SELF, INSTANCE AND STATIC VARIABLE IN PYTHON

SELF VARIABLE IN PYTHON

Self represents the instance of the class. By using the “self”
keyword we can access the attributes and methods of the class in
python. It binds the attributes with the given arguments. Python uses
the self-parameter to refer to instance attributes and methods of the
class. The self-variable in Python can also be used to access a
variable field within the class definition.

Self is the first argument to be passed in Constructor and Instance
Method. Self must be provided as a First parameter to the Instance
method and constructor. Self is a convention and not a Python
keyword . Self is parameter in Instance Method and user can use
another parameter name in place of it.

EXAMPLE 1:
class UCS5 20:
def init (self, batch):
self.batch = batch

def say(self):
print(f'{self.batch} academic years: 2020-2021 to 2022-2023.")
d=UCS5_20("2020 Batch Computer Science')

d.say()
OUTPUT:

UCS5_20:

__init__ (self, batch):
self.batch batch

say(self):
(f'{self.batch} academic years: 2020-2021 to 2022-2823.')

1
2
a
5
6
*]

d = UCS5_20('2020 Batch Computer Science')
d.say()

18
11

v VS input
2020 Batch Computer Science academic years: 2020-2021 to 2022-2023.

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

EXAMPLE 2:

class Rectangle ():
def init (self,x =0,y = 0):

self.x =x
self.y=y
def area (self):

nmn

"""Find area of rectangle
return (self.x * selfly)
rec1=Rectangle(5,10)
print ("Area is:", recl.area())
Rectangle ():
__init_ (self,x ,Y
self.x = X
self.y = y
area (self):
"""Find area of rectangle

|_'|.

w M

i Enm

-l O 1 B

(self.x * self.y)
recl=Rectangle(5,12)
("Area is:", recl.area())

W 0o

INSTANCE VARIABLE IN PYTHON

« Instance variables in a class are called fields or attributes of an object.

« Ifthe value of a variable varies from object to object, then such variables
are called instance variables.

« For every object, a separate copy of the instance variable will be created.

« Instance variables are not shared by objects. Every object has its own copy
of the instance attribute. This means that for each object of a class, the
instance variable value is different.

« Instance variables are used within the instance method.
« We can access the instance variable using the object and dot (.) operator.

« Instance variables are declared inside a method using the self keyword.

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

class Test:

L Instance
def __izlt__(self, num) : variable
se .num = num

I T T

1 1 |

1 1 |

1 1 1

1 1 1

+ + 4

t1 = Test(10) t2 = Test(20) t3 = Test(30)

Every object has its own copy of the instance variable

EXAMPLE:

class Student:

constructor
def init (self, name, age):
Instance variable
self.name = name
self.age = age
create first object
s1 = Student("Ajita", 12)
access instance variable
print('Object 1')
print('Name:', s1.name)
print(‘Age:', sl.age)
create second object
s2= Student("Jancy", 10)
access instance variable
print('Object 2')
print('Name:', s2.name)
print('Age:', s2.age)

OUTPUT:

Object 1
Ajita

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

CLASS VARIABLE IN PYTHON

A Python class variable is shared by all object instances of a class. Class
variables are declared when a class is being constructed. They are not
defined inside any methods of a class. Because a class variable is shared
by instances of a class, the Python class owns the variable.

A class variable is a variable that is declared inside of class, but outside of
any instance method or __ init () method.

If the value of a variable is not varied from object to object, such types of
variables are called class variables or static variables.

Class variables are shared by all instances of a class. Class variables are
declared when a class is being constructed.

class Student: Class
school name = 'ABC School' +——— Variable
def init (self, name}):
self.name = name «+ Instance
: J Variable
| |
1 1
1 1
I I
+ 1
51 = Student('Emma') 52 = Student('Jessa’)

All objects share a \
single copy of a ABC School
class variable.

