
Inheritance

2

Inheritance

 Inheritance allows to derive a new class from an existing
one

 The existing class is called the parent class, or
superclass, or base class

 The derived class is called the child class or subclass.

 As the name implies, the child inherits characteristics of
the parent

 That is, the child class inherits the methods and data
defined for the parent class

Inheritance

 To develop a derived class, the programmer can add
new variables or methods, or can modify the inherited
ones

 Software reuse is the main aim of of inheritance

4

Deriving Subclasses

 In Java, we use the reserved word extends to establish
an inheritance relationship

class Car extends Vehicle

{

// class contents

}

5

The protected Modifier

 Visibility modifiers determine which class members are
inherited and which are not

 Variables and methods declared with public visibility
are inherited; those with private visibility are not

 But public variables violate the principle of
encapsulation

 There is a third visibility modifier that helps in inheritance
situations: protected

6

The protected Modifier

 The protected modifier allows a member of a base class
to be inherited into a child

 Protected visibility provides more encapsulation than
public visibility does

 However, protected visibility is not as tightly encapsulated
as private visibility

7

The super Reference

 Constructors are not inherited, even though they have
public visibility

 The super reference can be used to refer to the parent
class, and often is used to invoke the parent's constructor

The super Reference

 A child’s constructor is responsible for calling the parent’s
constructor

 The first line of a child’s constructor should use the
super reference to call the parent’s constructor

 The super reference can also be used to reference other
variables and methods defined in the parent’s class

Multiple Inheritance

 Java supports single inheritance, meaning that a derived
class can have only one parent class

 Multiple inheritance allows a class to be derived from two
or more classes, inheriting the members of all parents

 Collisions, such as the same variable name in two
parents, have to be resolved

 Java does not support multiple inheritance

 The use of interfaces gives us aspects of multiple
inheritance.

10

Overriding Methods

 A child class can override the definition of an inherited
method in favor of its own

 The new method must have the same signature as the
parent's method, but can have a different body

 The type of the object executing the method determines
which version of the method is invoked

Overriding

 A parent method can be invoked explicitly using the
super reference

 If a method is declared with the final modifier, it cannot
be overridden

 The concept of overriding can be applied to data and is
called shadowing variables

 Shadowing variables should be avoided because it tends
to cause unnecessarily confusing code

12

Overloading vs. Overriding

 Don't confuse the concepts of overloading and overriding

 Overloading deals with multiple methods with the same
name in the same class, but with different signatures

 Overriding deals with two methods, one in a parent class
and one in a child class, that have the same signature

 Overloading lets you define a similar operation in
different ways for different data

 Overriding lets you define a similar operation in different
ways for different object types

13

Class Hierarchies

 A child class of one parent can be the parent of another
child, forming a class hierarchy

Business

KMart Macys

ServiceBusiness

Kinkos

RetailBusiness

14

Class Hierarchies

 Two children of the same parent are called siblings

 Common features should be put as high in the hierarchy
as is reasonable

 An inherited member is passed continually down the line

 Therefore, a child class inherits from all its ancestor
classes

 There is no single class hierarchy that is appropriate for
all situations

15

The Object Class

 A class called Object is defined in the java.lang
package of the Java standard class library

 All classes are derived from the Object class

 If a class is not explicitly defined to be the child of an
existing class, it is assumed to be the child of the Object
class

 Therefore, the Object class is the ultimate root of all
class hierarchies

The Object Class

 The Object class contains a few useful methods, which
are inherited by all classes

 For example, the toString method is defined in the
Object class

 Every time we have defined toString, we have actually
been overriding an existing definition

 The toString method in the Object class is defined to
return a string that contains the name of the object’s
class together along with some other information

The Object Class

 All objects are guaranteed to have a toString method
via inheritance

 Thus the println method can call toString for any
object that is passed to it

The Object Class

 The equals method of the Object class returns true if
two references are aliases

 We can override equals in any class to define equality
in some more appropriate way

 The String class (as we've seen) defines the equals
method to return true if two String objects contain the
same characters

 Therefore the String class has overridden the equals
method inherited from Object in favor of its own version

Abstract Classes

 An abstract class is a placeholder in a class hierarchy
that represents a generic concept

 An abstract class cannot be instantiated

 We use the modifier abstract on the class header to
declare a class as abstract:

public abstract class Whatever

{

// contents

}

Abstract Classes

 An abstract class often contains abstract methods with no
definitions (like an interface does)

 Unlike an interface, the abstract modifier must be applied
to each abstract method

 An abstract class typically contains non-abstract methods
(with bodies), further distinguishing abstract classes from
interfaces

 A class declared as abstract does not need to contain
abstract methods

Abstract Classes

 The child of an abstract class must override the abstract
methods of the parent, or it too will be considered
abstract

 An abstract method cannot be defined as final
(because it must be overridden) or static (because it
has no definition yet)

 The use of abstract classes is a design decision – it helps
us establish common elements in a class that is too
general to instantiate

22

Indirect Use of Members

 An inherited member can be referenced directly by name
in the child class, as if it were declared in the child class

 But even if a method or variable is not inherited by a
child, it can still be accessed indirectly through parent
methods

 See FoodAnalysis.java (page 403)
 See FoodItem.java (page 404)
 See Pizza.java (page 405)

