
Page 1 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

EXCEPTION HANDLING IN PYTHON

• Errors are the problems in a program due to which the program will stop
the execution.

Two types of Error occurs in python.

• Syntax errors(parsing errors)

• Logical errors (Exceptions)

• An exception is an event, which occurs during the execution of a program
that disrupts the normal flow of the program's instructions. In general,
when a Python script encounters a situation that it cannot cope with, it
raises an exception. An exception is a Python object that represents an
error.

Page 2 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

Page 3 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

COMMON EXCEPTIONS:

• ZeroDivisionError: Occurs when a number is divided by zero.

• NameError: It occurs when a name is not found. It may be local or
global.

• IndentationError: If incorrect indentation is given.

• IOError: It occurs when Input Output operation fails.

• EOFError: It occurs when the end of the file is reached, and yet
operations are being performed.

Page 4 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

Page 5 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

EXAMPLE:

Page 6 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

RAISE AN EXCEPTION:

• As a Python developer you can choose to throw an exception if a
condition occurs.

• To throw (or raise) an exception, use the raise keyword.

• We can use raise to throw an exception if a condition occurs. The
statement can be complemented with a custom exception.

• x = -1

if x < 0:
 raise Exception("Sorry, no numbers below zero")

• x = "hello"

if not type(x) is int:
 raise TypeError("Only integers are allowed")

Program to depict else clause with try-except
Function which returns a/b

Page 7 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

def AbyB(a , b):
 try:
 c = ((a+b) / (a-b))
 except ZeroDivisionError:
 print "a/b result is 0"
 else:
 print c
Driver program to test above function
AbyB(2.0, 3.0)
AbyB(3.0, 3.0)

OUTPUT:

-5.0

a/b result is 0

USER DEFINED EXCEPTION

• Programmers may name their own exceptions by creating a new exception
class. Exceptions need to be derived from the Exception class, either
directly or indirectly.

Page 8 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

ASSERTION IN PYTHON

• An Assertion in Python or a Python Assert Statement is one which asserts
(or tests the trueness of) a condition in your code. This is a Boolean
expression that confirms the Boolean output of a condition.

Where Assertion in Python used?

• In checking types/ in checking valid input.

• In checking values of arguments.

• Checking outputs of functions.

• As a debugger to halt where an error occurs.

• In testing code.

• In detecting abuse of an interface by another programmer.

Using assert without Error Message:

def avg(marks):

 assert len(marks) != 0

 return sum(marks)/len(marks)

mark1 = []

 print("Average of mark1:",avg(mark1))

Page 9 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

Using assert with Error Message

LOGGING AN EXCEPTION

• Logging, in software applications, is a way to track events. Before we can
proceed, telling you more about it, we want to exemplify.

• To log an exception in Python we can use logging module and through
that we can log the error.

• Logging an exception in python with an error can be done in the logging.
exception() method. This function logs a message with level ERROR on
this logger. The arguments are interpreted as for debug(). Exception info
is added to the logging message. This method should only be called from
an exception handler

PURPOSES OF LOGGING IN PYTHON

• Diagnostic Logging- To record events that revolve around the
application’s operation.

• Audit Logging- To record events for business analysis.

Page 10 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

• Logging module provides a set of functions for simple logging and for
following purposes

 DEBUG

 INFO

 WARNING

 ERROR

 CRITICAL

PYTHON LOGGING FUNCTIONS

• logging.info() or logging.debug() for the detailed output of events that
occur during normal operation of a program.

• warnings.warn() issues a warning for a runtime event if the issue is
avoidable.

• logging.warning() issues a warning for a runtime event if we need to note
the event even when the client can do nothing about it.

• logging.error(), logging.exception(), or logging.critical() report the
suppression of an error without raising an exception.

importing the module
import logging
try:
 printf(“Hello")
except Exception as Argument:
 logging.exception("Error occured while printing Hello")
ERROR:root:Error occured while printing GeeksforGeeks Traceback (most
recent call last): File "/home/gfg.py", line 3, in printf("GeeksforGeeks")
NameError: name 'printf' is not defined
We can also log the error message into different file without showing error
in the console by the following method:

Page 11 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

Logging Variable Data:
dynamic information from application in the logs.
import logging
 name = 'John‘
 logging.error('%s raised an error', name)
ERROR:root:John raised an error
Displaying Date/Time For Python Logging:
• logging.basicConfig(format=’%(asctime)s %(message)s’)

FILE IN PYTHON

• A file is a chunk of logically related data or information
which can be used by computer programs.

