
1
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

SELF, INSTANCE AND STATIC VARIABLE IN PYTHON

SELF VARIABLE IN PYTHON
Self represents the instance of the class. By using the “self”

keyword we can access the attributes and methods of the class in
python. It binds the attributes with the given arguments. Python uses
the self-parameter to refer to instance attributes and methods of the
class. The self-variable in Python can also be used to access a
variable field within the class definition.
 Self is the first argument to be passed in Constructor and Instance
Method. Self must be provided as a First parameter to the Instance
method and constructor. Self is a convention and not a Python
keyword . Self is parameter in Instance Method and user can use
another parameter name in place of it.

EXAMPLE 1:
class UCS5_20:
 def __init__(self, batch):
 self.batch = batch

 def say(self):
 print(f'{self.batch} academic years: 2020-2021 to 2022-2023.')
d = UCS5_20('2020 Batch Computer Science')
d.say()

OUTPUT:

2
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

EXAMPLE 2:

class Rectangle ():
 def __init__(self,x = 0,y = 0):
 self.x = x
 self.y = y
 def area (self):
 """Find area of rectangle"""
 return (self.x * self.y)
rec1=Rectangle(5,10)
print ("Area is:", rec1.area())

INSTANCE VARIABLE IN PYTHON

 Instance variables in a class are called fields or attributes of an object.
 If the value of a variable varies from object to object, then such variables

are called instance variables.
 For every object, a separate copy of the instance variable will be created.
 Instance variables are not shared by objects. Every object has its own copy

of the instance attribute. This means that for each object of a class, the
instance variable value is different.

 Instance variables are used within the instance method.
 We can access the instance variable using the object and dot (.) operator.
 Instance variables are declared inside a method using the self keyword.

3
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

EXAMPLE:

class Student:

 # constructor
 def __init__(self, name, age):
 # Instance variable
 self.name = name
 self.age = age
create first object
s1 = Student("Ajita", 12)
access instance variable
print('Object 1')
print('Name:', s1.name)
print('Age:', s1.age)
create second object
s2= Student("Jancy", 10)
access instance variable
print('Object 2')
print('Name:', s2.name)
print('Age:', s2.age)

OUTPUT:

4
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

CLASS VARIABLE IN PYTHON
A Python class variable is shared by all object instances of a class. Class
variables are declared when a class is being constructed. They are not
defined inside any methods of a class. Because a class variable is shared
by instances of a class, the Python class owns the variable.

A class variable is a variable that is declared inside of class, but outside of
any instance method or __init__() method.

If the value of a variable is not varied from object to object, such types of
variables are called class variables or static variables.

Class variables are shared by all instances of a class. Class variables are
declared when a class is being constructed.

EXAMPLE:

class Student:
 # Class variable
 College_name = 'SXC '

 def __init__(self, name, roll_no):
 self.name = name

https://pynative.com/python-variables/
https://pynative.com/python-classes-and-objects/

5
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

 self.roll_no = roll_no
create first object
s1 = Student('Arthi', 10)
print(s1.name, s1.roll_no, Student.College_name)
access class variable
create second object
s2 = Student('Jhony', 20)
access class variable
print(s2.name, s2.roll_no, Student.College_name)

INSTANCE METHOD, CLASS METHOD AND STATIC

METHOD
Instance method performs a set of actions on the data/value provided
by the instance variables. If we use instance variables inside a method,
such methods are called instance methods. The instance method acts on
an object’s attributes. It can modify the object state by changing the

value of instance variables. The instance method receives the caller
object as the first parameter, and it requires no decorator.

Class method is method that is called on the class itself, not on a
specific object instance. Therefore, it belongs to a class level, and all
class instances share a class method. Class method Used to access or
modify the class state. It can modify the class state by changing the
value of a class variable that would apply across all the class objects.
The class method receives the caller class as the first parameter, and it
requires the @classmethod decorator.

Static method is a general utility method that performs a task in
isolation. This method doesn’t have access to the instance and class

variable. Static methods have limited use because they don’t have

access to the attributes of an object (instance variables) and class
attributes (class variables). However, they can be helpful in utility such

https://pynative.com/python-instance-methods/
https://pynative.com/python-instance-variables/
https://pynative.com/python-class-method/
https://pynative.com/python-classes-and-objects/
https://pynative.com/python-class-variables/
https://pynative.com/python-static-method/

6
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

as conversion form one type to another. A static method does not
receive an implicit first argument. The static method does not take any
necessary parameter, and it requires the @staticmethod decorator.