Polymorphism

 A reference can be polymorphic, which can be defined as
"having many forms"

obj.doIt();

 This line of code might execute different methods at
different times if the object that obj points to changes

 Polymorphic references are resolved at run time; this is
called dynamic binding

 Careful use of polymorphic references can lead to
elegant, robust software designs

 Polymorphism can be accomplished using inheritance or
using interfaces

24

References and Inheritance

 An object reference can refer to an object of its class, or
to an object of any class related to it by inheritance

 For example, if the Holiday class is used to derive a
child class called Christmas, then a Holiday reference
could be used to point to a Christmas object

Holiday day;
day = new Christmas();

Holiday

Christmas

25

References and Inheritance

 Assigning a predecessor object to an ancestor reference
is considered to be a widening conversion, and can be
performed by simple assignment

 Assigning an ancestor object to a predecessor reference
can be done also, but it is considered to be a narrowing
conversion and must be done with a cast

 The widening conversion is the most useful

 An Object reference can be used to refer to any object

• An ArrayList is designed to hold Object references

Polymorphism via Inheritance

 It is the type of the object being referenced, not the
reference type, that determines which method is invoked

 Suppose the Holiday class has a method called
celebrate, and the Christmas class overrides it

 Now consider the following invocation:

day.celebrate();

 If day refers to a Holiday object, it invokes the
Holiday version of celebrate; if it refers to a
Christmas object, it invokes the Christmas version

Polymorphism via Inheritance

 Consider the following class hierarchy:

StaffMember

Executive Hourly

Volunteer Employee

Polymorphism via Inheritance

 Now consider the task of paying all employees

 See Firm.java (page 410)
 See Staff.java (page 412)
 See StaffMember.java (page 414)
 See Volunteer.java (page 415)
 See Employee.java (page 416)
 See Executive.java (page 417)
 See Hourly.java (page 418)

Interface Hierarchies

 Inheritance can be applied to interfaces as well as classes

 One interface can be derived from another interface

 The child interface inherits all abstract methods of the
parent

 A class implementing the child interface must define all
methods from both the ancestor and child interfaces

 All members of an interface are public

 Note that class hierarchies and interface hierarchies are
distinct (they do not overlap)

Polymorphism via Interfaces

 An interface name can be used as the type of an object
reference variable

Doable obj;

 The obj reference can be used to point to any object of
any class that implements the Doable interface

 The version of doThis that the following line invokes
depends on the type of object that obj is referencing

obj.doThis();

Inheritance and GUIs

 An applet is an excellent example of inheritance

 Recall that when we define an applet, we extend the
Applet class or the JApplet class

 The Applet and JApplet classes already handle all the
details about applet creation and execution, including:

• interaction with a Web browser
• accepting applet parameters through HTML
• enforcing security restrictions

Inheritance and GUIs

 Our applet classes only have to deal with issues that
specifically relate to what our particular applet will do

 When we define the paint method of an applet, for
instance, we are actually overriding a method defined in
the Component class, which is ultimately inherited into
the Applet or JApplet class

The Component Class Hierarchy

 The Java classes that define GUI components are part of
a class hierarchy

 Swing GUI components typically are derived from the
JComponent class which is derived from the
Container class which is derived from the Component
class

 Many Swing components can serve as (limited)
containers, because they are derived from the
Container class

Mouse Events

 Events related to the mouse are separated into mouse
events and mouse motion events

 Mouse Events:
• mouse pressed – the mouse button is pressed down

• mouse released – the mouse button is released

• mouse clicked – the mouse button is pressed down and released
without moving the mouse in between

• mouse entered – the mouse pointer is moved onto (over) a
component

• mouse exited – the mouse pointer is moved off of a component

Mouse Events

 Mouse Motion Events:

• mouse moved – the mouse is moved

• mouse dragged – the mouse is dragged

 To satisfy the implementation of a listener interface,
empty methods must be provided for unused events

 An ArrayList object is used to store objects so they
can be redrawn as necessary

 See Dots.java (page 427)

 See DotsPanel.java (page 428)

The Dots Program

Mouse Events

 Each time the repaint method is called on an applet,
the window is cleared prior to calling paint

 Rubberbanding is the visual effect caused by "stretching"
a shape as it is drawn using the mouse

 See RubberLines.java (page 431)

 See RubberLinesPanel.java (page 432)

The RubberLines Program

Event Adapter Classes

 Listener classes can be created by implementing a
particular interface (such as MouseListener interface)

 A listener also can be created by extending an event
adapter class

 Each listener interface has a corresponding adapter class
(such as the MouseAdapter class)

 Each adapter class implements the corresponding
listener and provides empty method definitions

Event Adapter Classes

 When we derive a listener class from an adapter class,
we override any event methods of interest (such as the
mouseClicked method)

 Empty definitions for unused event methods need not be
provided

 See OffCenter.java (page 435)

 See OffCenterPanel.java (page 437)

The OffCenter Program

Summary

 Chapter 7 has focused on:

• deriving new classes from existing classes
• creating class hierarchies
• the protected modifier
• polymorphism via inheritance
• inheritance hierarchies for interfaces
• inheritance used in graphical user interfaces