EXAMPLE:

class Student:
Class variable
College name ='SXC"'

def init (self, name, roll no):
self.name = name

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

https://pynative.com/python-variables/
https://pynative.com/python-classes-and-objects/

self.roll_no = roll no
create first object
s1 = Student('Arthi', 10)
print(s1.name, sl.roll no, Student.College name)
access class variable
create second object
s2 = Student('Jhony', 20)
access class variable
print(s2.name, s2.roll no, Student.College name)

Arthi 10 SXC

Jhony 20 SXC

2k 3k sk o sk sk sk s sk s sk sk s sk sk sk sk sk sk sk sk s sk sk s sk sk ook sk sk sk sk s sk sk s sk sk sk sk sk s sk sk s sk sk s sk sk sk sk sk s sk sk s sk sk ook sk sk sk sk seoskoske skosk ke skosk ks sk

INSTANCE METHOD, CLASS METHOD AND STATIC
METHOD
Instance method performs a set of actions on the data/value provided

by the instance variables. If we use instance variables inside a method,
such methods are called instance methods. The instance method acts on
an object’s attributes. It can modify the object state by changing the
value of instance variables. The instance method receives the caller
object as the first parameter, and it requires no decorator.

Class method is method that is called on the class itself, not on a
specific object instance. Therefore, it belongs to a class level, and all
class instances share a class method. Class method Used to access or
modify the class state. It can modify the class state by changing the
value of a class variable that would apply across all the class objects.
The class method receives the caller class as the first parameter, and it
requires the (@classmethod decorator.

Static method is a general utility method that performs a task in
isolation. This method doesn’t have access to the instance and class
variable. Static methods have limited use because they don’t have
access to the attributes of an object (instance variables) and class
attributes (class variables). However, they can be helpful in utility such

5
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

https://pynative.com/python-instance-methods/
https://pynative.com/python-instance-variables/
https://pynative.com/python-class-method/
https://pynative.com/python-classes-and-objects/
https://pynative.com/python-class-variables/
https://pynative.com/python-static-method/

as conversion form one type to another. A static method does not
receive an implicit first argument. The static method does not take any
necessary parameter, and it requires the @staticmethod decorator.

Methods

Instance Class Static
Method Method Method
1. Bound to the Object 1. Bound to the Class 1. Bound to the Class
of a Class 2. It can modify a class 2. It can’t modify a class
2. It can modify a Object state or object state
state 3. Can Access only Class 3. Can't Access or
3. (Can Access and Variable modify the Class and
modify both class and 4. Used to create Instance Variables
instance variables factory methods

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

@ e .

Python Class .
Methods ® @. Methods .
@ PY Static .

Methods

class Person():
def init (self, name, age, can vote):
self.name = name
self.age = age

self.can_vote = can_vote

@staticmethod

def'is_adult(age):

ifage >= 18:
return True
else:

return False

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

Most Common

Must have self parameter
Mo decorator needed
Can be accessed through
object (instance of Class)

Doesn't need self parameter
Meed cls as parameter

Need decorator {@classmethod
Can be accessed directly
through the class. Don't need
instance of class.

Doesn't need self parameter
Doezn't need self or cls as
parameter

MNeed decorator (@staticmethod
Can only access variables
passed as argument.

Static method cannot be
accessed through class orit's
instance.

@classmethod
def create(cls, name, age):
if cls.is_adult(age) == True:
return cls(name, age, "Yes ,can Vote")
else:
return cls(name, age, "No,can't Vote")
stl = Person.create(" Antro", 15)
st2 = Person.create("Ajina", 20)
print("Can", stl.name, "vote?", stl.can_vote)

print("Can", st2.name, "vote?", st2.can_vote)

Can Antro vote? No,can't Vote

Can Ajina vote? Yes ,can Vote

Instance Method Example:

class Student():
def init (self, name):
self.name = name
def display(self):
return self.name
stl = Student("Antro")
st2 = Student("Ajina")
print(stl.display())
print(st2.display())

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

Super() METHOD IN PYTHON

o The super() method is used to give access to methods and properties of
a parent or sibling class. The super() function returns an object that
represents the parent class. Allows us to avoid using the base class name
explicitly. The super() function in Python implements code reusability and
modularity as there is no need for us to rewrite the whole function again
and again. The super() function in Python is known as dynamical function.
The arguments are given in the super() function and the arguments in the
function that we have called should match.

Syntax:

super(type, object)

Parameters:

1. type: (Optional) The class name whose base class methods needs to be

accessed
2. object: (Optional) An object of the class or self.

EXAMPLE for super()
class Rectangle:
def init (self, length, width):
self.length = length

self.width = width

def area(self):

return self.length * self.width

def perimeter(self):

return 2 * self.length + 2 * self.width

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

class Square(Rectangle):
def init (self, length):
super(). _init (length, length)
sqr = Square(4)

print("Area of Square is:", sqr.area())

rect = Rectangle(2, 4)
print("Area of Rectangle is:", rect.area())

Area of Sqguare is: 16

Area of Rectangle is: 8

INHERITANCE IN PYTHON

Inheritance is the capability of one class to derive or inherit the
properties from another class. Inheritance relationship defines the
classes that inherit from other classes as derived, subclass, or sub-type
classes.