7
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

class Person():

 def __init__(self, name, age, can_vote):

 self.name = name

 self.age = age

 self.can_vote = can_vote

 @staticmethod

 def is_adult(age):

 if age >= 18:

 return True

 else:

 return False

8
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

 @classmethod

 def create(cls, name, age):

 if cls.is_adult(age) == True:

 return cls(name, age, "Yes ,can Vote")

 else:

 return cls(name, age, "No,can't Vote")

st1 = Person.create("Antro", 15)

st2 = Person.create("Ajina", 20)

print("Can", st1.name, "vote?", st1.can_vote)

print("Can", st2.name, "vote?", st2.can_vote)

Instance Method Example:

class Student():
 def __init__(self, name):
 self.name = name
 def display(self):
 return self.name
st1 = Student("Antro")
st2 = Student("Ajina")
print(st1.display())
print(st2.display())

9
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

Super() METHOD IN PYTHON
o The super() method is used to give access to methods and properties of

a parent or sibling class. The super() function returns an object that
represents the parent class. Allows us to avoid using the base class name
explicitly. The super() function in Python implements code reusability and
modularity as there is no need for us to rewrite the whole function again
and again. The super() function in Python is known as dynamical function.
The arguments are given in the super() function and the arguments in the
function that we have called should match.

Syntax:

super(type, object)

Parameters:

1. type: (Optional) The class name whose base class methods needs to be
accessed

2. object: (Optional) An object of the class or self.

EXAMPLE for super()

class Rectangle:

 def __init__(self, length, width):

 self.length = length

 self.width = width

 def area(self):

 return self.length * self.width

 def perimeter(self):

 return 2 * self.length + 2 * self.width

10
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

class Square(Rectangle):

 def __init__(self, length):

 super().__init__(length, length)

sqr = Square(4)

print("Area of Square is:", sqr.area())

rect = Rectangle(2, 4)

print("Area of Rectangle is:", rect.area())

INHERITANCE IN PYTHON
Inheritance is the capability of one class to derive or inherit the
properties from another class. Inheritance relationship defines the
classes that inherit from other classes as derived, subclass, or sub-type
classes.

Parent class is the class being inherited from, also called base class.

Child class is the class that inherits from another class, also called
derived class.

11
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

SINGLE INHERITANCE
Single inheritance enables a derived class to inherit properties from a single
parent class, thus enabling code reusability and the addition of new features to
existing code.

12
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

SINGLE INHERITANCE: PROGRAM

class Polygon:
 def __init__(self, no_of_sides):
 self.n = no_of_sides
 self.sides = [0 for i in range(no_of_sides)]

 def inputSides(self):
 self.sides = [float(input("Enter side "+str(i+1)+" : ")) for i in range(self.n)]

 def dispSides(self):
 for i in range(self.n):
 print("Side",i+1,"is",self.sides[i])

class Triangle(Polygon):
 def __init__(self):
 Polygon.__init__(self,3)

 def findArea(self):
 a, b, c = self.sides
 # calculate the semi-perimeter
 s = (a + b + c) / 2
 area = (s*(s-a)*(s-b)*(s-c)) ** 0.5
 print('The area of the triangle is %0.2f' %area)
t = Triangle()
t.inputSides()
t.dispSides()
t.findArea()

OUTPUT:

13
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

MULTI LEVEL INHERITANCE
In multilevel inheritance, features of the base class and the derived class are
further inherited into the new derived class. This is similar to a relationship
representing a child and grandfather.