• Files on most modern file systems are composed of three
main parts:

• Header: metadata about the contents of the file (file name,
size, type, and so on)

• Data: contents of the file as written by the creator or editor

Page 12 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

• End of file (EOF): special character that indicates the end
of the file

In Python, there is no need for importing external library to read
and write files. Python provides an inbuilt function for creating,
writing, and reading files.

• Python has several functions for creating, reading,
updating, and deleting files.

• There are two types of files in Python

 Binary file

 Text file

Page 13 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

FILE open() function
The Python file open function returns a file object that contains methods and
attributes to perform various operations for opening files in Python.

file_object = open("filename", "mode")
Here,

 filename: gives name of the file that the file object has opened.
 mode: attribute of a file object tells you which mode a file was opened in.

Page 14 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

File Modes:

MODES DESCRIPTION

<r> It opens a file in read-only mode while the file offset
stays at the root.

<rb> It opens a file in (binary + read-only) modes. And the
offset remains at the root level.

<r+> It opens the file in both (read + write) modes while the
file offset is again at the root level.

<rb+> It opens the file in (read + write + binary) modes. The
file offset is again at the root level.

<w>
It allows write-level access to a file. If the file already
exists, then it’ll get overwritten. It’ll create a new file if

the same doesn’t exist.

<wb> Use it to open a file for writing in binary format. Same
behavior as for write-only mode.

<w+> It opens a file in both (read + write) modes. Same
behavior as for write-only mode.

<wb+> It opens a file in (read + write + binary) modes. Same
behavior as for write-only mode.

Page 15 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

<a>
It opens the file in append mode. The offset goes to the
end of the file. If the file doesn’t exist, then it gets

created.

<ab> It opens a file in (append + binary) modes. Same
behavior as for append mode.

<a+> It opens a file in (append + read) modes. Same behavior
as for append mode.

<ab+> It opens a file in (append + read + binary) modes. Same
behavior as for append mode.

Syntax:

• file_object = open(file_name, mode)

EG

• f = open("demofile.txt", "r")

Page 16 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

EXAMPLE:

Python program to demonstrate File Concept

file1 = open('IIBSC_CS.txt', 'w')

L = [“20UCS BATCH \n", "JAVA-PYTHON-DS \n", "VB-EVS \n"]

s = "WELCOME\n"

Writing a string to file

file1.write(s)

Writing multiple strings at a time

file1.writelines(L)

Closing file

file1.close()

file1 = open('IIBSC_CS.txt', 'r')

print(file1.read())

file1.close()

Page 17 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

APPEND

Python program to illustrate # Append

 # Append-adds at last

file1 = open("IIBSC_CS.txt", "a") # append mode

file1.write("STAND-ECC-NSS-FINE ARTS \n")

file1.close()

file1 = open("IIBSC_CS.txt", "r")

print("Output after appending")

print(file1.read())

print()

file1.close()

Page 18 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

EXAMPLE:

Python program to count the number of lines in a text file

Opening a file

file = open("IIBSC_CS.txt","r")

Counter = 0

Reading from file

Content = file.read()

CoList = Content.split("\n")

for i in CoList:

 if i:

Page 19 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

 Counter += 1

print("Number of lines in the file IIBSC_CS.txt")

print(Counter)

EXAMPLE:

PROGRAM TO DISPLAY SUM OF DIGITS IN THE TEXT FILE

Python program for writing to file

file = open('SUM.txt', 'w')

data ='HELLO123 SUPER345'

file.write(data)

file.close()

Python program for reading from file

h = open('SUM.txt', 'r')

content = h.readlines()

a = 0

for line in content:

 for i in line:

 if i.isdigit() == True:

 a += int(i)

print("The sum of numbers in the file is:", a)

Page 20 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

EXAMPLE

Count the number of occurrence of the words in text file

file = open('COUNT.txt', 'w')

data ='IUG IIUG IIIUG IPG IIPG IIUG IIUG IIUG'

file.write(data)

file.close()

text = open("COUNT.txt", "r")

d = dict()

for line in text:

 line = line.strip()

 line = line.upper()

 words = line.split(" ")

 for word in words:

 if word in d:

 d[word] = d[word] + 1

 else:

 d[word] = 1

Page 21 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

for key in list(d.keys()):

 print(key, ":", d[key])

FILE METHODS:

close() Closes the file

detach() Returns the separated raw stream from the buffer

fileno() Returns a number that represents the stream, from the
operating system's perspective

flush() Flushes the internal buffer

isatty() Returns whether the file stream is interactive or not

https://www.w3schools.com/python/ref_file_close.asp
https://www.w3schools.com/python/ref_file_fileno.asp
https://www.w3schools.com/python/ref_file_flush.asp
https://www.w3schools.com/python/ref_file_isatty.asp

Page 22 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

read() Returns the file content

readable() Returns whether the file stream can be read or not

readline() Returns one line from the file

readlines() Returns a list of lines from the file

seek() Change the file position

seekable() Returns whether the file allows us to change the file
position

tell() Returns the current file position

truncate() Resizes the file to a specified size

writable() Returns whether the file can be written to or not

write() Writes the specified string to the file

writelines() Writes a list of strings to the file

https://www.w3schools.com/python/ref_file_read.asp
https://www.w3schools.com/python/ref_file_readable.asp
https://www.w3schools.com/python/ref_file_readline.asp
https://www.w3schools.com/python/ref_file_readlines.asp
https://www.w3schools.com/python/ref_file_seek.asp
https://www.w3schools.com/python/ref_file_seekable.asp
https://www.w3schools.com/python/ref_file_tell.asp
https://www.w3schools.com/python/ref_file_truncate.asp
https://www.w3schools.com/python/ref_file_writable.asp
https://www.w3schools.com/python/ref_file_write.asp
https://www.w3schools.com/python/ref_file_writelines.asp

Page 23 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

FILE:RANDOM ACCESS

FILE

The tell() method returns the current file position in a file stream.

file.tell()

f = open("demofile.txt", "r")
print(f.readline())
print(f.tell())

seek()

move the file pointer to another position. fileObject.seek(offset,from_what))

offset – A number of positions will move.

from_what – defines your point of reference. (Optional)

f = open("testFile.txt", "r")

f.seek(9)

print(f.readline())

Using the mmap module allows the user to randomly access locations in a file
by mapping the file into memory. This is an alternative to using normal file
operations.

import mmap

with open('filename.ext', 'r') as fd:
 # 0: map the whole file
 mm = mmap.mmap(fd.fileno(), 0)

 # print characters at indices 5 through 10
 print mm[5:10]

https://docs.python.org/2/library/mmap.html

Page 24 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

 # print the line starting from mm's current position
 print mm.readline()

 # write a character to the 5th index
 mm[5] = 'a'

 # return mm's position to the beginning of the file
 mm.seek(0)

 # close the mmap object
 mm.close()

Zipping and Unzipping files in Python

ZIP is an archive file format that supports lossless data compression.
By lossless compression, it means that the

compression algorithm used allows the original data to be perfectly
reconstructed from the compressed data.

Also, a ZIP file may contain one or more files or directories that may
have been compressed.

Why do we need zip files?
 To reduce storage requirements.
 To improve transfer speed over standard connections.

importing required modules

from zipfile import ZipFile

specifying the zip file name

file_name = "my_python_files.zip"

opening the zip file in READ mode

with ZipFile(file_name, 'r') as zip:

 # printing all the contents of the zip file

 zip.printdir()

Page 25 of 25
PROGRAMMING IN PYTHON: MATERIAL: PROF J. REXY

 # extracting all the files

 print('Extracting all the files now... ')

 zip.extractall()

 print('Done!')

Unzipping the File

import zipfile

def un_zipFiles(path):

 files=os.listdir(path)

 for file in files:

 if file.endswith('.zip'):

 filePath=path+'/'+file

 zip_file = zipfile.ZipFile(filePath)

 for names in zip_file.namelist():

 zip_file.extract(names,path)

 zip_file.close()

	FILE open() function
	seek()
	Zipping and Unzipping files in Python