Parent class is the class being inherited from, also called base class.

Child class i1s the class that inherits from another class, also called
derived class.

10
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

Single Inheritance Hierarchial Inheritance MultiLevel Inheritance

Super Class Super Class Super Class

Sub Class 1

Sub Class i ‘ Sub Class 1 ‘ | Sub Class 2 | | Sub Clﬂsﬂl -
| . 4 Sub Class 2
Hybrid Inheritance Multiple Inhertance
‘ Super Class | SuperClass 1 | Super Class 2
. - = “
I Sub El.ass 1| Sub fjlﬂﬁﬁ 2 . Sub Class
Sub Class 3
SINGLE INHERITANCE

Single inheritance enables a derived class to inherit properties from a single
parent class, thus enabling code reusability and the addition of new features to

existing code.

Single Inheritance

11
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

SINGLE INHERITANCE: PROGRAM

class Polygon:
def __init__ (self, no_of_sides):
self.n = no_of sides
self.sides = [0 for i in range(no_of_sides)]

def inputSides(self):
self.sides = [float(input("Enter side "+str(i+1)+": ")) for i in range(self.n)]

def dispSides(self):
for i in range(self.n):
print("Side",i+1,"is",self.sides][i])

class Triangle(Polygon):
def __init__(self):
Polygon.__init__(self,3)

def find Area(self):
a, b, c = self.sides
calculate the semi-perimeter
s=(a+b+c)/2
area = (s*(s-a)*(s-b)*(s-c)) ** 0.5
print('The area of the triangle is %0.2f' %area)
t = Triangle()
t.inputSides()
t.dispSides()
t.findArea()

OUTPUT:

v ¢ > |
Enter side 1 :
Enter side 2 :
Enter side 3 : 2
Side 1 is 3.0

Side 2 is 4.0
Side 3 is 2.0
The area of the triangle is 2.90

12
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

MULTI LEVEL INHERITANCE

In multilevel inheritance, features of the base class and the derived class are
further inherited into the new derived class. This is similar to a relationship

representing a child and grandfather.

Base Class

Intermediatory
Class

Derived Class

Multilevel Inheritance

MULTI-LEVEL INHERITANCE: PROGRAM 1

class Employees():
def Name(self):
print ("Employee Name: Jeba")

class salary(Employees):
def Salary(self):
print ("Salary: 85000")

class Designation(salary):
def desig(self):
print("Designation: System Engineer")

call = Designation()

call.Name()

call.Salary ()

Salary: 85000

Designation: System Engineer

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

13

MULTI-LEVEL INHERITANCE: PROGRAM 2

class student:
def getStudent(self):
self.name = input("Name: ")
self.age = input("Age: ")
self.gender = input("Gender: ")
class test(student):
Method
def getMarks(self):
self.stuClass = input("Class: ")
print("Enter the marks of the respective subjects")
self.c = int(input("C Programming: "))
self.cpp = int(input("C++ Programming;: "))
self java = int(input("Java Programming: "))
self.py = int(input("Python Programming: "))
class marks(test):
Method
def display(self):
print("\n\nName: ",self.name)
print("Age: ",self.age)
print("Gender: ",self.gender)
print("Study in: ",self.stuClass)
print("Total Marks: ", self.c + self.cpp + self.java + self.py)

(
(
(I
(

obj = marks()
obj.getStudent()
obj.getMarks()

1 R e e e e e e e e
print()

obj.display()

3 R e e e e e e e e |
print()

OUTPUT:

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

14

Name: George
Age: 20

nter the marks of the respective subjects
C Programming: 90
C++ Programming: 80
Java Programming: 92
Python Programming: 98

: George
Age: 20
Gender: Male
Study in: II B.Sc
Total Marks:

MULTIPLE INHERITANCE:

When a class can be derived from more than one base class this type of
inheritance is called multiple inheritance. In multiple inheritance, all the features
of the base classes are inherited into the derived class.

Basel Base?2

Features of Basel Features of Base?2

MultiDerived

Features of
Basel+Base2+
MultiDerived

MULTIPLE INHERITANCE: PROGRAM 1

class Car():
def Benz(self):
print(" This is a Benz Car ")
class Bike():
def Bmw(self):
print(" This is a BMW Bike ")
class Bus():
def Volvo(self):

15
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

print(" This is a Volvo Bus ")
class Truck():
def Eicher(self):
print(" This is a Eicher Truck ")
class Plane():
def Indigo(self):
print(" This is a Indigo plane ")
class Transport(Car,Bike, Bus, Truck,Plane):
def Main(self):
print("This is the Main Class:ENJOY TRAVELLING")
B=Transport|()
B.Benz()
B.Bmw()
B.Volvo()
B.Eicher()
B.Indigo()
B.Main(

OUTPUT:

- e +m
This is a Volvo Bus
This is a Eicher Truck
This is a Indigo plane

This is the Main Class:ENJOY TRAVELLING

MULTIPLE INHERITANCE: PROGRAM 2

class Addition:
def Sumn(self,a,b):
return a+b;
class Multiplication:
def Mul(self,a,b):
return a*b;
class Divide(Addition,Multiplication):
def Div(self,a,b):
return a/b;
ans = Divide()
numl=int(input("Enter first Number :"))

num?2=int(input("Enter second Number :"))
I)riIlt(”**ﬂﬁk***iﬁk***iﬂk****%ﬁk***iﬁk****iﬁhk*****ﬂﬁk****ﬂ)

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

16

print("ARITHMETIC OPERATIONS:MULTIPLE INHERITANCE")

print ll***II)

print("Number 2=",num?2)
print ”*k***k******************************k*********H)

(
(
print("Number 1 =",num1)
(
(

print("ADDITION : ",ans.Sum(numl,num?2))
print("MULTIPLICATION : ",ans.Mul(num1,num?2))
print("DIVISION : ",ans.Div(numl,num?2))
OUTPUT:

Enter first Number :45
Enter second Number :5
Flr e d e e b e o o e e e e e e e e e e e o e e o o o o o o o e o o o o o o o o o o o

ARTTHMETIC OPERATIONS:MULTIPLE INHERITANCE
e S E T T e T T T E TS T E T TS S

Number 1 = 45

Number 2= 5

RS b d b bt R R R T i e e b o o o o e e e

ADDITION H 50
ULTIPLICATION : 225
9.0

METHOD OVERLOADING

* Method Overloading is the class having methods that are
the same name with different arguments.

* Arguments different will be based on a number of
arguments and types of arguments.

* Itis used in a single class.

It is also used to write the code clarity as well as reduce
complexity.

17
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

Changing number of

Method /
Overloading ™

parameters

./ Changing the data types

of parameters

Advantages of using overload are:

* Overloading a method fosters reusability. For example,
instead of writing multiple methods that differ only
slightly, we can write one method and overload it.

* Overloading also improves code clarity and eliminates

complexity.

e o — e — - ———— —

With Method Overloading

int add2(int x, ini y)

{
returmx+y);

}
int add3(mt %, Int ywint Z)

{

returm{x+y+z}y;

}

imt adddfint w, int xint ¥, int Z)
1
returm{wHxsy+z);

}

it addfint x, mt y)

{
Feturmy [+,

'
int add(int x, @t yint Z)

{

returm{ £+ y+z)

}

it add(int w, int x.int ¥, it 2)

d

returnfw+xEy+2);

}

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

18

Ly miethod(x) |
method(x,v) |

e mathodix,y,2) |

=
--_-d-
-
-
e
—
T
e
——

class Person:

def Hello(self, name=None):
if name is not None:
print('Hello ' + name)

else:

print("Hello SXC")

Create Instance

obi = Person()

Call the method
obi.Hello()

Call the method with a parameter

obi.Hello(*S")

OUTPUT:
Hello
Hello SXC

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

19

class

class Compute:

area method

def area(self, x = None, y = None):
if x 1= None and y != None:

return x * y
elif x != None:
freturn x * x

else:
Ireturn 0 Area Value: 0

» object Area Value: 16

obi = Compute() Area Value: 15
print("Area Value:", obj.area())

one argument

print("Area Value:", obj.area(4))
two argument

print("Area Value:", obj.area(3, 5))

OVERRIDING IN PYTHON

* Overriding is the ability of a class to change the

implementation of a method provided by one of its
ancestors.

* Overriding 1s a very important part of OOP since it is the
feature that makes inheritance exploit its full power.
Through method overriding a class may "copy" another
class, avoiding duplicated code, and at the same time
enhance or customize part of it. Method overriding is thus
a strict part of the inheritance mechanism.

* Method Overriding is the method having the same name
with the same arguments.