MULTI-LEVEL INHERITANCE: PROGRAM 1

class Employees():
 def Name(self):
 print ("Employee Name: Jeba")

class salary(Employees):
 def Salary(self):
 print ("Salary: 85000")

class Designation(salary):
 def desig(self):
 print("Designation: System Engineer")

call = Designation()
call.Name()
call.Salary()

14
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

MULTI-LEVEL INHERITANCE: PROGRAM 2

class student:
 def getStudent(self):
 self.name = input("Name: ")
 self.age = input("Age: ")
 self.gender = input("Gender: ")
class test(student):
 # Method
 def getMarks(self):
 self.stuClass = input("Class: ")
 print("Enter the marks of the respective subjects")
 self.c = int(input("C Programming: "))
 self.cpp = int(input("C++ Programming: "))
 self.java = int(input("Java Programming: "))
 self.py = int(input("Python Programming: "))
class marks(test):
 # Method
 def display(self):
 print("\n\nName: ",self.name)
 print("Age: ",self.age)
 print("Gender: ",self.gender)
 print("Study in: ",self.stuClass)
 print("Total Marks: ", self.c + self.cpp + self.java + self.py)

obj = marks()
obj.getStudent()
obj.getMarks()
print("**************************")
obj.display()
print("**************************")
OUTPUT:

15
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

MULTIPLE INHERITANCE:

When a class can be derived from more than one base class this type of
inheritance is called multiple inheritance. In multiple inheritance, all the features
of the base classes are inherited into the derived class.

MULTIPLE INHERITANCE: PROGRAM 1

class Car():
 def Benz(self):
 print(" This is a Benz Car ")
class Bike():
 def Bmw(self):
 print(" This is a BMW Bike ")
class Bus():
 def Volvo(self):

16
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

 print(" This is a Volvo Bus ")
class Truck():
 def Eicher(self):
 print(" This is a Eicher Truck ")
class Plane():
 def Indigo(self):
 print(" This is a Indigo plane ")
class Transport(Car,Bike,Bus,Truck,Plane):
 def Main(self):
 print("This is the Main Class:ENJOY TRAVELLING")
B=Transport()
B.Benz()
B.Bmw()
B.Volvo()
B.Eicher()
B.Indigo()
B.Main()

OUTPUT:

MULTIPLE INHERITANCE: PROGRAM 2

class Addition:
 def Sum(self,a,b):
 return a+b;
class Multiplication:
 def Mul(self,a,b):
 return a*b;
class Divide(Addition,Multiplication):
 def Div(self,a,b):
 return a/b;
ans = Divide()
num1=int(input("Enter first Number :"))
num2=int(input("Enter second Number :"))
print("***")

17
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

print("ARITHMETIC OPERATIONS:MULTIPLE INHERITANCE")
print("***")
print("Number 1 =",num1)
print("Number 2=",num2)
print("***")

print("ADDITION : " ,ans.Sum(num1,num2))
print("MULTIPLICATION : ",ans.Mul(num1,num2))
print("DIVISION : ",ans.Div(num1,num2))

OUTPUT:

METHOD OVERLOADING
• Method Overloading is the class having methods that are

the same name with different arguments.

• Arguments different will be based on a number of
arguments and types of arguments.

• It is used in a single class.

• It is also used to write the code clarity as well as reduce
complexity.

18
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

Advantages of using overload are:

• Overloading a method fosters reusability. For example,
instead of writing multiple methods that differ only
slightly, we can write one method and overload it.

• Overloading also improves code clarity and eliminates
complexity.

19
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

20
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

OVERRIDING IN PYTHON

• Overriding is the ability of a class to change the
implementation of a method provided by one of its
ancestors.

• Overriding is a very important part of OOP since it is the
feature that makes inheritance exploit its full power.
Through method overriding a class may "copy" another
class, avoiding duplicated code, and at the same time
enhance or customize part of it. Method overriding is thus
a strict part of the inheritance mechanism.

• Method Overriding is the method having the same name
with the same arguments.

21
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

• It is implemented with inheritance also.

• It mostly used for memory reducing processes.

• Following conditions must be met for overriding a
function:

• Inheritance should be there. Function overriding cannot
be done within a class. We need to derive a child class
from a parent class.

• The function that is redefined in the child class should
have the same signature as in the parent class i.e.
same number of parameters.

22
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

EXAMPLE:

EXAMPLE:

OPERATOR OVERLOADING IN PYTHON
Operator overloading in Python is the ability of a single operator to perform
more than one operation based on the class (type) of operands. The operator
overloading in Python means provide extended meaning beyond their predefined
operational meaning.

Such as, we use the "+" operator for adding two integers as well as joining two
strings or merging two lists.

print (10 + 10)

23
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

print ("ii" + "bsc")
 print (23 * 10)
 print ("bsc " * 3)

OUTPUT

20
iibsc
220
Bscbscbsc

**
EXAMPLE 1:
class Sample:
 def __init__(self ,a):
 self.a=a
 def __mul__(self,obj):
 return self.a * obj.a

obj1 =Sample(5)
obj2 =Sample(4)
obj3=Sample("JREXY&")
print(obj1 *obj2)
print(obj3 * obj2)

20

**

EXAMPLE 2:
class Arithmetic:
 def __init__(self, a, b):
 self.a = a
 self.b = b
 def __add__(self, obj): #overloading '+' operator
 a = self.a + obj.a
 b = self.b + obj.b

24
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

 return(Arithmetic(a, b))
 def __sub__(self, obj): #overloading '-' operator
 a = self.a - obj.a
 b = self.b - obj.b
 return(Arithmetic(a, b))

 def __mul__(self, obj): #overloading '*' operator
 a = self.a * obj.a
 b = self.b * obj.b
 return(Arithmetic(a, b))
 def display(self):
 print("a =", self.a, " b =", self.b)

c1 = Arithmetic(4, 9)
c1.display()

c2 = Arithmetic(2, 3)
c2.display()

print("***********************")
addition = c1 + c2
addition.display()

subtraction = c1 - c2
subtraction.display()

multiplication = c1 * c2
multiplication.display()
print("***********************")

**

25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

EXAMPLE 3:
class X:
 def __init__(self, x):
 self.x = x

 # adding two objects
 def __add__(self, y):
 return self.x + y.x
ob1 = X(20)
ob2 = X(25)
ob3 = X("Rexy")
ob4 = X("Jeba")

print(ob1 + ob2)
print(ob3 + ob4)
OUTPUT:
45
RexyJeba
**

EXAMPLE 4:
class Student:
 def __init__(self, m1, m2):
 self.m1 = m1
 self.m2 = m2
 def __add__(self, m1, m2): #adding the two objects
 m1 = self.m1 + other.m1
 m2 = self.m2 + other.m2
 s3 = student (m1,m2)
 return s3
 def __gt__(self, other): #comparingthe two objects
 r1 = self.m1 + self.m2
 r2 = other.m1 + other.m2
 if(r1 > r2):
 return True

26
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

 else:
 return False
arthi = Student(100, 75)
anisha = Student(90, 80)
if (arthi > anisha):
 print ("arthi wins")
else:
 print ("anisha wins")

OUTPUT:arthi wins
**

METHOD RESOLUTION ORDER
• MRO is a concept used in inheritance. It is the order in which a

method is searched for in a classes hierarchy
• MRO is from bottom to top and left to right
• This order is called linearization of class Child, and the set of

rules applied are called MRO (Method Resolution Order).
• it plays vital role in the context of multiple inheritance as single

method may be found in multiple super classes.
• The Python Method Resolution Order defines the class search

path used by Python to search for the right method to use in
classes having multi-inheritance. It as envolved since Python 2.2
to 2.3.

27
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

CASE 1:

From MRO of class Grapes, we get to know that Python looks for a
method first in class Grapes. Then it goes to Apple and then to
Orange. So, first it goes to super class given first in the list then second
super class, from left to right order. Then finally Object class, which is
a super class for all classes.

CASE 2:

28
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

• Python calls eat() method in class Apple. According to MRO, it
searches Apple first and then Orange. So if method is found in
Apple then it calls that method.

• However, if we remove eat() method from class Apple then eat()
method in class Orange will be called as it is the next class to be
searched according to MRO.

CASE 3:
• create Cherry from Grapes and Orange. Classes Grapes and

Orange have eat() method and as expected MRO chooses method
from Grapes. Remember it goes from left to right. So it searches
Grapes first and all its super classes of Grapes and then Orange
and all its super classes. We can observe that in MRO of the
output given below.

29
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

CASE 4:
Method eat() is present in both APPLE and GRAPES.

CASE 5:

• There are cases when Python cannot construct MRO owing to
complexity of hierarchy. In such cases it will throw an error as
demonstrated by the following code.

30
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

	Syntax:
	Parameters:

