
Java Class and Objects

Java is an object-oriented programming language. The

core concept of the object-oriented approach is to break

complex problems into smaller objects.

An object is any entity that has a state and behavior. For
example, a bicycle is an object. It has

• States: idle, first gear, etc

• Behaviors: braking, accelerating, etc.

Before we learn about objects, let's first know about

classes in Java.

Java Class

A class is a blueprint for the object. Before we create an

object, we first need to define the class.

We can think of the class as a sketch (prototype) of a

house. It contains all the details about the floors, doors,

windows, etc. Based on these descriptions we build the

house. House is the object.

Since many houses can be made from the same

description, we can create many objects from a class.

Create a class in Java

We can create a class in Java using the class keyword.

For example,

class ClassName {
 // fields
 // methods
}

Here, fields (variables) and methods represent

the state and behavior of the object respectively.

• fields are used to store data

• methods are used to perform some operations

For our bicycle object, we can create the class as

class Bicycle {

 // state or field
 private int gear = 5;

 // behavior or method
 public void braking() {
 System.out.println("Working of Braking");
 }
}

In the above example, we have created a class
named Bicycle. It contains a field named gear and a

method named braking().

Here, Bicycle is a prototype. Now, we can create any

number of bicycles using the prototype. And, all the

bicycles will share the fields and methods of the prototype.

Note: We have used keywords private and public.

These are known as access modifiers. To learn more,

visit Java access modifiers.

Java Objects

An object is called an instance of a class. For example,
suppose Bicycle is a class

then MountainBicycle, SportsBicycle, TouringBicyc

le, etc can be considered as objects of the class.

Creating an Object in Java

Here is how we can create an object of a class.

className object = new className();

// for Bicycle class
Bicycle sportsBicycle = new Bicycle();

Bicycle touringBicycle = new Bicycle();

We have used the new keyword along with the constructor

of the class to create an object. Constructors are similar to

https://www.programiz.com/java-programming/access-modifiers

methods and have the same name as the class. For
example, Bicycle() is the constructor of

the Bicycle class.

Here, sportsBicycle and touringBicycle are the

names of objects. We can use them to access fields and

methods of the class.

As you can see, we have created two objects of the class.

We can create multiple objects of a single class in Java.

Note: Fields and methods of a class are also called

members of the class.

Access Members of a Class

We can use the name of objects along with the . operator

to access members of a class. For example,

class Bicycle {

 // field of class
 int gear = 5;

 // method of class
 void braking() {

 ...
 }
}

// create object
Bicycle sportsBicycle = new Bicycle();

// access field and method
sportsBicycle.gear;
sportsBicycle.braking();

In the above example, we have created a class
named Bicycle. It includes a field named gear and a

method named braking(). Notice the statement,

Bicycle sportsBicycle = new Bicycle();

Here, we have created an object
of Bicycle named sportsBicycle. We then use the

object to access the field and method of the class.
• sportsBicycle.gear - access the field gear

• sportsBicycle.braking() - access the method braking()

Java Constructors

What is a Constructor?

A constructor in Java is similar to a method that is invoked

when an object of the class is created.

Unlike Java methods, a constructor has the same name

as that of the class and does not have any return type. For

example,

class Test {

 Test() {

 // constructor body

 }

}

Here, Test() is a constructor. It has the same name as

that of the class and doesn't have a return type.

Recommended Reading: Why do constructors not return

values

Example 1: Java Constructor

class Main {
 private String name;

 // constructor
 Main() {
 System.out.println("Constructor Called:");
 name = "Programiz";

https://www.programiz.com/java-programming/methods
https://stackoverflow.com/questions/1788312/why-do-constructors-not-return-values
https://stackoverflow.com/questions/1788312/why-do-constructors-not-return-values

 }

 public static void main(String[] args) {

 // constructor is invoked while
 // creating an object of the Main class
 Main obj = new Main();
 System.out.println("The name is " +
obj.name);
 }
}

Output:

Constructor Called:
The name is Programiz

In the above example, we have created a constructor
named Main(). Inside the constructor, we are initializing

the value of the namevariable.

Notice the statement of creating an object of
the Main class.

Main obj = new Main();

Here, when the object is created, the Main() constructor

is called. And, the value of the name variable is initialized.

Hence, the program prints the value of the name variables

as Programiz.

Types of Constructor

In Java, constructors can be divided into 3 types:

1. No-Arg Constructor

2. Parameterized Constructor

3. Default Constructor

1. Java No-Arg Constructors

Similar to methods, a Java constructor may or may not

have any parameters (arguments).

If a constructor does not accept any parameters, it is

known as a no-argument constructor. For example,

private Constructor() {
 // body of the constructor
}

Example 2: Java private no-arg constructor

class Main {

 int i;

 // constructor with no parameter
 private Main() {
 i = 5;
 System.out.println("Constructor is
called");
 }

 public static void main(String[] args) {

 // calling the constructor without any
parameter
 Main obj = new Main();
 System.out.println("Value of i: " + obj.i);
 }
}

Output:

Constructor is called
Value of i: 5

In the above example, we have created a
constructor Main(). Here, the constructor does not accept

any parameters. Hence, it is known as a no-arg

constructor.

Notice that we have declared the constructor as

private.
Once a constructor is declared private, it cannot be

accessed from outside the class. So, creating objects from

outside the class is prohibited using the private

constructor.

Here, we are creating the object inside the same class.

Hence, the program is able to access the constructor. To

learn more, visit Java Implement Private Constructor.

However, if we want to create objects outside the class,
then we need to declare the constructor as public.

Example 3: Java public no-arg constructors

class Company {
 String name;

 // public constructor
 public Company() {
 name = "Programiz";
 }
}

class Main {
 public static void main(String[] args) {

 // object is created in another class
 Company obj = new Company();
 System.out.println("Company name = " +
obj.name);
 }
}

Output:

https://www.programiz.com/java-programming/examples/private-constructor-implementation

Company name = Programiz

Recommended Reading: Java Access Modifier

2. Java Parameterized Constructor

A Java constructor can also accept one or more

parameters. Such constructors are known as

parameterized constructors (constructor with parameters).

Example 4: Parameterized constructor

class Main {

 String languages;

 // constructor accepting single value
 Main(String lang) {
 languages = lang;
 System.out.println(languages + "
Programming Language");
 }

 public static void main(String[] args) {

 // call constructor by passing a single
value

https://www.programiz.com/java-programming/access-modifiers

 Main obj1 = new Main("Java");
 Main obj2 = new Main("Python");
 Main obj3 = new Main("C");
 }
}

Output:

Java Programming Language
Python Programming Language
C Programming Language

In the above example, we have created a constructor
named Main(). Here, the constructor takes a single

parameter. Notice the expression,

Main obj1 = new Main("Java");

Here, we are passing the single value to the constructor.

Based on the argument passed, the language variable is

initialized inside the constructor.

3. Java Default Constructor

If we do not create any constructor, the Java compiler

automatically create a no-arg constructor during the

execution of the program. This constructor is called default

constructor.

Example 5: Default Constructor

class Main {

 int a;
 boolean b;

 public static void main(String[] args) {

 // A default constructor is called
 Main obj = new Main();

 System.out.println("Default Value:");
 System.out.println("a = " + obj.a);
 System.out.println("b = " + obj.b);
 }
}

Output:

a = 0
b = false

Here, we haven't created any constructors. Hence, the

Java compiler automatically creates the default

constructor.

The default constructor initializes any uninitialized instance

variables with default values.

Type Default Value

boolean false

byte 0

short 0

int 0

long 0L

char \u0000

float 0.0f

double 0.0d

object Reference null

In the above program, the variables a and b are initialized

with default value 0 and false respectively.

The above program is equivalent to:

class Main {

 int a;
 boolean b;

 // a private constructor
 private Main() {
 a = 0;
 b = false;
 }

 public static void main(String[] args) {
 // call the constructor
 Main obj = new Main();

 System.out.println("Default Value:");
 System.out.println("a = " + obj.a);
 System.out.println("b = " + obj.b);
 }
}

The output of the program is the same as Example 5.

Important Notes on Java Constructors

• Constructors are invoked implicitly when you instantiate

objects.

• The two rules for creating a constructor are:

The name of the constructor should be the same as the

class.

A Java constructor must not have a return type.

• If a class doesn't have a constructor, the Java compiler

automatically creates a default constructor during run-

time. The default constructor initializes instance variables
with default values. For example, the intvariable will be

initialized to 0

• Constructor types:

No-Arg Constructor - a constructor that does not accept

any arguments

Parameterized constructor - a constructor that accepts

arguments

Default Constructor - a constructor that is automatically

created by the Java compiler if it is not explicitly defined.
• A constructor cannot be abstract or static or final.

• A constructor can be overloaded but can not be

overridden.

Constructors Overloading in Java

Similar to Java method overloading, we can also create

two or more constructors with different parameters. This is

called constructors overloading.

https://www.programiz.com/java-programming/method-overloading

Example 6: Java Constructor Overloading

class Main {

 String language;

 // constructor with no parameter
 Main() {
 this.language = "Java";
 }

 // constructor with a single parameter
 Main(String language) {
 this.language = language;
 }

 public void getName() {
 System.out.println("Programming Langauage:
" + this.language);
 }

 public static void main(String[] args) {

 // call constructor with no parameter
 Main obj1 = new Main();

 // call constructor with a single parameter
 Main obj2 = new Main("Python");

 obj1.getName();

 obj2.getName();
 }
}

Output:

Programming Language: Java
Programming Language: Python

In the above example, we have two
constructors: Main() and Main(String language).

Here, both the constructor initialize the value of the

variable language with different values.

Based on the parameter passed during object creation,

different constructors are called and different values are

assigned

Java Method Overloading

In Java, two or more methods may have the same name if

they differ in parameters (different number of parameters,

different types of parameters, or both). These methods are

called overloaded methods and this feature is called

method overloading.

 For example:

void func() { ... }

void func(int a) { ... }

https://www.programiz.com/java-programming/methods

float func(double a) { ... }

float func(int a, float b) { ... }

Here, the func() method is overloaded. These methods

have the same name but accept different arguments.

Note: The return types of the above methods are not the

same. It is because method overloading is not associated

with return types. Overloaded methods may have the

same or different return types, but they must differ in

parameters.

Why method overloading?

Suppose, you have to perform the addition of given

numbers but there can be any number of arguments (let’s

say either 2 or 3 arguments for simplicity).

In order to accomplish the task, you can create two
methods sum2num(int, int) and sum3num(int, int,

int) for two and three parameters respectively. However,

other programmers, as well as you in the future may get

confused as the behavior of both methods are the same

but they differ by name.

The better way to accomplish this task is by overloading

methods. And, depending upon the argument passed, one

of the overloaded methods is called. This helps to

increase the readability of the program.

How to perform method overloading in Java?

Here are different ways to perform method overloading:

1. Overloading by changing the number of parameters

class MethodOverloading {
 private static void display(int a){
 System.out.println("Arguments: " + a);
 }

 private static void display(int a, int b){
 System.out.println("Arguments: " + a +
" and " + b);
 }

 public static void main(String[] args) {
 display(1);
 display(1, 4);
 }
}

Output:

Arguments: 1

Arguments: 1 and 4

2. Method Overloading by changing the data type of

parameters

class MethodOverloading {

 // this method accepts int
 private static void display(int a){
 System.out.println("Got Integer
data.");
 }

 // this method accepts String object
 private static void display(String a){
 System.out.println("Got String
object.");
 }

 public static void main(String[] args) {
 display(1);
 display("Hello");
 }
}

Output:

Got Integer data.
Got String object.

Here, both overloaded methods accept one argument.
However, one accepts the argument of type intwhereas

other accepts Stringobject.

Let’s look at a real-world example:

class HelperService {

 private String formatNumber(int value) {
 return String.format("%d", value);
 }

 private String formatNumber(double value) {
 return String.format("%.3f", value);
 }

 private String formatNumber(String value) {
 return String.format("%.2f",
Double.parseDouble(value));
 }

 public static void main(String[] args) {
 HelperService hs = new HelperService();

System.out.println(hs.formatNumber(500));

System.out.println(hs.formatNumber(89.9934));

System.out.println(hs.formatNumber("550"));
 }
}

When you run the program, the output will be:

500
89.993
550.00

Note: In Java, you can also overload constructors in a

similar way like methods.

Important Points

• Two or more methods can have the same name inside the

same class if they accept different arguments. This feature

is known as method overloading.

• Method overloading is achieved by either:

o changing the number of arguments.

o or changing the data type of arguments.

• It is not method overloading if we only change the return

type of methods. There must be differences in the number

of parameters

What is a static keyword in Java?

In Java, if we want to access class members, we must first

create an instance of the class. But there will be situations

where we want to access class members without creating

any variables.

In those situations, we can use the static keyword in

Java. If we want to access class members without creating

an instance of the class, we need to declare the class

members static.
The Math class in Java has almost all of its members

static. So, we can access its members without creating

instances of the Math class. For example,

public class Main {
 public static void main(String[] args) {

 // accessing the methods of the Math
class

 System.out.println("Absolute value of -
12 = " + Math.abs(-12));
 System.out.println("Value of PI = " +
Math.PI);
 System.out.println("Value of E = " +
Math.E);
 System.out.println("2^2 = " +
Math.pow(2,2));
 }
}

Output:

Absolute value of -12 = 12
Value of PI = 3.141592653589793
Value of E = 2.718281828459045
2^2 = 4.0

In the above example, we have not created any instances
of the Mathclass. But we are able to access its

methods: abs() and pow() and variables: PI and E.

It is possible because the methods and variables of
the Math class are static.

Static Methods

Static methods are also called class methods. It is

because a static method belongs to the class rather than

the object of a class.

And we can invoke static methods directly using the class

name. For example,

class Test {
 // static method inside the Test class
 public static void method() {...}
}

class Main {
 // invoking the static method
 Test.method();
}

Here, we can see that the static method can be accessed

directly from other classes using the class name.

In every Java program, we have declared
the main method static. It is because to run the program

the JVM should be able to invoke the main method during

the initial phase where no objects exist in the memory.

Example 1: Java static and non-static Methods

class StaticTest {

 // non-static method

 int multiply(int a, int b){
 return a * b;
 }

 // static method
 static int add(int a, int b){
 return a + b;
 }
}

public class Main {

 public static void main(String[] args) {

 // create an instance of the StaticTest
class
 StaticTest st = new StaticTest();

 // call the nonstatic method
 System.out.println(" 2 * 2 = " +
st.multiply(2,2));

 // call the static method
 System.out.println(" 2 + 3 = " +
StaticTest.add(2,3));
 }
}

Output:

2 * 2 = 4

2 + 3 = 5

In the above program, we have declared a non-static
method named multiply() and a static method

named add() inside the class StaticTest.

Inside the Main class, we can see that we are calling the

non-static method using the object of the class
(st.multiply(2, 2)). However, we are calling the static

method by using the class name (StaticTest.add(2,

3)).

Static Variables

In Java, when we create objects of a class, then every

object will have its own copy of all the variables of the

class. For example,

class Test {
 // regular variable
 int age;
}

class Main {
 // create instances of Test
 Test test1 = new Test();
 Test test2 = new Test();

}

Here, both the objects test1 and test2 will have separate

copies of the variable age. And, they are different from

each other.

However, if we declare a variable static, all objects of the

class share the same static variable. It is because like

static methods, static variables are also associated with

the class. And, we don't need to create objects of the class

to access the static variables. For example,

class Test {
 // static variable
 static int age;
}
class Main {
 // access the static variable
 Test.age = 20;
}

Here, we can see that we are accessing the static variable

from the other class using the class name.

Example 2: Java static and non-static Variables

class Test {

 // static variable
 static int max = 10;

 // non-static variable
 int min = 5;
}

public class Main {
 public static void main(String[] args) {
 Test obj = new Test();

 // access the non-static variable
 System.out.println("min + 1 = " +
(obj.min + 1));

 // access the static variable
 System.out.println("max + 1 = " +
(Test.max + 1));
 }
}

Output:

min + 1 = 6
max + 1 = 11

In the above program, we have declared a non-static
variable named min and a static variable

named max inside the class Test.

Inside the Main class, we can see that we are calling the

non-static variable using the object of the class (obj.min
+ 1). However, we are calling the static variable by using

the class name (Test.max + 1).

Note: Static variables are rarely used in Java. Instead, the

static constants are used. These static constants are
defined by static finalkeyword and represented in

uppercase. This is why some people prefer to use

uppercase for static variables as well.

Access static Variables and Methods within the Class

We are accessing the static variable from another class.

Hence, we have used the class name to access it.

However, if we want to access the static member from

inside the class, it can be accessed directly. For example,

public class Main {

 // static variable
 static int age;
 // static method
 static void display() {
 System.out.println("Static Method");
 }
 public static void main(String[] args) {

 // access the static variable
 age = 30;
 System.out.println("Age is " + age);

 // access the static method
 display();
 }
}

Output:

Age is 30
Static Method

Here, we are able to access the static variable and

method directly without using the class name. It is

because static variables and methods are by default

public. And, since we are accessing from the same class,

we don't have to specify the class name.

Static Blocks

In Java, static blocks are used to initialize the static

variables. For example,

class Test {
 // static variable
 static int age;

 // static block
 static {

 age = 23;
 }
}

Here we can see that we have used a static block with the

syntax:

static {
 // variable initialization
}

The static block is executed only once when the class is

loaded in memory. The class is loaded if either the object

of the class is requested in code or the static members are

requested in code.

A class can have multiple static blocks and each static

block is executed in the same sequence in which they

have been written in a program.

Example 3: Use of static block in java

class Main {

 // static variables
 static int a = 23;
 static int b;
 static int max;

 // static blocks
 static {

 System.out.println("First Static
block.");
 b = a * 4;
 }
 static {
 System.out.println("Second Static
block.");
 max = 30;
 }

 // static method
 static void display() {

 System.out.println("a = " + a);
 System.out.println("b = " + b);
 System.out.println("max = " + max);
 }

 public static void main(String args[]) {
 // calling the static method
 display();
 }
}

Output:

First Static block.
Second Static block.
a = 23
b = 92

max = 30

In the above program. as soon as the Main class is

loaded,

• The value of a is set to 23.

• The first static block is executed. Hence, the string First
Static block is printed and the value of b is set to a *
4.

• The second static block is executed. Hence, the
string Second Static block is printed and the value

of max is set to 30.

• And finally, the print statements inside the
method display() are executed

Java Inheritance

In this tutorial, we will learn about Java inheritance and its
types with the help of example.

Inheritance is one of the key features of OOP that allows

us to create a new class from an existing class.

The new class that is created is known as subclass (child

or derived class) and the existing class from where the

child class is derived is known as superclass (parent or

base class).

The extends keyword is used to perform inheritance in

Java. For example,

class Animal {
 // methods and fields
}

// use of extends keyword
// to perform inheritance
class Dog extends Animal {

 // methods and fields of Animal
 // methods and fields of Dog
}

In the above example, the Dog class is created by

inheriting the methods and fields from the Animal class.

Here, Dog is the subclass and Animal is the superclass.

Example 1: Java Inheritance

class Animal {

 // field and method of the parent class
 String name;
 public void eat() {
 System.out.println("I can eat");
 }

}

// inherit from Animal
class Dog extends Animal {

 // new method in subclass
 public void display() {
 System.out.println("My name is " + name);
 }
}

class Main {
 public static void main(String[] args) {

 // create an object of the subclass
 Dog labrador = new Dog();

 // access field of superclass
 labrador.name = "Rohu";
 labrador.display();

 // call method of superclass
 // using object of subclass
 labrador.eat();

 }
}

Output

My name is Rohu

I can eat

In the above example, we have derived a
subclass Dog from superclass Animal. Notice the

statements,

labrador.name = "Rohu";

labrador.eat();

Here, labrador is an object of Dog.

However, name and eat() are the members of

the Animal class.

Since Dog inherits the field and method from Animal, we

are able to access the field and method using the object of
the Dog.

Java

Inheritance Implementation

is-a relationship

In Java, inheritance is an is-arelationship. That is, we use

inheritance only if there exists an is-a relationship between

two classes. For example,

• Car is a Vehicle

• Orange is a Fruit

• Surgeon is a Doctor

• Dog is an Animal

Here, Car can inherit from Vehicle, Orange can inherit

from Fruit, and so on.

Method Overriding in Java Inheritance

In Example 1, we see the object of the subclass can

access the method of the superclass.

However, if the same method is present in both the

superclass and subclass, what will happen?

In this case, the method in the subclass overrides the

method in the superclass. This concept is known as

method overriding in Java.

Example 2: Method overriding in Java Inheritance

class Animal {

 // method in the superclass

 public void eat() {
 System.out.println("I can eat");
 }
}

// Dog inherits Animal
class Dog extends Animal {

 // overriding the eat() method
 @Override
 public void eat() {
 System.out.println("I eat dog food");
 }

 // new method in subclass
 public void bark() {
 System.out.println("I can bark");
 }
}

class Main {
 public static void main(String[] args) {

 // create an object of the subclass
 Dog labrador = new Dog();

 // call the eat() method
 labrador.eat();
 labrador.bark();
 }

}

Output

I eat dog food
I can bark

In the above example, the eat()method is present in both

the superclass Animal and the subclass Dog.

Here, we have created an object labrador of Dog.

Now when we call eat() using the object labrador, the

method inside Dog is called. This is because the method

inside the derived class overrides the method inside the

base class.

This is called method overriding. To learn more, visit Java

Method Overriding.

Note: We have used the @Override annotation to tell the

compiler that we are overriding a method. However, the

annotation is not mandatory. To learn more, visit Java

Annotations.

super Keyword in Java Inheritance

Previously we saw that the same method in the subclass

overrides the method in superclass.

https://www.programiz.com/java-programming/method-overriding
https://www.programiz.com/java-programming/method-overriding
https://www.programiz.com/java-programming/annotations
https://www.programiz.com/java-programming/annotations

In such a situation, the superkeyword is used to call the

method of the parent class from the method of the child

class.

Example 3: super Keyword in Inheritance

class Animal {

 // method in the superclass
 public void eat() {
 System.out.println("I can eat");
 }
}

// Dog inherits Animal
class Dog extends Animal {

 // overriding the eat() method
 @Override
 public void eat() {

 // call method of superclass
 super.eat();
 System.out.println("I eat dog food");
 }

 // new method in subclass
 public void bark() {
 System.out.println("I can bark");
 }
}

class Main {
 public static void main(String[] args) {

 // create an object of the subclass
 Dog labrador = new Dog();

 // call the eat() method
 labrador.eat();
 labrador.bark();
 }
}

Output

I can eat
I eat dog food
I can bark

In the above example, the eat()method is present in both

the base class Animal and the derived class Dog. Notice

the statement,

super.eat();

Here, the super keyword is used to call the eat() method

present in the superclass.
We can also use the super keyword to call the constructor

of the superclass from the constructor of the subclass. To

learn more, visit Java super keyword.

https://www.programiz.com/java-programming/super-keyword

protected Members in Inheritance

In Java, if a class includes protected fields and methods,

then these fields and methods are accessible from the

subclass of the class.

Example 4: protected Members in Inheritance

class Animal {
 protected String name;

 protected void display() {
 System.out.println("I am an animal.");
 }
}

class Dog extends Animal {

 public void getInfo() {
 System.out.println("My name is " + name);
 }
}

class Main {
 public static void main(String[] args) {

 // create an object of the subclass
 Dog labrador = new Dog();

 // access protected field and method
 // using the object of subclass
 labrador.name = "Rocky";
 labrador.display();

 labrador.getInfo();
 }
}

Output

I am an animal.
My name is Rocky

In the above example, we have created a class named
Animal. The class includes a protected field: name and a

method: display().

We have inherited the Dog class inherits Animal. Notice

the statement,

labrador.name = "Rocky";
labrador.display();

Here, we are able to access the protected field and
method of the superclass using the labradorobject of the

subclass.

Why use inheritance?

• The most important use of inheritance in Java is code

reusability. The code that is present in the parent class

can be directly used by the child class.

• Method overriding is also known as runtime

polymorphism. Hence, we can achieve Polymorphism in

Java with the help of inheritance.

Types of inheritance

There are five types of inheritance.

1. Single Inheritance

In single inheritance, a single subclass extends from a

single superclass. For example,

Java Single Inheritance

2. Multilevel Inheritance

In multilevel inheritance, a subclass extends from a

superclass and then the same subclass acts as a

superclass for another class. For example,

Java Multilevel Inheritance

3. Hierarchical Inheritance

In hierarchical inheritance, multiple subclasses extend

from a single superclass. For example,

Java Hierarchical

Inheritance

4. Multiple Inheritance

In multiple inheritance, a single subclass extends from

multiple superclasses. For example,

Java Multiple

Inheritance

Note: Java doesn't support multiple inheritance. However,

we can achieve multiple inheritance using interfaces. To

learn more, visit Java implements multiple inheritance.

5. Hybrid Inheritance

Hybrid inheritance is a combination of two or more types

of inheritance. For example,

Java Hybrid Inheritance

Here, we have combined hierarchical and multiple

inheritance to form a hybrid inheritance

https://www.programiz.com/java-programming/examples/implement-multiple-inheritance

Java final keyword

In this tutorial, we will learn about Java final variables,
methods and classes with examples.

In Java, the final keyword is used to denote constants. It

can be used with variables, methods, and classes.

Once any entity (variable, method or class) is
declared final, it can be assigned only once. That is,

• the final variable cannot be reinitialized with another value

• the final method cannot be overridden

• the final class cannot be extended

1. Java final Variable

In Java, we cannot change the value of a final variable.

For example,

class Main {
 public static void main(String[] args) {

 // create a final variable
 final int AGE = 32;

 // try to change the final variable

 AGE = 45;
 System.out.println("Age: " + AGE);
 }
}

In the above program, we have created a final variable
named age. And we have tried to change the value of the

final variable.

When we run the program, we will get a compilation error

with the following message.

cannot assign a value to final variable AGE
 AGE = 45;
 ^

Note: It is recommended to use uppercase to declare final

variables in Java.

2. Java final Method

Before you learn about final methods and final classes,

make sure you know about the Java Inheritance.
In Java, the final method cannot be overridden by the

child class. For example,

class FinalDemo {
 // create a final method

https://www.programiz.com/java-programming/inheritance

 public final void display() {
 System.out.println("This is a final
method.");
 }
}

class Main extends FinalDemo {
 // try to override final method
 public final void display() {
 System.out.println("The final method is
overridden.");
 }

 public static void main(String[] args) {
 Main obj = new Main();
 obj.display();
 }
}

In the above example, we have created a final method
named display() inside the FinalDemoclass. Here,

the Main class inherits the FinalDemo class.

We have tried to override the final method in
the Main class. When we run the program, we will get a

compilation error with the following message.

 display() in Main cannot override display() in
FinalDemo
 public final void display() {
 ^

 overridden method is final

3. Java final Class

In Java, the final class cannot be inherited by another

class. For example,

// create a final class
final class FinalClass {
 public void display() {
 System.out.println("This is a final
method.");
 }
}

// try to extend the final class
class Main extends FinalClass {
 public void display() {
 System.out.println("The final method is
overridden.");
 }

 public static void main(String[] args) {
 Main obj = new Main();
 obj.display();
 }

}

In the above example, we have created a final class
named FinalClass. Here, we have tried to inherit the

final class by the Mainclass.

When we run the program, we will get a compilation error

with the following message.

cannot inherit from final FinalClass
class Main extends FinalClass {
 ^

Java Arrays

In this tutorial, we will learn to work with arrays in Java.
We will learn to declare, initialize, and access array
elements with the help of examples.

An array is a collection of similar types of data.

For example, if we want to store the names of 100 people

then we can create an array of the string type that can

store 100 names.

String[] array = new String[100];

Here, the above array cannot store more than 100 names.

The number of values in a Java array is always fixed.

How to declare an array in Java?

In Java, here is how we can declare an array.

dataType[] arrayName;

• dataType - it can be primitive data

types like int, char, double, byte, etc. or Java objects

• arrayName - it is an identifier

For example,

double[] data;

Here, data is an array that can hold values of

type double.

But, how many elements can array this hold?

Good question! To define the number of elements that an

array can hold, we have to allocate memory for the array

in Java. For example,

// declare an array
double[] data;

https://www.programiz.com/java-programming/variables-primitive-data-types#data-types
https://www.programiz.com/java-programming/variables-primitive-data-types#data-types
https://www.programiz.com/java-programming/class-objects
https://www.programiz.com/java-programming/keywords-identifiers#identifiers

// allocate memory
data = new double[10];

Here, the array can store 10elements. We can also say

that the size or length of the array is 10.

In Java, we can declare and allocate the memory of an

array in one single statement. For example,

double[] data = new double[10];

How to Initialize Arrays in Java?

In Java, we can initialize arrays during declaration. For

example,

//declare and initialize and array
int[] age = {12, 4, 5, 2, 5};

Here, we have created an array named age and initialized

it with the values inside the curly brackets.

Note that we have not provided the size of the array. In

this case, the Java compiler automatically specifies the

size by counting the number of elements in the array (i.e.

5).

In the Java array, each memory location is associated with

a number. The number is known as an array index. We

can also initialize arrays in Java, using the index number.

For example,

// declare an array
int[] age = new int[5];

// initialize array
age[0] = 12;
age[1] = 4;
age[2] = 5;
..

Java Arrays initialization

Note:

• Array indices always start from 0. That is, the first element

of an array is at index 0.

• If the size of an array is n, then the last element of the

array will be at index n-1.

How to Access Elements of an Array in Java?

We can access the element of an array using the index

number. Here is the syntax for accessing elements of an

array,

// access array elements
array[index]

Let's see an example of accessing array elements using

index numbers.

Example: Access Array Elements

class Main {
 public static void main(String[] args) {

 // create an array
 int[] age = {12, 4, 5, 2, 5};

 // access each array elements
 System.out.println("Accessing Elements of
Array:");
 System.out.println("First Element: " +
age[0]);
 System.out.println("Second Element: " +
age[1]);
 System.out.println("Third Element: " +
age[2]);
 System.out.println("Fourth Element: " +
age[3]);

 System.out.println("Fifth Element: " +
age[4]);
 }
}

Output

Accessing Elements of Array:
First Element: 12
Second Element: 4
Third Element: 5
Fourth Element: 2
Fifth Element: 5

In the above example, notice that we are using the index

number to access each element of the array.

We can use loops to access all the elements of the array

at once.

Looping Through Array Elements

In Java, we can also loop through each element of the

array. For example,

Example: Using For Loop

class Main {
 public static void main(String[] args) {

 // create an array
 int[] age = {12, 4, 5};

 // loop through the array
 // using for loop
 System.out.println("Using for Loop:");
 for(int i = 0; i < age.length; i++) {
 System.out.println(age[i]);
 }
 }
}

Output

Using for Loop:
12
4
5

In the above example, we are using the for Loop in Java to

iterate through each element of the array. Notice the

expression inside the loop,

age.length

Here, we are using the lengthproperty of the array to get

the size of the array.

We can also use the for-each loop to iterate through the

elements of an array. For example,

https://www.programiz.com/java-programming/for-loop
https://www.programiz.com/java-programming/enhanced-for-loop

Example: Using the for-each Loop

class Main {
 public static void main(String[] args) {

 // create an array
 int[] age = {12, 4, 5};

 // loop through the array
 // using for loop
 System.out.println("Using for-each Loop:");
 for(int a : age) {
 System.out.println(a);
 }
 }
}

Output

Using for-each Loop:
12
4
5

Example: Compute Sum and Average of Array Elements

class Main {

 public static void main(String[] args) {

 int[] numbers = {2, -9, 0, 5, 12, -25, 22,
9, 8, 12};
 int sum = 0;
 Double average;

 // access all elements using for each loop
 // add each element in sum
 for (int number: numbers) {
 sum += number;
 }

 // get the total number of elements
 int arrayLength = numbers.length;

 // calculate the average
 // convert the average from int to double
 average = ((double)sum /
(double)arrayLength);

 System.out.println("Sum = " + sum);
 System.out.println("Average = " + average);
 }
}

Output:

Sum = 36
Average = 3.6

In the above example, we have created an array of
named numbers. We have used the for...each loop to

access each element of the array.

Inside the loop, we are calculating the sum of each

element. Notice the line,

int arrayLength = number.length;

Here, we are using the length attribute of the array to

calculate the size of the array. We then calculate the

average using:

average = ((double)sum / (double)arrayLength);

As you can see, we are converting the int value

into double. This is called type casting in Java. To learn

more about typecasting, visit Java Type Casting.

Multidimensional Arrays

Arrays we have mentioned till now are called one-

dimensional arrays. However, we can declare

multidimensional arrays in Java.

A multidimensional array is an array of arrays. That is,

each element of a multidimensional array is an array itself.

For example,

http://stackoverflow.com/questions/8755812/array-length-in-java
https://www.programiz.com/java-programming/typecasting

double[][] matrix = {{1.2, 4.3, 4.0},
 {4.1, -1.1}
};

Here, we have created a multidimensional array named

matrix. It is a 2-dimensional array

Java Multidimensional Arrays

In this tutorial, we will learn about the Java
multidimensional array using 2-dimensional arrays and 3-
dimensional arrays with the help of examples.

Before we learn about the multidimensional array, make

sure you know about Java array.

A multidimensional array is an array of arrays. Each

element of a multidimensional array is an array itself. For

example,

int[][] a = new int[3][4];

Here, we have created a multidimensional array named a.

It is a 2-dimensional array, that can hold a maximum of 12

elements,

https://www.programiz.com/java-programming/arrays

2-dimensional Array

Remember, Java uses zero-based indexing, that is,

indexing of arrays in Java starts with 0 and not 1.

Let's take another example of the multidimensional array.

This time we will be creating a 3-dimensional array. For

example,

String[][][] data = new String[3][4][2];

Here, data is a 3d array that can hold a maximum of 24

(3*4*2) elements of type String.

How to initialize a 2d array in Java?

Here is how we can initialize a 2-dimensional array in

Java.

int[][] a = {
 {1, 2, 3},
 {4, 5, 6, 9},
 {7},
};

As we can see, each element of the multidimensional

array is an array itself. And also, unlike C/C++, each row

of the multidimensional array in Java can be of different

lengths.

Initialization of 2-

dimensional Array

Example: 2-dimensional Array

class MultidimensionalArray {
 public static void main(String[] args) {

 // create a 2d array
 int[][] a = {

 {1, 2, 3},
 {4, 5, 6, 9},
 {7},
 };

 // calculate the length of each row
 System.out.println("Length of row 1: "
+ a[0].length);
 System.out.println("Length of row 2: "
+ a[1].length);
 System.out.println("Length of row 3: "
+ a[2].length);
 }
}

Output:

Length of row 1: 3
Length of row 2: 4
Length of row 3: 1

In the above example, we are creating a multidimensional
array named a. Since each component of a

multidimensional array is also an array
(a[0], a[1] and a[2] are also arrays).

Here, we are using the lengthattribute to calculate the

length of each row.

Example: Print all elements of 2d array Using Loop

class MultidimensionalArray {
 public static void main(String[] args) {

 int[][] a = {
 {1, -2, 3},
 {-4, -5, 6, 9},
 {7},
 };

 for (int i = 0; i < a.length; ++i) {
 for(int j = 0; j < a[i].length;
++j) {
 System.out.println(a[i][j]);
 }
 }
 }
}

Output:

1
-2
3
-4
-5
6
9
7

We can also use the for...each loopto access elements of

the multidimensional array. For example,

class MultidimensionalArray {
 public static void main(String[] args) {

 // create a 2d array
 int[][] a = {
 {1, -2, 3},
 {-4, -5, 6, 9},
 {7},
 };

 // first for...each loop access the
individual array
 // inside the 2d array
 for (int[] innerArray: a) {
 // second for...each loop access
each element inside the row
 for(int data: innerArray) {
 System.out.println(data);
 }
 }
 }
}

Output:

1

-2

https://www.programiz.com/java-programming/enhanced-for-loop

3

-4

-5

6

9

7

In the above example, we are have created a 2d array
named a. We then used for loop and for...eachloop to

access each element of the array.

How to initialize a 3d array in Java?

Let's see how we can use a 3d array in Java. We can

initialize a 3d array similar to the 2d array. For example,

// test is a 3d array
int[][][] test = {
 {
 {1, -2, 3},
 {2, 3, 4}
 },
 {
 {-4, -5, 6, 9},

 {1},
 {2, 3}
 }
};

Basically, a 3d array is an array of 2d arrays. The rows of

a 3d array can also vary in length just like in a 2d array.

Example: 3-dimensional Array

class ThreeArray {
 public static void main(String[] args) {

 // create a 3d array
 int[][][] test = {
 {
 {1, -2, 3},
 {2, 3, 4}
 },
 {
 {-4, -5, 6, 9},
 {1},
 {2, 3}
 }
 };

 // for..each loop to iterate through
elements of 3d array
 for (int[][] array2D: test) {
 for (int[] array1D: array2D) {
 for(int item: array1D) {
 System.out.println(item);
 }
 }
 }
 }
}

Output:

1
-2
3
2
3
4
-4
-5
6
9
1
2
3

Java String

In this tutorial, we will learn about Java Strings, how to
create them, and various methods of String with the help
of examples.

In Java, a string is a sequence of characters. For
example, "hello" is a string containing a sequence of

characters 'h', 'e', 'l', 'l', and 'o'.

We use double quotes to represent a string in Java. For

example,

// create a string
String type = "Java programming";

Here, we have created a string variable named type. The

variable is initialized with the string Java Programming.

Note: Strings in Java are not primitive types
(like int, char, etc). Instead, all strings are objects of a

predefined class named String.

And, all string variables are instances of the String class.

Example: Create a String in Java

class Main {

 public static void main(String[] args) {

 // create strings
 String first = "Java";
 String second = "Python";
 String third = "JavaScript";

 // print strings
 System.out.println(first); // print Java
 System.out.println(second); // print
Python
 System.out.println(third); // print
JavaScript
 }
}

In the above example, we have created three strings
named first, second, and third. Here, we are directly

creating strings like primitive types.

However, there is another way of creating Java strings
(using the newkeyword). We will learn about that later in

this tutorial.

Java String Operations

Java String provides various methods to perform different

operations on strings. We will look into some of the

commonly used string operations.

1. Get Length of a String

To find the length of a string, we use
the length() method of the String. For example,

class Main {
 public static void main(String[] args) {

 // create a string
 String greet = "Hello! World";
 System.out.println("String: " + greet);

 // get the length of greet
 int length = greet.length();
 System.out.println("Length: " + length);
 }
}

Output

String: Hello! World
Length: 12

In the above example, the length()method calculates the

total number of characters in the string and returns it. To

learn more, visit Java String length().

https://www.programiz.com/java-programming/library/string/length

2. Join two Strings

We can join two strings in Java using
the concat() method. For example,

class Main {
 public static void main(String[] args) {

 // create first string
 String first = "Java ";
 System.out.println("First String: " +
first);

 // create second
 String second = "Programming";
 System.out.println("Second String: " +
second);

 // join two strings
 String joinedString = first.concat(second);
 System.out.println("Joined String: " +
joinedString);
 }
}

Output

First String: Java
Second String: Programming

Joined String: Java Programming

In the above example, we have created two strings
named firstand second. Notice the statement,

String joinedString = first.concat(second);

Here, we the concat() method

joins first and second and assigns it to

the joinedString variable.

We can also join two strings using the + operator in Java.

To learn more, visit Java String concat().

3. Compare two Strings

In Java, we can make comparisons between two strings
using the equals() method. For example,

class Main {
 public static void main(String[] args) {

 // create 3 strings
 String first = "java programming";
 String second = "java programming";
 String third = "python programming";

 // compare first and second strings
 boolean result1 = first.equals(second);

https://www.programiz.com/java-programming/library/string/concat

 System.out.println("Strings first and
second are equal: " + result1);

 // compare first and third strings
 boolean result2 = first.equals(third);
 System.out.println("Strings first and third
are equal: " + result2);
 }
}

Output

Strings first and second are equal: true
Strings first and third are equal: false

In the above example, we have created 3 strings
named first, second, and third. Here, we are using

the equal() method to check if one string is equal to

another.
The equals() method checks the content of strings while

comparing them. To learn more, visit Java String equals().

Note: We can also compare two strings using
the ==operator in Java. However, this approach is different

than the equals() method. To learn more, visit Java

String == vs equals().

https://www.programiz.com/java-programming/library/string/equals
https://www.programiz.com/java-programming/examples/differentiate-string-equals
https://www.programiz.com/java-programming/examples/differentiate-string-equals

Methods of Java String

Besides those mentioned above, there are various string

methodspresent in Java. Here are some of those

methods:

Methods Description

substring()

returns the

substring of

the string

replace()

replaces the

specified old

character with

the specified

new character

charAt()

returns the

character

present in the

specified

location

getBytes()

converts the

string to an

array of bytes

https://www.programiz.com/java-programming/library/string
https://www.programiz.com/java-programming/library/string
https://www.programiz.com/java-programming/library/string/substring
https://www.programiz.com/java-programming/library/string/replace
https://www.programiz.com/java-programming/library/string/charat
https://www.programiz.com/java-programming/library/string/getbytes

indexOf()

returns the

position of the

specified

character in

the string

compareTo()

compares two

strings in the

dictionary

order

trim()

removes any

leading and

trailing

whitespaces

format()

returns a

formatted

string

split()

breaks the

string into an

array of

strings

https://www.programiz.com/java-programming/library/string/indexof
https://www.programiz.com/java-programming/library/string/compareto
https://www.programiz.com/java-programming/library/string/trim
https://www.programiz.com/java-programming/library/string/format
https://www.programiz.com/java-programming/library/string/split

toLowerCase()

converts the

string to

lowercase

toUpperCase()

converts the

string to

uppercase

valueOf()

returns the

string

representation

of the

specified

argument

toCharArray()

converts the

string to a

char array

Escape character in Java Strings

The escape character is used to escape some of the

characters present inside a string.

https://www.programiz.com/java-programming/library/string/tolowercase
https://www.programiz.com/java-programming/library/string/touppercase
https://www.programiz.com/java-programming/library/string/valueof
https://www.programiz.com/java-programming/library/string/tochararray

Suppose we need to include double quotes inside a string.

// include double quote
String example = "This is the "String" class";

Since strings are represented by double quotes, the
compiler will treat "This is the " as the string. Hence,

the above code will cause an error.
To solve this issue, we use the escape character \ in

Java. For example,

// use the escape character
String example = "This is the \"String\"
class.";

Now escape characters tell the compiler to escape double

quotesand read the whole text.

Java Strings are Immutable

In Java, strings are immutable. This means, once we

create a string, we cannot change that string.

To understand it more deeply, consider an example:

// create a string
String example = "Hello! ";

Here, we have created a string variable named example.

The variable holds the string "Hello! ".

Now suppose we want to change the string.

// add another string "World"
// to the previous tring example
example = example.concat(" World");

Here, we are using the concat()method to add another

string Worldto the previous string.

It looks like we are able to change the value of the
previous string. However, this is not true.

Let's see what has happened here,

1. JVM takes the first string "Hello! "

2. creates a new string by adding "World" to the first string

3. assign the new string "Hello! World" to

the examplevariable

4. the first string "Hello! " remains unchanged

Creating strings using the new keyword

So far we have created strings like primitive types in Java.

Since strings in Java are objects, we can create strings
using the newkeyword as well. For example,

// create a string using the new keyword

String name = new String("Java String");

In the above example, we have created a
string name using the new keyword.

Here, when we create a string object,
the String() constructor is invoked. To learn more about

constructor, visit Java Constructor.

Note: The String class provides various other

constructors to create strings. To learn more, visit Java

String (official Java documentation).

Example: Create Java Strings using the new keyword

class Main {
 public static void main(String[] args) {

 // create a string using new
 String name = new String("Java String");

 System.out.println(name); // print Java
String
 }
}

https://www.programiz.com/java-programming/constructors
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Create String using literals vs new keyword

Now that we know how strings are created using string
literals and the new keyword, let's see what is the major

difference between them.

In Java, the JVM maintains a string pool to store all of its

strings inside the memory. The string pool helps in reusing

the strings.

1. While creating strings using string literals,

String example = "Java";

Here, we are directly providing the value of the string
(Java). Hence, the compiler first checks the string pool to

see if the string already exists.

• If the string already exists, the new string is not created.
Instead, the new reference, examplepoints to the already

existed string (Java).

• If the string doesn't exist, the new string (Java is

created.

2. While creating strings using the new keyword,

String example = new String("Java");

Here, the value of the string is not directly provided.

Hence, the new string is created all the time

Java Abstract Class and Abstract Methods

In this tutorial, we will learn about Java abstract classes
and methods with the help of examples. We will also learn
about abstraction in Java.

Java Abstract Class

The abstract class in Java cannot be instantiated (we

cannot create objects of abstract classes). We use
the abstract keyword to declare an abstract class. For

example,

// create an abstract class
abstract class Language {
 // fields and methods
}
...

// try to create an object Language
// throws an error
Language obj = new Language();

An abstract class can have both the regular methods and

abstract methods. For example,

abstract class Language {

 // abstract method
 abstract void method1();

 // regular method
 void method2() {
 System.out.println("This is regular
method");
 }
}

To know about the non-abstract methods, visit Java

methods. Here, we will learn about abstract methods.

Java Abstract Method

A method that doesn't have its body is known as an
abstract method. We use the same abstract keyword to

create abstract methods. For example,

abstract void display();

Here, display() is an abstract method. The body

of display() is replaced by ;.

If a class contains an abstract method, then the class

should be declared abstract. Otherwise, it will generate an

error. For example,

// error
// class should be abstract
class Language {

https://www.programiz.com/java-programming/methods
https://www.programiz.com/java-programming/methods

 // abstract method
 abstract void method1();
}

Example: Java Abstract Class and Method

Though abstract classes cannot be instantiated, we can

create subclasses from it. We can then access members

of the abstract class using the object of the subclass. For

example,

abstract class Language {

 // method of abstract class
 public void display() {
 System.out.println("This is Java
Programming");
 }
}

class Main extends Language {

 public static void main(String[] args) {

 // create an object of Main
 Main obj = new Main();

 // access method of abstract class
 // using object of Main class
 obj.display();
 }
}

Output

This is Java programming

In the above example, we have created an abstract class
named Language. The class contains a regular

method display().

We have created the Main class that inherits the abstract

class. Notice the statement,

obj.display();

Here, obj is the object of the child class Main. We are

calling the method of the abstract class using the
object obj.

Implementing Abstract Methods

If the abstract class includes any abstract method, then all

the child classes inherited from the abstract superclass

must provide the implementation of the abstract method.

For example,

abstract class Animal {
 abstract void makeSound();

 public void eat() {
 System.out.println("I can eat.");
 }
}

class Dog extends Animal {

 // provide implementation of abstract method
 public void makeSound() {
 System.out.println("Bark bark");
 }
}

class Main {
 public static void main(String[] args) {

 // create an object of Dog class
 Dog d1 = new Dog();

 d1.makeSound();
 d1.eat();
 }
}

Output

Bark bark

I can eat.

In the above example, we have created an abstract
class Animal. The class contains an abstract

method makeSound() and a non-abstract method eat().

We have inherited a subclass Dogfrom the

superclass Animal. Here, the subclass Dog provides the

implementation for the abstract method makeSound().

We then used the object d1 of the Dog class to call

methods makeSound() and eat().

Note: If the Dog class doesn't provide the implementation

of the abstract method makeSound(), Dog should also be

declared as abstract. This is because the
subclass Doginherits makeSound() from Animal.

Java Interface

In this tutorial, we will learn about Java interfaces. We will
learn how to implement interfaces and when to use them
in detail with the help of examples.

An interface is a fully abstract class. It includes a group of

abstract methods (methods without a body).

We use the interface keyword to create an interface in

Java. For example,

interface Language {
 public void getType();

 public void getVersion();
}

Here,

• Language is an interface.

• It includes abstract
methods: getType() and getVersion().

Implementing an Interface

Like abstract classes, we cannot create objects of

interfaces.

To use an interface, other classes must implement it. We
use the implements keyword to implement an interface.

Example 1: Java Interface

interface Polygon {
 void getArea(int length, int breadth);
}

// implement the Polygon interface
class Rectangle implements Polygon {

 // implementation of abstract method
 public void getArea(int length, int breadth)
{

 System.out.println("The area of the
rectangle is " + (length * breadth));
 }
}

class Main {
 public static void main(String[] args) {
 Rectangle r1 = new Rectangle();
 r1.getArea(5, 6);
 }
}

Output

The area of the rectangle is 30

In the above example, we have created an interface
named Polygon. The interface contains an abstract

method getArea().

Here, the Rectangle class implements Polygon. And,

provides the implementation of the getArea() method.

Example 2: Java Interface

// create an interface
interface Language {
 void getName(String name);
}

// class implements interface
class ProgrammingLanguage implements Language {

 // implementation of abstract method
 public void getName(String name) {
 System.out.println("Programming Language: "
+ name);
 }
}

class Main {
 public static void main(String[] args) {
 ProgrammingLanguage language = new
ProgrammingLanguage();
 language.getName("Java");
 }
}

Output

Programming Language: Java

In the above example, we have created an interface
named Language. The interface includes an abstract

method getName().

Here, the ProgrammingLanguage class implements the

interface and provides the implementation for the method.

Implementing Multiple Interfaces

In Java, a class can also implement multiple interfaces.

For example,

interface A {
 // members of A
}

interface B {
 // members of B
}

class C implements A, B {
 // abstract members of A
 // abstract members of B
}

Extending an Interface

Similar to classes, interfaces can extend other interfaces.
The extends keyword is used for extending interfaces.

For example,

interface Line {
 // members of Line interface
}

// extending interface
interface Polygon extends Line {
 // members of Polygon interface
 // members of Line interface
}

Here, the Polygon interface extends the Line interface.

Now, if any class implements Polygon, it should provide

implementations for all the abstract methods of
both Line and Polygon.

Extending Multiple Interfaces

An interface can extend multiple interfaces. For example,

interface A {
 ...
}
interface B {
 ...
}

interface C extends A, B {
 ...
}

Advantages of Interface in Java

Now that we know what interfaces are, let's learn about

why interfaces are used in Java.

• Similar to abstract classes, interfaces help us to

achieve abstraction in Java.

Here, we know getArea()calculates the area of polygons

but the way area is calculated is different for different
polygons. Hence, the implementation of getArea() is

independent of one another.

• Interfaces provide specificationsthat a class (which

implements it) must follow.

In our previous example, we have used getArea() as a

specification inside the interface Polygon. This is like

setting a rule that we should be able to get the area of

every polygon.

Now any class that implements the Polygon interface

must provide an implementation for
the getArea() method.

• Interfaces are also used to achieve multiple inheritance in

Java. For example,

• interface Line {
• …
• }
•
• interface Polygon {
• …
• }
•
• class Rectangle implements Line, Polygon {
• …

}

Here, the class Rectangle is implementing two different

interfaces. This is how we achieve multiple inheritance in

Java.

Note: All the methods inside an interface are
implicitly public and all fields are implicitly public
static final. For example,

interface Language {

 // by default public static final
 String type = "programming language";

 // by default public
 void getName();

}

default methods in Java Interfaces

With the release of Java 8, we can now add methods with

implementation inside an interface. These methods are

called default methods.

To declare default methods inside interfaces, we use
the defaultkeyword. For example,

public default void getSides() {
 // body of getSides()
}

Why default methods?

Let's take a scenario to understand why default methods

are introduced in Java.

Suppose, we need to add a new method in an interface.

We can add the method in our interface easily without

implementation. However, that's not the end of the story.

All our classes that implement that interface must provide

an implementation for the method.

If a large number of classes were implementing this

interface, we need to track all these classes and make

changes to them. This is not only tedious but error-prone

as well.

To resolve this, Java introduced default methods. Default

methods are inherited like ordinary methods.

Let's take an example to have a better understanding of

default methods.

Example: Default Method in Java Interface

interface Polygon {
 void getArea();

 // default method
 default void getSides() {
 System.out.println("I can get sides of a
polygon.");
 }
}

// implements the interface
class Rectangle implements Polygon {
 public void getArea() {
 int length = 6;
 int breadth = 5;

 int area = length * breadth;
 System.out.println("The area of the
rectangle is " + area);
 }

 // overrides the getSides()
 public void getSides() {
 System.out.println("I have 4 sides.");
 }
}

// implements the interface
class Square implements Polygon {
 public void getArea() {
 int length = 5;
 int area = length * length;
 System.out.println("The area of the square
is " + area);
 }
}

class Main {
 public static void main(String[] args) {

 // create an object of Rectangle
 Rectangle r1 = new Rectangle();
 r1.getArea();
 r1.getSides();

 // create an object of Square

 Square s1 = new Square();
 s1.getArea();
 s1.getSides();
 }
}

Output

The area of the rectangle is 30
I have 4 sides.
The area of the square is 25
I can get sides of a polygon.

In the above example, we have created an interface
named Polygon. It has a default method getSides() and

an abstract method getArea().

Here, we have created two
classes Rectangle and Square that implement Polygon.

The Rectangle class provides the implementation of

the getArea()method and overrides

the getSides() method. However, the Square class only

provides the implementation of the getArea()method.

Now, while calling the getSides()method using

the Rectangle object, the overridden method is called.

However, in the case of the Squareobject, the default

method is called.

private and static Methods in Interface

The Java 8 also added another feature to include static

methods inside an interface.

Similar to a class, we can access static methods of an

interface using its references. For example,

// create an interface
interface Polygon {
 staticMethod(){..}
}

// access static method
Polygon.staticMethod();

Note: With the release of Java 9, private methods are also

supported in interfaces.

We cannot create objects of an interface. Hence, private

methods are used as helper methods that provide support

to other methods in interfaces.

Practical Example of Interface

Let's see a more practical example of Java Interface.

// To use the sqrt function

import java.lang.Math;

interface Polygon {
 void getArea();

 // calculate the perimeter of a Polygon
 default void getPerimeter(int... sides) {
 int perimeter = 0;
 for (int side: sides) {
 perimeter += side;
 }

 System.out.println("Perimeter: " +
perimeter);
 }
}

class Triangle implements Polygon {
 private int a, b, c;
 private double s, area;

// initializing sides of a triangle
 Triangle(int a, int b, int c) {
 this.a = a;
 this.b = b;
 this.c = c;
 s = 0;
 }

// calculate the area of a triangle

 public void getArea() {
 s = (double) (a + b + c)/2;
 area = Math.sqrt(s*(s-a)*(s-b)*(s-c));
 System.out.println("Area: " + area);
 }
}

class Main {
 public static void main(String[] args) {
 Triangle t1 = new Triangle(2, 3, 4);

// calls the method of the Triangle class
 t1.getArea();

// calls the method of Polygon
 t1.getPerimeter(2, 3, 4);
 }
}

Output

Area: 2.9047375096555625
Perimeter: 9

In the above program, we have created an interface
named Polygon. It includes a default

method getPerimeter() and an abstract

method getArea().

We can calculate the perimeter of all polygons in the same

manner so we implemented the body
of getPerimeter() in Polygon.

Now, all polygons that implement Polygon can

use getPerimeter() to calculate perimeter.

However, the rule for calculating the area is different for
different polygons. Hence, getArea() is included without

implementation.
Any class that implements Polygonmust provide an

implementation of getArea().

	Java Class and Objects
	Java Class
	Create a class in Java
	Java Objects
	Creating an Object in Java

	Access Members of a Class

	Java Constructors
	What is a Constructor?
	Example 1: Java Constructor
	Types of Constructor

	1. Java No-Arg Constructors
	Example 2: Java private no-arg constructor
	Example 3: Java public no-arg constructors

	2. Java Parameterized Constructor
	Example 4: Parameterized constructor

	3. Java Default Constructor
	Example 5: Default Constructor

	Important Notes on Java Constructors
	Constructors Overloading in Java
	Example 6: Java Constructor Overloading

	Java Method Overloading
	Why method overloading?
	How to perform method overloading in Java?
	1. Overloading by changing the number of parameters
	2. Method Overloading by changing the data type of parameters
	Important Points

	What is a static keyword in Java?
	Static Methods
	Example 1: Java static and non-static Methods

	Static Variables
	Example 2: Java static and non-static Variables

	Access static Variables and Methods within the Class
	Static Blocks
	Example 3: Use of static block in java

	Java Inheritance
	Example 1: Java Inheritance
	is-a relationship
	Method Overriding in Java Inheritance
	Example 2: Method overriding in Java Inheritance

	super Keyword in Java Inheritance
	Example 3: super Keyword in Inheritance

	protected Members in Inheritance
	Example 4: protected Members in Inheritance

	Why use inheritance?
	Types of inheritance
	1. Single Inheritance
	2. Multilevel Inheritance
	3. Hierarchical Inheritance
	4. Multiple Inheritance
	5. Hybrid Inheritance

	Java final keyword
	1. Java final Variable
	2. Java final Method
	3. Java final Class

	Java Arrays
	How to declare an array in Java?
	How to Initialize Arrays in Java?
	How to Access Elements of an Array in Java?
	Example: Access Array Elements

	Looping Through Array Elements
	Example: Using For Loop
	Example: Using the for-each Loop

	Example: Compute Sum and Average of Array Elements
	Multidimensional Arrays

	Java Multidimensional Arrays
	How to initialize a 2d array in Java?
	Example: 2-dimensional Array
	Example: Print all elements of 2d array Using Loop

	How to initialize a 3d array in Java?
	Example: 3-dimensional Array

	Java String
	Example: Create a String in Java
	Java String Operations
	1. Get Length of a String
	2. Join two Strings
	3. Compare two Strings

	Methods of Java String
	Escape character in Java Strings
	Java Strings are Immutable
	Creating strings using the new keyword
	Example: Create Java Strings using the new keyword
	Create String using literals vs new keyword

	Java Abstract Class and Abstract Methods
	Java Abstract Class
	Java Abstract Method
	Example: Java Abstract Class and Method

	Implementing Abstract Methods

	Java Interface
	Implementing an Interface
	Example 1: Java Interface
	Example 2: Java Interface
	Implementing Multiple Interfaces

	Extending an Interface
	Extending Multiple Interfaces

	Advantages of Interface in Java
	default methods in Java Interfaces
	Why default methods?
	Example: Default Method in Java Interface

	private and static Methods in Interface
	Practical Example of Interface

