggplot(mydata100,

aes(pretest, posttest, shape = gender,

linetype = gender) ) +

geom_smooth(method = "lm") +

geom_point()

# Scatter plot faceted for groups

qplot(pretest, posttest,

geom = c("smooth", "point"),

method = "lm", shape = gender,

facets = workshop ~ gender)

ggplot(mydata100,

aes(pretest, posttest, shape = gender) ) +

geom_smooth(method = "lm") + geom_point() +

facet_grid(workshop ~ gender)

# Scatter plot with vertical or horizontal lines
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qplot(pretest, posttest,

geom = c("point", "vline", "hline"),

xintercept = 75, yintercept = 75)

ggplot(mydata100, aes(pretest, posttest)) +

geom_point() +

geom_vline(intercept = 75) +

geom_hline(intercept = 75)

# Scatter plot with a set of vertical lines

qplot(pretest, posttest, type = "point") +

geom_vline(xintercept = seq(from = 70,to = 80,by = 2) )

ggplot(mydata100, aes(pretest, posttest)) +

geom_point() +

geom_vline(xintercept = seq(from = 70,to = 80,by = 2) )

ggplot(mydata100, aes(pretest, posttest)) +

geom_point() +

geom_vline(xintercept = 70:80)

# Scatter plotting text labels

qplot(pretest, posttest, geom = "text",

label = rownames(mydata100) )

ggplot(mydata100,

aes(pretest, posttest,

label = rownames(mydata100) ) ) +

geom_text()

# Scatter plot matrix

plotmatrix( mydata100[3:8] )

# Small points & lowess fit.

plotmatrix( mydata100[3:8], aes( size = 1 ) ) +

geom_smooth()

# Shape and gender fits.

plotmatrix( mydata100[3:8],

aes( shape = gender ) ) +

geom_smooth(method = lm)
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# ---Box Plots---

# Box plot of one variable

qplot(factor(""), posttest,

geom = "boxplot", xlab = "")

ggplot(mydata100,

aes(factor(""), posttest) ) +

geom_boxplot() +

scale_x_discrete("")

# Box plot by group

qplot(workshop, posttest, geom = "boxplot" )

ggplot(mydata100,

aes(workshop, posttest) ) +

geom_boxplot()

# Box plot by group with jitter

# Wide jitter

qplot(workshop, posttest,

geom = c("boxplot", "jitter") )

ggplot(mydata100,

aes(workshop, posttest )) +

geom_boxplot() + geom_jitter()

# Narrow jitter

ggplot(mydata100,

aes(workshop, posttest )) +

geom_boxplot() +

geom_jitter(position = position_jitter(width = .1))

# Box plot for two-way interaction.

qplot(workshop, posttest,

geom = "boxplot", fill = gender ) +

scale_fill_grey(start = 0, end = 1)
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ggplot(mydata100,

aes(workshop, posttest) ) +

geom_boxplot( aes(fill = gender), colour = "grey50") +

scale_fill_grey(start = 0, end = 1)

# Error bar plot

ggplot(mydata100,

aes( as.numeric(workshop), posttest ) ) +

geom_jitter(size = 1,

position = position_jitter(width = .1) ) +

stat_summary(fun.y = "mean",

geom = "smooth", se = FALSE) +

stat_summary(fun.data = "mean_cl_normal",

geom = "errorbar", width = .2, size = 1)

# ---Geographic Maps---

library("maps")

library("ggplot2")

myStates <- map_data("state")

head(myStates)

myStates[ myStates$region == "new york", ]

qplot(long, lat, data = myStates, group = group,

geom = "path", asp = 1)

ggplot(data = myStates, aes(long, lat, group = group) )+

geom_path() +

coord_map()

myArrests <- USArrests

head(myArrests)

myArrests$region <- tolower( rownames(USArrests) )

head(myArrests)

myBoth <- merge(

myStates,

myArrests, by = "region")

myBoth[1:4, c(1:5,8)]

myBoth <- myBoth[order(myBoth$order), ]

myBoth[1:4, c(1:5,8)]
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qplot(long, lat, data = myBoth, group = group,

fill = Assault, geom = "polygon", asp = 1) +

scale_fill_continuous(low = "grey80", high = "black")

ggplot(data = myBoth,

aes(long, lat, fill = Assault, group = group) )+

geom_polygon() +

coord_map() +

scale_fill_continuous(low = "grey80", high = "black")

# ---Logarithmic Axes---

# Change the variables

qplot( log(pretest), log(posttest) )

ggplot(mydata100,

aes( log(pretest), log(posttest) ) ) +

geom_point()

# Change axis labels

qplot(pretest, posttest, log = "xy")

ggplot(mydata100, aes( x = pretest, y = posttest) ) +

geom_point() + scale_x_log10() + scale_y_log10()

# Change axis scaling

qplot(pretest, posttest, data = mydata100) +

coord_trans(x = "log10", y = "log10")

ggplot(mydata100, aes( x = pretest, y = posttest) ) +

geom_point() + coord_trans(x = "log10", y = "log10")

# ---Aspect Ratio---

# This forces x and y to be equal.

qplot(pretest, posttest) + coord_equal()

# This sets aspect ratio to height/width.

qplot(pretest, posttest) + coord_equal(ratio = 1/4)

#---Multiframe Plots: Barchart Example---
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grid.newpage() # clear page

# Sets up a 2 by 2 grid to plot into.

pushViewport( viewport(layout = grid.layout(2, 2) ) )

# Bar plot dodged in row 1, column 1.

myPlot <- ggplot(mydata100,

aes(gender, fill = workshop) ) +

geom_bar(position = "stack") +

scale_fill_grey(start = 0, end = 1) +

opts( title = "position = stack " )

print(myPlot, vp = viewport(

layout.pos.row = 1,

layout.pos.col = 1) )

# Bar plot stacked, in row 1, column 2.

myPlot <- ggplot(mydata100,

aes(gender, fill = workshop) ) +

geom_bar(position = "fill") +

scale_fill_grey(start = 0, end = 1) +

opts( title = "position = fill" )

print(myPlot, vp = viewport(

layout.pos.row = 1,

layout.pos.col = 2) )

# Bar plot dodged, given frames,

# in row 2, columns 1 and 2.

myPlot <- ggplot(mydata100,

aes(gender, fill = workshop) ) +

geom_bar(position = "dodge") +

scale_fill_grey(start = 0, end = 1) +

opts( title = "position = dodge" )

print(myPlot, vp = viewport(

layout.pos.row = 2,

layout.pos.col = 1:2) )

#---Multiframe Scatter Plots---

# Clears the page

grid.newpage()

# Sets up a 2 by 2 grid to plot into.

pushViewport( viewport(layout = grid.layout(2,2) ) )
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# Scatter plot of points

myPlot <- qplot(pretest, posttest,main = "geom = point")

print(myPlot, vp = viewport(

layout.pos.row = 1,

layout.pos.col = 1) )

myPlot <- qplot( pretest, posttest,

geom = "line", main = "geom = line" )

print(myPlot, vp = viewport(

layout.pos.row = 1,

layout.pos.col = 2) )

myPlot <- qplot( pretest, posttest,

geom = "path", main = "geom = path" )

print(myPlot, vp = viewport(

layout.pos.row = 2,

layout.pos.col = 1) )

myPlot <- ggplot( mydata100, aes(pretest, posttest) ) +

geom_segment( aes(x = pretest, y = posttest,

xend = pretest, yend = 58) ) +

opts( title = "geom_segment example" )

print(myPlot,

vp = viewport(layout.pos.row = 2, layout.pos.col = 2) )

# ---Multiframe Scatterplot for Jitter---

grid.newpage()

pushViewport( viewport(layout = grid.layout(1, 2) ) )

# Scatterplot without

myPlot <- qplot(q1, q4,

main = "Likert Scale Without Jitter")

print(myPlot, vp = viewport(

layout.pos.row = 1,

layout.pos.col = 1) )

myPlot <- qplot(q1, q4,

position = position_jitter(width = .3, height = .3),

main = "Likert Scale With Jitter")

print(myPlot, vp = viewport(

layout.pos.row = 1,

layout.pos.col = 2) )

# ---Detailed Comparison of qplot and ggplot---
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qplot(pretest, posttest,

geom = c("point", "smooth"), method = "lm" )

# Or ggplot with default settings:

ggplot(mydata100, aes(x = pretest, y = posttest) ) +

geom_point() +

geom_smooth(method = "lm")

# Or with all the defaults displayed:

ggplot() +

layer(

data = mydata100,

mapping = aes(x = pretest, y = posttest),

geom = "point",

stat = "identity"

) +

layer(

data = mydata100,

mapping = aes(x = pretest, y = posttest),

geom = "smooth",

stat = "smooth",

method = "lm"

) +

coord_cartesian()
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Statistics

This chapter demonstrates some basic statistical methods. More importantly,
it shows how even in the realm of fairly standard analyses, R differs sharply
from the approach used by SAS and SPSS. Since this book is aimed at people
who already know SAS or SPSS, I assume you are already familiar with most
of these methods. I briefly list each test’s goal and assumptions and how to get
R to perform them. For more statistical coverage see Dalgaard’s Introductory
Statistics with R [16], or Venable and Ripley’s much more advanced Modern
Applied Statistics with S [65].

The examples in this chapter will use the mydata100 data set described in
Sect. 1.7. To get things to fit well on these pages, I have set

options(linesize = 63)

You can use that if you want your output to match perfectly, but it is not
necessary.

17.1 Scientific Notation

While SAS and SPSS tend to print their small probability values as 0.000,
R often uses scientific notation. An example is 7.447e-5 which means 7.447×
10−5, or 0.00007447. When the number after the “e” is negative, you move the
decimal place that many places to the left.

You may also see p-values of just “0.”That value is controlled by the digits
option, which is set to be seven significant digits by default. If you wanted
to increase the number of digits to 10, you could do so with the following
function call:

options(digits=10)

SAS has a similar option, OPTIONS PROBSIG=10, but it applies only to the
p-values it prints. SPSS has a command that works more like R, SET SMALL

0.0000000001, which affects the printing of all values that contain decimals.
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In all three packages, setting the number of digits affects only their display.
The full precision of p-values is always available when the numbers are stored.

Supplying a positive number to R’s scientific penalty option scipen biases
the printing away from scientific notation and more toward fixed notation. A
negative number does the reverse. So if you want to completely block scientific
notation, you can do so with the following funcion call:

options(scipen=999)

This is the equivalent of “SET SMALL 0.” in SPSS.

17.2 Descriptive Statistics

In SAS, you get frequencies from PROC FREQ and means, standard devia-
tions, and the like from PROC MEANS or PROC UNIVARIATE.

SPSS allows you to get both at once with the FREQUENCIES command,
although you can also get means and other descriptive statistics from the
CONDESCRIPTIVE and EXAMINE commands.

R also has functions that handle categorical and continuous variables to-
gether or separately. Let us start with functions that are most like those of
SAS or SPSS and then move on to functions that are more fundamental to R.

17.2.1 The Deducer frequencies Function

We discussed Fellow’s Deducer package in the section on GUIs (Sect. 3.11.1).
However, that package also includes some very useful functions such as
frequencies. To use Deducer, you must install it. See Chap. 2, “Installing
and Updating R.” Then you must load it with either the Packages> Load
Packages menu item or the function call

library("Deducer")

You use its frequencies function with a data frame or a individual vari-
able. To save space, I will only show the output for workshop:

> frequencies(mydata100)

$workshop

------------------------------------------------------------

-- Frequencies --

-- --

Value # of Cases % Cumulative %

1 R 31 31.3 31.3

2 SAS 24 24.2 55.6

3 SPSS 25 25.3 80.8
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4 Stata 19 19.2 100.0

-- --

-- Case Summary --

-- --

Vaild Missing Total

# of cases 99 1 100

-- --

-- --

------------------------------------------------------------

This is information we would get from SAS’s FREQ procedure or SPSS’s
FREQUENCIES command tab command.

17.2.2 The Hmisc describe Function

Frank Harrell’s Hmisc package [32] offers a wide selection of functions that
have more comprehensive output than the standard R functions. One of these
is the describe function. It is similar to the summary function we have used
throughout this book. Before using the describe function, you must install
Hmisc. See Chap. 2, “Installing and Updating R.”Then you must load it with
either the Packages> Load Packages menu item or the function call:

library("Hmisc")

You can select variables in many ways. See Chap. 7, “Selecting Variables,”
for details. One of the nicest features of the describe function is that it
provides frequencies on nonfactors as well as factors, so long as they do not
have too many values:

> describe(mydata100L)

mydata100L

8 Variables 100 Observations

-------------------------------------------------------------

gender

n missing unique

99 1 2

Female (47, 47%), Male (52, 53%)

-------------------------------------------------------------

workshop

n missing unique

99 1 4

R (31, 31%), SAS (24, 24%), SPSS (25, 25%), Stata (19, 19%)

-------------------------------------------------------------

q1 : The instructor was well prepared.

n missing unique Mean
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100 0 5 3.45

1 2 3 4 5

Frequency 4 14 36 25 21

% 4 14 36 25 21

-------------------------------------------------------------

q2 : The instructor communicated well.

n missing unique Mean

100 0 5 3.06

1 2 3 4 5

Frequency 10 28 21 28 13

% 10 28 21 28 13

-------------------------------------------------------------

q3 : The course materials were helpful.

n missing unique Mean

99 1 5 3.081

1 2 3 4 5

Frequency 10 20 34 22 13

% 10 20 34 22 13

-------------------------------------------------------------

q4 : Overall, I found this workshop useful.

n missing unique Mean

100 0 5 3.4

1 2 3 4 5

Frequency 6 14 34 26 20

% 6 14 34 26 20

-------------------------------------------------------------

pretest

n missing unique Mean .05 .10 .25 .50

100 0 23 74.97 66.95 69.00 72.00 75.00

.75 .90 .95

79.00 82.00 83.00

lowest : 58 62 63 66 67, highest: 82 83 84 85 86

-------------------------------------------------------------

posttest

n missing unique Mean .05 .10 .25 .50

100 0 28 82.06 71.95 75.00 77.00 82.00

.75 .90 .95

86.00 90.00 92.00

lowest : 59 67 68 69 71, highest: 91 92 95 96 98

-------------------------------------------------------------

Unlike SAS and SPSS, the describe function does not provide per-
centages that include missing values. You can change that by setting the
exclude.missing argument to FALSE. The describe function will automat-
ically provide a table of frequencies whenever a variable has no more than
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20 unique values. Beyond that, it will print the five largest and five small-
est values, just like SAS’s UNIVARIATE procedure and SPSS’s EXPLORE
procedure.

Notice that the survey questions themselves appear in the output. That is
because this version of the data frame was prepared as described in Sect. 11.2,
“Variable Labels,” using the Hmisc package’s approach.

17.2.3 The summary Function

R’s built-in function for univariate statistics is summary. We have used the
summary function extensively throughout this book, but I repeat its output
here for comparison:

> summary(mydata100)

gender workshop q1 q2

Female:47 R :31 Min. :1.00 Min. :1.00

Male :52 SAS :24 1st Qu.:3.00 1st Qu.:2.00

NA's : 1 SPSS :25 Median :3.00 Median :3.00

Stata:19 Mean :3.45 Mean :3.06

NA's : 1 3rd Qu.:4.00 3rd Qu.:4.00

Max. :5.00 Max. :5.00

q3 q4 pretest

Min. :1.000 Min. :1.0 Min. :58.00

1st Qu.:2.000 1st Qu.:3.0 1st Qu.:72.00

Median :3.000 Median :3.0 Median :75.00

Mean :3.081 Mean :3.4 Mean :74.97

3rd Qu.:4.000 3rd Qu.:4.0 3rd Qu.:79.00

Max. :5.000 Max. :5.0 Max. :86.00

NA's :1.000

posttest

Min. :59.00

1st Qu.:77.00

Median :82.00

Mean :82.06

3rd Qu.:86.00

Max. :98.00

As you can see, it is much sparser, lacking percentages for factors, frequen-
cies and percentages for numeric variables (even if they have a small number
of values), number of nonmissing values, and so on. However, it is much more
compact. The numbers labeled “1st Qu.” and “3rd Qu.” are the first and third
quartiles, or the 25th and 75th percentiles, respectively.
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Notice that the variable labels are now ignored. At the time of this writing,
only the print function and the functions that come with the Hmisc package
display variable labels created by the Hmisc label function. If we wanted
to add value labels to the q variables, we would have to convert them to
factors. The summary function works with a much wider range of objects,
as we will soon see. The describe function works only with data frames,
vectors, matrices, or formulas. For data frames, choose whichever of these two
functions meets your needs.

17.2.4 The table Function and Its Relatives

Now let us review R’s built-in functions for frequencies and proportions. We
have covered them in earlier sections also, but I repeat them here for ease of
comparison and elaboration.

R’s built-in function for frequency counts provides output that is much
sparser than those of the describe function:

> table(workshop)

workshop

R SAS SPSS Stata

31 24 25 19

> table(gender)

gender

Female Male

47 52

The above output is quite minimal, displaying only the frequencies. This spar-
sity makes it very easy to use this output as input to other functions such as
barplot; see Chap. 15, “Traditional Graphics,” for examples.

We can get proportions by using the prop.table function:

> prop.table( table(workshop) )

workshop

R SAS SPSS Stata

0.3131313 0.2424242 0.2525253 0.1919192

> prop.table( table(gender) )

gender

Female Male

0.4747475 0.5252525
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You can round off the proportions using the round function. The only argu-
ments you need are the object to round and the number of decimals you would
like to keep:

> round( prop.table( table(gender) ), 2 )

gender

Female Male

0.47 0.53

Converting that to percentages is, of course, just a matter of multiplying by
100. If you multiply before rounding, you will not even need to specify the
number of decimals to keep since the default is to round to whole numbers:

> round( 100* ( prop.table( table(gender) ) ) )

gender

Female Male

47 53

When examining test scores, it is often helpful to get cumulative propor-
tions. R does this by adding the cumsum function that cumulatively sums a
variable. Here we apply it to the output of prop.table to sum its proportions.

> cumsum( prop.table( table(posttest) ) )

59 67 68 69 71 72 74 75 76 77 78

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.13 0.18 0.26 0.31

79 80 81 82 83 84 85 86 87 88 89

0.35 0.39 0.48 0.53 0.58 0.65 0.68 0.76 0.79 0.84 0.87

90 91 92 95 96 98

0.92 0.93 0.96 0.98 0.99 1.00

We can see that 0.92 of the students received a score of 90 or lower.
You can easily combine just the pieces you need into your own function.

For example, here I add the original values, frequencies, proportions, and
cumulative proportions into a data frame:

myTable <- function(score) {

myDF <- data.frame( table(score) )

myDF$Prop <- prop.table( myDF$Freq )

myDF$CumProp <- cumsum( myDF$Prop )

myDF

}
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Here is what the output looks like:

> myTable(posttest)

score Freq Prop CumProp

1 59 1 0.01 0.01

2 67 1 0.01 0.02

3 68 1 0.01 0.03

...

26 95 2 0.02 0.98

27 96 1 0.01 0.99

28 98 1 0.01 1.00

Hilbe has added this function to his COUNT package [30].
A word of caution about the table function. Unlike the summary function,

if you use it on a whole data frame, it will not give you all one-way frequency
tables. Instead, it will cross-tabulate all of the variables at once. You can use
it on a surprising number of factors at once. When you convert its output to
a data frame, you have a concise list of counts for all possible combinations.
For an example, see Sect. 10.12.4, “Tabular Aggregation.”

17.2.5 The mean Function and Its Relatives

R’s built-in functions offers similarly sparse output for univariate statistics.
To get just the means of variables q1 through posttest (variables 3 through 8),
we can use

> sapply( mydata100[3:8], mean, na.rm = TRUE)

q1 q2 q3 q4 pretest posttest

3.4500 3.0600 3.0808 3.4000 74.9700 82.0600

Similarly, for the standard deviations:

> sapply( mydata100[3:8], sd, na.rm = TRUE)

q1 q2 q3 q4 pretest posttest

1.0952 1.2212 1.1665 1.1371 5.2962 6.5902

You can also substitute the var function for variance or the median func-
tion for that statistic. You can apply several of these functions at once by com-
bining them into your own single function. For an example of that, see Sect. 5.9
“Writing Your Own Functions (Macros).” For details about the sapply func-
tion, see Sect. 10.2, “Procedures or Functions? The Apply Function Decides.”
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17.3 Cross-Tabulation

You can compare groups on categorical measures with the chi-squared test, for
example, testing to see if males and females attended the various workshops
in the same proportions. In SAS, you would use PROC FREQ and in SPSS
the CROSSTABS or procedure, perhaps in conjunction with the SPSS Exact
Tests module.

Assumptions:

� No more than 20% of the cells in your cross-tabulation have counts fewer
than 5. If you have sparse tables, the exact fisher.test function is more
appropriate.

� Observations are independent. For example, if you measured the same
subjects repeatedly, it would be important to take that into account in a
more complex model.

� The variables are not the same thing measured at two times. If that is the
case, the mcnemar.test function may be what you need.

17.3.1 The CrossTable Function

To get output most like that from SAS and SPSS, we will first use the functions
from Warnes’ gmodels package [68]. Then we will cover the cross-tabulation
functions that are built into R. To use gmodels, you must first install it. See
Chap. 2, “Installing and Updating R.” Then you must load it with either the
Packages> Load Packages menu item or the function call

library("gmodels")

Now you are ready to use the CrossTable function:

> CrossTable(workshop, gender,

+ chisq = TRUE, format = "SAS")

Cell Contents

|-------------------------|

| N |

| Chi-square contribution |

| N / Row Total |

| N / Col Total |

| N / Table Total |

|-------------------------|

Total Observations in Table: 99

| gender

workshop | Female | Male | Row Total |

-------------|-----------|-----------|-----------|

R | 14 | 17 | 31 |
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| 0.035 | 0.032 | |

| 0.452 | 0.548 | 0.313 |

| 0.298 | 0.327 | |

| 0.141 | 0.172 | |

-------------|-----------|-----------|-----------|

SAS | 11 | 13 | 24 |

| 0.014 | 0.012 | |

| 0.458 | 0.542 | 0.242 |

| 0.234 | 0.250 | |

| 0.111 | 0.131 | |

-------------|-----------|-----------|-----------|

SPSS | 13 | 12 | 25 |

| 0.108 | 0.097 | |

| 0.520 | 0.480 | 0.253 |

| 0.277 | 0.231 | |

| 0.131 | 0.121 | |

-------------|-----------|-----------|-----------|

Stata | 9 | 10 | 19 |

| 0.000 | 0.000 | |

| 0.474 | 0.526 | 0.192 |

| 0.191 | 0.192 | |

| 0.091 | 0.101 | |

-------------|-----------|-----------|-----------|

Column Total | 47 | 52 | 99 |

| 0.475 | 0.525 | |

-------------|-----------|-----------|-----------|

Statistics for All Table Factors

Pearson's Chi-squared test

------------------------------------------------------------

Chi^2 = 0.2978553 d.f. = 3 p = 0.9604313

The CrossTable function call above used three arguments.

1. The variable that determines the table rows.
2. The variable that determines the table columns.
3. The chisq = TRUE argument, which tells R to perform that test. As with

SAS and SPSS, if you leave this argument out, it will perform the cross-
tabulation, but not the chi-squared test.

4. The format="SAS" argument, which tells it to create a table as SAS would.
That is the default so you do not need to list it if that is what you want.
Placing format="SPSS" here would result in a table in the style of SPSS.

17.3.2 The table and chisq.test Functions

R also has built-in functions to do cross-tabulation and the chi-squared test.
As usual, the built-in functions present sparse results. We will first use the
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table function. To simplify the coding and to demonstrate a new type of data
structure, we will save the table and name it myWG for workshop and gender:

> myWG <- table(workshop, gender)

Printing myWG will show us that it contains the form of counts to which SAS
and SPSS users are accustomed.

> myWG

gender

workshop Female Male

R 14 17

SAS 11 13

SPSS 13 12

Stata 9 10

You may recall from our discussion of factors that you can create factor
levels (and their labels) that do not exist in your data. That would help if
you were to enter more data later that is likely to contain those values or if
you were to merge your data frame with others that had a full set of values.
However, when performing a cross-tabulation, the levels with zero values will
become part of the table. These empty cells will affect the resulting chi-squared
statistic, which will drastically change its value. To get rid of the unused levels,
append [ ,drop = TRUE] to the variable reference, for example,

myWG <- table( workshop[ , drop = TRUE], gender)

Some R functions work better with this type of data in a data frame. You
probably associate this style of tabular data with output from the SAS SUM-
MARY procedure or SPSS AGGREGATE command. The as.data.frame

function can provide it:

> myWGdata <- as.data.frame(myWG)

> myWGdata

workshop gender Freq

1 R Female 14

2 SAS Female 11

3 SPSS Female 13

4 Stata Female 9

5 R Male 17

6 SAS Male 13

7 SPSS Male 12

8 Stata Male 10
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The functions we discuss now work well on table objects, so we will use
myWG. We can use the chisq.test function to perform the chi-squared test:

> chisq.test(myWG)

Pearson's Chi-squared test

data: myWG

X-squared = 0.2979, df = 3, p-value = 0.9604

The table function does not calculate any percents or proportions. To
get row or column proportions, we can use the prop.table function. The
arguments in the example below are the table and the margin to analyze
where 1=row and 2=column. So this will calculate row proportions:

> prop.table(myWG, 1)

gender

workshop Female Male

R 0.45161 0.54839

SAS 0.45833 0.54167

SPSS 0.52000 0.48000

Stata 0.47368 0.52632

Similarly, changing the “1” to “2” requests column proportions:

> prop.table(myWG, 2)

gender

workshop Female Male

R 0.29787 0.32692

SAS 0.23404 0.25000

SPSS 0.27660 0.23077

Stata 0.19149 0.19231

If you do not provide the margin argument, the function will calculate total
proportions:

> prop.table(myWG)

gender

workshop Female Male

R 0.14141 0.17172

SAS 0.11111 0.13131
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SPSS 0.13131 0.12121

Stata 0.09091 0.10101

The round function will round off unneeded digits by telling it how many
decimal places you want – in this case, 2. These are the row proportions:

> round( prop.table(myWG, 1), 2 )

gender

workshop Female Male

R 0.45 0.55

SAS 0.46 0.54

SPSS 0.52 0.48

Stata 0.47 0.53

To convert proportions to percentages, multiply by 100 and round off. If you
want to round to the nearest whole percentage, multiply by 100 before round-
ing off. That way you do not even have to tell the round function how many
decimal places to keep as its default is to round off to whole numbers:

> round( 100* ( prop.table(myWG, 1) ) )

gender

workshop Female Male

R 45 55

SAS 46 54

SPSS 52 48

Stata 47 53

If you wish to add marginal totals, the addmargins function will do so. It
works much like the prop.table function, in that its second argument is a 1
to add a row with totals or 2 to add a column.

> addmargins(myWG, 1)

gender

workshop Female Male

R 14 17

SAS 11 13

SPSS 13 12

Stata 9 10

Sum 47 52

If you do not specify a preference for row or column totals, you will get
both:
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> addmargins(myWG)

gender

workshop Female Male Sum

R 14 17 31

SAS 11 13 24

SPSS 13 12 25

Stata 9 10 19

Sum 47 52 99

17.4 Correlation

Correlations measure the strength of linear association between two contin-
uous variables. SAS calculates them with PROC CORR for both parametric
and nonparametric correlations. SPSS uses the CORRELATIONS procedure
for parametric and NONPAR CORR procedure for nonparametric correla-
tions. R has both built-in functions to calculate correlations and, of course,
more functions to do so in add-on packages.

Assumptions:

1. Scatter plots of the variables shows essentially a straight line. The function
plot(x,y) does the scatter plots. If you have a curve, transformations
such as square roots or logarithms often help.

2. The spread in the data is the same at low, medium, and high values.
Transformations often help with this assumption also.

3. For a Pearson correlation, the data should be at least interval level and
normally distributed. As discussed in Chap. 15, “Traditional Graphics,”
hist(myvar) or qqnorm(myvar) is a quick way to examine the data. If
your data are not normally distributed or are just ordinal measures (e.g.,
low, medium, high), you can use the nonparametric Spearman or the (less
popular) Kendall correlation.

To do correlations, we will use the rcorr.adjust function from the Rcmdr
package discussed in Sect. 3.11.2. The history of this function is a good ex-
ample of why R is growing so rapidly. For over a decade I had been asking
the developers of SAS and SPSS to add an option to correct their p-values
for the effects of multiple testing. When I started using R, I came across the
built-in p.adjust function that corrects a vector of p-values from any tests. I
liked the way the Hmisc package’s rcorr function did correlations, so I wrote
a function to add p.adjust to it. I sent that off to John Fox, the developer
of R Commander. He improved the code and added it to the package. With
just a few hours of work and the efforts of several people, every R user now
has access to a useful feature.
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Before using the Rcmdr package, you must install it. (See Chap. 2, ”In-
stalling and Updating R.”) Then you must load it with either the Packages>
Load Packages menu item or the function call

library("Rcmdr")

The graphical user interface will start up, but we will just use programming
code to run it. To correlate variables, supply them in the form of either a data
frame or a matrix. To better demonstrate the impact of correcting p-values, I
will use the smaller mydata data set:

> load("mydata.RData")

> rcorr.adjust( mydata[3:6] )

q1 q2 q3 q4

q1 1.00 0.78 -0.12 0.88

q2 0.78 1.00 -0.27 0.90

q3 -0.12 -0.27 1.00 -0.03

q4 0.88 0.90 -0.03 1.00

n= 7

P

q1 q2 q3 q4

q1 0.0385 0.7894 0.0090

q2 0.0385 0.5581 0.0053

q3 0.7894 0.5581 0.9556

q4 0.0090 0.0053 0.9556

Adjusted p-values (Holm's method)

q1 q2 q3 q4

q1 0.1542 1.0000 0.0450

q2 0.1542 1.0000 0.0318

q3 1.0000 1.0000 1.0000

q4 0.0450 0.0318 1.0000

The first set of output are the Pearson correlations themselves. We can see
that the correlation of q1 and q2 is 0.78.

Next, it reports the number of valid observations: n=7. The function filters
out missing values in a listwise fashion. The rcorr function in the Hmisc pack-
age does pairwise deletion, and that addition is planned for rcorr.adjust.

After that, we see the p-values. These are the same as you would get
from SAS or SPSS using listwise deletion of missing values. From that set
the correlation of q1 and q2 has a p-value of 0.0385, well under the popular
significance level of 0.05.
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Finally, we see the adjusted p-values. These take into account the num-
ber of tests we have done and corrects for them using Holm’s method.
Other adjustment methods are available. See help("rcorr.adjust") and
help("p.adjust") for details. The adjusted p-value for the correlation of
q1 and q2 is 0.1542! That is the more realistic value.

You add the type="spearman" argument to get correlations on variables
that are not normally distributed or are only ordinal in scale (e.g., low,
medium, high):

> rcorr.adjust( mydata[3:6], type="spearman" )

q1 q2 q3 q4

q1 1.00 0.66 -0.04 0.82

q2 0.66 1.00 -0.08 0.88

q3 -0.04 -0.08 1.00 0.26

q4 0.82 0.88 0.26 1.00

n= 7

P

q1 q2 q3 q4

q1 0.1041 0.9327 0.0237

q2 0.1041 0.8670 0.0092

q3 0.9327 0.8670 0.5768

q4 0.0237 0.0092 0.5768

Adjusted p-values (Holm's method)

q1 q2 q3 q4

q1 0.4165 1.0000 0.1183

q2 0.4165 1.0000 0.0554

q3 1.0000 1.0000 1.0000

q4 0.1183 0.0554 1.0000

17.4.1 The cor Function

Now let us take a look at R’s built-in functions for calculating correlations.
As usual, they provide more sparse output:

> cor( mydata[3:6],

+ method = "pearson", use = "pairwise")

q1 q2 q3 q4

q1 1.0000000 0.7395179 -0.12500000 0.88040627

q2 0.7395179 1.0000000 -0.27003086 0.85063978

q3 -0.1250000 -0.2700309 1.00000000 -0.02613542

q4 0.8804063 0.8506398 -0.02613542 1.00000000
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The cor function call above uses three arguments.

1. The variables to correlate. This can be a pair of vectors, a matrix, or a
data frame. If the first argument is a vector, then the next argument must
be another vector with which to correlate. You can label them x= and y=

or just put them in the first two positions.
2. The method argument can be pearson, spearman, or kendall for those

types of correlations. (Be careful not to capitalize these names when used
with arguments in R.)

3. The use argument determines how the function will deal with missing
data. The value pairwise.complete, abbreviated pairwise above, uses
as much data as possible. That is the default approach in SAS and SPSS.
The value complete.obs is the SAS/SPSS equivalent of listwise deletion
of missing values. This tosses out cases that have any missing values for the
variables analyzed. If each variable has just a few missing values, but the
values that are missing involve different cases, you can lose a very large
percentage of your data with this option. However, it does ensure that
every correlation is done on the exact same cases. That can be important
if you plan to use the correlation matrix in additional computations. As
usual, by default R provides no results if it finds missing values. That
is the use=all.obs setting. So if you omit the use argument and have
missing values, cor will print only an error message telling you that it has
found missing values.

Unlike the Rcmdr package’s rcorr.adjust function, the built-in cor func-
tion provides only a correlation matrix. Another built-in function, cor.test,
provides comprehensive output but only for two variables at a time.

> cor.test(mydata$q1, mydata$q2, use="pairwise")

Pearson's product-moment correlation

data: mydata$q1 and mydata$q2

t = 2.691, df = 6, p-value = 0.036

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.0727632 0.9494271

sample estimates:

cor

0.7395179

Note here that if you run cor.test multiple times it is up to you to correct
your p-values for the number of tests you do. You can do that manually using
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the p.adjust function, but in the case of correlations it is much easier to use
rcorr.adjust in the Rcmdr package as shown previously.

17.5 Linear Regression

Linear regression models the linear association between one continuous de-
pendent variable and a set of continuous independent or predictor variables.
SAS performs linear regression with PROC REG, among others. SPSS uses
the REGRESSION procedure, and others.

Assumptions:

� Scatter plots of the dependent variable with each independent variable
shows essentially a straight line. The plot(x,y) function call does the
scatter plots. If you have a curve, transformations such as square roots or
logarithms often help straighten it out.

� The spread in the data is the same at low, medium, and high values. This is
called homoscedasticity. Transformations often help with this requirement
also.

� The model residuals (difference between the predicted values and the ac-
tual values) are normally distributed. We will use the plot function to
generate a normal QQ plot to test this assumption.

� The model residuals are independent. If they contain a relationship, such
as the same subjects measured through time or classes of subjects sharing
the same teacher, you would want to use a more complex model to take
that into account.

When performing a single type of analysis in SAS or SPSS, you prepare
your two or three commands and then submit them to get all your results
at once. You could save some of the output using the SAS Output Delivery
System (ODS) or SPSS Output Management System (OMS) , but that is
not required. R, on the other hand, shows you very little output with each
command, and everyone uses its integrated output management capabilities.

Let us look at a simple example. First, we will use the lm function to do a
l inear model predicting the values of q4 from the survey questions. Although
this type of data is viewed as ordinal scale by many, social scientists often
view it as interval-level. With a more realistic data set, we would be working
with a scale for each measure that consisted of the means of several questions,
resulting in far more than just five values. The first argument to lm is the
formula. Table 17.1 shows formulas for various types of models. The following
lm function call includes the formula for a linear regression that includes no
interactions:

> lm(q4 ~ q1 + q2 + q3, data = mydata100)

Call:



17.5 Linear Regression 617

lm(formula = q4 ~ q1 + q2 + q3, data = mydata100)

Coefficients:

(Intercept) q1 q2 q3

1.20940 0.41134 0.15791 0.09372

We see that the results provide only the coefficients to the linear regression
model. So the model is as follows:

Predictedq4 = 1.20940 + 0.41134× q1 + 0.15791× q2 + 0.09372× q3

The other results that SAS or SPSS would provide, such as R-squared or
tests of significance, are not displayed. Now we will run the model again and
save its results in an object called myModel.

> myModel <- lm(q4 ~ q1 + q2 + q3, data = mydata100)

This time, no printed results appear. We can see the contents of myModel by
entering its name just like any other R object:

> myModel

Call:

lm(formula = q4 ~ q1 + q2 + q3, data = mydata100)

Coefficients:

(Intercept) q1 q2 q3

1.20940 0.41134 0.15791 0.09372

The above results are exactly the same as we saw initially. So what type of
object is myModel? The mode and class functions can tell us:

> mode(myModel)

[1] "list"

> class(myModel)

[1] "lm"

So we see the lm function saved our model as a list with a class of lm. Now
that we have the model stored, we can apply a series of extractor functions
to get much more information. Each of these functions will see the class of
lm and will apply the methods that it has available for that class of object.
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We have used the summary function previously. With our data frame object,
mydata100, the summary function “knew” to get frequency counts on factors
and other measures, like means, on continuous variables. The following code
shows what it will do with lm objects:

> summary(myModel)

Call:

lm(formula = q4 ~ q1 + q2 + q3, data = mydata100)

Residuals:

Overall, I found this workshop useful.

Min 1Q Median 3Q Max

-1.9467 -0.6418 0.1175 0.5960 2.0533

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.20940 0.31787 3.805 0.000251 ***

q1 0.41134 0.13170 3.123 0.002370 **

q2 0.15791 0.10690 1.477 0.142942

q3 0.09372 0.11617 0.807 0.421838

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9308 on 95 degrees of freedom

(1 observation deleted due to missingness)

Multiple R-squared: 0.3561, Adjusted R-squared: 0.3358

F-statistic: 17.51 on 3 and 95 DF, p-value: 3.944e-09

That is much the same output we would get from SAS or SPSS. The main
difference is the summary of model residuals. The t-tests on the model param-
eters are partial tests of each parameter, conditional on the other independent
variables being in the model. These are sometimes called type III tests.

From the perspective of this table it might appear that neither q2 nor q3
is adding significantly to the model. However, the next table will provide a
different perspective. The very small p-value of 3.944e-09, or 0.000000003944,
is quite a bit smaller than 0.05, so we would reject the hypothesis that the
overall model is worthless. The significant p-value of 0.002370 for q1 makes it
the only significant predictor, given the other variables in the model. We will
test that below.
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Table 17.1. Example formulas in SAS, SPSS, and R. The x and y variables are
continuous and the a, b, c, and d variables are factors

Model R SAS SPSS
Simple regression y~x MODEL y = x; /DESIGN x.
Regression
with interaction

y ~ x1+x2+x1:x2 MODEL y = x1 x2 x1*x2; /DESIGN x1 x2 x1*x2.

Regression without
intercept

y ~ -1 + x MODEL y = x1/noint; /DESIGN x.
/INTERCEPT=EXCLUDE.

Regression of y
with all other
variables

y ~ . MODEL y = _numeric_;

1-way analysis
of variance

y ~ a MODEL y = a; /DESIGN a.

2-way analysis
of variance
with interaction

y~a+b+a:b or y~a*b MODEL y = a b a*b;
MODEL y = a|b;

/DESIGN a b a*b.

4-way analysis
of variance
with all interactions

y ~ a*b*c*d MODEL y = a|b|c|d; /DESIGN

4-way analysis
of variance
with 2-way
interactions

y ~ (a+b+c+d)^2 MODEL y = a|b|c|d@2;

Analysis of
covariance

y ~ a x MODEL y = a x; /DESIGN a x.

Analysis
of variance
with b nested
within a

y ~ b \%in\% a
y ~ a/b

MODEL y = b(a); /DESIGN a b(a).
/DESIGN a b WITHIN a.

You can ask for an analysis of variance (ANOVA) table with the anova

function:

> anova(myModel)

Analysis of Variance Table

Response: q4

Df Sum Sq Mean Sq F value Pr(>F)

q1 1 42.306 42.306 48.8278 3.824e-10 ***

q2 1 2.657 2.657 3.0661 0.08317 .

q3 1 0.564 0.564 0.6508 0.42184

Residuals 95 82.312 0.866

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

These tests are what SAS and SPSS would call sequential or Type I tests.
So the first test is for q1 by itself. The second is for q2, given that q1 is
already in the model. The third is for q3, given that q1 and q2 are already
in the model. Changing the order of the variables in the lm function would
change these results. From this perspective, q1 is even more significant.
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Fig. 17.1. Linear regression diagnostic plots generated automatically by the plot

function. The odd strips of points are the result of the dependent variable having
only five values

17.5.1 Plotting Diagnostics

The plot function also has methods for lm class objects. The single call to
the plot function below was sufficient to generate all four of the plots shown
in Fig. 17.1:

> plot(myModel)

The residuals vs. fitted plot shown in Fig. 17.1 (upper left), shows the
fitted values plotted against the model residuals. If the residuals follow any
particular pattern, such as a diagonal line, there may be other predictors not
yet in the model that could improve it. The fairly flat lowess line looks good.
The five strips of points shown result from our dependent variable having only
five values.

The normal Q-Q Plot in Fig. 17.1 (upper right), shows the quantiles of the
standardized residuals plotted against the quantiles you would expect if the
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data were normally distributed. Since these fall mostly on the straight line,
the assumption of normally distributed residuals is met.

The scale-location plot in Fig. 17.1 (lower left), shows the square root of the
absolute standardized residuals plotted against the fitted, or predicted, values.
Since the lowess line that fits this is fairly flat, it indicates that the spread
in the predictions is roughly the same across the prediction line, meeting the
assumption of homoscedasticity.

Finally, the residuals vs. leverage plot in Fig. 17.1 (lower right), shows
a measure of the influence of each point on the overall equation against the
standardized residuals. Since no points stand out far from the pack, we can
assume that there are no outliers having undue influence on the fit of the
model.

17.5.2 Comparing Models

To do a stepwise model selection, first create the full model and save it, and
then apply one of the following functions: step, add1, drop1, or, from Venable
and Ripley’s MASS package, stepAIC. MASS is named after their book Modern
Applied Statistics with S [65]. Keep in mind that if you start with a large
number of variables, stepwise methods make your p-values essentially worth-
less. If you can choose a model on part of your data and see that it still works
on the remainder, then the p-values obtained from the remainder data should
be valid.

The anova function can also compare two models, as long as one is a
subset of the other. So to see if q2 and q3 combined added significantly to
a model over q1, I created the two models and then compared them. One
catch with this scenario is that with missing values present, the two models
will be calculated on different sample sizes and R will not be able to compare
them. It will warn you, “Models were not all fitted to the same size of data
set.”To deal with this problem, we will use the na.omit function discussed in
Sect. 10.5 to remove the missing values first.

> myNoMissing <- na.omit(

+ mydata100[ , c("q1","q2","q3","q4") ] )

> myFullModel <- lm( q4 ~ q1 + q2 + q3, data = myNoMissing)

> myReducedModel <- lm( q4 ~ q1, data = myNoMissing)

> anova( myReducedModel, myFullModel)

Analysis of Variance Table

Model 1: q4 ~ q1

Model 2: q4 ~ q1 + q2 + q3
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Res.Df RSS Df Sum of Sq F Pr(>F)

1 97 85.532

2 95 82.312 2 3.220 1.8585 0.1615

The p-value of 0.1615 tells us that variables q2 and q3 combined did not add
significantly to the model that had only q1. When you compare two models
using the anova function, you should list the reduced model first.

17.5.3 Making Predictions with New Data

You can apply a saved model to a new set of data using the predict function.
Of course, the new data set must have the same variables, with the same
names and the same types. Under those conditions, you can apply myModel
to a data frame called myNewData using

myPredictions <- predict(myModel, myNewData)

Because the variables must have the exact same names, it is very important
not to use the $ format in names. The following two statements perform what
is statistically the same model; however, the one using mydata100$q4 will only
work on future data frames named “mydata”!

myModel <- lm( mydata100$q4 ~ mydata$q1 ) # Bad idea

myModel <- lm(q4 ~ q1, data = mydata100) # Much better

17.6 t-Test: Independent Groups

A t-test for independent groups compares two groups at a time on the mean
of a continuous measure. SAS uses PROC TTEST for this and SPSS uses the
T-TEST procedure.

The assumptions for t-tests are as follows:

� The measure is interval-level continuous data. If the data are only ordinal
(e.g., low, medium, high), consider the Wilcoxon rank sum test, also known
as the Mann–Whitney test.

� The measures are normally distributed. You can examine that with
hist(myVar) or qqnorm(myvar) as shown in Chap. 15,“Traditional Graph-
ics.” If they are not, consider the Mann–Whitney or Wilcoxon test. For
details, see Sect. 17.9.

� The observations are independent. For example, if you measured the same
subjects repeatedly, it would be important to take that into account in a
more complex model.

� The distributions should have roughly the same variance. See Sect. 17.7
for details.
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You can perform t-tests in R using the t.test function:

> t.test( q1 ~ gender, data = mydata100)

Welch Two Sample t-test

data: q1 by gender

t = 5.0578, df = 96.938, p-value = 2.008e-06

alternative hypothesis:

true difference in means is not equal to 0

95 percent confidence interval:

0.6063427 1.3895656

sample estimates:

mean in group Female mean in group Male

3.978723 2.980769

The t.test function call above has two arguments, the formula and the data
frame to use. The formula q4~gender is in the form dependent~independent.
For details, see Sect. 5.7.3, “Controlling Functions with Formulas.”

Instead of a formula, you can specify two variables to compare such as
t.test(x,y), and they can be selected using any of R’s many variable selec-
tion approaches. The data argument specifies the data frame to use only in
the case of a formula. So you might think that this form works:

t.test( q4[which(gender == 'm') ],

q4[which(gender == 'f') ] , data = mydata100)

However, unless the data are attached, it does not! You would have to enter
attach(mydata100) before the command above would work. Alternatively,
with an unattached data frame, you could leave off the data argument and
use the form

with(mydata100,

t.test( q4[ which(gender == 'm') ],

q4[ which(gender == 'f') ] )

)

or, you might prefer the subset function:

t.test(

subset(mydata100, gender == "m", select = q4),

subset(mydata100, gender == "f", select = q4)

)
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For more details see Chap. 9, “Selecting Variables and Observations.”
The results show that the mean for the females is 3.96 and for the males

is 2.98. The p-value of 2.748e-06, or 0.000002748, is much smaller than 0.05,
so we would reject the hypothesis that those means are the same.

Unlike SAS and SPSS, R does not provide a test for homogeneity of vari-
ance and two t-test calculations for equal and unequal variances. Instead, it
provides only the unequal variance test by default. The additional argument,
var.equal = TRUE, will ask it to perform the other test. See Sect. 17.7 for
that topic.

17.7 Equality of Variance

SAS and SPSS offer tests for equality (homogeneity) of variance in their t-test
and analysis of variance procedures. R, in keeping with its minimalist perspec-
tive, offers such tests in separate functions.

The Levene test for equality of variance is the most popular. Fox’s car

package [21] contains the levene.test function. To use the car package you
must first install it. See Chap. 2, ”Installing and Updating R.”Then you must
load it with either the Packages> Load Packages menu item or the function
call:

> library("car")

Now we are ready to use the levene.test function:

> levene.test(posttest, gender)

Levene's Test for Homogeneity of Variance

Df F value Pr(>F)

group 1 0.4308 0.5131

97

The levene.test function has only two arguments of the form (var,
group). Its null hypothesis is that your groups have equal variances. If its
p-value is smaller than 0.05, you reject that hypothesis. So in the above case,
we would accept the hypothesis that the variances are equal.

If you run this same test in SPSS, you will get a somewhat different answer.
SPSS bases its test on deviations from the mean, while the car package’s
implementation used here uses deviations from the median.

Other tests for comparing variances are R’s built-in var.test and
bartlett.test functions.
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17.8 t-Test: Paired or Repeated Measures

The goal of a paired t-test is to compare the mean of two correlated mea-
sures. These are often the same measure taken on the same subjects at two
different times. SAS and SPSS use the same procedures for paired t-tests as
for independent samples t-tests, as does R.

The paired t-test’s assumptions are as follows:

� The two measures are interval-level continuous data. If the data are only
ordinal (e.g., low-medium-high) consider the Wilcoxon signed-rank test.
For details see Sect. 17.10, “Wilcoxon Signed-Rank Test: Paired Groups.”

� The differences between the measures are normally distributed. You can
use hist(posttest-pretest) or qqnorm(posttest-pretest) to examine
that, as shown in the chapters on graphics. If they are not, consider the
Wilcoxon signed-rank test. For details see Sect. 17.10.

� Other than the obvious pairing, observations are independent. For exam-
ple, if siblings were also in your data set, it would be important to take
that into account in a more complex model.

You can perform the paired t-tests in R using the t.test function. This
example assumes the data frame is attached.

> t.test(posttest, pretest, paired = TRUE)

Paired t-test

data: posttest and pretest

t = 14.4597, df = 99, p-value < 2.2e-16

alternative hypothesis:

true difference in means is not equal to 0

95 percent confidence interval:

6.11708 8.06292

sample estimates:

mean of the differences

7.09

The t.test function call above has three main arguments.

1. The first variable to compare.
2. The second test variable to compare. The function will subtract this from

the first to get the mean difference. If these two were reversed, the p-value
would be the same; however, the mean difference would be -7.09 (i.e.,
negative) and the confidence interval would be around that.
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3. The paired = TRUE argument tells it that the two variables are correlated
rather than independent. It is extremely important that you set this option
for a paired test! If you forget this, it will perform an independent-groups
t-test instead.

The results show that the mean difference of 7.09 is a statistically sig-
nificant p-value of 2.2e-16, or 0.00000000000000022. So we would reject the
hypothesis that the means are the same.

17.9 Wilcoxon–Mann–Whitney Rank Sum:
Independent Groups

The Wilcoxon rank sum test, also known as the Mann–Whitney U test, com-
pares two groups on the mean rank of a dependent variable that is at least
ordinal (e.g., low, medium, high).

In SAS, you could run this test with PROC NPAR1WAY. SPSS uses the
similar NPAR TESTS procedure, perhaps in conjunction with the SPSS Exact
Tests module.

The Wilcoxon–Mann–Whitney test’s assumptions are as follows:

� The distributions in the two groups must be the same, other than a shift
in location; that is, the distributions should have the same variance and
skewness. Examining a histogram is a good idea if you have at least 30
subjects. A box plot is also helpful regardless of the number of subjects in
each group.

� Observations are independent. For example, if you measured the same
subjects repeatedly, it would be important to take that into account in a
more complex model.

The wilcox.test function works very much like the t.test function:

> wilcox.test(q1 ~ gender, data = mydata100)

Wilcoxon rank sum test with continuity correction

data: q1 by gender

W = 1841.5, p-value = 6.666e-06

alternative hypothesis: true location shift is not equal to 0

The wilcox.test function call above has two main arguments.

1. The formula q4~gender is in the form dependent~independent. For details,
see Sect. 5.7.3, “Controlling Functions with Formulas.”
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2. Instead of a formula, you can specify two variables to compare, such as
wilcox.test(x,y), and they can be selected using any of R’s many vari-
able selection approaches. See the examples in the Sect. 17.6.

3. The data argument specifies the data frame to use, if (and only if) you
are using a formula.

The p-value of 6.666e-06 or 0.000006666, is less than 0.05, so we would
reject the hypothesis that the males and females have the same distribution
on the q4 variable. The median is the more popular measure of location to
report on for a nonparametric test, and we can apply that function using the
aggregate function. Recall that aggregate requires its group argument to be
a list or data frame:

> aggregate( q1, data.frame(gender),

+ median, na.rm = TRUE)

gender x

1 Female 4

2 Male 3

We see that the median of the females is 4 and that of the males is 3.

17.10 Wilcoxon Signed-Rank Test: Paired Groups

The goal of a Wilcoxon signed-rank test is to compare the mean rank of two
correlated measures that are at least ordinal (e.g., low, medium, high) in scale.
These are often the same measure taken on the same subjects at two different
times.

In SAS you can perform this test by creating a difference score and then
running that through PROC UNIVARIATE. In SPSS, you would use the
NPTESTS procedure.

The assumptions of the Wilcoxon signed-rank test are as follows:

� The scale of measurement is at least ordinal.
� The difference between the two measures has a symmetric distribution. If

not, you can use the sign test in Sect. 17.11.
� Other than the obvious pairing, the observations are independent. For

example, if your data also contained siblings, you would want a more
complex model to make the most of that information.

This test works very much like the t.test function with the paired ar-
gument:

> wilcox.test( posttest, pretest, paired = TRUE)
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Wilcoxon signed rank test with continuity correction

data: posttest and pretest

V = 5005, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

The wilcox.test function call above has three main arguments.

1. The first variable to compare.
2. The second variable to compare. The function will subtract this from the

first and then convert the difference to ranks.
3. The paired = TRUE argument, which tells it that the variables are corre-

lated. Be careful, as without this argument, it will perform the Wilcoxon
rank-sum test for independent groups. That is a completely different test
and it would be inappropriate for correlated data.

The p-value of 2.2e-16 is less than 0.05, so we would reject the hypothesis
that the location difference is zero. As Dalgaard [16] pointed out, with a sample
size of 6 or fewer, it is impossible to achieve a significant result with this test.

The median is the more popular measure of location to report for a non-
parametric test, and we can calculate them with the median function.

> median(pretest)

[1] 75

> median(posttest)

[1] 82

17.11 Sign Test: Paired Groups

The goal of the sign test is to determine if one set of paired variables is
consistently larger or smaller than the other.

In SAS you can perform this test by creating a difference score and then
running that through PROC UNIVARIATE. In SPSS, you would use the
NPTESTS procedure.

The assumptions of the sign test are as follows:

� The measurement scale of each pair is at least ordinal. That is, you can
tell which of each pair is greater.

� Other than the obvious pairing, the observations are independent. For
example, if your data also contained siblings, you would want a more
complex model to make the most of that information.
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While this test does away with the Wilcoxon rank-sum test’s assumption that
the distribution of the differences is symmetric, it does so at a substantial loss
of power. Choose this test with care!

Base R does not include a built-in version of the sign test. Instead, it
provides the pbinom function to let you do one based on the binomial dis-
tribution. However, Arnholt’s PASWR package [3] does include a SIGN.test

function. That package is designed to accompany Probability and Statistics
with R, by Ugarte, et al. [62]. To use PASWR, you must first install it (Chap. 2,
”Installing and Updating R”). Then you must load it with either the Pack-
ages> Load Packages menu item or the function call

library("PASWR")

Here is how the SIGN.test function works:

> SIGN.test(posttest, pretest, conf.level=.95)

Dependent-samples Sign-Test

data: posttest and pretest

S = 96, p-value < 2.2e-16

alternative hypothesis: true median difference is not equal to 0

95 percent confidence interval:

5 8

sample estimates:

median of x-y

6

Conf.Level L.E.pt U.E.pt

Lower Achieved CI 0.9431 5 8

Interpolated CI 0.9500 5 8

Upper Achieved CI 0.9648 5 8

> sum(posttest > pretest)

[1] 96

The SIGN.test function call above has three main arguments.

1. The first variable to compare.
2. The second variable to compare. The function will subtract this from the

first and then work with the sign and the median of the differences.
3. Optionally, the conf.int argument specifies the confidence interval it

could calculate on the median x-y difference.

The S = 96 is the number of positive signs. That is, for 96 pairs of val-
ues the posttest score was higher than the pretest score. The p-value of less
than 2.2e-16 is much smaller than 0.05, so you would conclude the result is
significant. You can report either the number of positive signs or the median
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difference of 6. The 95% confidence interval places the population median
between 5 and 8.

17.12 Analysis of Variance

An analysis of variance (ANOVA or AOV) tests for group differences on the
mean of a continuous variable divided up by one or more categorical factors.
Both SAS and SPSS have ANOVA and GLM procedures that perform this
analysis.

Its assumptions are as follows:

� The measure is interval-level continuous data. If the data are only ordi-
nal (e.g., low-medium-high), consider the Kruskal–Wallis test for a single
factor (i.e., one-way ANOVA).

� The measure is normally distributed. You can examine that assumption
with hist(myVar) or qqnorm(myvar), as shown in the chapters on graph-
ics. If they are not, consider the Kruskal–Wallis test.

� The observations are independent. For example, if each group contains
subjects that were measured repeatedly over time or who are correlated
(e.g., same family), you would want a more complex model to make the
most of that information.

� The variance of the measure is the same in each group.

We can get the group means using the aggregate function:

> aggregate( posttest,

+ data.frame(workshop),

+ mean, na.rm = TRUE)

workshop x

1 R 86.258

2 SAS 79.625

3 SPSS 81.720

4 Stata 78.947

Similarly, we can get variances by applying the var function:

> aggregate( posttest,

+ data.frame(workshop),

+ var, na.rm = TRUE)

workshop x

1 R 24.998

2 SAS 37.549

3 SPSS 19.543

4 Stata 73.608
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You can see that the variance for the Stata group is quite a bit higher than
the rest. Levene’s test will provide a test of significance for that:

> levene.test(posttest, workshop)

Levene's Test for Homogeneity of Variance

Df F value Pr(>F)

group 3 2.51 0.06337 .

95

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The Levene test’s null hypothesis is that the variances do not differ. Since
it calculated a p-value of 0.06337, we can conclude that the differences in
variance are not significant.

The aov function calculates the analysis of variance.

> myModel <- aov( posttest ~ workshop, data = mydata100 )

The aov function call above has two arguments.

1. The formula posttest~workshop is in the form dependent~independent.
The independent variable must be a factor. See Sect. 5.7.3, “Controlling
Functions with Formulas,” for details about models with more factors,
interactions, nesting, and so forth.

2. The data argument specifies the data frame to use for the formula. If you
do not supply this argument, you can use any other valid form of variable
specification that tells it in which data frame your variables are stored
(e.g., mydata$postest~mydata$workshop).

We can see some results by printing myModel:

> myModel

Call:

aov(formula = posttest ~ workshop, data = mydata100)

Terms:

workshop Residuals

Sum of Squares 875.442 3407.548

Deg. of Freedom 3 95

Residual standard error: 5.989067

Estimated effects may be unbalanced

1 observation deleted due to missingness
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Of course, the summary function has methods for ANOVA models; it prints
the same result.

> anova(myModel)

Analysis of Variance Table

Response: posttest

Df Sum Sq Mean Sq F value Pr(>F)

workshop 3 875.4 291.8 8.1356 7.062e-05 ***

Residuals 95 3407.5 35.9

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Given the p-value of 7.062e-05 or 0.00007062, we would reject the hy-
pothesis that the means are all the same. However, which ones differ? The
pairwise.t.test function provides all possible tests and corrects them for
multiple testing using the Holm method by default. In our case, we are doing
six t-tests, so the best (smallest) p-value is multiplied by 6, the next best by 5,
and so on. This is also called a sequential Bonferroni correction.

> pairwise.t.test(posttest, workshop)

Pairwise comparisons using t tests with pooled SD

data: posttest and workshop

R SAS SPSS

SAS 0.00048 - -

SPSS 0.02346 0.44791 -

Stata 0.00038 0.71335 0.39468

P value adjustment method: holm

We see that the posttest scores are significantly different for R compared to
the other three. The mean scores for the SAS, SPSS, and Stata workshops do
not differ significantly among themselves.

An alternative comparison approach is to use Tukey’s honestly significant
difference (HSD) test. The TukeyHSD function call below uses only two argu-
ments: the model and the factor whose means you would like to compare:

> TukeyHSD(myModel, "workshop")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = posttest ~ workshop, data = mydata100)
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$workshop

diff lwr upr p adj

SAS-R -6.63306 -10.8914 -2.37472 0.00055

SPSS-R -4.53806 -8.7481 -0.32799 0.02943

Stata-R -7.31070 -11.8739 -2.74745 0.00036

SPSS-SAS 2.09500 -2.3808 6.57078 0.61321

Stata-SAS -0.67763 -5.4871 4.13185 0.98281

Stata-SPSS -2.77263 -7.5394 1.99416 0.42904

The “diff” column provides mean differences. The “lwr” and “upr” columns
provide lower and upper 95% confidence bounds, respectively. Finally, the
“p adj” column provides p-values adjusted for the number of comparisons
made. The conclusion is the same: the R group’s posttest score differs signif-
icantly from the others’ posttest scores, but the others’ scores do not differ
significantly among themselves.

We can graph these results using the plot function (Fig. 17.2).

> plot( TukeyHSD(myModel, "workshop") )

The plot function also provides appropriate diagnostic plots (not shown).
These are the same plots shown and discussed in Sect. 17.5, “Linear Regres-
sion.”

> plot(myModel)

You can perform much more complex ANOVA models in R, but they are
beyond the scope of this book. A good book on ANOVA is Pinheiro and Bates’
Mixed Effects Models in S and S-Plus [45].

17.13 Sums of Squares

In ANOVA, SAS and SPSS provide partial (type III) sums of squares and
F-tests by default. SAS also provides sequential sums of squares and F-tests
by default. SPSS will provide those if you ask for them. R provides sequential
ones in its built-in functions. For one-way ANOVAs or for two-way or higher
ANOVAS with equal cell sizes, there is no difference between sequential and
partial tests. However, in two-way or higher models that have unequal cell
counts (unbalanced models), these two sums of squares lead to different F-
tests and p-values.

The R community has a very strongly held belief that tests based on
partial sums of squares can be misleading. One problem with them is that they
test the main effect after supposedly partialing out significant interactions. In
many circumstances, that does not make much sense. See the [64] for details.
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If you are sure you want type III sums of squares, Fox’s car package
will calculate them using its Anova function. Notice that the function begins
with a capital letter “A”! To use the car package, you must first install it
(Chap. 2, ”Installing and Updating R”). Then you must load it with either
the Packages> Load Packages menu item or the function call

> library("car")

Attaching package: 'car'

The following object(s) are masked from

package:Hmisc : recode

You can see from the above message that the car package also contains a
recode function that is now blocking access to (masking) the recode function
in the Hmisc package. We could have avoided that message by detaching Hmisc
first, but this is a good example of function masking and it does not affect the
function we need.
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Fig. 17.2. A plot of the Tukey HSD test results showing the R group differing from
the other three workshops
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We use the Anova function with the type="III" argument to request the
sums of squares we need. Since our model is a one-way ANOVA, the results
are identical to those from the lowercase anova function that is built in to R,
except that the p-values are expressed in scientific notation and the intercept,
the grand mean in this case, is tested:

> Anova(myModel, type="III")

Anova Table (Type III tests)

Response: posttest

Sum Sq Df F value Pr(>F)

(Intercept) 230654 1 6430.4706 < 2.2e-16 ***

workshop 875 3 8.1356 7.062e-05 ***

Residuals 3408 95

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To get reasonable type III tests when doing more complex ANOVA models,
it is important to set the contrasts option. The function call

options( contrasts=c("contr.sum", "contr.poly") )

is an example of this.

17.14 The Kruskal–Wallis Test

The nonparametric equivalent to a one-way ANOVA is the Kruskal–Wallis
test. The Kruskal–Wallis test compares groups on the mean rank of a variable
that is at least ordinal (e.g., low, medium, high). SAS offers it in PROC
NPAR1WAY and SPSS has it in NPAR TESTS.

Its assumptions are as follows:

� The distributions in the groups must be the same, other than a shift in
location. This is often misinterpreted to mean that the distributions do
not matter at all. That is not the case. They do not need to be normally
distributed, but they do need to generally look alike. Otherwise, the test
can produce a significant result if, for example, the distributions are skewed
in opposite directions but are centered in roughly the same place.

� The distributions should have roughly the same variance. Since the test re-
quires no particular distribution, there is no single test for this assumption.
Box plots are a good way to examine this assumption.
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� The observations are independent. For example, if each group contains
subjects that were measured repeatedly over time or who are correlated
(e.g., same family), you would want a more complex model to make the
most of that information.

What follows is an example that uses the kruskal.test function to com-
pare the different workshops on the means of the q4 variable:

> kruskal.test(posttest~workshop)

Kruskal-Wallis rank sum test

data: posttest by workshop

Kruskal-Wallis chi-squared=21.4448, df=3, p-value=8.51e-05

The kruskal.test function call above has two arguments.

1. The formula posttest~workshop is in the form dependent~independent.
For details, see Sect. 5.7.3.

2. The data argument specifies the data frame to use for the formula. If you
do not supply this argument, you can use any other valid form of variable
specification that tells it in which data frame your variables are stored
(e.g., mydata$postest~mydata$workshop).

The p-value of 8.51e-05, or 0.0000851, is smaller than the typical cutoff of
0.05, so you would reject the hypothesis that the groups do not differ. The next
question would be, which of the groups differ? The pairwise.wilcox.test

function answers that question. The only arguments we use below are the
measure and the factor, respectively:

> pairwise.wilcox.test(posttest, workshop)

Pairwise comparisons using Wilcoxon rank sum test

data: posttest and workshop

R SAS SPSS

SAS 0.0012 - -

SPSS 0.0061 0.4801 -

Stata 0.0023 0.5079 0.4033

P value adjustment method: holm

Warning messages:

1: In wilcox.test.default(xi, xj, ...) :

cannot compute exact p-value with ties
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So we see that the R workshop group differs significantly from the other
three and that the other three do not differ among themselves. The median
is the more popular measure to report with a nonparametric test. We can use
the aggregate function to apply the median function:

> aggregate( posttest,

+ data.frame(workshop),

+ median, na.rm = TRUE)

workshop x

1 R 86.0

2 SAS 78.5

3 SPSS 81.0

4 Stata 78.0

17.15 Example Programs for Statistical Tests

The R examples require installing the car, Gmodels and Hmisc packages. See
details in Chap. 2, “Installing and Updating R.”

17.15.1 SAS Program for Statistical Tests

* Filename: Statistics.sas ;

LIBNAME myLib 'C:\myRfolder';

DATA temp;

SET myLib.mydata100;

* pretend q2 and q1 are the same score

measured at two times & subtract;

myDiff=q2-q1; run;

* Basic stats in compact form;

PROC MEANS; VAR q1--posttest; RUN;

* Basic stats of every sort;

PROC UNIVARIATE; VAR q1--posttest; RUN;

* Frequencies & percents;

PROC FREQ; TABLES workshop--q4; RUN;

* Chi-square;

PROC FREQ;

TABLES workshop*gender/CHISQ; RUN;
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* ---Measures of association---;

* Pearson correlations;

PROC CORR; VAR q1-q4; RUN;

* Spearman correlations;

PROC CORR SPEARMAN; VAR q1-q4; RUN;

* Linear regression;

PROC REG;

MODEL q4=q1-q3;

RUN;

* ---Group comparisons---;

* Independent samples t-test;

PROC TTEST;

CLASS gender;

VAR q1; RUN;

* Nonparametric version of above

using Wilcoxon/Mann-Whitney test;

PROC NPAR1WAY;

CLASS gender;

VAR q1; RUN;

* Paired samples t-test;

PROC TTEST;

PAIRED pretest*posttest; RUN;

* Nonparametric version of above using

both Signed Rank test and Sign test;

PROC UNIVARIATE;

VAR myDiff;

RUN;

*Oneway Analysis of Variance (ANOVA);

PROC GLM;

CLASS workshop;

MODEL posttest=workshop;

MEANS workshop / TUKEY; RUN;

*Nonparametric version of above using

Kruskal-Wallis test;

PROC npar1way;
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CLASS workshop;

VAR posttest; RUN;

17.15.2 SPSS Program for Statistical Tests

* SPSS Program for Basic Statistical Tests.

* Filename: Statistics.sps.

CD 'C:\myRfolder'.

GET FILE='mydata100.sav'.

DATASET NAME DataSet2 WINDOW=FRONT.

* Descriptive stats in compact form.

DESCRIPTIVES VARIABLES=q1 to posttest

/STATISTICS=MEAN STDDEV VARIANCE

MIN MAX SEMEAN .

* Descriptive stats of every sort.

EXAMINE VARIABLES=q1 to posttest

/PLOT BOXPLOT STEMLEAF NPPLOT

/COMPARE GROUP

/STATISTICS DESCRIPTIVES EXTREME

/MISSING PAIRWISE.

* Frequencies and percents.

FREQUENCIES VARIABLES=workshop TO q4.

* Chi-squared.

CROSSTABS

/TABLES=workshop BY gender

/FORMAT= AVALUE TABLES

/STATISTIC=CHISQ

/CELLS= COUNT ROW

/COUNT ROUND CELL .

* ---Measures of association---.

* Person correlations.

CORRELATIONS

/VARIABLES=q1 TO q4.

* Spearman correlations.

NONPAR CORR

/VARIABLES=q1 to q4

/PRINT=SPEARMAN.
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* Linear regression.

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT q4

/METHOD=ENTER q1 q2 q3.

REGRESSION

/DEPENDENT q4

/METHOD=ENTER q1 q2 q3.

* ---Group comparisons---.

* Independent samples t-test.

T-TEST

GROUPS = gender('m' 'f')

/VARIABLES = q1.

* Nonparametric version of above using

* Wilcoxon/Mann-Whitney test.

NPTESTS

/INDEPENDENT TEST (posttest)

GROUP (gender) MANN_WHITNEY.

* Paired samples t-test.

T-TEST

PAIRS = pretest WITH posttest (PAIRED).

* Nonparametric version of above using

* Wilcoxon Signed-Rank test and Sign test.

NPTESTS

/RELATED TEST(pretest posttest) SIGN WILCOXON.

* Oneway analysis of variance (ANOVA).

UNIANOVA posttest BY workshop

/POSTHOC = workshop ( TUKEY )

/PRINT = ETASQ HOMOGENEITY

/DESIGN = workshop .

* Nonparametric version of above using

Kruskal Wallis test.

NPAR TESTS
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/K-W=posttest BY workshop(1 3).

17.15.3 R Program for Statistical Tests

# Filename: Statistics.R

setwd("c:/myRfolder")

load("mydata100.Rdata")

attach(mydata100)

options(linesize = 63)

head(mydata100)

# ---Frequencies & Univariate Statistics---

# Deducer's frequencies() function

# The easy way using the Hmisc package.

library("Hmisc")

describe(mydata100)

# R's built-in function.

summary(mydata100)

# The flexible way using built-in functions.

table(workshop)

table(gender)

# Proportions of valid values.

prop.table( table(workshop) )

prop.table( table(gender) )

# Rounding off proportions.

round( prop.table( table(gender) ), 2 )

# Converting proportions to percents.

round( 100* ( prop.table( table(gender) ) ) )

# Frequencies & Univariate

summary(mydata100)

# Means & Std Deviations

options(width=63)

sapply( mydata100[3:8], mean, na.rm = TRUE)
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sapply( mydata100[3:8], sd, na.rm = TRUE)

# ---Crosstabulations---

# The easy way, using the gmodels package.

library("gmodels")

CrossTable(workshop, gender,

chisq = TRUE, format = "SAS")

# The flexible way using built-in functions.

# Counts

myWG <- table(workshop, gender)

myWG # Crosstabulation format.

myWGdata <- as.data.frame(myWG)

myWGdata # Summary or Aggregation format.

chisq.test(myWG)

# Row proportions.

prop.table(myWG, 1)

# Column proportions.

prop.table(myWG, 2)

# Total proportions.

prop.table(myWG)

# Rounding off proportions.

round( prop.table(myWG, 1), 2 )

# Row percents.

round( 100* ( prop.table(myWG, 1) ) )

# Adding Row and Column Totals.

addmargins(myWG, 1)

addmargins(myWG, 2)

addmargins(myWG)

# ---Correlation & Linear Regression---

# The rcorr.adjust function from the R Commander package

library("Rcmdr")

load("mydata.RData")

rcorr.adjust( mydata[3:6] )
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# Spearman correlations.

rcorr.adjust( mydata[3:6], type = "spearman" )

# The built-in cor function.

cor( mydata[3:6],

method = "pearson", use = "pairwise")

# The built-in cor.test function

cor.test(mydata$q1, mydata$q2, use = "pairwise")

# Linear regression.

lm( q4 ~ q1 + q2 + q3, data = mydata100)

myModel <- lm( q4 ~ q1 + q2 + q3, data = mydata100 )

myModel

summary(myModel)

anova(myModel) #Same as summary result.

# Set graphics parameters for 4 plots (optional).

par( mfrow = c(2, 2), mar = c(5, 4, 2, 1) + 0.1 )

plot(myModel)

# Set graphics parameters back to default settings.

par( mfrow = c(1, 1), mar = c(5, 4, 4, 2) + 0.1 )

# Repeat the diagnostic plots and route them

# to a file.

postscript("LinearRegDiagnostics.eps")

par( mfrow = c(2,2), mar = c(5, 4, 2, 1) + 0.1 )

plot(myModel)

dev.off()

par( mfrow = c(1, 1), mar = c(5, 4, 4, 2) + 0.1 )

myNoMissing <- na.omit(mydata100[ ,c("q1","q2","q3","q4")] )

myFullModel <- lm( q4 ~ q1 + q2 + q3, data = myNoMissing)

myReducedModel <- lm( q4 ~ q1, data = myNoMissing)

anova( myReducedModel, myFullModel)

# ---Group Comparisons---

# Independent samples t-test.

t.test( q1 ~ gender, data = mydata100)
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# Same test; requires attached data.

t.test( q1[gender == "Male"],

q1[gender == "Female"] )

# Same test using with() function.

with(mydata100,

t.test( q4[ which(gender == "m") ],

q4[ which(gender == "f") ] )

)

# Same test using subset() function.

t.test(

subset(mydata100, gender == "m", select = q4),

subset(mydata100, gender == "f", select = q4)

)

# Paired samples t-test.

t.test(posttest, pretest, paired = TRUE)

# Equality of variance.

library("car")

levene.test(posttest, gender)

var.test(posttest~gender)

# Wilcoxon/Mann-Whitney test.

wilcox.test( q1 ~ gender, data = mydata100)

# Same test specified differently.

wilcox.test( q1[gender == 'Male'],

q1[gender == 'Female'] )

aggregate( q1, data.frame(gender),

median, na.rm = TRUE)

# Wilcoxon signed rank test.

wilcox.test( posttest, pretest, paired = TRUE)

median(pretest)

median(posttest)

# Sign test.

library("PASWR")

SIGN.test(posttest, pretest, conf.level = .95)

# Analysis of Variance (ANOVA).

aggregate( posttest,
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data.frame(workshop),

mean, na.rm = TRUE)

aggregate( posttest,

data.frame(workshop),

var, na.rm = TRUE)

library("car")

levene.test(posttest, workshop)

myModel <- aov(posttest ~ workshop,

data = mydata100)

myModel

anova(myModel)

summary(myModel) # same as anova result.

# type III sums of squares

library("car")

Anova(myModel, type = "III")

pairwise.t.test(posttest, workshop)

TukeyHSD(myModel, "workshop")

plot( TukeyHSD(myModel, "workshop") )

# Repeat TukeyHSD plot and route to a file.

postscript("TukeyHSD.eps")

plot( TukeyHSD(myModel, "workshop") )

dev.off()

# Set graphics parameters for 4 plots (optional).

par( mfrow = c(2, 2), mar = c(5, 4, 2, 1) + 0.1 )

plot(myModel)

# Set graphics parameters back to default settings.

par( mfrow = c(1, 1), mar = c(5, 4, 4, 2) + 0.1 )

# Nonparametric oneway ANOVA using

# the Kruskal-Wallis test.

kruskal.test(posttest ~ workshop)

pairwise.wilcox.test(posttest, workshop)

aggregate( posttest,

data.frame(workshop),
median, na.rm = TRUE)
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Conclusion

As we have seen, R differs from SAS and SPSS in many ways. R has a host of
features that the other programs lack such as functions whose internal work-
ings you can see and change, fully integrated macro and matrix capabilities,
the most extensive selection of analytic methods available, and a level of flexi-
bility that extends all the way to the core of the system. A detailed comparison
of R with SAS and SPSS is contained in Appendix B.

Perhaps the most radical way in which R differs from SAS and SPSS is
R’s object orientation. Although objects in R can be anything: data, func-
tions, even operators, it may be helpful to focus on objects as data; R is data
oriented. R has a rich set of data structures that can handle data in standard
rectangular data sets as well as vectors, matrices, arrays and lists. It offers
the ability for you to define your own type of data structures and then adapt
existing functions to them by adding new analytic methods. These data struc-
tures contain attributes – more data, about the data – that help R’s functions
(procedures, commands) to automatically choose the method of analysis or
graph that best fits that data. R’s output is also in the form of data that
other functions can easily analyze. That ability is so seamless that functions
can nest within other functions until you achieve the result you desire.

R is also controlled by data. Its arguments are often not static parameter
values or keywords as they are in SAS or SPSS. Instead, they are vectors of
data: character vectors of variable names, numeric values indicating column
widths of text files to read, logical values of observations to select, and so
on. You even generate patterns of variable names the same way you would
patterns of any other data values. Being controlled by data is what allows
macro substitution to be an integral part of the language. This data, or object,
orientation is a key factor that draws legions of developers to R.

If you are a SAS or SPSS user who has happily avoided the complexities of
output management, macros, and matrix languages, R’s added functionality
may seem daunting to learn at first. However, the way R integrates all these
features may encourage you to expand your horizons. The added power of R
and its free price make it well worth the effort.

DOI 10.1007/978-1-4614-0685-3_18, © Springer Science+Business Media, LLC 2011
, Statistics and Computing,R.A. Muenchen, R for SAS and SPSS Users 647
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We have discussed how R compares to SAS and SPSS and how you can
do the very same things in each. However, what we have not covered literally
fills many volumes. I hope this will start you on a long and successful journey
with R.

I plan to improve this book as time goes on, so if there are changes
you would like to see in the next edition, please feel free to contact me at
muenchen.bob@gmail.com. Negative comments are often the most useful, so
do not worry about being critical.

Have fun working with R!
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Appendix A: Glossary of R Jargon

Below is a selection of common R terms defined first using SAS/SPSS
terminology (or plain English when possible) and then more formally using
R terminology. Some definitions using SAS/SPSS terminology are quite loose
given the fact that they have no direct analog of some R terms. Definitions
using R terminology are often quoted (with permission) or paraphrased from
S Poetry by Burns [10].

Apply
The process of having a command work on variables or observations.
Determines whether a procedure will act as a typical command or as
a function instead. More formally, the process of targeting a function
on rows or columns. Also the apply function is one of several functions
that controls this process.

Argument
Option that controls what procedures or functions do. Confusing be-
cause in R, functions do what both procedures and functions do in
SAS/SPSS. More formally, input(s) to a function that control it. In-
cludes data to analyze.

Array
A matrix with more than two dimensions. All variables must be of only
one type (e.g., all numeric or all character). More formally, a vector with
a dim attribute. The dim controls the number and size of dimensions.

Assignment function
Assigns values like the equal sign in SAS/SPSS. The two-key sequence,
“<-”, that places data or results of procedures or transformations into
a variable or data set. More formally, the two-key sequence, “<-”, that
gives names to objects.

Atomic object
A variable whose values are all of one type, such as all numeric or all
character. More formally, an object whose components are all of one
mode. Modes allowed are numeric, character, logical, or complex.

Attach
The process of adding a data set or add-on module to your path. At-
taching a data set appears to copy the variables into an area that lets
you use them by a simple name like “gender” rather than by compound
name like “mydata$gender.” Done using the attach function. More
formally, the process of adding a database to your search list. Also a
function that does this.

Attributes
Traits of a data set like its variable names and labels. More formally,
traits of objects such as names, class, or dim. Attributes are often stored
as character vectors. You can view attributes and set using the attr

function.
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Class
An attribute of a variable or data set that a procedure may use to
change its options automatically. More formally, the class attribute of
an object determines which method of a generic function is used when
the object is an argument in the function call. The class function lets
you view or set an object’s class.

Component
Like a variable in a data set, or one data set in a zipped set of data
sets. More formally, an item in a list. The length of a list is the number
of components it has.

CRAN
The Comprehensive R Archive Network at http://cran.r-project.
org/. Consists of a set of sites around the world called mirrors that
provide R and its add-on packages for you to download and install.

Data frame
A data set. More formally, a set of vectors of equal length bound to-
gether in a list. They can be different modes or classes (e.g., numeric
and character). Data frames also contain attributes such as variable
and row names.

Database
One data set or a set of them, or an add-on module. More formally, an
item on the search list or something that might be. Can be an R data
file or a package.

Dim
A variable whose values are the number of rows and columns in a data
set. It is stored in the data set itself. More formally, the attribute that
describes the dimensions of an array. The dim function retrieves or
changes this attribute.

Element
A specific value for a variable. More formally, an item in a vector.

Extractor function
A procedure that does useful things with a saved model such as make
predictions or plot diagnostics. More formally, a function that has
methods that apply to modeling objects.

Factor
A categorical variable and its value labels. Value labels may be nothing
more than“1,”“2,”. . . , if not assigned explicitly. More formally, the type
of object that represents a categorical variable. It stores its labels in its
levels attribute. The factor function creates regular factors and the
order function creates ordinal factors.

Function
A procedure or a function. When you apply it down through cases, it is
just like a SAS/SPSS procedure. However, you can also apply it across
rows like a SAS/SPSS function. More formally, an R program that is
stored as an object.
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Generic function
A procedure or function that has different default options or arguments
set depending on the kind of data you give it. More formally, a function
whose behavior is determined by the class of one or more of its argu-
ments. The class of the relevant argument(s) determines which method
the generic function will use.

Index
The order number of a value in a variable or the order number of a
variable in a data set. More formally, the order number of an element
in a vector or the component in a list or data frame. In our practice
data set gender is the second variable, so its index value is 2. Since
index values are used as subscripts, these two terms are often used
interchangeably. See also subscript.

Install
The process of installing an R add-on module. More formally, adding
a package into your library. You install packages just once per version
of R. However, to use it you must load it from the library every time
you start R.

Label
A procedure that creates variable labels. Also, a parameter that sets
value labels using the factor or ordered procedures. More formally, a
function from the Hmisc package that creates variable labels. Also an
argument that sets factor labels using the factor or ordered functions.

Length
The number of observations/cases in a variable, including missing val-
ues, or the number of variables in a data set. More formally, a measure
of objects. For vectors, it is the number of its elements (including NAs).
For lists or data frames, it is the number of its components.

Levels
The values that a categorical variable can have. Actually stored as a
part of the variable itself in what appears to be a very short character
variable (even when the values themselves are numbers). More formally,
an attribute to a factor object that is a character vector of the values
the factor can have. Also an argument to the factor and ordered

functions that can set the levels.
Library

Where a given version of R stores its base packages and the add-on
modules you have installed. Also a procedure that loads a package
from the library into working memory. You must do that in every R
session before using a package. More formally, a directory containing
R packages that is set up so that the library function can attach it.

List
Like a zipped collection of data sets that you can analyze easily without
unzipping. More formally, a set of objects of any class. Can contain
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vectors, data frames, matrices, and even other lists. The list function
can create lists and many functions store their output in lists.

Load
Bringing a data set (or collection of data sets) from disk to memory.
You must do this before you can use data in R. More formally, bringing
an R data file into your workspace. The load function is one way to
perform this task.

Matrix
A data set that must contain only one type of variable, e.g., all numeric
or character. More formally, a two-dimensional array, that is, a vector
with a dim attribute of length 2.

Method
The analyses or graphs that a procedure will perform by default, for
a particular kind of variable. The default settings for some proce-
dures depend on the scale of the variables you provide. For example,
summary(temperature) provides mean temperature while with a fac-
tor such as summary(gender) it counts males and females. More for-
mally, a function that provides the calculation of a generic function for
a specific class of object. The mode function will display an object’s
mode.

Mode
A variable’s type such as numeric or character. More formally, a fun-
damental property of an object. Can be numeric, character, logical, or
complex. In other words, what type means to SAS and SPSS, mode
means to R.

Modeling function
A procedure that performs estimation. More formally, a function that
tests association or group differences and usually accepts a formula
(e.g., y~x) and a data = argument.

Model objects
A model created by a modeling function.

NA
A missing value. Stands for N ot Available. See also NaN.

Names
Variable names. They are stored in a character variable that is a part
of a data set or variable. Since R can use an index number instead,
names are optional. More formally, an attribute of many objects that
labels the elements or components of the object. The names function
extracts or assigns variable names.

NaN
A missing value. Stands for N ot a Number. Something that is unde-
fined mathematically such as zero divided by zero.

NULL
An object you can use to drop variables or values. When you assign
it to an object, R deletes the object. E.g., mydata$x <- NULL causes
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R to drop the variable x from the data set mydata. NULL has a zero
length and no particular mode.

Numeric
A variable that contains only numbers. More formally, the atomic mode
that represents real numbers. This contains storage modes double, sin-
gle, and integer.

Object
A data set, a variable, or even the equivalent of a SAS/SPSS procedure.
More formally, almost everything in R. If it has a mode, it is an object.
Includes data frames, vectors, matrices, arrays, lists, and functions.

Object-oriented programming
A style of software in which the output of a procedure depends on the
type of data you provide it. R has an object orientation.

Option
A statement that sets general parameters, such as the width of each
line of output. More formally, settings that control some aspect of your
R session, such as the width of each line of output. Also a function that
queries or changes the settings.

Package
An add-on module and related files such as help or practice data sets
bundled together. May come with R or be written by its users. More
formally, a collection of functions, help files, and, optionally, data ob-
jects.

R
A free and open source language and environment for statistical com-
puting and graphics.

R-PLUS
A commercial version of R from XL Solutions, Inc.

Revolution R
A commercial version of R from Revolution Analytics, Inc.

Ragged array
The layers of an array are like stacked matrices. Each matrix layer
must have the same number of rows and columns. However, it is far
more common that subsets of a data set have different numbers of rows
(e.g., different number of subjects per group). The data would then be
too “ragged” to store in an array. Therefore, the data would instead
be stored in a typical data set (an R data frame) and be viewed as
a ragged array. A vector that stores group data, each with a different
length is also viewed as a ragged array, see help("tapply").

Revolution R Enterprise
A commercial version of R.

Replacement
A way to replace values. More formally, when you use subscripts on
the left side of an assignment to change the values in an object, for
example, setting 9 to missing: x[x == 9] <- NA
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Row Names
A special type of ID variable. The row names are stored in a character
variable that is a part of a data set. By default, row names are the
character strings “1,” “2,” etc. More formally, an attribute of a data
frame that labels its rows. The row.names function displays or changes
row names.

S
The language from which R evolved. R can run many S programs, but
S cannot use R packages.

S3, S4
Used in the R help files to refer to different versions of S. The differences
between them are of importance mainly to advanced programmers.

Script
The equivalent of a SAS or SPSS program file. An R program.

Search list
Somewhat like an operating system search path for R objects. More
formally, the collection of databases that R will search, in order, for
objects.

S-PLUS
The commercial version of S. Mostly compatible with R but will not
run R packages.

Subscript
Selecting (or replacing) values or variables using index numbers or vari-
able names in square brackets. In our practice data, gender is the second
variable so we can select it using mydata[ ,2] or mydata[ ,"gender"].
For two-dimensional objects, the first subscript selects rows, the second
selects columns. If empty, it refers to all rows/columns.

Tags
Value names (not labels). Names of vector elements or list components,
especially when used to supply a set of argument names (the tags) and
their values. For examples see help("list"), help("options"), and
help("transform").

Vector
A variable. It can exist on its own in memory or it can be part of a
data set. More formally, a set of values that have the same mode, i.e.,
an atomic object.

Workspace
Similar to your SAS work library, but in memory rather than on a
temporary hard drive directory. Also similar to the area where your
SPSS files reside before you save them. It is the area of your computer’s
main memory where R does all its work. When you exit R, objects you
created in your workspace will be deleted unless you save them to your
hard drive first.
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Appendix B: Comparison of Major Attributes
of SAS and SPSS to those of R

Aggregating data
SAS & SPSS – One pass to aggregate, another to merge (if needed,
SAS only), a third to use. SAS/SPSS functions, SUMMARY, or AG-
GREGATE offer only basic statistics.
R – A statement can mix both raw and aggregated values. Can aggre-
gate on all statistics and even functions you write.

Controlling procedures or functions
SAS & SPSS – Statements such as CLASS and MODEL, options and
formulas control the procedures.
R – You can control functions by manipulating the data’s structure
(its class), setting function options (arguments), entering formulas, and
using apply and extraction functions.

Converting data structures
SAS & SPSS – In general, all procedures accept all variables; you rarely
need to convert variable type.
R – Original data structure plus variable selection method determines
structure. You commonly use conversion functions to get data into
acceptable form.

Cost
SAS & SPSS – Each module has its price. Academic licenses cannot be
used to help any outside organization, not even for pro bono work.
R – R and all its packages are free. You can work with any clients and
even sell R if you like.

Data size
SAS & SPSS – Most procedures are limited only by hard disk size.
R – Most functions must fit the data into the computer’s smaller ran-
dom access memory.

Data structure
SAS & SPSS – Rectangular data sets only in main language.
R – Vector, factor, data frame, matrix, list, etc. You can even make up
your own data structures.

Graphical user interfaces
SAS & SPSS – SAS Enterprise Guide, Enterprise Miner, and SPSS
Modeler use the flowchart approach. SPSS offers a comprehensive menu
and dialog box approach.
R – R has several. Red-R uses a flowchart similar to Enterprise Guide
or Enterprise Miner. R Commander and Deducer look much like SPSS.
Rattle uses a ribbon interface like Microsoft Office. While not yet as
comprehensive as the SAS or SPSS GUIs, they are adequate for many
analyses.

Graphics
SAS & SPSS – SAS/GRAPH’s traditional graphics are powerful but
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cumbersome to use. Its newer SG graphics are easy to use and are high
quality but are relatively inflexible. SPSS Graphics Production Lan-
guage (GPL) is not as easy to program but is far more flexible than
SAS/GRAPH.
R – Traditional graphics are extremely flexible but hard to use with
groups. The lattice package does graphics in a similar way to
SAS/GRAPH’s new SG plots. They are easy to use and good qual-
ity, but not as flexible as those in the ggplot2 package. The ggplot2

package is more flexible than SAS/GRAPH and easy to use. Its func-
tionality is very close to SPSS’s GPL while having a simpler syntax.

Help and documentation
SAS & SPSS – Comprehensive, clearly written, and aimed at beginner
to advanced users.
R – Can be quite cryptic; aimed at intermediate to advanced users.

Macro language
SAS & SPSS – A separate language is used mainly for repetitive tasks
or adding new functionality. User-written macros run differently from
built-in procedures.
R – R does not have a macro language as its language is flexible enough
to not require one. User-written functions run the same way as built-in
ones.

Managing data sets
SAS & SPSS – Relies on standard operating system commands to copy,
delete, and so forth. Standard search tools can find data sets since they
are in separate files.
R – Uses internal environments with its own commands to copy, delete,
and so forth. Standard search tools cannot find multiple data frames if
you store them in a single file.

Matrix language
SAS & SPSS – A separate language used only to add new features.
R – An integral part of R that you use even when selecting variables
or observations.

Missing data
SAS & SPSS – When data is missing, procedures conveniently use all
of the data they can. Some procedures offer listwise deletion as an
alternative.
R – When data is missing, functions often provide no results (NA) by
default; different functions require different missing value options.

Output management system
SAS & SPSS – Most users rarely use output management systems for
routine analyses.
R – People routinely get additional results by passing output through
additional functions.

Publishing results
SAS & SPSS – See it formatted immediately in any style you choose.
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Quick cut and paste to word processor maintains fonts, table status,
and style.
R – Process output with additional procedures that route formatted
output to a file. You do not see it formatted as lined tables with propor-
tional fonts until you import it to a word processor or text formatter.

Selecting observations
SAS & SPSS – Uses logical conditions in IF, SELECT IF, WHERE.
R – Uses wide variety of selection by index value, variable name, logical
condition, string search (mostly the same as for selecting variables).

Selecting variables
SAS & SPSS – Uses simple lists of variable names in the form of:
x, y, z; a to z; a--z. However, all of the variables for an anal-
ysis or graph must be in a single data set.
R – Uses wide variety of selection methods: by index value, variable
name, logical condition, string search (mostly the same as for selecting
observations). Analyses and graphs can freely combine variables from
different data frames or other data structures.

Statistical methods
SAS & SPSS – SAS is slightly ahead of SPSS but both trail well be-
hind R. SAS/IML Studio and SPSS can run R programs within SPSS
programs.
R – Most new methods appear in R around 5 years before SAS and
SPSS.

Tables
SAS & SPSS – Easy to build and nicely formatted, but limited in what
they can display.
R – Can build table of the results of virtually all functions. However,
formatting is extra work.

Variable labels
SAS & SPSS – Built in. Used by all procedures.
R – Added on. Used by few procedures and actually breaks some stan-
dard procedures.



658 18 Conclusion

Appendix C Automating your R setup

SAS has its autoexe.sas file that exists to let you automatically set options
and run SAS code. R has a similar file called .Rprofile. This file is stored in
your initial working directory, which you can locate with the getwd() function.

We will look at some useful things to automate in an .Rprofile.

Setting Options

In your .Rprofile, you can set options just as you would in R. I usually set
my console width to 64 so the output fits training examples better. I also ask
for 5 significant digits and tell it to mark significant results with stars. The
latter is the default, but since many people prefer to turn that feature off, I
included it. You would turn them off with a setting of FALSE.

options(width = 64, digits = 5, show.signif.stars = TRUE)

Enter help("options") for a comprehensive list of parameters you can
set using the options function.

Setting the random number seed is a good idea if you want to generate
numbers that are random but repeatable. That is handy for training examples
in which you would like every student to see the same result. Here I set it to
the number 1234.

set.seed(1234)

The setwd function sets the working directory, the place all your files will
go if you don’t specify a path.

setwd("c:/myRfolder")

Since I included the “/” in the working directory path, it will go to the
root level of my hard drive. That works in most operating systems. Note that
it must be a forward slash, even in Windows, which usually uses backward
slashes in filenames. If you leave the slash off completely, it will set it to be a
folder within your normal working directory.

Creating Objects

I also like to define the set of packages that I install whenever I upgrade to
a new version of R. With these stored in myPackages, I can install them all
with a single command. For details, see Chap. 2, “Installing and Updating R”.
This is the list of some of the packages used in this book.

myPackages <- c("car","hexbin","ggplot2",

"gmodels","gplots", "Hmisc",

"reshape2","Rcmdr","prettyR")
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Loading Packages

You can have R load load your favorite packages automatically too. This is
particularly helpful when setting up a computer to run R with a graphical user
interface like R Commander. Loading packages at startup does have some dis-
advantages though. It slows down your startup time, takes up memory in
your workspace, and can create conflicts when different packages have func-
tions with the same name. Therefore, you do not want to load too many this
way.

Loading packages at startup requires the use of the local function. The
getOption function gets the names of the original packages to load and stores
them in a character vector I named myOriginal. I then created a second char-
acter vector, myAutoLoads, containing the names of the packages I want to
add to the list. I then combined them into one character vector, myBoth.
Finally, I used the options function to change the default packages to the
combined list of both the original list and my chosen packages:

local({

myOriginal <- getOption("defaultPackages")

# edit next line to be your list of favorites.

myAutoLoads <- c("Hmisc","ggplot2")

myBoth <- c(myOriginal,myAutoLoads)

options(defaultPackages = myBoth)

})

Running Functions

If you want R to run any functions automatically, you create your own single
functions that do the required steps. To have R run a function before all
others, name it “.First.” To have it run the function after all others, name it
“.Last.” Notice that utility functions require a prefix of “utils::” or R will
not find them while it is starting up. The timestamp function is one of those.
It returns the time and date. The cat function prints messages. Its name
comes from the UNIX command, cat. It is short for catenate (a synonym for
concatenate). In essence, we will use it to concatenates the timestamp to your
console output.

.First <- function()

{

cat("\n Welcome to R!\n")

utils::timestamp()

cat("\n")
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}

You can also have R run any functions before exiting the package. I have it
turn off my graphics device drivers with the graphics.off function to ensure
that no files gets left open.

I like to have it save my command history in case I later decide I should
have saved some of the commands to a script file. Below I print a farewell
message and then save the history to a file named myLatest.Rhistory.

.Last <- function()

{

graphics.off() #turns off graphics devices just in case.

cat("\n\n myCumulative.Rhistory has been saved." )

cat("\n\n Goodbye!\n\n")

utils::savehistory(file = "myCumulative.Rhistory")

}

Warning: Since the .First and .Last functions begin with a period, they
are invisible to the ls function by default. The command:

ls(all.names = TRUE)

will show them to you. Since they are functions, if you save a workspace
that contains them, they will continue to operate whenever you load that
workspace, even if you delete the .Rprofile! This can make it very difficult to
debug a problem until you realize what is happening. As usual, you can display
them by typing their names and run them by adding empty parentheses to
them:

\verb+.First()+.

If you need to delete them from the workspace, rm will do it with no added
arguments:

rm(.First,.Last)

Example .Rprofile

The following is the .Rprofile with all of the above commands combined. You
do not have to type this in, it is included in the book’s programs and data
files at http://RforSASandSPSSusers.com

# Startup Settings

# Place any R commands below.
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options(width=64, digits=5, show.signif.stars = TRUE)

set.seed(1234)

setwd("c:/myRfolder")

myPackages <- c("car","hexbin","ggplot2",

"gmodels","gplots", "Hmisc",

"reshape","ggplot2","Rcmdr")

utils::loadhistory(file = "myCumulative.Rhistory")

# Load packages automatically below.

local({

myOriginal <- getOption("defaultPackages")

# Edit next line to include your favorites.

myAutoLoads <- c("Hmisc","ggplot2")

myBoth <- c(myOriginal,myAutoLoads)

options(defaultPackages = myBoth)

})

# Things put here are done first.

.First <- function()

{

cat("\n Welcome to R!\n")

utils::timestamp()

cat("\n")

}

# Things put here are done last.

.Last <- function()

{

graphics.off()

cat("\n\n myCumulative.Rhistory has been saved." )

cat("\n\n Goodbye!\n\n")

utils::savehistory(file = "myCumulative.Rhistory")

}
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+ operator, 220

.GlobalEnv environment, 421

.RData files, 432

.Rprofile, 17, 41

.Rprofile file, 658

$ notation, 77, 87, 172

$ prefixing by dataframe$, 172
$TIME SPSS system variable, 360

LATEX, 398

... R argument, 141
%*% R operator, 82

%in% R operator, 169, 171, 199, 339, 348

& operator, 238

** operator, 220
* SAS operator, 82

* SPSS operator, 82

* comments in SAS and SPSS, 90
* operator, 220

- operator in SAS, 161

- operator, on date times, 360
-- operator in SAS, 161, 164

... R argument, 227

.First R function, 659

.Last R function, 659

.Last.value. R object, 117

/*...*/ SAS and SPSS comments, 91

/ operator, 220
: R operator, 62, 164, 402

: variable name operator in SAS, 162

< operator, 238

<- R operator, 63
<- getting help on, 54

<= operator, 238

= SAS or SPSS logical operator, 68
== R operator, 68, 168
> operator, 238
>= operator, 238
??, searching help with, 55
^ operator, 170, 220
* R operator, 63
+ R operator, 62
+ R prompt, 9
> R prompt, 9
9, 99, 999 as missing values, 254

abbreviating argument names in R, 94
accuracy, of R, 3
ADATE SPSS format, 355
ADD DOCUMENT SPSS command, 91
ADD FILES SPSS command, 281
add1 R function, 621
adding data sets, 281
adding variables to data sets, 285
addition, 220
addmargins R function, 611
advantages, R vs. SAS, SPSS, 2
aesthetics in ggplot2 package, 522
aggregate R function, 290

compared to others, 298
getting group means, 630
getting group medians, 627
getting group variances, 630

AGGREGATE SPSS command, 290,
297, 609

used to select first or last per group,
314

aggregated data

669
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creating, 290
merging with original data, 294

aggregation
methods compared, 298
tabular, 296

ALL keyword in SPSS, 162
Allaire, JJ, 42
Almeida, Eliana, 4
Almiron, Marcelo, 4
analysis of variance, 630
anonymous functions, 233
ANOVA, 630
ANOVA contrasts, 635
anova R function, 6, 100
anti-logarithm, 220
ANYDTDTE SAS format, 356
AOV, 630
aov R function, 631
apply R function, 226
ARFF, see Attribute-Relation File

Format
arguments

of R functions, 64
arguments, of R functions, 64, 92
Arnholt, Alan, 629
arrays, 82
as.character R function

converting factors, 383
as.data.frame R function, 339

applied to by objects, 304
for converting tables to dataframes,

609
as.factor R function, 378
as.is argument for reading text, 126
as.list R function, 339
as.logical R function, 168
as.matrix R function, 226, 339
as.numeric R function, 238

and date–times, 357
converting factors, 383

as.POSIXct R funtion, 357
as.vector R function, 339
assignment R operator, 63
at SAS operator, 134
attach R function, 172, 173

used with data frames, 422
used with files, 426
when creating new variables, 222

attaching

data frames, 422
files, 426
packages, 424

attribute-relation file format, 50
attributes of R objects, 76
attributes R function, 418
AUTOEXEC.SAS SAS file, 658
automating R settings, 658

Baier, Thomas, 38, 398
bar operator, 238
bar plots

of counts using barplot R function,
459

of means, using barplot R function,
458

bar SAS operator, 347
barplots

of counts using ggplot2 R function,
526

bartlett.test R function, 624
batch submission

in R, 64
Linux or UNIX, 29
Windows, 29

Bates, Douglas, 82
BEGIN DATA SPSS command, 129
BEGIN PROGRAM SPSS statement,

34
Benford’s law, 50
biglm package, 435
binary version of R, 11
binding rows, 281
Bolker, Ben, 4
break R function, 108
breaking a function call across lines, 62
Bridge to R, A, 31
Buja, Andreas, 442
by objects, converting to data frames,

304
by processing, 302
by R function, 302

used to find first or last observation
per group, 315

compared to others, 298
BY SAS statement, 302

c R function, 339
with character values, 72
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with factors, 70
with numeric values, 64

calculations, simple, 62
calling a function in R, 61
car R package, 19, 269, 624

used with ANOVA, 634
CARDS SAS statement, 129
Carr, Dan, 484
cases, SPSS, 74
cat R function, 365
CATALOG SAS procedure, 417
cbind R function, 78, 339

when creating new variable, 221
CD SPSS command, 430
Century range for two-digit years, 365
changing object class, 339
character factors, 376
character strings, blocking conversion

to factor, 126
character variables, 342
character vector, 64
check.names argument, checking names

for validity, 392
Cheng, Joe, 42
chisq.test R function, 610
chop R function, 561
citation R function, 13
class

converting, 339
of an R object, 96

class R function, 97, 99, 418
regarding factors, 376

Cleveland, W. S., 443
clipboard, reading data from, 122
coersion

forcing mode change, 64
preventing in data.frame call, 75

colClasses R argument, 125, 355
collapsing data sets, 290
colMeans R function, 227
colon R operator, 62
colon variable name operator in SAS,

162
colons, when calling functions, 426
color R argument, 560
colSums R function, 227
columns, of a data frame, 74
comma, importance when selecting

variables, 166

commands, in SPSS, 64
comment attribute, 389
COMMENT command in SAS and

SPSS, 90
comment R function, 389
comments

to document objects, 91
to document programs, 90

complete.cases R function, 253
components of a list, 101
Comprehensive R Archive Network, 11
COMPUTE SPSS command, 219
CONCAT SPSS function, 347
concatenating data sets, 281
conditional transformations

multiple, 246
single, 237

contents R function, 56, 420
CONTENTS SAS procedure, 419, 420
continuing a function call on another

line, 62
contrast R function, 277
contrasts in ANOVA, 635
controlling functions, 338
converting

data structures, 338
factors into numeric or character

variables, 383
logical vector to numeric, 341
numeric vector to logical, 341
object class, 339

Cook, Dianne, 442
coord_map R function, 571
coordinate systems, defined in ggplot2

package, 522
copying and pasting data, 122
cor R function

applied to a matrix, 80
cor.test R function, 615
CORR SAS procedure, 612
correlation, 612
CORRELATIONS SPSS command, 612
count.fields function, 124
CRAN, see Comprehensive R Archive

Network
CREATE DUMMIES SPSS extension

command, 278
cross-tabulation, 607
crossTable R function, 607
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CROSSTABS SPSS command, 607
crosstabular aggregation, 296
custom variable attribute in SPSS, 91
cut R function, 241, 561
cut2 R function, 241, 269

Dahl, David, 396
dash, use of in SAS, 161
data

accessing in packages, 18
editor, 115
generation, 401
how R stores it, 435
mining, 48
retrieving lost, 117
structures, 63
converting, 338

transformations, 219
Data Access Pack, SPSS, 151
data frames, 74

creating, 74
selecting elements, 76

data R function, 19
DATA SAS option, 174
data set, SAS or SPSS, 74
data.frame R function, 75, 339

its impact on spaces in variable
names, 392

DATALINES SAS command, 129
DATASETS SAS procedure, 417
DATDIF SAS function, 358
date R function, 360
date, displaying in output, 659
date–time

accessing elements of, 362
adding to durations, 362
calculations, 358
conversion specifications, 366
creating from elements, 363
example programs, 366
pasting elements together, 364
subtraction, 360
two-digit years, 365
variables, 354

DATEDIFF SPSS function, 358
DATESTYLE SAS date option, 356
day R function, 362
dcast R function, 325

compared to others, 298

Deducer Graphical User Interface, 43
DELETE VARIABLES SPSS com-

mand, 279
deleting objects, see removing objects,

427
density shading, 485, 551
describe R function, 425, 601
DESCRIPTIVES SPSS command, 600,

601
det R function, 82
DET SAS function, 82
DET SPSS function, 82
detach R function, 173, 425
developerWorks, IBM support site, 34
Devoper Central, SPSS support site, 34
diag R function, 82
DIAG SAS function, 82
DIAG SPSS function, 82
DiCristina, Paul, 42
difftime R function, 358
directory

working directory, 89
getting or extracting, 89
setting, 89

DISPLAY DICTIONARY SPSS
command, 419

displaying file contents, 156
division, 220
do loops, 107, 219, 225
do.call R function, 339

converting by object to data frame,
306, 316

DOCUMENT SPSS command, 91
dollar notation, 77, 87, 172
dots R argument, 141, 227
DROP SAS statement, 279
drop1 R function, 621
dropping

factor levels, 384
variables, 279

dummy variables, 274
duplicate observations, finding and

removing, 308
duplicated R function, 309
durations, adding to date–times, 362

Eclipse development environment, 40
edit R function, 116

when renaming variables, 260
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eigen R function, 82

EIGENVEC SAS function, 82

elements, of a vector, 63, 64

Elff, Martin, 393

elipses as R argument, 141, 227

else R function, 108

Emacs text editor, 40

END PROGRAM, SPSS command, 36

environment, 421

EQ SAS or SPSS operator, 68, 238

equivalence operators, 238

escape

unrecognized, 89

ESS Emacs Speaks Statistics, 40
Exact Tests SPSS module, 607, 626

EXAMINE SPSS command, 600, 601

example programs

for aggregating/summarizing data,
299

for applying statistical functions, 234

for by or split-file processing, 306
for character string manipulation, 349

for conditional transformations, 242

for dates and times, 366

for formatting output, 398

for generating data, 411

for graphics, ggplot2, 580

for Indicator or Dummy Variables,
277

for joining/merging data sets, 288

for keeping and dropping variables,
280

for missing values, 255

for multiple conditional transforma-
tions, 248

for reading a SAS data set, 151

for reading data from SPSS, 152

for reading data within a program,
132

for reading delimited text files, 126

for reading Excel files, 147
for reading fixed-width text files, 2

records per case, 145

for reading fixed-width text files, one
record per case, 142

for reading multiple observations per
line, 136

for recoding variables, 272

for removing duplicate observations,
311

for renaming variables, 264
for reshaping data, 330
for selecting last observation per

group, 317
for selecting observations, 202
for selecting variables and observa-

tions, 215
for sorting data sets, 336
for stacking/concatenating/adding

data sets, 283
for transforming variables, 223
for transposing or flipping data sets,

322
for value labels, 385
for variable selection, 180
for writing data from SAS, 151
for writing data to SAS and SPSS,

159
for writing delimited text files, 154
for writing Excel files, 157
graphics, traditional, 508
statistical tests, 637

Excel
reading and writing files, 146
writing files from R, 156

exp R function, 220
EXP SAS function, 220
EXP SPSS function, 220
exponentiation, 220
exporting data , see Writing data
extractor functions, 99, 617

advantages of, 100

facets, defined in ggplot2 package, 522
factor R function, 117, 375
factors, 68

character, 376
converting into numeric or character

variables, 383
converting variables to, 50
creating
from character vectors, 72
from numeric vectors, 69

dropping levels, 384
generating, 403

Fellows, Ian, 41, 43
FILE LABEL SPSS command, 91
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file management, 417
file.show R function, 156
files

displaying contents, 156
viewing, 156

first observation per group, selecting,
314

FIRST or LAST SAS variables, 314
FIRST or LAST SPSS variables, 314
firstUpper R function, 345
Fisher’s exact test, 607
fisher.test R function, 607
fix R function

for editing data, 117
for renaming variables, 258

FLIP SPSS command, 319
flipping data sets, 319
for R function, 108
foreign R package, 149, 150
forest models, 51
FORMAT SAS procedure, 375
FORMAT SAS statement, 375
formats for date–time variables, 366
formulas, 96

using short variable names with, 174
Fox, John, 13, 19, 269, 624, 634
FREQ SAS procedure, 600, 605, 607
frequencies R function, 600
FREQUENCIES SPSS command, 600,

605
Friendly, Michael, 445
functions

anonymous, 233
compared to procedures, 225
controlling, 338
controlling with an object’s class, 96
controlling with arguments, 92
controlling with extractor functions,

99
controlling with formulas, 96
controlling with objects, 95
in R vs. SAS, SPSS, 64
to comment out blocks of code, 91
writing your own, 105

GE SAS or SPSS operator, 238
generating

continuous random numbers, 408
data, 401

data frames, 409
factors, 403
integer random numbers, 406
numeric sequences, 402
repetitious patterns, 404

geographic information systems, 568
Geographic Resources Analysis Support

System, 569
geom_abline R function, 556
geom_bar R function, 526
geom_boxplot R function, 564
geom_density R function, 538
geom_hex R function, 552
geom_histogram R function, 537
geom_hline R function, 556
geom_jitter R function, 542
geom_line R function, 545
geom_path R function, 546, 571
geom_point R function, 535, 544
geom_polygon R function, 572
geom_rug R function, 539
geom_segment R function, 546
geom_smooth R function, 554
geom_text R function, 558
geom_vline R function, 556
geoms, defined in ggplot2 package, 522
GET FILE SPSS command, 153
getOption R function, 659
getSplitDataFromSPSS argument, 35
GETURI SPSS extension command,

127
getwd R function, 89, 430
GGobi, 50, 442
ggopt R function, 579
ggplot arguments and functions table,

524
ggplot R function, 522
ggplot2 R package, 521
ggsave R function, 577
gl R function, 403
GLM SAS procedure, 630
GLM SPSS command, 630
glob, global wildcard, 171, 199
glob2rx R function, 171, 199
global, searching with, 171, 199
GlobalEnv environment, 421
GOPTIONS SAS statement, 448
Gouberman, Alex, 441
gplots R package, 505
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grammar of graphics, 521
Graphical User Interfaces, 42

Deducer, 43
Java GUI for R, 41
JGR, 41
R Commander, 46
Red-R, 51

graphics
arguments and functions, for ggplot2

package, 524
aspect ratio
using ggplot R function, 575
using qplot R function, 575

bar charts
for groups, using ggplot R function,
530

for groups, using qplot R function,
530

bar plot
horizontal, using barplot R
function, 455

bar plots
of counts, using ggplot R function,
526

of counts, using qplot R function,
526

using ggplot R function, 526
using qplot R function, 526
for subgroups, using barplot R
function, 457

horizontal, using ggplot R function,
527

horizontal, using qplot R function,
527

of counts, using barplot R function,
453

presummarized data, using qplot R
function, 532

presummarized data, using ggplot

R function, 532
stacked, using barplot R function,
456

stacked, using ggplot R function,
527

stacked, using qplot R function,
527

using barplot R function, 453
using plot R function, 451

box plots

using boxplot R function, 502
using ggplot R function, 564
using plot R function, 451, 502
using qplot R function, 564

colors
in traditional graphics, 459

density plots
using qplot R function, 537
using ggplot R function, 537

devices, 448
dot charts
using ggplot R function, 534
using qplot R function, 534
using dotchart R function, 466

dual-axes plots
using plot R function, 500

equations, adding to, 505
error bar plots
using ggplot R function, 567
using plotmeans R function, 505
using qplot R function, 567

functions
to add elements to existing
traditional plots, 480

geographic maps, 568
GGobi, 442
ggplot2 example R program, 583
GOPTIONS SAS statement, 448
GPL example SPSS program, 580
grid graphics system, 448
hexbin plots
using ggplot R function, 551
using qplot R function, 551
using hexbin R function, 484

histograms
using ggplot R function, 536
using qplot R function, 536
using hist R function, 466, 467

histograms, overlaid
using qplot R function, 540
using ggplot R function, 540
using hist R function, 470

histograms, stacked
using qplot R function, 539
using ggplot R function, 539
using hist R function, 469

histograms, with density overlaid
using qplot R function, 538
using ggplot R function, 538
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interaction plots
using interaction.plot R function,
505

interactive, 441
iplots R package, 441
jpeg device driver, 450
labels
in ggplot2 graphics, 535

lattice R package, 443, 448
legends
in traditional graphics, 459

line plots
using qplot R function, 544
using ggplot R function, 544
using plot R function, 480

logarithmic axes
using ggplot R function, 574
using qplot R function, 574

missing values’ effect on, 524
mosaic plots
using mosaicplot R function, 457
using plot R function, 457

multiple plots on a page
in ggplot2, 575
in traditional graphics, 462

normal QQ plots
using qplot R function, 540
using ggplot R function, 540
using qq.plot R function, 475
using qqnorm R function, 475

options, 448
Output Delivery System, 442
overview, 441
parameters
in traditional graphics, 462
demo plot in traditional graphics,
507

for traditional high-level graphics
functions, 477

in ggplot2 graphics, 579
in ggplot2 package, 578
in traditional graphics, 507
to set or query using only the par

function in traditional graphics,
478

pdf device driver, 450
pictex device driver, 450
pie charts
using ggplot R function, 528

using pie R function, 465
using qplot R function, 528

plots by group or level, using ggplot

R function, 531
plots by group or level, using qplot

R function, 531
png device driver, 450
postscript device driver, 449
quartz device driver, 450
rattle R package link to GGobi, 442
recording history in Windows for

Page Up/Down, 448
rggobi R package, 442
SAS/GRAPH, 442
saving plots to a file
in ggplot2 package, 577
in traditional graphics, 450

scatter plot for correlation, 612
scatter plot matrices
using ggplot R function, 562
using plot R function, 498
using qplot R function, 562

scatter plots
using qplot R function, 544
using ggplot R function, 544
using plot R function, 480

scatter plots by group or level
using plot R function, 489

scatter plots with confidence and
prediction intervals

using plot R function, 490
scatter plots with confidence ellipse
using plot R function, 489

scatter plots with density shading
using ggplot R function, 551
using traditional R graphics, 485

scatter plots, faceted by group
using ggplot R function, 561
using qplot R function, 561

scatter plots, for large data sets
using ggplot R function, 548
using qplot R function, 548
using plot R function, 483

scatter plots, with density contours
using ggplot R function, 550
using qplot R function, 550

scatter plots, with fit lines
using ggplot R function, 553
using qplot R function, 553
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scatter plots, with jitter
using qplot R function, 547
using ggplot R function, 547
using plot R function, 483

scatter plots, with labels as points
using ggplot R function, 557
using plot R function, 496
using qplot R function, 557

scatter plots, with linear fit by group
using plot R function, 487

scatter plots, with linear fits by group
using ggplot R function, 560
using qplot R function, 560

scatter plots, with reference lines
using ggplot R function, 555
using qplot R function, 555

scatter plots, with reference lines
added

using plot R function, 486
scatter plots, with symbols by group
using ggplot R function, 559
using qplot R function, 559

SGPANEL SAS procedure, 442
SGPLOT SAS procedure, 442
SGSCATTER SAS procedure, 442
SPSS, 442
strip charts
using stripchart R function, 476

strip plots
using qplot R function, 541
using ggplot R function, 541

systems, compared to procedures, 447
titles
in ggplot2 graphics, 535
in traditional graphics, 459

traditional, 443
traditional graphics example

programs, 508
win.meta device driver, 450
windows device driver, 450
x11 device driver, 450

Graphics Production Language, SPSS,
442

graphics R package, 443
GRASS, 569
grep R function

when selecting observations, 198
when selecting variables, 170, 392

grid graphics system, 448

Grolemund, Garrett, 354
Grosjean, Philippe, 14, 40, 230, 393
GT SAS or SPSS operator, 238
GUI , see Graphical User Interfaces

Harrell, Frank, 12, 56, 150, 241, 269,
420, 601

head R function, 19, 314, 418
Heiberger, Richard M., 38
Helbig, Markus, 41
help

for R data sets, 58
for R functions, 53
for R functions that call other

functions, 57
for R packages, 57, 58
via mailing lists, 58

help R function, 53
help.search R function, 54
help.start R function, 53
hexbin R function, 484
hexbin R package, 484
Hilbe, Joseph, 606
hist R function, 612
history

file in R, 433
of R session, 23, 25, 27

Hmisc R package, 12, 56, 150, 269, 420,
425, 601

Hornik, Kurt, 445
HTML output, 396

I R function, 524
Identify Duplicate Cases SPSS menu,

308
if R function, 108
ifelse R function, 237
IML, SAS add-on, 6
Importing data , see Reading data
imputation, 50
in R function, 108
IN SAS operator, 171, 199
INCLUDE SAS statement, 28, 131
INCLUDE SPSS command, 28, 131
index values, generating from variable

names, 176
indexing , see subscripting
indicator variables, 274
INSERT SPSS command, 28
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install.packages R function, 17
installed.packages R function, 14
Integrated Development Environments

RStudio, 42
integration, of SPSS Statistics and R,

33
interaction.plot R function, 505
interactive mode in R, 64
INV SAS function, 82
INV SPSS function, 82
iplots R package, 441
is.data.frame R function, 339
is.na R function, 230
is.vector R function, 339

JGR, 41
join

full outer, 288
inner, 288

joining data sets, 285
Jones, Owen, vi
journal

SPSS file, 25, 433
jpeg R function, 450

Keeling, Kellie, 4
KEEP SAS statement, 279
KEEP SPSS command, 279
keeping variables, 279
keywords, of an SPSS command, 64
Koenker, Roger, 398
Komodo Edit, 40
kruskal.test R function, 636
Kuhn, Max, 398

LABEL SAS option for DATA
statement, 91

LABEL SAS statement, 389
lappy R function, 228
Lapsley, Michael, 148
last observation per group, selecting,

314
LAST or FIRST SAS variables, 314
LAST or FIRST SPSS variables, 314
LATEXoutput, 396
latex.table R function, 398
lattice R package, 443, 448
Lawerence, Michael, 442
LE SAS or SPSS operator, 238

Lecoutre, Eric, 398
Leisch, Friedrich, 398
Lemon, Jim, 14, 230, 393
length

of data frame components, 74
length R function, 229
LENGTH, SAS statement, 150
LETTERS R object, 342
letters R object, 342
levene.test R function, 631
Lewin-Koh, Nicholas, 484
LG10 SPSS function, 220
LIBNAME SAS statement, 430
library

loading packages with, 14
library R function

used with files, 424
library, SAS work, 88
LibreOffice, 398
linear regression, 616
linesize, controlling in R, 62
linetype R argument, 560
Linux, R versions for, 11
list R function, 339
LIST SPSS command, 53, 64
lists, 83

creating, 83
related to data frames, 74
selecting elements, 86

lm R function, 6, 616
LN SPSS function, 220
load R function, 23, 25, 27, 215, 431
loadhistory R function, 23, 26, 27, 433
loading

packages, 424
loading an R package, 13
loading data subsets, 214
local R function, 659
LOG SAS function, 220
log file in SAS, 433
log R function, 220
log10 R function, 220
LOG10 SAS function, 220
LOG2 SAS function, 220
log2 R function, 220
logarithm, 219
logical operators, 238
long format data sets, 324
LOWCASE SAS function, 345
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LOWER SPSS function, 345
ls R function, 88, 417

applied to search path, 421
LT SAS or SPSS operator, 238
lubridate R package, 354
Lumley, Thomas, 435

Mac OS, R versions for, 11
macro substitution, 95, 141, 166
macros

in SAS or SPSS, 6
writing in R, 105

Maechler , Martin, 484
Maechler, Martin, 82
managing files and workspace, 417
manipulating character variables, 342
Mann-Whitney U test for independent

groups, 626
map R function, 569
map_data R function, 569
mapply R function, 231
maps

converting, 573
finding, 573
geographic, 568

maps R package, 569
margins, adding to cross-tabulations,

611
masked objects, 15, 423
MASS R package, 621
MATCH FILES SPSS command, 285
MATCH FILES SPSS command, to

select first or last per group, 314
matching data sets, 285
mathematical operators, 220
MATLAB, 3
matlab R package, 3
matrix, 74, 78

creating, 78, 82
selecting elements, 81
stored in a data frame or list, 80

matrix algebra, 82
matrix functions, 82
matrix R function, 79, 339
Matrix R package, 82
Matrix, SPSS add-on, 6
max R function, 231
MAX SAS function, 231
MAX SPSS function, 231

McNemar test, 607

mcnemar.test R function, 607

mdy R function, 355

MDY SAS date value, 356

mean R function, 93, 231

applied to a matrix, 80
getting group means, 630

getting help on, 55
MEAN SAS function, 231

MEAN SPSS function, 231
MEANS SAS procedure, 600

median R function, 229, 231
getting group medians, 627

MEDIAN SAS function, 231
MEDIAN SPSS function, 231

melt R function, 324
memisc R package, 393

merge R function, 287, 572
MERGE SAS statement, 285

merge_all function, 288
merging data sets, 285

merging more than two data frames at
once, 288

merging, data with aggregated data,
294

methods, 338
Meyer, David, 445

Microsoft Word, 398
Militino, Ana, 629
min R function, 231

MIN SAS function, 231
MIN SPSS function, 231

Minard, Charles Joseph, 444
Miranda, Marcio, 4

missing data, going from R to SPSS, 34
missing values, 65, 67, 250

9, 99, 999 as missing codes, 254
finding observations with none, 253

for character variables, 122
substituting means, 252

MISSOVER SAS option, 141
MMDDYY SAS format, 355

mode of an R object, 64, 96
model selection, stepwise. . . , 621
month R function, 362

multiplication, 220
Murrell, Paul, 443, 448

mutate R function, 221
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N SAS function, 229–231
NA, not available or missing, 65, 67,

250
na.omit R function, 253
na.rm R argument, 67
na.strings argument for reading

missing values, 251
names attribute, 76
names R function, 76, 166, 170, 261,

343, 418
used with which, 177

names, rules for in R, 61
ncol R function, 165
nesting function calls, 219
Neuwirth, Erich, 38
next R function, 108
NODUPKEY SAS keyword, 311
NODUPRECS SAS keyword, 308
nonparametric analysis of variance, 635
not equal operator, 238
Notepad++ text editor, 40
now R function, 360
NOXWAIT SAS option, 31
NPAR TESTS SPSS command, 626,

635
NPAR1WAY SAS procedure, 626, 635
NppToR plug-in, 40
NPTESTS SPSS command, 627, 628
NULL R object, 279
NVALID SPSS function, 229–231

objects
removing, 90

objects R function, 88, 417
objects, changing class, 339
observations

in SAS, 74
renaming, 264
saving selections to data frame, 201
selecting, 187
selecting all, 188
selecting first or last per group, 314
selecting in SAS and SPSS, 187
selecting using subset function, 200
selecting using index number, 189
selecting using logic, 194
selecting using random sampling, 191
selecting using row names, 193
selecting using string search, 198

selection example R program, 203
selection example SAS program, 202
selection example SPSS program, 203

ODBC, see Open Database Connectiv-
ity

ODBC Driver
for reading files from SAS, 150
for reading files from SPSS, 151

odfWeave R package, 398
ODS , see Output Delivery System
OMS , see Output Management System
Open Database Connectivity, 50
Open Document Format, 398
OpenOffice, 398
operators

logical, 238
mathematical, 220
matrix, 82
statistsical, 231

options R function
at startup, 658

OPTIONS SAS statement, 63
options, setting automatically, 658
order R function, 333
ordered R function, 71, 277, 378, 379
ordinal factors, contrasts for, 277
outliers, 50
Output Delivery System, SAS, 6, 99,

296, 616
for graphics, 442

OUTPUT EXPORT SPSS command,
448

Output Management System, SPSS, 6,
99, 616

Output Managment System, SPSS, 296

packages
accessing data in, 18
attaching, 424
conflicts among, 15
detaching, 17
installing, 11
loading, 424
loading from the library, 13
uninstalling, 17

pairwise.t.test R function, 632
pairwise.wilcox.test R function, 636
parameters, of a SAS statement, 64
paste R function, 167, 263, 342
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with dates, 364
pasting data from the clipboard, 122
PASWR R package, 629
path, 421
Paulson, Josh, 42
Pavur, Robert, 4
pbinom R function, 629
pdf R function, 450
pictex R function, 450
pie charts

using ggplot R function, 535
using qplot R function, 535

plot R function, 6, 100, 443
for correlations, 612
testing linearity, 616
used to plot ANOVA diagnostics, 633
used to plot multiple comparisons,

633
plyr R package, 221, 231, 232, 282
png R function, 450
POSIXct R date–time format, 356
POSIXlt R date–time format, 356
POSIXt R date–time format, 356
postscript R function, 449
predict R function, 100, 622
prettyR R package, 14, 230, 393, 425
print R function, 53, 64, 418
PRINT SAS procedure, 64
PRINT SPSS command, 64, 365
printing

components of a list, 104
the contents of lm objects, 101

PROBSIG SAS option, 599
procedures

compared to functions, 225
in SAS or SPSS, 64

Production Facility, SPSS batch system,
29

program flow, controlling, 107
prompt characters, R, 9
prop.table R function, 604, 610
PROPER SAS function, 345
proportions, row, column, total, 610
PRX SAS function, 170
PUT SAS statement, 365

qplot arguments and functions table,
524

qplot R function, 521

qqnorm R function, 612
quickplot R function, 522
quantreg R package, 398
quartz R function, 450
quickplot, see qplot

R Commander, 46
R-help mailing list, 58
R2HTML R package, 398
Rack, Philip, 31
random number generation

continuous, 408
data frames, 409
integer, 406

range R function, 231, 293, 304
RANGE SAS function, 231
rank R function, 231
ranking, 231
rattle R package, 48

link to GGobi, 442
rbind R function, 281, 339

converting by object to data frame,
305

rbind.fill R function, 282
rcorr R function, 613
rcorr.adjust R function, 612
read.fwf R function, 343, 355
read.ssd R function, 149
read.table R function, 118
read.table R function, 126

reading factors, 376
setting missing values, 251

readClipboard R function, 122
reading data

from a CSV file, 118
from a tab delimited file, 120
from a Web site, 121
from databases, 148
from Excel files, 146
from SAS, 149
from SPSS, 151
from the clipboard, 122
from the keyboard, 138
multiple observations per line, 134
skipping columns, 125
skipping variables, 125
trouble with tabs, 124
two or more records per case, 143
within a program, 129
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recode R function, 269
records, 74
Red-R, 51
Redd, Andrew, 40
REG SAS procedure, 616
regression, 51

linear, 616
REGRESSION SPSS command, 616
regular expression, when searching for

object names, 418
relevel R function, 276
reliability, of R, 3
remove R function, 90, 427
remove.packages R function, 17
removing objects, 90, 427
rename R function, 258
RENAME SAS statement, 258
RENAME SPSS command, 258
renaming

observations, 264
varibles, 258

renaming variables
by column name, 262
by index, 261
many sequentially numbered names,

263
rep R function, 404
repeat R function, 108
repeated measures data sets, 324
REPLACE SPSS function, 346
repositories, selecting, 18
reShape R function, 329
reshape R function, 329
reshape R package, 288, 324
reshape2 R package, 258, 324
reshaping data sets, 324
resid R function, 100
retrieving lost data, 117
returning output in R, 61
rggobi R package, 442
Ripley, Brian, 148, 621
rm R function, 90, 427

in relation to dropping variables, 279
RND SPSS function, 220
rnorm R function, 409
rolling up data, 290
round R function, 605
round R function, 220

applied to cross-tabulations, 611

ROUND SAS function, 220
rounding off, 220, 605
row names, 76

changing, 264
setting in data editor, 116

row names attribute, 76
row.label argument, 35
row.names R function, 76, 116, 198,

200, 264
rowMeans R function, 227
rows, of a data frame, 74
rowSums R function, 227
rpart R function, 269
Rprofile, 17
RSiteSearch R function, 59
RStudio, 42
RTRIM SPSS function, 344
rug plot in ggplot2, 539
runif R function, 408
running R

from Excel, 37
from SAS, 30
from SPSS, 33
from WPS, 30
from text editors, 39
in batch mode, 29
interactively, 21

sampling, random, 191
sapply R function, 229
Sarkar, Deepayan, 443
SAS FREQ procedure, 296
SAS TABULATE procedure, 296
SAS/GIS, 569
SAS/GRAPH, 442
SAS/IML Studio, 441
sasxport.get R function, 150
save R function, 90, 215, 431

when creating new variables, 223
save.image R function, 23, 25, 27, 90,

431
when creating new variables, 223

savehistory R function, 23, 26, 27, 433
saving

data subsets, 214
plots in ggplot2, 448, 577
plots in traditional graphics, 448
selected observations to a data frame,

201
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selected variables to a data frame,
180

your work, 88
scale R function, 231
scale_fill_continuous R function,

572
scale_fill_grey R function, 572
scales, defined in ggplot2 package, 522
scan R function, 121, 134

without arguments, 138
scientific notation, 599
scipen R option, 599
SciViews-K, 40
SD SPSS function, 231
sd R function, 229, 231
SDATE SPSS format, 355
search path, 421
search R function, 421
searching for R packages or functions,

59
SELECT IF SPSS command, 188
SELECT VARIABLES SPSS extension

command, 162, 170
selecting

data frame components, 76
list components, 86
matrix elements, 81
vector elements, 67

selecting observations, 187
all, 188
example R program, 203
example SAS program, 202
example SPSS program, 203
in SAS and SPSS, 187
saving to data frame, 201
using subset function, 200
using index numbers, 189
using logic, 194
using random sampling, 191
using row names, 193
using string search, 198

selecting variables
all variables, 162
in SAS and SPSS, 161
saving to a data frame, 180
using $ notation, 172
using attach R function, 173
using subset R function, 175
using with R function, 174

using column names, 166

using formulas, 174

using index numbers, 163

using list index, 176

using logic, 167

using R’s with function, 174

using simple name, 172

using string searches, 169
selecting variables and observations, 209
seq R function, 402

sessionInfo R function, 59
SET SAS statement, 281

SET SPSS command, 63, 599
set.seed R function, 402, 406
setRepositories R function, 18

setwd R function, 89, 430
SGPANEL SAS procedure, 442

SGPLOT SAS procedure, 442
SGSCATTER SAS procedure, 442
shortcuts, use in Windows, 432

Sign Test
for paired groups, 628

SIGN.test R function, 628
sink R function, 27
SMALL SPSS option, 599

smoothScatter R function, 485
solve R function, 82

sort R function, 333
sorting

controlling order, 335
dangers of, 74
data frames, 333

on more than one variable, 335
vectors or factors, 333

source code for R, 11
source R function, 28, 131
spgrass6 R package, 569

SPLIT FILE SPSS command, 302
SPLIT FILE, spss command, 35
split R function, 281

split-file processing, 302
SPSS CROSSTABS procedure, 296

SPSS CTABLES procedure, 296
SPSS-R Integration Plug-in, 151

spss.get R function, 153
spssdata.GetDataFromSPSS R function,

34

SPSSINC
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CREATE DUMMIES extension
command, 278

GETURI extension command, 127

SELECT VARIABLES extension
command, 162, 170

TRANS extension command, 406

TRANSFORM extension command,
219

spsspivottable.Display R function,
36

sqrt R function, 220

SQRT SAS function, 220

SQRT SPSS function, 220

square root, 220

stacking data sets, 281

standardizing variables, 231

statements, in SAS, 64

StatET plug-in, 40

statistical operators, 231

statistics

TukeyHSD test for multiple compar-
isons, 632

aov R function, 631

chisq.test R function, 610

cor.test R function, 615

pairwise.t.test for multiple
comparisons, 632

pairwise.wilcox.test R function,
636

prop.table R function, 604

rcorr R function, 613

summary function, compared to
describe, 603

analysis of variance, 630

Bartlett test for equality of variance,
624

contrasts, 635

correlation, 612

cross-tabulation, 607

descriptive, 600

example programs, 637

frequencies, 600

group

means, 630

medians, 627

variances, 630

homogeneity of variance testing, 631

Kruskal–Wallis test, 635

Mann-Whitney U test for independent
groups, 626

McNemar’s test, 607
model selection, stepwise. . . , 621
percentages, 605
proportions, 604, 610
regression
linear, 616
predicting with new data, 622

rounding off decimals, 605
Sign Test
for paired groups, 628

Sums of squares, different types, 633
t-test
for independent groups, 622
for paired groups, 625

Wilcoxon rank sum test for
independent groups, 626

Wilcoxon test
for paired groups, 627

statistics, defined in ggplot2 package,
522

STD SAS function, 229, 231
step R function, 621
stepAIC R function, 621
stepwise model selection, 621
str R function, 419
str_c R function, 342, 347
str_detect R function, 347, 348
str_length R function, 344
str_replace R function, 346
str_split_fixed R function, 346
str_sub R function, 345
str_trim R function, 344
string variables, 342
stringr R package, 342
stringsAsFactors R argument, 75, 376

for reading text, 126
STRIP SAS function, 344
strip.white R argument, 344
subscripting, 163

data frames, 76
lists, 86
matrices, 81
vectors, 67

subset R function, 175, 180, 200, 209
selecting both variables and

observations, 210
SUBSTR SAS or SPSS function, 345
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subtraction, 220
of date–times, 360

sum R function
when used for counting, 230

summarization methods compared, 298
summarized data sets, creating, 290
SUMMARY SAS procedure, 290, 297,

609
Sums of squares, different types, 633
Support Vector Machines, 51
SVM , see Support Vector Machines
Swayne, Deborah F., 442
Sweave R function, 398
SWord R software, 398
Sys.time R function, 360
SYSFILE INFO SPSS command, 419

t R function, 319
t-test

for independent groups, 622
for paired groups, 625

T-TEST SPSS command, 622, 625
t.test R function, 623

for paired tests, 625
tab-delimited files, reading, 120
table R function, 66, 296

applied to a matrix, 80
compared to others, 298
for cross-tabulation, 609

tables
adding row/column totals, 611
calculating chi-squared on, 610
converting to percents, 611
converting to proportions, 610

tabular aggregation, 296
tail R function, 19, 314, 418
tapply R function, 292

compared to others, 298
technical support, 4, 58
Temple Lang, Duncan, 442
TEMPORARY SPSS command, 188
textConnection R function, 132
Theus, Martin, 441
time calculations, 358
time variables, 354
time, displaying in output, 659
timestamp R function, 659
Tinn-R text editor, 40
TO SPSS keyword, 162, 164

TODAY SAS function, 360
tolower R function, 345, 571
toupper R function, 345
TRANS SPSS extension command, 406
transcript of R work, 27
transform R function, 220, 423
TRANSFORM SPSS extension

command, 219
transformations, 219

conditional, 237
multiple conditional, 246

TRANSPOSE SAS procedure, 319
transposing data sets, 319
TRANWRD SAS function, 346
tree models, 51
TRIM SAS function, 344
triple dot R argument, 141, 227
TTEST SAS procedure, 622, 625
TukeyHSD R function, 632
Type III sums of squares, 633
type of a variable, 64

Ugarte, Maria, 629
unclass R function, 101, 339
undeleting data using .Last.value R

function, 117
uninstalling

an R package, 17
R, 17

unique R function, 309
UNIVARIATE SAS procedure, 600,

601, 627, 628
unlist R function, 339
UPCASE SAS function, 345
UPCASE SPSS function, 345
update.packages R function, 15
updating R installation, 15
Urbanek, Simon, 41, 441

valid.n R function, 230, 231
VALUE LABEL SPSS command, 375
value labels, 375
VALUE LEVEL SPSS commmand, 375
var R function, 229, 231

getting group variances, 630
VAR SAS function, 231
var.test R function, 624
variable attribute in SPSS, 91
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VARIABLE LABELS SPSS command,
389

variables
in SAS or SPSS, 74
saving selection to a data frame, 180
selecting all variables, 162
selecting in SAS and SPSS, 161
selecting using $ notation, 172
selecting using attach R function,

173
selecting using subset R function,

175
selecting using with R function, 174
selecting using column name, 166
selecting using formulas, 174
selecting using index number, 163
selecting using list index, 176
selecting using logic, 167
selecting using simple name, 172
selecting using string search, 169

VARIANCE SPSS function, 231
vectors, 63, 64

analyzing, 65
arithmetic, 219
selecting elements, 67

Venable, W.N., 621
viewing a file, 156
vignette R function, 60
visualization, 50

Wahlbrink, Stephan, 40
Warnes, Gregory, 505
wday R function, 362
Weaston, Steve, 398
WHERE SAS statement, 187
which R function, 200, 211, 247, 339

used with names, 177
while R function, 108
Wichtrey, Tobias, 441
Wickham, Hadley, 221, 231, 232, 258,

282, 324, 342, 354, 442, 443, 524
wide format data sets, 324
width, of output in R, 62
Wilcoxon test

for paired groups, 627
Wilcoxon test for independent groups,

626
wildcard, searching with, 171, 199
Williams, Graham, 48, 442
win.meta R function, 450
windows R function, 450
Windows, R versions for, 11
with R function, 174

compared to within, 220
within R function, 220
Word, 398
work, SAS library, 88
working directory, 89

getting and setting, 430
workspace, 88

management, 417
World Programming System, 31
WPS, 31
write.foreign R function, 158
write.table R function, 154
writing data

to databases, 158
to Excel, 156
to SAS, 158
to SPSS, 158
to text files, 153

X SAS command, 31
x11 R function, 450
XPORT data sets, reading from SAS,

149
xtable R function, 396
xtable R package, 396
XWAIT SAS option, 31

yday R function, 362
year R function, 362
YEARCUTOFF SAS option, 365
years, two-digit, 365
YYMMDD SAS format, 355

Z-scores, 231, 294
Zeileis, Achim, 445
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