20
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

* It is implemented with inheritance also.

It mostly used for memory reducing processes.

* Following conditions must be met for overriding a

function:

e Inheritance should be there. Function overriding cannot
be done within a class. We need to derive a child class

from a parent class.

* The function that 1s redefined in the child class should
have the same signature as in the parent class i.e.

same number of parameters.

Method overloading

Method overriding

1. More than one method with 1
same name, different
prototype in same scope is
called method overloading.

More than one method with
same name, same prototype in
different scope is called
method overriding.

performed within class.

2. In case of method 2. In case of method
overloading, parameter must overriding, parameter must be
be different. same.

3. Method overloading is the 3. Method overriding is the
example of compile time example of run time
polymorphism. polymorphism.

4. Method overloading is 4. Method overriding occurs in

two classes.

overloaded which means a
class can have more than one
static method of same name.

5. In case of method overloading, 5. In case of method overriding
Return type can be same or Return type must be same.
different.

6. Static methods can be 6. Static methods cannot be

overridden, even if you declare
a same static method in child
class it has nothing to do with
the same method of parent
class.

7. Static binding is being used for 7s
overloaded methods

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

dynamic binding is being used
for overridden/overriding
methods.

21

EXAMPLE:

CSE:

¢ message(self):
int("This me

IIBSC(CSE):

¢ message(self):

(This me is from II BSC' . “ from CSE

IIMSC(CSE):

message(self):

O 15 message 18 from II BSC

cl CSE()
cl.message()
1 (* -

c2 IIBSC()
c2.message()

I Nt(==sc=o==-
c3 IIMSC()
c3.message ()

EXAMPLE:

s Arith:

15 from II MSC

- add(self, a, b):
('The Sum of Two = ', a b)

s ArithThree(Arith):

- add(self, a, b, c): - .
('The Sum of Three = ', a + b The Sum of Two

El

e =Arith()

e2= ArithThree()

OPERATOR OVERLOADING IN PYTHON

Operator overloading in Python is the ability of a single operator to perform
more than one operation based on the class (type) of operands. The operator
overloading in Python means provide extended meaning beyond their predefined
operational meaning.

Such as, we use the "+" operator for adding two integers as well as joining two
strings or merging two lists.

print (10 + 10)

22
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

print ("ii" + "bsc")
print (23 * 10)
print ("bsc " * 3)

OuUTPUT

20

iibsc

220
Bscbscbsc

dbdbdbdbdbdbhbddhbbdddbbbdbdbdbdbdidddbbbdddb bbbt

EXAMPLE 1:
class Sample:
def init (self ,a):
self.a=a
def mul (self,obj):
return self.a * obj.a

obj1 =Sample(5)
obj2 =Sample(4)
obj3=Sample("JREXY &")
print(obj1 *obj2)
print(obj3 * obj2)

JREXY & JREXY &JREXY&JREXY &

R R R R R R SR T S S R R R R R S S R R R R R R T R R R R R R R LR T SR SR LR R S R R R S T R S R S o

EXAMPLE 2:
class Arithmetic:
def init (self, a, b):
selfa=a
selfb=>
def add (self, obj): #overloading '+' operator
a = self.a + obj.a
b = self.b + obj.b

23
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

return(Arithmetic(a, b))

def sub (self, obj): #overloading '-' operator

a = self.a - obj.a
b = self.b - obj.b
return(Arithmetic(a, b))

def mul (self, obj): #overloading '*' operator

a = self.a * obj.a
b = self.b * obj.b
return(Arithmetic(a, b))
def display(self):
print("a =", self.a, " b =", self.b)

cl = Arithmetic(4, 9)
cl.display()

c2 = Arithmetic(2, 3)
c2.display()

print("***********************")

addition =cl + c2
addition.display()

subtraction = cl - c2
subtraction.display()

multiplication = c1 * c2

multiplication.display()
print("***********************H)

a=4 b =
a=2 b=3
FhkAkFTRAFRAAFTRrAFRAXxFTRFR****

=6 b =12

=2 b =26
=8 b = 27

ek A AL Ldd

LR R TR R R R R R R R R R R R R R R R S R R R R R R TR SR R S R R R R R SR R R SR R R R R R R R R R R S T R

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

24

EXAMPLE 3:
class X:
def init (self, x):
self.x =x

adding two objects
def add (self, y):
return self.x + y.x
obl = X(20)
ob2 = X(25)
ob3 = X("Rexy")
ob4 = X("Jeba")

print(obl + ob2)
print(ob3 + ob4)
OUTPUT:

45

RexylJeba

dXdTbdbdbdbdbhbddbbrdddbdbdbdbdbdrdbdddbbbdddbrodddodlrdss

EXAMPLE 4:
class Student:
def init (self, m1, m2):
self ml = ml
self m2 = m2
def add (self, m1l, m2): #adding the two objects
ml = self. m1 + other.ml1
m2 = self.m2 + other.m?2
s3 = student (m1,m2)
return s3
def gt (self, other): #comparingthe two objects
rl = self. ml + self.m2
r2 = other.m1 + other.m?2
if(rl > r2):
return True

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

25

else:
return False

arthi = Student(100, 75)
anisha = Student(90, 80)
if (arthi > anisha):

print ("arthi wins")
else:

print ("anisha wins")

OUTPUT:arthi wins

dbhdbdbdbdbdbhbddhbrdddbbbdbdbdbdbdbdbdbbbdbbb bbbt

METHOD RESOLUTION ORDER

* MRO is a concept used in inheritance. It is the order in which a
method is searched for in a classes hierarchy

* MRO is from bottom to top and left to right

* This order is called linearization of class Child, and the set of
rules applied are called MRO (Method Resolution Order).

* it plays vital role in the context of multiple inheritance as single
method may be found in multiple super classes.

* The Python Method Resolution Order defines the class search
path used by Python to search for the right method to use in
classes having multi-inheritance. It as envolved since Python 2.2
to 2.3.

26
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

CASE 1:

Apple:
eat(self):
("This is Apples Eat method")

Orange:

Grapes(Apple, Orange):

obj = Grapes()
obj.eat()
(Grapes.mro()) # print MRO for class Grapes

This is Apples Eat method
55 ' main .Grapes'>, <class

main .Apple'>, <class ' main .Orange'>, <class 'object'>]

From MRO of class Grapes, we get to know that Python looks for a
method first in class Grapes. Then it goes to Apple and then to
Orange. So, first it goes to super class given first in the list then second
super class, from left to right order. Then finally Object class, which is
a super class for all classes.

CASE 2:
Apple:
eat(self):
("this is Apple's eat")
Orange:
eat(self):
("this is Orange's eat")

Grapes(Apple, Orange):

obj = Grapes()

obj.eatl()
(Grapes.mro())

27
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

* Python calls eat() method in class Apple. According to MRO, it
searches Apple first and then Orange. So if method is found in

Apple then it calls that method.

* However, if we remove eat() method from class Apple then eat()
method in class Orange will be called as it is the next class to be

searched according to MRO.
CASE 3:

* create Cherry from Grapes and Orange. Classes Grapes and
Orange have eat() method and as expected MRO chooses method
from Grapes. Remember it goes from left to right. So it searches
Grapes first and all its super classes of Grapes and then Orange
and all its super classes. We can observe that in MRO of the

output given below.

APPLE ORANGE

t T 1

GRAPES

GRAPES

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

28

Apple:
eat(self):
("This is Apple's eat™)
Orange:
eat(self):
("This is Orange's eat"™)
Grapes(Apple, Orange):
eat(self):
("This is Grapes's eat"™)
Cherry(Grapes,Orange):

S [IV I SR TE S =

00

\0

]

1_
S

obj Cherry(()
obj.eat()
(Cherry.mro())

1
1
1
1
1

P wWNEC

This 13 Grapes's eat
s ' main .Cherry'>, <class ' main .Grapes'>, <class ' main .Apple'>, <class ' main .Orange'>
s 'object'>]

CASE 4:
Method eat() is present in both APPLE and GRAPES.

APPLE

t

ORANGE GRAPES

|
T I

CHERRY

CASE 5:
* There are cases when Python cannot construct MRO owing to
complexity of hierarchy. In such cases it will throw an error as
demonstrated by the following code.

29
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

APPLE

ORANGE

GRAPES

Apple:
eat(self):
("APPLE")
Orange(Apple):
eat(self):
("ORANGE™")
Grapes(Apple, Orange):

L I o T W o Y SO S O N)

[e4]

obj = Grapes()
obj.eat()

9
-

1@

Traceback (most recent call last):
File "main.py", line 7, in <module>
class Grapes (Apple, Orange) :
TypeError: Cannot create a consistent method resolution
order (MRO) for bases Apple, Orange

PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

30

	Syntax:
	Parameters:

