
Inheritance

2

Inheritance

 Inheritance allows to derive a new class from an existing
one

 The existing class is called the parent class, or
superclass, or base class

 The derived class is called the child class or subclass.

 As the name implies, the child inherits characteristics of
the parent

 That is, the child class inherits the methods and data
defined for the parent class

Inheritance

 To develop a derived class, the programmer can add
new variables or methods, or can modify the inherited
ones

 Software reuse is the main aim of of inheritance

4

Deriving Subclasses

 In Java, we use the reserved word extends to establish
an inheritance relationship

class Car extends Vehicle

{

// class contents

}

5

The protected Modifier

 Visibility modifiers determine which class members are
inherited and which are not

 Variables and methods declared with public visibility
are inherited; those with private visibility are not

 But public variables violate the principle of
encapsulation

 There is a third visibility modifier that helps in inheritance
situations: protected

6

The protected Modifier

 The protected modifier allows a member of a base class
to be inherited into a child

 Protected visibility provides more encapsulation than
public visibility does

 However, protected visibility is not as tightly encapsulated
as private visibility

7

The super Reference

 Constructors are not inherited, even though they have
public visibility

 The super reference can be used to refer to the parent
class, and often is used to invoke the parent's constructor

The super Reference

 A child’s constructor is responsible for calling the parent’s
constructor

 The first line of a child’s constructor should use the
super reference to call the parent’s constructor

 The super reference can also be used to reference other
variables and methods defined in the parent’s class

Multiple Inheritance

 Java supports single inheritance, meaning that a derived
class can have only one parent class

 Multiple inheritance allows a class to be derived from two
or more classes, inheriting the members of all parents

 Collisions, such as the same variable name in two
parents, have to be resolved

 Java does not support multiple inheritance

 The use of interfaces gives us aspects of multiple
inheritance.

10

Overriding Methods

 A child class can override the definition of an inherited
method in favor of its own

 The new method must have the same signature as the
parent's method, but can have a different body

 The type of the object executing the method determines
which version of the method is invoked

Overriding

 A parent method can be invoked explicitly using the
super reference

 If a method is declared with the final modifier, it cannot
be overridden

 The concept of overriding can be applied to data and is
called shadowing variables

 Shadowing variables should be avoided because it tends
to cause unnecessarily confusing code

12

Overloading vs. Overriding

 Don't confuse the concepts of overloading and overriding

 Overloading deals with multiple methods with the same
name in the same class, but with different signatures

 Overriding deals with two methods, one in a parent class
and one in a child class, that have the same signature

 Overloading lets you define a similar operation in
different ways for different data

 Overriding lets you define a similar operation in different
ways for different object types

13

Class Hierarchies

 A child class of one parent can be the parent of another
child, forming a class hierarchy

Business

KMart Macys

ServiceBusiness

Kinkos

RetailBusiness

14

Class Hierarchies

 Two children of the same parent are called siblings

 Common features should be put as high in the hierarchy
as is reasonable

 An inherited member is passed continually down the line

 Therefore, a child class inherits from all its ancestor
classes

 There is no single class hierarchy that is appropriate for
all situations

15

The Object Class

 A class called Object is defined in the java.lang
package of the Java standard class library

 All classes are derived from the Object class

 If a class is not explicitly defined to be the child of an
existing class, it is assumed to be the child of the Object
class

 Therefore, the Object class is the ultimate root of all
class hierarchies

The Object Class

 The Object class contains a few useful methods, which
are inherited by all classes

 For example, the toString method is defined in the
Object class

 Every time we have defined toString, we have actually
been overriding an existing definition

 The toString method in the Object class is defined to
return a string that contains the name of the object’s
class together along with some other information

The Object Class

 All objects are guaranteed to have a toString method
via inheritance

 Thus the println method can call toString for any
object that is passed to it

The Object Class

 The equals method of the Object class returns true if
two references are aliases

 We can override equals in any class to define equality
in some more appropriate way

 The String class (as we've seen) defines the equals
method to return true if two String objects contain the
same characters

 Therefore the String class has overridden the equals
method inherited from Object in favor of its own version

Abstract Classes

 An abstract class is a placeholder in a class hierarchy
that represents a generic concept

 An abstract class cannot be instantiated

 We use the modifier abstract on the class header to
declare a class as abstract:

public abstract class Whatever

{

// contents

}

Abstract Classes

 An abstract class often contains abstract methods with no
definitions (like an interface does)

 Unlike an interface, the abstract modifier must be applied
to each abstract method

 An abstract class typically contains non-abstract methods
(with bodies), further distinguishing abstract classes from
interfaces

 A class declared as abstract does not need to contain
abstract methods

Abstract Classes

 The child of an abstract class must override the abstract
methods of the parent, or it too will be considered
abstract

 An abstract method cannot be defined as final
(because it must be overridden) or static (because it
has no definition yet)

 The use of abstract classes is a design decision – it helps
us establish common elements in a class that is too
general to instantiate

22

Indirect Use of Members

 An inherited member can be referenced directly by name
in the child class, as if it were declared in the child class

 But even if a method or variable is not inherited by a
child, it can still be accessed indirectly through parent
methods

 See FoodAnalysis.java (page 403)
 See FoodItem.java (page 404)
 See Pizza.java (page 405)

Polymorphism

 A reference can be polymorphic, which can be defined as
"having many forms"

obj.doIt();

 This line of code might execute different methods at
different times if the object that obj points to changes

 Polymorphic references are resolved at run time; this is
called dynamic binding

 Careful use of polymorphic references can lead to
elegant, robust software designs

 Polymorphism can be accomplished using inheritance or
using interfaces

24

References and Inheritance

 An object reference can refer to an object of its class, or
to an object of any class related to it by inheritance

 For example, if the Holiday class is used to derive a
child class called Christmas, then a Holiday reference
could be used to point to a Christmas object

Holiday day;
day = new Christmas();

Holiday

Christmas

25

References and Inheritance

 Assigning a predecessor object to an ancestor reference
is considered to be a widening conversion, and can be
performed by simple assignment

 Assigning an ancestor object to a predecessor reference
can be done also, but it is considered to be a narrowing
conversion and must be done with a cast

 The widening conversion is the most useful

 An Object reference can be used to refer to any object

• An ArrayList is designed to hold Object references

Polymorphism via Inheritance

 It is the type of the object being referenced, not the
reference type, that determines which method is invoked

 Suppose the Holiday class has a method called
celebrate, and the Christmas class overrides it

 Now consider the following invocation:

day.celebrate();

 If day refers to a Holiday object, it invokes the
Holiday version of celebrate; if it refers to a
Christmas object, it invokes the Christmas version

Polymorphism via Inheritance

 Consider the following class hierarchy:

StaffMember

Executive Hourly

Volunteer Employee

Polymorphism via Inheritance

 Now consider the task of paying all employees

 See Firm.java (page 410)
 See Staff.java (page 412)
 See StaffMember.java (page 414)
 See Volunteer.java (page 415)
 See Employee.java (page 416)
 See Executive.java (page 417)
 See Hourly.java (page 418)

Interface Hierarchies

 Inheritance can be applied to interfaces as well as classes

 One interface can be derived from another interface

 The child interface inherits all abstract methods of the
parent

 A class implementing the child interface must define all
methods from both the ancestor and child interfaces

 All members of an interface are public

 Note that class hierarchies and interface hierarchies are
distinct (they do not overlap)

Polymorphism via Interfaces

 An interface name can be used as the type of an object
reference variable

Doable obj;

 The obj reference can be used to point to any object of
any class that implements the Doable interface

 The version of doThis that the following line invokes
depends on the type of object that obj is referencing

obj.doThis();

Inheritance and GUIs

 An applet is an excellent example of inheritance

 Recall that when we define an applet, we extend the
Applet class or the JApplet class

 The Applet and JApplet classes already handle all the
details about applet creation and execution, including:

• interaction with a Web browser
• accepting applet parameters through HTML
• enforcing security restrictions

Inheritance and GUIs

 Our applet classes only have to deal with issues that
specifically relate to what our particular applet will do

 When we define the paint method of an applet, for
instance, we are actually overriding a method defined in
the Component class, which is ultimately inherited into
the Applet or JApplet class

The Component Class Hierarchy

 The Java classes that define GUI components are part of
a class hierarchy

 Swing GUI components typically are derived from the
JComponent class which is derived from the
Container class which is derived from the Component
class

 Many Swing components can serve as (limited)
containers, because they are derived from the
Container class

Mouse Events

 Events related to the mouse are separated into mouse
events and mouse motion events

 Mouse Events:
• mouse pressed – the mouse button is pressed down

• mouse released – the mouse button is released

• mouse clicked – the mouse button is pressed down and released
without moving the mouse in between

• mouse entered – the mouse pointer is moved onto (over) a
component

• mouse exited – the mouse pointer is moved off of a component

Mouse Events

 Mouse Motion Events:

• mouse moved – the mouse is moved

• mouse dragged – the mouse is dragged

 To satisfy the implementation of a listener interface,
empty methods must be provided for unused events

 An ArrayList object is used to store objects so they
can be redrawn as necessary

 See Dots.java (page 427)

 See DotsPanel.java (page 428)

The Dots Program

Mouse Events

 Each time the repaint method is called on an applet,
the window is cleared prior to calling paint

 Rubberbanding is the visual effect caused by "stretching"
a shape as it is drawn using the mouse

 See RubberLines.java (page 431)

 See RubberLinesPanel.java (page 432)

The RubberLines Program

Event Adapter Classes

 Listener classes can be created by implementing a
particular interface (such as MouseListener interface)

 A listener also can be created by extending an event
adapter class

 Each listener interface has a corresponding adapter class
(such as the MouseAdapter class)

 Each adapter class implements the corresponding
listener and provides empty method definitions

Event Adapter Classes

 When we derive a listener class from an adapter class,
we override any event methods of interest (such as the
mouseClicked method)

 Empty definitions for unused event methods need not be
provided

 See OffCenter.java (page 435)

 See OffCenterPanel.java (page 437)

The OffCenter Program

Summary

 Chapter 7 has focused on:

• deriving new classes from existing classes
• creating class hierarchies
• the protected modifier
• polymorphism via inheritance
• inheritance hierarchies for interfaces
• inheritance used in graphical user interfaces

